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Abstract

Moment independent importance measures have been proposed by E. Borgonovo [1] in
order to alleviate some of the drawbacks of variance-based sensibility indices. They have
gained increasing attention over the last years but their estimation remains a challenging
issue. An effective estimation scheme in the case of correlated inputs, referred to as
single-loop method, has been proposed by Wei et al. [2]. In this paper we show via
simulation that this method may be inaccurate, making for instance 40% error in the
simplest possible Gaussian case. We then propose a new estimation scheme which greatly
improves the accuracy of the single-loop method, up to a factor 10 in some simple numerical
examples. We prove that our estimator is strongly consistent and several simulation results
are presented to demonstrate the advantages of the proposed method.

Keywords: Monte Carlo simulation, Importance Sampling, density-based sensitivity
analysis, importance measures.

1. Introduction

The reliability and safety analysis of large and complex systems is a subject of current
interest in various fields such as engineering [3, 4], data processing [5], aeronautics [6] or
nuclear domain [7]. This analysis may be performed by quantitative methods which aim
to provide estimation about a failure probability or any indicator of an undesired state or
behavior of the system.

In this paper, we focus on the study of input-output models where the output is a
deterministic function, called “black-box”, of the input assumed to be random. In this
context, the following fundamental question formulated by Saltelli [8] arises: how does
uncertainty in the different inputs Xi contribute to the uncertainty in the model output?
This type of analysis, which belongs to the sensitivity analysis framework, presents two
main objectives: on the one hand, to identify the most influential inputs, that we may
then for instance seek to know with the greatest possible accuracy in order to reduce the
output variability; and on the other hand, to determine non-influential inputs which for
instance then makes it possible to decrease the model complexity.

There are essentially two frameworks for sensitivity analysis: local sensitivity analysis
and global sensitivity analysis, see [9] and the associated references for a review of these
methods. The local approach corresponds to the assessment of the local impact of an
input on the model’s response by concentrating on the sensitivity in the vicinity of a set
of nominal values. It may be defined as the partial derivatives of the model output. In
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contrast, global sensitivity analysis methods consider the whole variation range of the
inputs: there are various techniques such as screening methods, graphical and smoothing
tools, variance-based and moment-independent methods. The interested reader can refer
to [9, 10] and the associated references for a review of these methods. Variance-based
importance measures [11, 12] are one of the most widely used importance measures. They
are based on Sobol’s indices which express the share of variance of the output that is due
to a given input or input combination. However, this method focuses on the second-order
moment of the output distribution which is not always sufficient to represent the entire
variability of the distribution, as illustrated by Borgonovo [13]. To overcome this drawback,
Borgonovo [1] proposed distribution-based sensitivity indices that are currently gaining
increasing attention [14]. However, estimating these indices while minimizing the number
of calls to the model response raises a challenging problem because these indices involve L1

norms of differences of conditional and unconditional probability density functions (PDFs)
of the output.

In the original article, Borgonovo proposed a PDF-based method based on a double
loop Monte Carlo procedure coupled with kernel density estimation (KDE) which leads to
a significant computational budget. Several other methodologies have been recently devel-
oped. A pseudo-double loop design involving a partition of the input spaces is proposed
in [15]. Liu and Homma [16] propose to express Borgonovo’s indices in terms of uncondi-
tional and conditional cumulative distributions functions of the model output. However,
as pointed by Liu ”for a computationally intensive model, when the total computational
time is mainly due to the time of running the model, the improvement of the computa-
tional efficiency by the CDF-based method can be negligible”. Furthermore, the density
estimation cost is replaced by the necessity to find the intersection points of the uncondi-
tional and conditional PDFs of the output which leads to additional computational time
and approximation errors. We also recall other recent works such as [17, 18] dealing with
copula-based method sensitivity analysis, [19] which describes a new method combining
the principle of fractional moment-based maximum entropy and the use of Nataf trans-
formation but only suitable for models with independent inputs and [20] where the use
of the Edgeworth series is proposed to avoid the density estimation. The present arti-
cle focuses on PDF-based methods. In [2] a single-loop and a double-loop Monte Carlo
simulation schemes adopting the KDE technique have been proposed and have already
begun to be implemented in practical cases, see for instance [21, 22, 23]. The single-loop
method has the following advantages: it is suitable in the case of correlated inputs and it
substantially improves the computational burden in comparison to the PDF-based method
initially introduced.

The present paper proposes a new method, close to the single-loop Monte Carlo sim-
ulation method proposed in [2], which improves the accuracy of the estimation of Bor-
gonovo’s indices. After recalling some definitions and facts about Borgonovo’s indices
in Section 2, we show in Section 3 through numerical simulations on a simple toy case
that the single-loop method of [2] may provide inaccurate estimates, and we also discuss
potential explanations for this inaccuracy. Our new estimation scheme is presented in
Section 4 where some of its theoretical properties, and in particular its consistency, are
derived. Section 5 presents numerical results which highlight the increase in accuracy of
our method and Section 6 gives the conclusion of this work.

2. Borgonovo’s moment independent importance measure

Throughout the paper we consider a general input-output model Y = Φ(X) where
the output Y depends on a d-dimensional real valued random variable X = (X1, ..., Xd)
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through a deterministic scalar function Φ : Rd −→ R called “black box” or “model re-
sponse”. For I ⊂ {1, . . . , d} a subset of indices we write XI = (Xi, i ∈ I). We assume
throughout that for every I ⊂ {1, . . . , d} a strict subset (i.e., I 6= {1, . . . , d}), the pair
(XI , Y ) is absolutely continuous with respect to Lebesgue measure with PDF fXI ,Y . This
implies in particular that the random variables XI , Y and Y conditioned on XI = xI
for any I ⊂ {1, . . . , d} a strict subset, and any xI ∈ RCard(I) are also absolutely continu-
ous with respect to Lebesgue measure, and we will denote by fXI

, fY and fXI=xI
Y their

respective PDFs.
The idea of Borgonovo’s global sensitivity analysis method introduced in [1] is to

measure how fixing the input Xi at a value xi modifies the entire distribution of the
output Y . In [1], this modification of the output distribution is quantified by the shift
s(xi) defined as the L1 norm between fY and fXi=xiY :

s(xi) =
1

2

∥∥∥fY − fXi=xiY

∥∥∥
L1(R)

=
1

2

∫ ∣∣∣fY (y)− fXi=xiY (y)
∣∣∣ dy . (1)

So as to consider the whole range of values the random variable Xi can take into
account, the sensibility of the output Y with respect to the input Xi is defined by averaging
the shift over Xi, i.e., Borgonovo’s index is given by

δi := E [s(Xi)] . (2)

For further references and more details on properties of Borgonovo’s indices the reader
can for instance consult [1, 24].

Remark 1. This definition can be generalized to a strict group of inputs I ⊂ {1, . . . , d}
by

δI := E [s(XI)] with s(xI) =
1

2

∥∥∥fY − fXI=xI
Y

∥∥∥
L1(R)

=
1

2

∫ ∣∣∣fY (y)− fXI=xI
Y (y)

∣∣∣ dy .
For ease of exposition we restrict our attention throughout the paper to the case of

singletons, but all our results can be generalized to groups of inputs.

3. Estimation of Borgonovo’s indices

Estimating Borgonovo’s indices is a challenging task because of the unknown uncon-
ditional and conditional PDF fY and fXi=xiY that intervene in a convoluted way (i.e.,
through an L1-norm) in their definitions (1) and (2). The present article focuses on a
single-loop Monte Carlo simulation method available in [2] which presents several advan-
tages: it is notably effective for models with correlated inputs and implies fewer call to
the model than the double-loop designs. This method has received increasing attention
and has begun to be used in practice, see for instance [21, 22, 23].

3.1. The single-loop Monte Carlo simulation

The method that we propose here is close to the single-loop method of [2] which we
recall first. The main idea behind this method is to re-interpret Borgonovo’s index δi as an
L1-difference between the joint distribution fXi,Y and the density of the random variables
Xi and Y if they were independent. Indeed, from (1) and (2) it follows immediately that

δi =
1

2

∫
fXi(x)

(∫ ∣∣∣fY (y)− fXi=xY (y)
∣∣∣ dy)dx

=
1

2

∫
fXi(x)

∣∣∣∣fY (y)−
fXi,Y (x, y)

fXi(x)

∣∣∣∣ dxdy

=
1

2
‖fXifY − fXi,Y ‖L1(R2) .
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This interpretation opens the way for various estimation procedures of δi, one of them
being the single-loop Monte Carlo estimator based on rewriting the above expression as

δi =
1

2
E

[∣∣∣∣fXi(Xi)fY (Y )

fXi,Y (Xi, Y )
− 1

∣∣∣∣] . (3)

where the (Xi, Y ) are i.i.d. drawn according to fXi,Y .

Step SL1. Generate (X1, ...,XN ) i.i.d. with common distribution X, and then obtain N
observations of the model by Y k = Φ(Xk) for k = 1, . . . , N .

Step SL2. Use the sample (Xk, Y k) to estimate the PDFs fY and fXi,Y by kernel density
estimation (KDE):

f̂Y (y) :=
1

Nh

N∑
k=1

K

(
y − Y k

h

)
, y ∈ R, (4)

and

f̂Xi,Y (x, y) :=
1

Nh1h2

N∑
k=1

K

(
x−Xk

i

h1

)
K

(
y − Y k

h2

)
, (x, y) ∈ R2 , (5)

where K is the Gaussian kernel K(u) = 1√
2π

exp(−1
2u

2) and where the bandwidths h,

h1 and h2 are estimated with the diffusion-based method proposed in [25]. This method
chooses the bandwidth parameters optimally without ever using or assuming a parametric
model for the data or any “rules of thumb”.

Step SL3. Estimate δi by

δ̂SLi =
1

2N

N∑
k=1

∣∣∣∣∣fXi(Xk
i )f̂Y (Y k)

f̂Xi,Y (Xk
i , Y

k)
− 1

∣∣∣∣∣ =
1

2N

N∑
k=1

∣∣∣fXi(Xk
i )f̂Y (Y k)− f̂Xi,Y (Xk

i , Y
k)
∣∣∣

f̂Xi,Y (Xk
i , Y

k)
. (6)

This method combines one Monte Carlo loop and KDE procedure and it requires only
N calls to the black-box function Φ for the estimation of all the indices.

3.2. Application to a Gaussian toy case

In this section, we apply the single-loop Monte Carlo scheme on a simple example of
black-box system for which the unconditional and conditional PDFs of the output are
known. We assume that the model output is given by

Y = X1 +X2 ,

where the input variables are independent and follow normal distribution N(0, 1) and
N(0, 5) respectively, the second argument corresponding to the variance. In this case the
unconditional and conditional output distributions are respectively given by

Y ∼ N(0, 6), (Y | X1 = x1) ∼ N(x1, 5) and (Y | X2 = x2) ∼ N(x2, 1) ,

and so the moment independent measures δi are given by

δ1 =
1

4π

∫
R2

e−
x2

2

∣∣∣∣ 1√
6
e−

y2

12 − 1√
5
e−

(y−x)2

10

∣∣∣∣dxdy ,

and

δ2 =
1

4π

∫
R2

e−
x2

10

∣∣∣∣ 1√
6
e−

y2

12 − 1√
5
e−

(y−x)2

2

∣∣∣∣dxdy .
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Table 1. Single-loop estimates of the importance measures δi in the Gaussian toy case. The sample size is
N = 5, 000 and the mean and standard deviation of the single-loop estimators δ̂SLi are estimated with

100 simulations.

Input Theoretical value δi δ̄SLi Relative difference σ̄SLi CV(δ̂SLi )

X1 0.1436 0.1217 -0.1522 0.0055 0.0449

X2 0.5382 0.3297 -0.3873 0.0046 0.0138

Using numerical integration, we get the approximations δ1 ≈ 0.1436 and δ2 ≈ 0.5382.
We may compare them with the single-loop estimates δ̂SL1 and δ̂SL2 of both importance
measures δ1 and δ2. In [2], the sample size N is set to be N = 3, 000 for all the numerical
applications.

As an indicator of the accuracy of the single-loop estimator δ̂SLi , we consider the
coefficient of variation CV(δ̂SLi ) given by the ratio of the standard deviation to the mean,
i.e.,

CV(δ̂SLi ) =

√
Var(δ̂SLi )

E
(
δ̂SLi

) .

Since the true values of the standard deviation and the mean of δ̂SLi are unknown, in
the subsequent analysis we replace them by their estimations obtained with regular Monte
Carlo methods with 100 simulations. We will write δ̄SLi for the estimation of E(δ̂SLi ) and

σ̄SLi for the estimation of
√
Var(δ̂SLi ), so that the estimation of CV(δ̂SLi ) is given by

δ̄SLi
σ̄SLi

(see the beginning of Section 5).
Table 1 reports numerical results obtained with N = 5, 000 and m = 100 simulations

to compute the estimate of CV(δ̂SLi ). With coefficients of variation estimated around 1%
and 5%, it may be thought that δ̂SLi has converged and should thus provide an accurate
estimate of δi. This intuition is corroborated by Figure 1 which displays one trajectory of
both single-loop Monte Carlo estimators as the sample size N varies: in both cases, the
trajectory becomes flat and seems to have converged.

However, these estimators present a significant bias. Indeed, since the theoretical
values of the importance measures δi are available, the (1 − α)% confidence interval of
E(δ̂SLi ) [

δ̄SLi −
z1−α/2σ̄

SL
i√

m
, δ̄SLi +

z1−α/2σ̄
SL
i√

m

]
,

where z1−α/2 is the (1−α/2)-quantile of the standard normal distribution and the relative
difference

δ̄SLi − δi
δi

,

may be computed in order to appreciate the bias of the single-loop estimator δ̂SLi . We can
note that both single-loop estimators have non negligible relative differences of the order
of 15% and 40%, notably δ̄SL2 which strongly underestimates the measure δ2. Furthermore
the reference values [0.1436 0.5382] do not belong to the 95% confidence intervals[

0.1217± 1.96× 0.0055√
100

]
= [0.1206, 0.1228] ,

and [
0.3297± 1.96× 0.0046√

100

]
= [0.3288, 0.3306] .
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If the single-loop Monte Carlo estimates may show significant differences in a simple
model case where the KDE procedure is very efficient since the unconditional and con-
ditional output PDFs are Gaussian, the question of the reliability of the estimation for
complex models may be asked. In particular, we stress that because the sample (Xk, Y k)
is used both in the Monte Carlo step SL3 and also in the KDE step SL2, it is not clear
at all that the estimator δ̂SLi is consistent, i.e., that δ̂SLi

a.s.−→
N→∞

δi. Actually, we believe

that the simulation results presented in this section legitimately casts doubt on this claim,
which would require further investigation.

We now present our new estimation scheme, which is provably consistent and also
exhibits more accurate results presented in Section 5.
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(a) Single-loop estimate δSL1 of δ1.
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(b) Single-loop estimate δSL2 of δ2.

Figure 1. Single-loop estimates of the importance measures δi of the Gaussian toy case as
the sample size N varies.

4. Nonparametric importance sampling estimator

The estimation scheme that we propose will be exposed in Section 4.4 below. To explain
the main idea, we first present in Section 4.1 a general importance sampling scheme based
on an arbitrary auxiliary function g (see for instance [26] and the associated references).
The theoretical properties of this scheme are analyzed in Section 4.2 while the influence
of the auxiliary function g and various natural choices are discussed in Section 4.3.1.
Once these preliminary results are set up, we finally propose our scheme in Section 4.4:
it amounts to using a particular auxiliary function g in the general importance sampling
scheme of Section 4.1.

4.1. Importance sampling estimator

We now present a general importance sampling estimator of δi based on its expres-
sion (3).

Step IS1. Same as step SL1, i.e., generate (X1, ...,XN ) i.i.d. with common distribution
X, and then obtain N observations of the model by Y k = Φ(Xk) for k = 1, . . . , N .

Step IS2. Same as step SL2, in particular get the two estimators f̂X,Y and f̂Y from
(Xk, Y k) as in (4) and (5).

Step IS3. Let g be any sampling distribution on R2 which is allowed to depend on the
sample (Xk, Y k). Let (U1, ...,UN ′) be N ′ i.i.d. random variables drawn according to g

6



with Uk = (Uk1 , U
k
2 ) ∈ R2. Our estimator δ̂IS,gi of δi is

δ̂IS,gi =
1

2N ′

N ′∑
k=1

∣∣∣f̂Y (Uk2 )fXi(U
k
1 )− f̂Xi,Y (Uk)

∣∣∣
g(Uk)

.

The study of the theoretical properties of δ̂IS,gi will be carried over in the next section,
but we immediately make two important remarks:

1. the proposed approach keeps the advantages of the single-loop estimator, namely
only N model evaluations are needed to compute all Borgonovo’s importance mea-
sures and it can be applied to models with correlated inputs;

2. we stress that the error induced by the Monte Carlo estimation in step IS3 is in-
expensive, in the sense that it can be made arbitrarily small without further call to
the possibly expensive black-box function Φ. Thus essentially, the only estimation
error is due to the kernel approximation of step IS2.

Furthermore, note that g is an arbitrary PDF on R2 and is allowed to depend on the
first sample (Xk, Y k). In particular, we can take g = f̂Xi,Y in which case δ̂IS,gi is given by

δ̂IS,gi =
1

2N ′

N ′∑
k=1

|fXi(Uk1 )f̂Y (Uk2 )− f̂Xi,Y (Uk)|
f̂Xi,Y (Uk)

.

This expression is at first sight similar to the definition (6) of the single-loop estimator
δ̂SLi . Nonetheless, the key difference is that in our scheme, we use different samples (Uk)
and (Xk, Y k) in the KDE step IS2 and in the Monte Carlo step IS3. Although, as
mentioned above, the consistency of the single-loop estimator δ̂SLi is not obvious, this key
difference will actually make it possible to prove that our importance sampling estimator
δ̂IS,gi is consistent as we now show.

4.2. Theoretical properties of δ̂IS,gi

As any auxiliary function used to do importance sampling, the convergence of our
estimator hinges upon the assumption that the support of the auxiliary distribution con-
tains the support of the function being integrated. Rigorously, we are using importance
sampling within the KDE framework where f̂Xi,Y has unbounded support. However, these
estimators are meant to converge to the true PDF fY and fXi,Y which may have bounded
support. Throughout this section, we assume that

Supp(|fXifY − fXi,Y |) ⊂ Supp(g) , (A1)

When Assumption (A1) holds and upon standard assumptions on the bandwidths h,
h1 and h2 which ensure convergence of the KDE f̂Y and f̂Xi,Y , we now show that δ̂SLi is
asymptotically unbiased and converges to δi when we let first N ′ →∞ and then N →∞.

Proposition 2. Assume that Assumption (A1) holds and that Nh,Nh1h2 → ∞ with
h, h1h2 → 0. Then supN ′ E(δ̂IS,gi ) → δi as N → ∞ and δ̂IS,gi

a.s.−→
N ′,N→∞

δi, where the

convergence
a.s.−→

N ′,N→∞
means that we let first N ′ →∞ and then N →∞.

Proof. Let

∆̂ =
1

2

∥∥∥fXi f̂Y − f̂Xi,Y ∥∥∥
L1(Supp(g))

.
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Then E(δ̂IS,gi ) = E(∆̂), independent of N ′, and the strong law of large numbers implies

that δ̂IS,gi
a.s.−→

N ′→∞
∆̂. Furthermore, the assumptions on the bandwidth imply that ∆̂

a.s.−→
N→∞

δi, see for instance [27, Theorem 1]. This shows the second claim of the statement, from
which the first one follows by dominated convergence since ∆̂ ≤ 1.

Since the variables Uk are i.i.d given the variables (Xk,Yk), the law of total variance
gives the variance decomposition

Var
(
δ̂IS,gi

)
(7)

= Var
(
E
[
δ̂IS,gi |(Xk, Y k)

])
+ E

[
Var

(
δ̂IS,gi |(Xk, Y k)

)]
,

= Var

(
E

[
1

2N ′

N ′∑
k=1

ĥ(Uk)|(Xk, Y k)

])
+ E

[
Var

(
1

2N ′

N ′∑
k=1

ĥ(Uk)|(Xk, Y k)

)]
,

= Var

(
1

2N ′

N ′∑
k=1

E
[
ĥ(Uk)|(Xk, Y k)

])
+

1

4(N ′)2
E

[
N ′∑
k=1

Var
(
ĥ(Uk)|(Xk, Y k)

)]
,

= Var
(

∆̂
)

+
1

4N ′
E
[
Var

(
ĥ(U) | (Xk, Y k)

)]
, (8)

with

ĥ(x, y) = 1g(x,y)>0

∣∣∣f̂Y (y)fXi(x)− f̂Xi,Y (x, y)
∣∣∣

g(x, y)
.

This decomposition clearly highlights the two errors made in the estimation of δ̂IS,gi :

the term Var(∆̂) corresponds to the error induced by the KDE procedure of step IS2 and
the second term to the error induced by the importance sampling step IS3.

According to [27, Theorem 1] and Lebesgue’s dominated convergence theorem, the first
term tends to 0 when N tends to +∞. As far as the second one is concerned, the variance
term

Var
(
ĥ(U) | (Xk, Y k)

)
=

∫ ∣∣∣f̂Y fXi − f̂Xi,Y ∣∣∣2
g

−
(∫ ∣∣∣f̂Y fXi − f̂Xi,Y ∣∣∣)2

,

may be infinite if the distribution g is not well chosen. Nevertheless in practice, assuming

that g is nearly proportional to
∣∣∣f̂Y fXi − f̂Xi,Y ∣∣∣, this term can be made as small as desired

because of the factor 1
N ′ without further calls to the possibly expensive black-box function

Φ.

We conclude this theoretical section with a more detailed study of the consistency of
δ̂IS,gi . The convergence result δ̂IS,gi

a.s.−→
N ′,N→∞

δi is not completely satisfactory because in

practice, given a certain finite budget (in time, CPU or else), this budget has to be divided
between the KDE step IS2 and the Monte Carlo step IS3. In other words, in practice N
and N ′ grow large together while the convergence δ̂IS,gi

a.s.−→
N ′,N→∞

δi would amount to first

give all the budget to the Monte Carlo step IS3. Assuming that the auxiliary function
g does not depend on the sample (Xk, Y k), the following results, proved in Appendix A
and Appendix B, provide partial results when N and N ′ grow large simultaneously.
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Proposition 3. Assume that:

1. fXi is bounded;

2. fY and fXi,Y are bounded, twice differentiable and with uniformly continuous second
derivative;

3. Condition (A1) holds and g has bounded support;

4. the bandwidths satisfy h1 = h2 = h, h→ 0 and h� ln lnN
√

lnN/N , i.e.,

(ln lnN)2 lnN

Nh2
−→
N→∞

0. (9)

Assume finally that N ′ = N ′(N) depends on N in such a way that N ′ → ∞ as N → ∞.
Then δ̂IS,gi

a.s.−→
N→∞

δi.

Proposition 4. Assume that:

1. fXi is bounded;

2. fY and fXi,Y are bounded, twice differentiable and with uniformly continuous second
derivative;

3. there exists q > 2 such that∫
‖y‖2q fY(y)dy <∞ and

∫
‖(x, y)‖2q fXi,Y(x, y)dxdy <∞ ;

4. g has unbounded support and there exists α < 1 such that
∫
gα <∞;

5. the bandwidths satisfy h1 = h2 = h, h→ 0 and (9).

Assume finally that N ′ = N ′(N) depends on N in such a way that there exists β > 2
1−α

with

(N ′)β
√

lnN√
Nh

→ 0.

Then δ̂IS,gi
a.s.−→

N→∞
δi.

4.3. Study of the accuracy of the proposed procedure

4.3.1. Influence of the sampling distribution g

In this section, we study the influence of the sampling distribution g involved at step
IS3. To achieve this, we apply steps IS1 and IS2 on the previous Gaussian toy case with
the parameter N = 5, 000, getting an approximation 1

2

∫
|fXi f̂Y − f̂Xi,Y | of the index δi

from the sample (Xk
i , Y

k). Then, we perform m = 100 runs of step IS3 with N ′ = 2×104

using the different sampling distributions defined as follows:

1. The kernel estimator
g1 = f̂Xi,Y ,

of the joint distribution of Xi and Y . The following procedure can be used to
generate one realization S from g1:

Step 1. Generate Z uniformly on {1, ..., N}.

Step 2. Exit with S ∼ N

((
XZ
i

Y Z

)
,

(
h1 0

0 h2

))
.

2. The distribution
g2(x, y) = fXi(x)× f̂Y (y) ,

where f̂Y is the kernel density estimator of the output distribution. The following
procedure can be used for generating a random variate S from g2:

9



Step 1. Generate Z uniformly on {1, ..., N}.
Step 2. Exit with S ∼ fXi ⊗N(Y Z , h).

3. The PDF g3 of the Gaussian distribution N(m̂i, Σ̂i) where

m̂i =

(
1

N

N∑
k=1

Xk
i ,

1

N

N∑
k=1

Y k

)
:= (x̄i, ȳ) ,

and

Σ̂i =
1

N − 1

( ∑N
k=1(Xk

i − x̄i)2
∑N

k=1(Xk
i − x̄i)(Y k − ȳ)∑N

k=1(Xk
i − x̄i)(Y k − ȳ)

∑N
k=1(Y k − ȳ)2

)
,

are the regular Monte Carlo estimators of the mean and the covariance matrix of
(Xi, Y ) respectively.

4. The uniform distribution g4 on the domain provided by the KDE toolbox used in
IS2. However, we may notice that this domain contains the samples (Xk

i , Y
k) but the

distribution g4 does not verify the assumption (A1) if the input Xi is not bounded.

As an indicator of the accuracy of the sampling distribution gj , we consider the coef-
ficient of variation CVgj given by

CVgj =

√
Var(δ̂

IS,gj
i |(Xk

i , Y
k))

E
(
δ̂
IS,gj
i |(Xk

i , Y
k)
) .

As in Section 3.2, since the true values of the standard deviation and the mean of

δ̂
IS,gj
i given (Xk

i , Y
k) are unknown, we replace them by their regular Monte Carlo estima-

tors (see the beginning of Section 5). For each importance sampling procedure with the
distributions gj defined above, we display in Table 2 the corresponding estimates of the
coefficient of variation CVgj and the mean. The results of Table 2 highlight the impact of
the sampling distribution choice. On the one hand, the estimates of δ1 obtained with the
sampling distributions gj are quite similar with 1%− 2% relative deviation. On the other
hand, we can observe that the estimates of δ2 obtained with g1 and g3 show significant
underestimation of the theoretical values while those obtained with the other distributions
are more accurate. Furthermore, we notice that the variability associated to the use of
the distributions g1 and g3 is significant.

Those shortcomings are due to a sampling problem as illustrated in Figures 2 and 3.
Indeed, the accuracy of the estimator δ̂IS,g2 depends on how the distribution g samples well

on all the support of the integrand function |fX2 f̂Y − f̂X2,Y |. This is confirmed by Figure
3 where we observe the samples obtained using g1 (Figure 3(c)) and g3 (Figure 3(e)) are
not distributed wherever the function |fX2 f̂Y − f̂X2,Y | takes large values (Figure 3(a)).
On the contrary, Figures 3(d) and 3(f) indicate that the distributions g2 and g4 are more
appropriate than g1 and g3, which corroborates the higher accuracy of the estimates of δ2

obtained with g4 and mostly g2 which presents the lowest coefficients of variation among
the distributions (gj)1≤j≤4. As far as the first delta index is concerned, it can be observed
(see Figures 2(c), 2(d), 2(e), 2(f) and 2(g)) that the distributions of the different samples
are quite similar, which may explain their similar performances regarding the estimation
of the index δ1.

Thus, we notice on this simple model that the kernel estimator f̂Xi,Y of the joint
distribution of Xi and Y is not the most appropriate sampling distribution to estimate
the importance measure δi, which may explain the inaccuracy of the single-loop estimator
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δ̂SL2 observed in Section 3.2 since, as explained above, these two estimators have some
similarity. Moreover this estimation error is not due to the KDE since the KDE procedure
is very efficient in this simple model since the involved PDFs are Gaussian (see Figures
3(a) and 3(b)).

This numerical test case has shown the sampling distribution may have to be chosen
with caution. Therefore, the search for the optimal sampling distribution is discussed in
the section 4.4.
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Figure 2. Display of the different samples (U1, ...,UN′
) used for the estimations of the

measure δ1 of the Gaussian toy case in comparison to the contour lines of the integrand

function |fX1fY − fX1,Y | and its KDE estimation
∣∣∣fX1 f̂Y − f̂X1,Y
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Table 2. Estimates of the indices of the Gaussian toy case by performing m = 100 runs of step
IS3 with different sampling distributions.

Input δi g1 g2 g3 g4 ĝopt
Mean CVg1 Mean CVg2 Mean CVg3 Mean CVg4 Mean CVĝopt

X1 0.1436 0.1465 0.0278 0.1474 0.0083 0.1470 0.0172 0.1471 0.0191 0.1473 0.0038

X2 0.5382 0.4685 1.1882 0.5175 0.0097 0.4644 0.4822 0.5166 0.0237 0.5174 0.0050
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Figure 3. Display of the different samples (U1, ...,UN′
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measure δ2 of the Gaussian toy case in comparison to the contour lines of the integrand

function |fX2fY − fX2,Y | and its KDE estimation
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Table 3. Estimates of the indices of the Gaussian toy case by performing m = 100 runs of the
proposed procedure with different sampling distributions.

Input δi g2 g4 ĝopt
Mean CV Mean CV Mean CV

X1 0.1436 0.1358 0.0439 0.1357 0.0503 0.1356 0.0429

X2 0.5382 0.5188 0.0158 0.5177 0.0302 0.5182 0.0086

4.3.2. Global accuracy

In order to appreciate the global accuracy of the entire proposed procedure with respect
to the choice of the sampling distribution g, we consider in this subsection the coefficient
of variation of the IS estimator δ̂IS,gi associated to the distribution g given by

CV (δ̂IS,gi ) =

√
Var(δ̂IS,gi )

E
(
δ̂IS,gi

) .

In the previous subsection, is has been noted that the use of the sampling distribution
g1 and g3 produced a strong variability for a fixed KDE estimation as far as the estimation
of the delta indices of the Gaussian toy model is concerned. Therefore, only the distribu-
tions g2 and g4 are considered here. Since the true values of the standard deviation and
the mean of δ̂IS,gi are unknown, we replace them by their regular Monte Carlo estimators
(see the beginning of Section 5) by performing m = 100 runs of the proposed procedure
with the parameters N = 5, 000 and N ′ = 2× 104.

We display in Table 3 the corresponding results of the Gaussian toy case. It can be
observed that the performance of g2 and g4 to estimate δ1 are quite similar with the same
4% relative deviation. As far as the estimation of δ2 is concerned, g2 presents a coefficient
of variation twice as small as g4.

Let us apply the same approach with a second numerical toy case whose the model
output is given by

Y =
X1

10−2 + |X2|
,

where X1, X2
i.i.d∼ N(0, 1).

We display in Table 4 the corresponding results of this model. On this example,
the variability associated to the use of the distributions g4 is significant with 13% and
15% relative deviation while one obtains coefficients variation lower than 5% with the
distribution g2. This may be due to a sampling problem as illustrated in Figure 4. Indeed,
we can observe that the samples distributed according to g4 (Figure 4(c)) do not fit with
the regions where the function |fX2 f̂Y − f̂X2,Y | takes large values (Figure 4(a)) whereas
the samples obtained with g2 are better distributed (see Figure 4(b)).

Following the example of the accuracy study of the section 4.3.1, this numerical exam-
ple has shown that the sampling distribution g may have strong influence on the global
accuracy of the proposed procedure. In order to ensure an acceptable accuracy, the dis-
tribution g has to be chosen so that its support verifies the theoretical assumption (A1)
and is close as possible to the support of |fXifY − fXi,Y |.
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Table 4. Estimates of the indices of the second numerical toy case by performing m = 100 runs of
the proposed procedure with different sampling distributions.

Input g2 g4 ĝopt
Mean CV Mean CV Mean CV

X1 0.2980 0.0300 0.2982 0.1332 0.2966 0.0293

X2 0.4901 0.0436 0.4935 0.1584 0.5186 0.0467

x
2

-5 0 5

y

-100

-50

0

50

100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(a) Contour lines of
∣∣∣fX2 f̂Y − f̂X2,Y

∣∣∣.
x

2

-5 0 5

y

-100

-50

0

50

100

(b) (U1, ...,UN′
) ∼ g⊗N

′

2 .

x
2

-8 -6 -4 -2 0 2 4 6 8

y

-300

-200

-100

0

100

200

300

(c) (U1, ...,UN′
) ∼ ĝ⊗N
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Figure 4. Display of the different samples (U1, ...,UN′
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measure δ2 of the second numerical toy case in comparison to the contour lines of the

integrand function
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4.4. The optimal sampling distribution

Let us consider the second term Var
(
ĥ(U) | (Xk, Y k)

)
of the variance decomposition

of δ̂IS,gi derived in (8). It is equal to zero when g is given by the function

gopt =
|fXi f̂Y − f̂Xi,Y |

‖fXi f̂Y − f̂Xi,Y ‖L1(R2)

,
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called optimal sampling distribution. Unfortunately gopt cannot be used directly in practice
because of the unknown normalization constant, but it can be approximated by some ĝopt
using the nonparametric importance sampling procedure described in [28]. Assuming that
Steps IS1 and IS2 have been performed and that we have the KDE f̂Y and f̂Xi,Y at our
disposal, ĝopt is derived by the following implementation steps:

• Generate a sample
{

(X̃1
i , Ỹ

1), . . . , (X̃N ′′
i , Ỹ N ′′)

}
according to an initial distribution g0.

For the further numerical applications, we will set g0 = fXi× f̂Y = g2 which has presented
good results on the Gaussian toy case studied in the previous section. It has to be noticed
that no additional calls to the model output are needed.

• Compute the weights

ω(X̃k
i , Ỹ

k) =

∣∣∣fXi(X̃k
i )f̂Y (Ỹ k)− f̂Xi,Y (X̃k

i , Ỹ
k)
∣∣∣

g0(X̃k
i , Ỹ

k)
, k = 1, . . . , N ′′.

• Estimate gopt by the weighted kernel estimator

ĝopt(x, y) =
1

N ′′h̃1h̃2ω̃

N ′′∑
k=1

ω(X̃k
i , Ỹ

k)K

(
x− X̃k

i

h̃1

)
K

(
y − Ỹ k

h̃2

)
, (10)

where ω̃ =
1

N ′′
∑N ′′

k=1 ω(X̃k
i , Ỹ

k). The convergence of the estimator ĝopt is studied in [28],

even if we do not verify all its assumptions.
We can now explain our estimation procedure:

Step Opt1. Same as steps SL1 and IS1, i.e., generate (X1, ...,XN ) i.i.d. with common
distribution X, and then obtain N observations of the model by Y k = Φ(Xk) for k =
1, . . . , N .

Step Opt2. Same as steps SL2 and IS2, in particular get the two estimators f̂X,Y and

f̂Y from (Xk, Y k) as in (4) and (5).

Step Opt3. Our estimator δ̂Opti of δi is given by

δ̂Opti = δ̂
IS,ĝopt
i =

1

2N ′

N ′∑
k=1

∣∣∣f̂Y (Uk2 )fXi(U
k
1 )− f̂Xi,Y (Uk)

∣∣∣
ĝopt(U

k)
, (11)

where the random variables Uk = (Uk1 , U
k
2 ) are i.i.d according to the distribution ĝopt

defined above. The following procedure can be used for generating one realization U from
ĝopt:

Step 1. Generate Z ∼
∑N

k=1

ω(X̃k
i , Ỹ

k)

ω̃
δk.

Step 2. Exit with U ∼ N

((
X̃Z
i

Ỹ Z

)
,

(
h̃1 0

0 h̃2

))
.

We perform the same studies of the section 4.3 with this algorithm and with the
parameters N = 5, 000 and N ′ = N ′′ = 2 × 104. With this set of parameters, the
computation of ĝopt takes 3 s to compute using our own computer.

Firstly, let us appreciate the influence of the distribution ĝOpt. It can be seen in Table
2 that δ̂Opt presents the best robustness with 0.5% relative deviation, nearly twice smaller
than that for δ̂IS,g2 . Thus, for a given KDE estimation, the use of the approximation ĝopt
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of the optimal sampling distribution seems to be the better choice in term of estimation
error, which complies with the theory.

Secondly, let us focus on the global estimation error of the procedure. It can be
observed on both numerical toy cases that δ̂Opt provides good estimates with coefficients
of variation slightly lower than those of g2, At last, Figure 3(g) and Figure 4(d) shows
that ĝopt samples well on the integration area of interest.

Thus, those results confirms the advantages of using ĝopt, albeit the performance of g2

and δ̂Opt are quite similar. This similarity may be due to the fact that the error associated
to the KDE estimation predominates in the global error. The distribution g2 may be a
good candidate since the use of ĝopt adds some computation time. However, this difference
between the computational burden becomes negligible when the black-box function Φ is
expensive. Henceforth, the estimator δ̂Opti obtained using the approximation ĝopt of the
optimal sampling distribution is designated as the nonparametric importance sampling
estimator in the following of this article.

5. Numerical examples

In this section, several numerical examples are considered in order to illustrate the
application of the importance sampling based estimation scheme using the approximation
ĝopt of the optimal sampling distribution discussed in Section 4.4. The results are compared
with those performed with the single-loop Monte Carlo simulation.

The model output of the first example is expressed as an affine transformation of a
Gaussian vector and is a generalization of the Gaussian toy case previously studied. The
second example is cantilever beam structure model. The third and last example concern
a risk assessment model.

An indicator of the efficiency of an estimator δ̂i (such as δ̂SLi or δ̂Opti ) of the importance
measure δi is the coefficient of variation

CV(δ̂i) =

√
Var(δ̂i)

E
(
δ̂i

) .

For each estimator δ̂i of the importance measure δi, we approximate its mean and its
standard deviation using Monte Carlo procedure. Considering m estimates (δ̂1

i , ..., δ̂
m
i ),

we compute the respective unbiased estimators of the mean and the standard deviation
(STD):

δ̄i =
1

m

m∑
k=1

δ̂ki and σ̄δ̂i :=

√√√√ 1

m− 1

m∑
k=1

(δ̂ki − δ̄i)2,

which provides the following estimator of the coefficient of variation:

δ̄i
σ̄δ̂i

.

When the unconditional and conditional output distributions are known, the theoret-
ical values of the importance measures are available using numerical integration. In this
case, the relative difference (RD)

δ̄i − δi
δi

,

may be computed in order to appreciate the error of the estimator δ̃.
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5.1. Example 1: an affine transformation of a Gaussian vector

In this subsection we assume that the expression of the model output is

Y1 = AX ,

where A = [1.7 1.8 1.9 2] and where the input X follows the Gaussian distribution N(0,Σ)
where the covariance matrix Σ is defined as follows:

Σ =


1 1/2 1/3 1/4

1/2 1 1/2 1/3

1/3 1/2 1 1/2

1/4 1/3 1/2 1

 .

Classical results on Gaussian vector enable to determine the unconditional and condi-
tional output distributions:

Y1 ∼ N(0,AΣtA) ,

and
Y1|Xi = xi ∼ N

(
mi, σ

2
i

)
,

where the mean mi and the variance σ2
i are defined by:

mi = Aixi + A−iCiΣ
−1
ii xi ,

σ2
i = A−i(Σ−i − tCiCiΣ

−1
ii )At

−i ,

where A−i is the vector A private of its i-th component Ai, Σ−i is the matrix Σ private
of its i-th row and column and Ci the i-th column of Σ private of its i-th component Σii.
Thus, the theoretical values of the indices are known and can be computed using numerical
integration.

We compare these reference values with the estimates obtained with m = 100 runs of
the single-loop Monte Carlo simulation and the nonparametric importance sampling based
method with the parameters N ′′ = N = 5, 000 and N ′ = 5 × 104 (the number of calls
to the model is the same for both methods). The single-loop method and the proposed
method take respectively 4 s and 54 s to compute the four delta indices δi with our own
computer, among which 3.5 s for the estimation of the optimal sampling distribution.
This difference between the computational burden of the proposed method and the one
of the single-loop design, notably due to the fact that N ′ � N , becomes negligible when
the black-box function Φ is expensive. The results are listed in Table 5. We can notice
that both methods respect the good importance ranking, i.e., X3 > X2 > X4 > X1, and
converge since the estimates are obtained with around 2% relative deviation. However,
the estimates of (δ̂ISi )1≤i≤4 are approximately equal to the theoretical values with relatives
differences around 5% while the single-loop estimates show a lower precision with non
negligible relative differences. Also, as far as the single-loop design is concerned, it seems
that the higher is δi, the higher is the relative difference associated to the estimate δSLi .

These values of relative differences highlight the bias of the nonparametric importance
sampling estimator and, as discussed in Section 4.2, it is due to the kernel estimation step
contribution and can be decreased by increasing the parameter N . In this example, it is
inexpensive in term of computation since the black-box function is analytic but this is not
generally the case.
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Table 5. Estimates of the indices of the example 1.

Input Theoretical Single loop δ̂SLi Proposed method δ̂Opti

value δi Mean STD CV RD Mean STD CV RD

X1 0.2857 0.2201 0.0062 0.0280 -0.2297 0.2707 0.0059 0.0218 -0.0526

X2 0.3620 0.2620 0.0059 0.0226 -0.2761 0.3444 0.0054 0.0157 -0.0486

X3 0.3792 0.2690 0.0059 0.0218 -0.2907 0.3607 0.0057 0.0157 -0.0487

X4 0.3176 0.2383 0.0052 0.0219 -0.2497 0.3010 0.0060 0.0199 -0.0522

5.2. Example 2: a cantilever beam structure

This subsection deals with a structural system reliability problem introduced in [2]. We
consider a rectangular cantilever beam structure subjected to two random forces F1 and
F2. The modulus of elasticity E and the dimensions of the beam denoted by ω (width), t
(height) and L (length) are also assumed to be random. The output model of interest Y2

is the maximum displacement of the structure which is expressed as follows

Y2 =
4L3

Eωt

√(
F1

ω2

)2

+

(
F2

t2

)2

.

All the six inputs F1, F2, E, ω, t and L are normally distributed whose the parameters
are listed in Table 6. The correlations between the inputs are characterized by the following
correlation matrix: 

1 0.2 0 0 0 0

0.2 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0.1 0.1

0 0 0 0.1 1 0.1

0 0 0 0.1 0.1 1


.

We estimate all the six indices (δi)1≤i≤6 with m = 100 runs of the single-loop method
and the scheme proposed in this article with the parameters N ′′ = N = 5, 000 and
N ′ = 2× 104. The single-loop method and the proposed method take respectively 5 s and
35 s to compute the six delta indices δi with our own computer, of which 5.4 s for the
estimation of the optimal sampling distribution. The results are displayed in Table 7.

We observe that both methods lead to the same influence ranking, mainly L > ω > t >
E > F1 > F2 and converge since the estimates are obtained with coefficients of variation
less than 10%. Also, we may note that each single-loop estimate is always slightly lower
than the nonparametric importance sampling estimate.

5.3. Example 3

5.3.1. A risk assessment model

In this part we illustrate the application of the nonparametric importance sampling
scheme to a probabilistic risk assessment model introduced in [30] and based on fault tree
analysis. The principle of this method is that the unavailability of a system is evaluated
using a fault tree. The system’s failure, referred as ‘top event’, is then expressed in terms
of the different sequences of events leading to the failure of the system, referred as ‘cut
sets’.
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Table 6. Distributions of the input variables of the example 2.

Input Distribution Mean coefficient of variation

F1 Normal 500 lb 0.08

F2 Normal 1000 lb 0.08

E Normal 2.9× 107 psi 0.08

ω Normal 2.4487 in 0.08

t Normal 3.8884 in 0.08

L Normal 100 in 0.08

Table 7. Estimates of the indices of the example 2.

Input Single loop δ̂SLi Proposed method δ̂Opti

Mean STD CV Mean STD CV

F1 0.0556 0.0045 0.0809 0.0600 0.0046 0.0767

F2 0.0472 0.0046 0.0975 0.0507 0.0047 0.0927

E 0.0742 0.0053 0.0714 0.0809 0.0055 0.0680

ω 0.1566 0.0056 0.0358 0.1788 0.0066 0.0369

t 0.1245 0.0057 0.0458 0.1397 0.0064 0.0458

L 0.1985 0.0057 0.0287 0.2384 0.0060 0.0252

Here, the probability of the top event is written as [30]

Y3 = X1X3X5 +X1X3X6 +X1X4X5 +X1X4X6 +X2X3X4

+X2X3X5 +X2X4X5 +X2X5X6 +X2X4X7 +X2X6X7 ,

where all the inputs Xi are independent random variables following lognormal distribution
and whose the parameters are listed in Table 8.

We estimate all the seven indices with m = 100 runs of both single-loop Monte Carlo
and nonparametric importance sampling schemes with the parameters N ′′ = N = 5, 000
and N ′ = 2× 104. The single-loop method and the proposed method take respectively 5 s
and 41 s to compute the seven delta indices δi with our own computer, of which 6.3 s for
the estimation of the optimal sampling distribution. The results are reported in Table 9.

Following example 2, we observe that both methods provide the same importance
ranking, mainly X2 > X6 > X5 > X4 > X7 > X1 > X3. Furthermore, it seems that each
single-loop estimate is always slightly lower than the nonparametric importance sampling
estimate and they are obtained with similar coefficient of variation.

Nonetheless, its difficult to measure the precision of these estimates since the uncon-
ditional and conditional output distributions are unknown. In order to get an idea of this
accuracy, we consider in the next subsection a close model for which the theoretical values
of the importance measures δi are available.

5.3.2. Study of a theoretical multiplicative model

Let us consider the following multiplicative model output:

Y4 =

d∏
i=1

Λi ,
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Table 8. Distributions of the input variables of the example 3.

Input Distribution Mean of ln(Xi) Variance of ln(Xi)

X1 Lognormal 0.6044 0.1776

X2 Lognormal 1.0098 0.1776

X3 Lognormal -6.9965 0.1776

X4 Lognormal -6.3034 0.1776

X5 Lognormal -5.6103 0.1776

X6 Lognormal -5.3871 0.1776

X7 Lognormal -5.89792 0.1776

Table 9. Estimates of the indices of the example 3.

Input Single loop δ̂SLi Proposed method δ̂Opti

Mean STD CV Mean STD CV

X1 0.0754 0.0051 0.0676 0.0828 0.0052 0.0628

X2 0.1908 0.0051 0.0267 0.2237 0.0053 0.0237

X3 0.0588 0.0045 0.0765 0.0647 0.0046 0.0711

X4 0.1023 0.0048 0.0469 0.1137 0.0053 0.0466

X5 0.1363 0.0053 0.0389 0.1532 0.0063 0.0411

X6 0.1534 0.0051 0.0332 0.1751 0.0056 0.0320

X7 0.0778 0.0048 0.0617 0.0855 0.0051 0.0596

where all the inputs Λi are independent and distributed according to lognormal distribu-
tions L(mi, σ

2
i ) where mi and σ2

i are the mean value and the variance of ln(Λi) respectively.
The unconditional and conditional output distributions are known and given by

Y4 ∼ L

(
d∑
i=1

mi,

d∑
i=1

σ2
i

)
,

(Y4|Λi = xi) ∼ L

ln(xi) +
∑
j 6=i

mj ,
∑
j 6=i

σ2
j

 ,

and the theoretical values of the importance measures δi are available by performing
numerical integration.

When d = 3 the output model Y3 of the risk assessment model is expressed as a sum
of terms similar to the output Y4. Thus, we may appreciate the accuracy of the estimates
of the importance measures of the model output Y3 by estimating those of Y4 for some
input (Λ1,Λ2,Λ3) equal in distribution to a triplet (Xi1 , Xi2 , Xi3) chosen among the seven
inputs Xi of the risk assessment model. It amounts to estimate the indices δi of the
multiplicative model Y4 by setting different values of the means mi and fixing (σ2

i )1≤i≤3 =
[0.1776 0.1776 0.1776]. Using numerical integration, we get that the three sensitivity
indices (δ1, δ2, δ3) are equal to 0.2239, whatever the chosen triplet (Xi1 , Xi2 , Xi3). Table
10 show the estimates obtained by performingm = 100 repeated simulations of both single-
loop Monte Carlo and nonparametric importance sampling methods with parametersN ′′ =
N = 5, 000 and N ′ = 2 × 104. We find that in each case, the nonparametric importance
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Table 10. Estimates of the indices of the multiplicative model Y4 for different values of the means
mi [parameter setup: d = 3, (σ2

i )1≤i≤3 = [0.1776 0.1776 0.1776]].

Input Theoretical Single loop δ̂SLi Proposed method δ̂Opti

(Λ1,Λ2,Λ3) value Mean STD RD Mean STD RD

(X1, X3, X5) 0.2239 0.1880 0.0049 -0.1603 0.2225 0.0063 -0.0063

(X1, X4, X6) 0.2239 0.1862 0.0058 -0.1684 0.2198 0.0066 -0.0184

(X2, X6, X7) 0.2239 0.1889 0.0048 -0.1561 0.2228 0.0059 -0.0047

Table 11. Estimates of the indices of the multiplicative model Y4 for different values of the input
dimension d [parameter setup: mi = 0, σ2

i = 1].

Input Theoretical Single loop δ̂SLi Proposed method δ̂Opti

value Mean STD RD Mean STD RD

d = 4 0.1846 0.8757 0.4570 3.7440 0.3972 0.0396 1.1517

d = 5 0.1604 2.0302 1.6746 11.6574 0.4570 0.0329 1.8492

d = 6 0.1436 3.6376 1.9370 24.3318 0.5036 0.1267 2.5068

sampling estimates present an higher accuracy than the single-loop estimates with highly
better relative differences. Therefore, heuristically, one can think that the nonparametric
importance sampling method is more efficient than the single-loop method to estimate the
importance measures of the model output Y3.

Let us vary the dimension parameter d and fix for instance mi = 0, σ2
i = 1 for all i in

such way it is sufficient to compute the index δ1 since all inputs has the same influence.
We report in Table 11 the theoretical values of δ1 computed by Borgonovo [24] and the
estimates of the index δ1 obtained by applying both methods m = 100 times with the
parameters N ′′ = N = 5, 000 and N ′ = 2×104 for different values of the input’s dimension
d. Although the results are maybe not completely satisfactory yet, we have improved the
accuracy of the single-loop estimator by a factor 3 when d = 4 and by a factor 10 when
d = 5 and d = 6. In addition, the single-loop method may provides estimates greater than
1 and with large standard deviations.

Nevertheless, it has to be pointed out that the current problem is difficult since the
unconditional and conditional outputs are lognormally distributed. Indeed, the lognormal
distribution has a heavy right tail so that the Gaussian kernel K used at Step SL2. and
Step Opt2. may not be the most suitable kernel. There exist some alternative approaches
in the literature which avoid this issue for one dimensional densities, see for instance
the estimator based on the modified Champernowne distribution [31] or the inverse beta
transformation based method [32]. Also, this shortcoming induced by the heavy tail
framework may be avoided by using the copula-based definition of the delta indice [17][18]
or its CDF-based definition [16].

Thus, the bias observed in this example is only due to the KDE procedure which affects

the quality of the estimator ∆̂ = 1
2

∥∥∥fXi f̂Y − f̂Xi,Y ∥∥∥
L1(R2)

. Indeed, let us take d = 4 for

instance. We see on Figure 5(b) that the sample distributed according to ĝopt do not
fit with the regions where the function |fΛ1fY − fΛ1,Y | takes large values (Figure 5(a)),
notably as far as the coordinate corresponding to the output is concerned.
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(a) Contour lines of |fΛ1fY4 − fΛ1,Y4 |.
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(b) Sample distributed according to the optimal
sampling distribution ĝopt.

Figure 5. Display of the sample distributed according to the optimal sampling
distribution ĝopt in comparison to the contour lines of the integrand function

|fΛ1fY4 − fΛ1,Y4 | [parameter setup: d = 4, mi = 0, σ2
i = 1].

6. Conclusion

In this paper, we focus on establishing a new estimation scheme of Borgonovo’s sensi-
tivity indices inspired from the single-loop Monte Carlo design [2] whose implementations
steps are detailed in Section 3.1. We illustrate with a numerical test case that even though
the single-loop estimates may respect the influence ranking, they may present significant
differences with the theoretical values. In order to obtain an higher accuracy, we devel-
oped in Section 4 a nonparametric importance sampling method which preserves the same
advantages of the single-loop estimator, namely only one set of output’s observations are
needed to compute all the importance measures δi and it can be applied to high dimen-
sional models with correlated inputs. We prove the convergence of the scheme and the bias
and the variance of the nonparametric importance sampling estimator are analysed. In
Section 5, several numerical applications are performed to illustrate the gain of accuracy
of the proposed method. Furthermore, the last example also highlights the limitations
of the methods using the kernel estimation procedure in the heavy tail framework which
may substantially affect the accuracy of the estimates of moment independent sensitivity
measures.

7. Acknowlegements

The authors are grateful to the anonymous reviewers for their relevant remarks that
helped improve the paper. The first author is also grateful to Université Paul Sabatier for
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Appendix A. Proof of Proposition 3

The proof of Proposition 3 uses Theorem 7 in [29], which in our case reads as follows.

Theorem 5 (Theorem 7 in [29]). Assume that fXi is bounded, that fY and fXi,Y are
bounded, twice differentiable and with uniformly continuous second derivative, and that (9)
holds with h = h1 = h2. Then for any q > 0 it holds that

sup
|y|≤c(N)

∣∣∣f̂Y (y)− fY (y)
∣∣∣ = O

((
lnN

Nh

)1/2

+ h2

)
:= O(ε1(N)) ,

sup
‖(x,y)‖≤c(N)

∣∣∣f̂Xi,Y (x, y)− fXi,Y (x, y)
∣∣∣ = O

((
lnN

Nh2

)1/2

+ h2

)
:= O(ε2(N)) .

almost surely, where

c(N) = O
(

ln lnN
√

lnNN1/(2q)
)
.

We now prove Proposition 3. First of all, let

h(x, y) = 1g(x,y)>0
|fY (y)fXi(x)− fXi,Y (x, y)|

g(x, y)
, x, y ∈ R2.

Since

1

2N ′

N ′∑
k=1

h(Uk)
a.s.−→

N→∞
δi

by the strong law of large numbers, it is enough to prove that

δ̂IS,gi − 1

2N ′

N ′∑
k=1

h(Uk)
a.s.−→

N→∞
0.

The triangular inequality gives∣∣∣∣∣δ̂IS,gi − 1

2N ′

N ′∑
k=1

h(Uk)

∣∣∣∣∣
≤ 1

2N ′

N ′∑
k=1

1

g(Uk)

∣∣∣∣∣∣fXi(Uk1 )f̂Y (Uk2 )− f̂Xi,Y (Uk)
∣∣∣− ∣∣∣fXi(Uk1 )fY (Uk2 )− fXi,Y (Uk)

∣∣∣∣∣∣
and using the reversed triangular inequality ||a|−|b|| ≤ |b−a| and then again the triangular
inequality we obtain∣∣∣∣∣δ̂IS,gi − 1

2N ′

N ′∑
k=1

h(Uk)

∣∣∣∣∣ ≤ 1

2N ′

N ′∑
k=1

fXi(U
k
1 )

g(Uk)

∣∣∣f̂Y (Uk2 )− fY (Uk2 )
∣∣∣

+
1

2N ′

N ′∑
k=1

1

g(Uk)

∣∣∣f̂Xi,Y (Uk)− fXi,Y (Uk)
∣∣∣ . (A.1)

Since g has bounded support, the random variables Uk live in a bounded set and so we
can use Theorem 5 to get the existence of random constants C1, C2 <∞ such that∣∣∣f̂Y (Uk2 )− fY (Uk2 )

∣∣∣ ≤ C1ε1(N),
∣∣∣f̂Xi,Y (Uk)− fXi,Y (Uk)

∣∣∣ ≤ C2ε2(N)
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which gives∣∣∣∣∣δ̂IS,gi − 1

2N ′

N ′∑
k=1

h(Uk)

∣∣∣∣∣ ≤ C1ε1(N)

2N ′

N ′∑
k=1

fXi(U
k
1 )

g(Uk)
+
C2ε2(N)

2N ′

N ′∑
k=1

1

g(Uk)
.

Since

1

N ′

N ′∑
k=1

fXi(U
k
1 ) + 1

g(Uk)

a.s.−→
N ′→∞

∫
Supp(g)

(fXi(x) + 1)dxdy

and Supp(g) is bounded, we obtain the result since ε1(N), ε2(N)→ 0.

Appendix B. Proof of Proposition 4

For the proof of Proposition 4 we need the following slight extension of Theorem 7
in [29]. The proof of this result is the same as the proof of [29, Theorem 7] but uses [29,
Theorem 5] instead of [29, Theorem 3].

Theorem 6 (Extension of Theorem 7 in [29]). Assume that fXi is bounded, that fXi and
fXi,Y are differentiable with uniformly continuous derivative, that there exists q > 2 such
that ∫

‖y‖2q fY (y)dy <∞ and

∫
‖(x, y)‖2q fXi,Y (x, y)dxdy <∞ ,

and that (9) holds with h = h1 = h2. Then

sup
y∈R

∣∣∣f̂Y (y)− fY (y)
∣∣∣ ≤ O (ε1(N)) ,

sup
(x,y)∈R2

∣∣∣f̂Xi,Y (x, y)− fXi,Y (x, y)
∣∣∣ ≤ O (ε2(N)) ,

almost surely, where ε1(N), ε2(N) are as in Theorem 5.

We now prove Proposition 4. We start from (A.1) to get∣∣∣∣∣δ̂IS,gi − 1

2N ′

N ′∑
k=1

h(Uk)

∣∣∣∣∣ ≤ C1ε1(N)

2N ′

N ′∑
k=1

fXi(U
k
1 )

g(Uk)
+
C2ε2(N)

2N ′

N ′∑
k=1

1

g(Uk)
,

≤ C(ε1(N) + ε2(N))

2N ′

N ′∑
k=1

1

g(Uk)
.

Now the problem is that

1

N ′

N ′∑
k=1

1

g(Uk)

a.s.−→
N ′→∞

∫
Supp(g)

dxdy

which is infinite since Supp(g) is unbounded. However, for β > 2
1−α we have

sup
n≥1

1

n1+β

n∑
k=1

1

g(Uk)
<∞ a.s. (B.1)

Indeed, for every η > 0 we have by the union bound

P

(
1

n1+β

n∑
k=1

1

g(Uk)
≥ η

)
≤ nP

(
1

g(U)
≥ ηnβ

)

24



and so Markov inequality gives

P

(
1

nβ

n∑
k=1

1

g(Uk)
≥ η

)
≤ n 1

(ηnβ)1−αE

[(
1

g(U)

)1−α
]

=
1

η1−αnβ(1−α)−1

∫
gα.

Since by assumptions we have
∫
gα <∞ and β(1− α)− 1 > 1, we see that

∑
n≥1

P

(
1

n1+β

n∑
k=1

1

g(Uk)
≥ η

)
<∞

which implies, by Borel–Cantelli lemma, that 1
n1+β

∑n
k=1

1
g(Uk)

a.s.−→
n→∞

0, and in particu-

lar (B.1) holds. Up to random multiplicative constant, we thus have∣∣∣∣∣δ̂IS,gi − 1

2N ′

N ′∑
k=1

h(Uk)

∣∣∣∣∣ ≤ C(ε1(N) + ε2(N))(N ′)β

and the assumption on N ′ makes this bound vanish.
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