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ARTICLE

Accelerated microfluidic native chemical ligation
at difficult amino acids toward cyclic peptides
Nathalie Ollivier1, Thomas Toupy2, Ruben C. Hartkoorn3, Rémi Desmet1,

Jean-Christophe M. Monbaliu 2 & Oleg Melnyk 1

Cyclic peptide-based therapeutics have a promising growth forecast that justifies the

development of microfluidic systems dedicated to their production, in phase with the actual

transitioning toward continuous flow and microfluidic technologies for pharmaceutical pro-

duction. The application of the most popular method for peptide cyclization in water, i.e.,

native chemical ligation, under microfluidic conditions is still unexplored. Herein, we report

a general strategy for fast and efficient peptide cyclization using native chemical ligation

under homogeneous microfluidic conditions. The strategy relies on a multistep sequence that

concatenates the formation of highly reactive S-(2-((2-sulfanylethyl)amino)ethyl) peptidyl

thioesters from stable peptide amide precursors with an intramolecular ligation step. With

very fast ligation rates (<5 min), even for the most difficult junctions (including threonine,

valine, isoleucine, or proline), this technology opens the door toward the scale-independent,

expedient preparation of bioactive macrocyclic peptides.
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P eptide drugs are an important and fast growing class of
pharmaceuticals1–3, the development of which is stimulated
by (a) the discovery of innovative production methods1, (b)

the design of novel delivery systems4, as well as (c) strategies for
improving their pharmaco-kinetic properties2,5. In particular,
cyclic peptides have been attracting considerable attention for
several decades since they enable higher potency, metabolic sta-
bility, and oral bioavailability than their linear counterparts6,7,
and several of them are already in clinical use8. A large variety of
synthetic methods for producing cyclic peptide scaffolds are now
available9,10. In particular, the two-step process based on the
synthesis of linear peptide precursors by solid phase peptide
synthesis (SPPS11) followed by chemoselective cyclization in
water using either native chemical ligation (NCL12–14), ketoacid
hydroxylamine ligation (KAHA15), or serine/threonine ligation
(STL16) is particularly powerful. Among these methods, the
backbone peptide cyclization using NCL is one of the most
popular17. The NCL reaction involves a sequence of reversible
thiol/thioester exchanges, starting from a peptide alkylthioester,
such as peptide thioester 1 derived from 3-mercaptopropionic
acid (MPA, Fig. 1a). The sequence starts with the exchange
between 1 and a catalyst, e.g., 4-mercaptophenylacetic acid
(MPAA), and then with an N-terminal Cys-peptide to produce a
transient thioester-linked intermediate. The latter undergoes an
irreversible S-to-N acyl shift, leading to the formation of a native
peptide bond to Cys. The intramolecular version of NCL applied
to a peptide featuring an N-terminal Cys residue and a C-
terminal thioester functionality results in the formation of a
backbone cyclized peptide17. One limitation of NCL is the low
reactivity of peptide thioesters containing C-terminal threonine
(Thr, T), valine (Val, V), isoleucine (Ile, I), or proline (Pro, P)
residues (Fig. 1a)18, which is reflected by the reluctance of peptide
chemists to produce linear or cyclic peptides through the for-
mation of such difficult junctions19. Therefore, the search for
simple and fast ligation methods is a timely and significant goal
that should streamline the production of complex peptides
including cyclic architectures20,21.

In parallel to the development of chemoselective ligation
techniques, the field of peptide synthesis has benefited from the
emergence of microfluidic and continuous flow technologies
for overcoming known synthetic limitations22, facilitating auto-
mation and enabling an accurate control over the process
parameters23,24. Peptide synthesis using microfluidics comes
with a range of inherent assets for meeting high pharmaceutical
standards, such as cleaner and constant reaction profiles, fast
lab-to-market transitions, higher space/time yields even for
complex reaction sequences25,26, and on-demand pharmaceutical
production27. Homogeneous microfluidic peptide synthesis by
stepwise coupling of protected amino acids was pioneered by
Watts in 200128 and later extended by several groups with
equivalent or superior performances than conventional batch
strategies29–31. Oligopeptide macrocyclization by enthalpic acti-
vation of a linear precursor31 or the SPPS method32–35 were
also transposed under microfluidic conditions. However, and
despite a huge preparative potential, NCL has not yet been
adapted under microfluidic conditions, whether for peptide
cyclization or for other applications. A close examination of
NCL requirements and general features emphasizes the com-
plexity of transposing such ligation chemistry from batch to
microfluidic operation: to be of interest, the system must be
fed with solutions of stable precursors, while reaction kinetics
within the system must be fast enough to be compatible with its
intrinsic features and small internal dimensions. These two
requirements are barely compatible with standard NCL since a
classical peptide alkylthioester, such as 1 (Fig. 1a), will require
extended ligation times, while a reactive arylthioester, such as 2

(Fig. 1a)36, will undergo significant hydrolysis in the feed befor-
e entering the microfluidic system18. A potential solution is
to feed the system with a stable peptide thioester precursor that
can be activated within a first microfluidic module, prior to
entering the ligation module for triggering peptide cyclization
(Fig. 1b). Importantly, the solution used for the activation step
must not interfere with the NCL reaction, while the generated
thioester must be a powerful acyl donor to enable ligation in
a few minutes even for difficult junctions. The formation of
difficult junctions in a few minutes was, however, never
observed with the NCL reaction, irrespective of the acyl donor
including bis(2-sulfanylethyl)amido (SEA) thioester surrogates
of type 3 or 4 (Fig. 1c)37. Such fast kinetics could only be
achieved with the diselenide selenoester ligation (DSL21) of pre-
formed peptidyl selenophenyl esters with bis(selenocysteinyl)
peptides.

Here, we report an effective solution for the cyclization of
peptides under microfluidic conditions that relies on the
enhanced reactivity of intermediate S-(2-((2-sulfanylethyl)
amino)ethyl) peptidyl (SEAE) thioesters of type 5 (Fig. 1c).
SEAE thioesters 5, produced in situ from stable SEA thioester
surrogates of type 3 or 4, appear as a robust solution for the
implementation of NCL under microfluidic conditions
(Fig. 1b). Although not yet fully understood, the enhanced
reactivity profile of SEAE peptide thioesters 5 toward NCL
enables extremely fast cyclization (<5 min) at notoriously
difficult junctions (Val, Thr, or Ile), as well as intra or inter-
molecular ligations with the least tractable Pro junction.
The method enables the production of cyclic peptides of
varying size (10-28 AA), including biologically active RTD-1,
by the formation of diverse junctions (Val, Ile, Thr, Pro, Phe,
Tyr, Leu). We present concrete solutions for taming and
exploiting the enhanced reactivity of SEAE peptides, as well as
for implementing NCL under microfluidic conditions with
fast optimization of reaction parameters (temperature, resi-
dence time, pH, concentration, local stoichiometry). The
microfluidic NCL method described herein is complementary
to DSL by permitting the formation of peptide bonds to Cys.
It enables the seamless production of tens of milligrams of
cyclic peptide without special precautions, under fully auto-
mated operation easy to deploy, while guaranteeing a homo-
geneous purity profile.

Results
Evidence for the high reactivity of SEAE peptide thioesters. A
typical batch experiment highlighting the difference in reactivity
between classical MPA peptide thioesters and SEAE thioesters is
the thiol-thioester exchange reaction with MPAA, which con-
stitutes the rate-limiting step of NCL with peptide alkylthioesters
(Fig. 2a, b). The yield for MPAA peptide thioester 2a from pre-
formed SEAE peptide 5a was 60% within 5 min, while the reac-
tion with MPA thioester 1a required ca 80 min to reach a similar
conversion (Fig. 2c, Supplementary Methods). In fact, further
kinetic studies under microfluidic conditions showed that the
conversion of SEAE peptide 5a into MPAA thioester 2a pro-
ceeded in less than 15 s, while the MPA peptide thioester analog
1a furnished only ~2% of MPAA thioester 2a after 15 s (Fig. 2d,
Supplementary Methods). Note that in the absence of a Cys
peptide, the SEA peptide amide 4a acts as a thermodynamic sink
according to Fig. 2b. Thus after an initial burst phase, MPAA
thioester 2a decreases over time. Note that the conversion of
MPAA thioester 2 or SEAE peptide 5 back into SEA peptide 4 is
greatly minimized under microfluidic conditions in the presence
of the Cys partner. A similar contrasting reactivity was observed
for peptide thioesters 1a or 5a upon NCL with a model Cys
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peptide in the presence of MPAA (Supplementary Fig. 1, Sup-
plementary Methods). A likely rationalization for the enhanced
reactivity of thioesters of type 5 involves the intramolecular
neighboring assistance (acid-catalysis) of the ammonium group

for the departure of thiolate 6 (Fig. 2e). This hypothesis relies on
the fact that the breakdown from the tetrahedral intermediate,
i.e., step 2 in Fig. 2e, is typically rate-limiting with simple alkyl-
thiols such as MPA38.
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Fig. 1 Cyclic peptide synthesis using NCL and its implementation under microfluidic conditions. a Principle of NCL reaction applied to cyclic peptide
synthesis. The NCL reaction involves the chemoselective reaction of a C-terminal peptide alkylthioester (e.g., MPA peptide thioester 1) or arylthioester
(e.g., MPAA peptide thioester 2) with an N-terminal cysteinyl peptide. The intramolecular version of this reaction enables backbone cyclization. The
ligation proceeds in the presence of an exogenous thiol catalyst (typically MPAA) and a reductant (typically TCEP). b Implementation of NCL under
microfluidic conditions toward backbone peptide cyclization. The system is fed with a stable precursor, which is activated into a highly reactive thioester
species before entering the ligation module. c Reactive SEAE peptide thioesters are generated from the stable SEA cyclic disulfide (SEAoff) 3 upon
reduction with TCEP or from the reduced SEAon bisthiol 4. SEAE peptide thioesters 5 enable extremely fast NCL even with difficult C-terminal amino acids
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Establishing feasibility. Having established the high reactivity
of SEAE peptide thioesters, we next designed a microfluidic
system featuring a three-stage process that includes (a) the
generation of SEAE intermediates 5 from SEA peptide amides 3
or 4 in the first microfluidic module (stage 1 in Fig. 3), (b) the

conversion of SEAE peptide thioester 5 into MPAA peptide
thioester 2 followed by the intramolecular NCL in the second
module (stage 2 in Fig. 3), and finally (c) a post-ligation
treatment (stage 3 in Fig. 3). Figure 3 also details the various
peptides examined in this study.
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The feasibility of the microfluidic strategy for cyclic peptide
synthesis according to Fig. 3 was assessed starting with a reduced
SEAon peptide 4. This allowed us to simplify the preliminary
attempts by avoiding the reduction of disulfide 3 into dithiol 4.
The equilibrium between SEAon amides 4 and SEAE peptides 5
considerably favors the amide at neutral pH to a point where SEAE
peptides 5 are barely detectable by HPLC39. In contrast, the
equilibrium favors the SEAE peptide 5 at pH 1 by ≥90% so that the
activation was examined at this pH. Based upon preliminary data
obtained in batch with model tetrapeptide TASV-SEAon 4b
(Supplementary Fig. 2, Supplementary Methods), it turned out

that the most balanced conditions for implementation in a
microfluidic system required 90 °C and 60min of reaction time
(~90% conversion) for a difficult C-terminal amino acid such as
Val. Pivotal adaptations for an implementation in flow were
required since the reaction is sensitive to residence time distribution
(Fig. 4a)40,41. The use of an immiscible carrier (decane, feed
solution 2), as well as the insertion of a back pressure regulator
(BPR) markedly improved the efficiency of the rearrangement
process under microfluidic conditions with yields in the 81–94%
range for peptides 7c,d for example (Supplementary Fig. 12 and 39,
Supplementary Table 6, Supplementary Methods).
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We also demonstrated that the microfluidic system can be fed
with SEAoff peptides of type 3 as well. Batch experiments using
tetrapeptide TASV-SEAoff 3b established that SEAoff peptides of
type 3 are refractory to reduction by tris(2-carboxyethyl)
phosphine (TCEP) at pH 1 at room temperature, while reduction
proceeds rapidly at 90 °C (Supplementary Fig. 3, Supplementary
Methods). Therefore, when SEAoff peptides 3 are used in the feed
solution 1, both reduction (3→4) and activation (4→5) steps

proceed in the first microreactor (µF1, Supplementary Methods).
Both types of precursors are easily accessible through 9-
fluorenylmethyloxycarbonyl (Fmoc) SPPS (Supplementary Meth-
ods)42. Finally, we established that the temperature in µF1

could be lowered to 65 °C for the rearrangement of peptides
terminated by non-problematic amino acids such as leucine
(Leu, L; Fig. 4a; Supplementary Fig. 10 and 11), tyrosine (Tyr, Y;
Supplementary Fig. 82) or phenylalanine (Phe, F; Fig. 5).
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We next focused our efforts towards the SEAE-MPAA
exchange reaction and the cyclization process under microfluidic
conditions (stage 2 in Fig. 3, Fig. 4a). The first experiments were
carried out using HIV polymerase-derived model peptide 4c. Its
cyclization toward c-(CILKEPVHGV) 7c thus comes with a
difficult junction, i.e., Val-Cys. Following the activation step, the
acidic SEAE peptide thioester 5c solution must be quickly mixed
with the exogenous arylthiol MPAA. Since the pH in the second
microfluidic module determines the kinetics of NCL43, as well as
those of the undesirable deactivation of 5c into 4c, it was
mandatory to identify the optimal pH for this step. pH
optimization was realized with a dedicated system having two
separate feeds of MPAA and sodium hydroxide after the activation
module µF1, the relative flow rate of which enabled tuning the pH
in the microfluidic element µF2 from 7.2 to 8.2 (Supplementary
Methods). This study showed that conversion reached a
maximum at pH ~7.3 and decreased almost linearly upon pH
increase (Supplementary Fig. 23). At pH > 7.3 the fraction of
amide 4c in the mixture gradually increased, thus decreasing the
yield of cyclic peptide 7c. This study demonstrated the paramount
importance of the precise control of the reaction conditions for
such ligations. Subsequently, the two feeds of NaOH and MPAA
were replaced by a single feed of MPAA giving the optimal pH of
7.3 in µF2 after mixing with the effluent from µF1 (Fig. 4a).

Kinetic study and suppression of dimeric species. A kinetic
study of the process was next carried out by adjusting the internal
volume of module µF2 using the optimized pH conditions to
screen residence times from 30min down to 1 min. This
experiment revealed that the reaction time had very little impact
on the production of c-(CILKEPVHGV) 7c, except for the
shortest residence time of 1 min for which the reaction did not
reach completion (Supplementary Fig. 24, Supplementary Meth-
ods). Most notably, reaction completion was observed within 2
min of residence time. In further experiments, a safety margin
was included and the residence time was set at 4 min. Dimeric
linear or cyclic species were also identified in the effluent at this
occasion (Supplementary Fig. 24 and 25, Supplementary Meth-
ods). A two-fold dilution of the feed solution of peptide 4c suf-
ficed to suppress their formation. This updated setup allowed the
preparative synthesis of cyclic peptide 7c with an isolated yield of
46% following addition of an acetic acid quenching solution,
MPAA extraction and HPLC purification (Fig. 4a, workup 1,
Supplementary Methods).

Advantages of SEAE chemistry under microfluidic conditions.
With an optimal microfluidic system in hand, we sought to
examine the advantage of using SEAE peptide thioesters in
comparison with classical MPA or MPAA peptide thioesters 1 or
2 for peptide cyclization under microfluidic conditions. We also
evaluated the benefit of performing the cyclization under
microfluidic conditions over classical batch procedures.

The impact of the type of acyl donor on the efficiency of the
cyclization process was studied by telescoping MPA peptide
thioester CILKEPVHGV-MPA 1c (Supplementary Fig. 18, Sup-
plementary Methods) or MPAA peptide thioester CILKEPVHGV-
MPAA 2c (Supplementary Fig. 18 and 27, Supplementary
Methods) dissolved at pH 1 with the MPAA feed solution 3.
LC–MS analysis of the effluent after 4 min of residence time
showed a poor conversion of MPA peptide thioester
CILKEPVHGV-MPA 1c into cyclic product 7c (11%, Supple-
mentary Fig. 26). Moreover, peptide 7c was contaminated by some
MPAA peptide thioester 2c and dimeric species. Comparatively,
the reaction with MPAA peptide thioester 2c was more advanced,
yet still incomplete, and the formation of some dimeric species

was also observed in this case (Supplementary Fig. 28). Although
MPAA was found to be essential for the cyclization process
(Supplementary Fig. 4, Supplementary Methods), the latter
experiment showed that the use of preformed MPAA peptide
thioester 2c could not reproduce similar high performances for
reaction rate and purity profile as obtained when the microfluidic
system was fed with SEAon peptide 4c. This suggests that part of
the cyclic peptide 7c is produced by the direct cyclization of SEAE
peptide 5c (Fig. 2). Therefore, the fast cyclization rate is due to the
combined high reactivity of SEAE and MPAA peptide thioesters.

Next, peptide 4c was also used to compare the assets of the
microfluidic protocol versus a conventional batch procedure.
Operation at steady state for over 3 h with the optimized
microfluidic setup furnished consistent results with a homo-
genous purity profile for cyclic peptide 7c, thus demonstrating the
scale-independent nature of the process, as well as its stability
(Supplementary Fig. 29, Supplementary Methods). In contrast,
batch experiments on three different scales (10-, 25-, and 50-mg-
production scales) provided inconsistent results with higher
impurity contents (mainly unreacted peptide thioester and
dimeric species, Supplementary Fig. 6 and 7, Supplementary
Methods) than the corresponding microfluidic experiments.

Taken altogether, these experiments show that while the high
reactivity of SEAE peptide thioesters has a major contribution to
the rate of cyclization, this proceeds even faster under micro-
fluidic conditions and with a higher purity profile compared to
classical batch procedures.

Exploring the peptide sequence dependency. We next examined
the scope of the microfluidic process by varying some internal
residues, the C-terminal amino acid bearing the SEAE function-
ality, and peptide length. Concerning the role of internal residues,
several studies have shown that a proline can favor the backbone
cyclization of protected peptides in organic solvents by classical
activation procedures44. Indeed, the cis conformation of the
peptide bond to proline is significantly more frequent (typically
~9% for Glu-Pro as in peptide 4c) than for the other amino acids
(<0.1%)45, thereby introducing a kink in the peptide chain and
bringing the reactive ends closer in space. To evaluate the role of
Pro6 on the cyclization of peptide 4c, the microfluidic system was
fed with analog 4d, in which Pro6 was changed to Gly. The
activation of 4d into 5d proceeded with a conversion of 94% in
module µF1, comparable to the results obtained with the original
model 4c. The intramolecular cyclization module µF2 was tele-
scoped to µF1, but co-elution of cyclic peptide 7d and the starting
SEAon peptide 4d precluded direct determination of an HPLC
conversion. To solve this, the reactor effluent was treated with an
excess of 3-((3-oxobutanoyl)thiol)propanoic acid (AcA-MPA 846)
that reacted quantitatively with any remaining peptide 4d by NCL
at its N-terminal Cys. The resulting AcA peptide 9d was easily
separated from the cyclic peptide 7d by HPLC, thus allowing both
quantification and purification of cyclic peptide 7d (Fig. 4b).
Compared to the cyclization of 4c, a higher conversion of
c-(CILKEGVHGV) 7d was measured (Supplementary Table 10,
Supplementary Methods). Therefore and contrary to expecta-
tions44, in this case the presence of an internal proline in 4c had a
deleterious effect on the cyclization reaction.

We also examined the compatibility of the microfluidic system
with internal asparaginyl-glycyl (NG) or aspartyl-glycyl (DG)
dipeptide units, which are known to be particularly sensitive to
several side-reactions such as aspartimide formation, deamida-
tion, or peptide cleavage. Peptide 4e equipped with an internal
NG dipeptide unit and a C-terminal Val residue successfully
yielded cyclic peptide 7e with a higher yield than that obtained for
7c. Some deamidation of asparagine residue was nevertheless
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observed during the activation step at 90 °C (~15–20%,
Supplementary Fig. 8, Supplementary Methods). Comparatively,
Leu analog 4g was activated at 65 °C and cyclized without side-
reactions (Supplementary Fig. 10). In contrast, DG dipeptide in
peptide 4f unit suffered as expected from a partial cleavage during
the activation at 90 °C (Supplementary Fig. 9A). However, and
here again, the side-reactions were nearly suppressed by
performing the activation at 65 °C in the first microfluidic
module (Supplementary Fig. 9B). Therefore, the activation of DG
peptides 4f and 4h terminated by Val and Leu residues,
respectively, was thus performed at 65 °C, albeit the activation
was less advanced in the former case.

We next examined the influence of the C-terminal residue,
which dictates the reactivity of peptide thioesters in NCL18. C-
terminal Thr, Val, and Ile are sterically demanding and
considered as difficult amino acids. Proline is even more
problematic, and often considered as intractable47,48. In addition
to slow kinetics, NCL reactions with peptidyl prolyl thioesters are
also prone to side-reactions via deletion of two amino acids, i.e.,
the proline and the preceding residue, in the ligated product49,50.
This side-reaction is particularly pronounced when the C-
terminal Pro is preceded by Gly.

Peptides presenting a C-terminal Thr (4i) or Ile (4j) were
successfully cyclized into 7i and 7j, respectively, through the fully
concatenated setup and behaved similarly to peptides 4c,d
(Fig. 4a). For the Pro analog 4k, the activation into 5k was less
efficient (66%). However, the intramolecular ligation step
proceeded with high efficiency within 4 min of residence time,
highlighting again the spectacular reactivity of SEAE thioesters in
NCL. To rule out the possibility that fast ligation kinetics are
simply a consequence of the intramolecular nature of the
reaction, a control experiment involving ILKEPVHGP-SEAon

4q in Feed solution 1 and peptide CILKEPVHGV-NH2 10 in
MPAA Feed solution 3 was carried out (Supplementary Table 13,
Supplementary Methods). The concatenated process was success-
fully operated using similar ligation conditions, and the peptide
product ILKEPVHGP-CILKEPVHGV-NH2 11 was isolated with
21% yield (28% corr.) after HPLC purification within a few
minutes of ligation time, confirming the spectacular reactivity of
SEAE peptides in NCL.

Note that due to its sequence, peptide 4k is potentially prone
to a deletion side-reaction. The deletion side-product, i.e.,
c-(CILKEGVH) 12, was indeed observed, but it accounted for
less than 8% of the total, showcasing the performance of the
microfluidic system for backbone cyclization of problematic
peptides. The slightly lower yield (38%) observed for 7k arose
from issues in separating the target peptide from the deletion
side-product. No significant racemization was observed in the
final products (Fig. 4a). Note that peptides 9d-k were isolated as
well and could potentially be recycled due to the easy removal of
the AcA group with hydroxylamine at pH 4.

Expanding the strategy to antimicrobial peptide RTD-1. We
next aimed at the preparation of a larger and biologically relevant
cyclic peptide, namely the 18 amino acid antimicrobial peptide
RTD-1 (Fig. 5a)51, which was produced from three different
precursors (4l-n), two of them involving the formation of a dif-
ficult junction (4l: Val-Cys; 4m: Ile-Cys). Solubility issues in the
microfluidic element µF2 required the addition of a denaturing
agent (Gn·HCl, 6 M). We started with peptide SEAon 4l, which
was subjected to the complete microfluidic assembly using opti-
mized conditions identified above for difficult junctions (Fig. 4a,
Supplementary Table 9, Supplementary Methods). LC–MS ana-
lysis of the crude product revealed the formation of RTD-1 in its
reduced form (49%), as expected, but also a large proportion

(34%) of side-products having the same mass as RTD-1. We
hypothesized that the side-products were macrocyclic thiolactone
species, the formation of which most likely involves a ring
expansion mechanism as discussed by Tam and coworkers
(Fig. 5a)52. To test this hypothesis, RTD-1 analog 4o, in which all
the Cys residues except the N-terminal one were changed to Ala,
was prepared (Fig. 2). The microfluidic experiment with peptide
4o furnished cyclic peptide c-(CRAIATRGFARALARRGV) 7o in
good isolated yield (HPLC yield 71%, isolated 37%) without side-
product formation. This suggests that the rearrangement of the
thiolactones formed by proximity-driven attack of internal
cysteine thiols on the C-terminal thioester, which ultimately
yields the backbone cyclized peptide by ring expansion, is rate-
limiting upon cyclization to RTD-1 under microfluidic condi-
tions. To promote the rearrangement of the thiolactone species,
we increased both the residence time (from 4 to 15 min) and the
temperature in module µF2 (from 37 to 45 °C). These microfluidic
conditions significantly reduced the occurrence (<10%) of thio-
lactone species and increased the conversion of 4l into RTD-1
(71% HPLC yield, isolated yield 29%) accordingly. These condi-
tions were next successfully applied to peptide 4m (difficult Ile-
Cys junction). In the case of RTD-1 precursor 4n, which has a
non-problematic C-terminal Phe residue, the activation in µF1

module was performed at 65 °C (Fig. 5b). Cyclization in module
µF2 proved to be highly efficient although some epimerisation of
the Phe residue was noticed (4.9%). No thiolactone intermediates
remained in the crude reactor effluent in this case. The higher
accessibility of the carbonyl group of Phe to thiol nucleophiles
compared to Val or Ile most likely allows a faster rearrangement
of intermediate thiolactone species. This example shows that the
microfluidic system can be easily tailored to the specific
requirements of a variety of junctions.

Native RTD-1 peptide is stabilized by three disulfide bonds,
which are important for the cyclic peptide to exhibit its full
biological activity. The reduced RTD-1 peptide is known to
spontaneously form the native pattern of disulfide bonds upon
oxidative folding51. Therefore, RTD-1 peptide produced from
peptide 4l was oxidized (Supplementary Methods)51, and tested
for its antibacterial activity against E. coli and S. aureus strains
(Fig. 5c, Supplementary Methods). The folded RTD-1 peptide
displayed the expected antibacterial activity in this assay, showing
the capacity of the microfluidic system to produce a cyclic peptide
of biological interest.

As a final demonstration for this study, we performed the
cyclization of a longer peptide model sequence (28 mer, peptide
4p) derived from the hepatocyte growth factor (Fig. 2). Since this
peptide features a non-problematic C-terminal Tyr residue,
cyclization was performed using the microfluidic setup defined
for RTD-1 precursor 4n (see Fig. 5a and Supplementary Fig. 82).
Cyclization proceeded efficiently by providing the target cyclic
peptide 7p with a 41% yield after HPLC purification.

Discussion
The design of highly reactive peptidyl donors and extremely fast
ligation methods is a timely and significant goal. Such chemical
tools can streamline the production of complex peptides and
especially those implicating the formation of difficult junctions.
Importantly, fast ligation methods potentially open the way
toward peptide production under microfluidic conditions. How-
ever, to benefit from all the well-established assets of continuous
flow operation, the issues related to using and controlling highly
reactive peptidyl donors must be overcome. Ideally, such reactive
species should be generated in the microfluidic system to avoid
their isolation, storage, and handling. In this regard, the micro-
fluidic NCL procedure reported herein constitutes a significant
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advance for peptide chemical ligation under homogeneous con-
ditions by providing a straightforward and operationally simple
method to exploit the enhanced reactivity of SEAE peptidyl
thioesters at their fullest. The procedure relies on a highly mod-
ular microfluidic system that enables progressive activation
starting from stable and readily available peptide amides. The
highly integrated nature of the microfluidic system greatly sim-
plifies peptide cyclization in a scale-independent and automated
manner. Several production campaigns sustained the production
of high-quality materials with only small variations. Attempts to
reproduce similar performance with a batch setup provided
inconsistent results with higher impurity contents.

Short cyclative ligation rates (<4 min) were obtained even for
difficult (Val, Ile, and Thr) and the most intractable (Pro) junc-
tions. The high reactivity of SEAE peptidyl thioesters cannot be
deduced from previous studies that involved simple thioester
functionalities38. In addition, reports dealing with the impact of
the thiol backbone on the reactivity of the corresponding thioe-
ster remain scarce53,54. Recently, a few studies unveiled the
positive impact of non-proteinogenic C-terminal thiol amino
acids on thioester reactivity18,55,56. Our approach is particularly
appealing since it does not require the modification of the peptide
structure and post-ligation chemical transformations. It relies on
robust chemistry amenable to conventional SPPS for the pre-
paration of the starting SEA peptide fragments. The high reac-
tivity of SEAE peptidyl thioesters should stimulate further work
with the objective of understanding how chemical groups internal
to the thioester peptide can dramatically boost its reactivity.

In summary, the chemistry and microfluidic system described
in this study are flexible and versatile, and could be easily adapted
to the inherent specificities of various cyclic peptides. This work
provides the preliminary step towards the development of a
generalized microfluidic procedure for the scale-independent
production of cyclic peptide architectures, as well as post-ligation
cosmetic operations (desulfurization, oxidative folding). The
procedure makes peptide cyclization much more accessible,
particularly for preparative applications.

Methods
Reagents. 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium fluorophosphate
(HBTU) and N-Fmoc protected amino acids were obtained from Iris Biotech
GmbH. 4-Mercaptophenylacetic acid (97%, MPAA), 3-mercaptopropionic acid
(MPA), tris(2-carboxyethyl)phosphine hydrochloride (≥98%, TCEP), thiophenol,
triisopropylsilane (TIS), guanidine hydrochloride (≥99%), sodium phosphate
dibasic dihydrate (≥99%), hydrochloric acid (reagent grade, 37%), and sodium
hydroxide (pellets, 97%) were purchased from Sigma-Aldrich. All other reagents
were purchased from Acros Organics or Merck and were of the purest grade
available. Peptide synthesis grade N,N-dimethylformamide, dichloromethane,
diethylether, acetonitrile, heptane, LC–MS-grade acetonitrile (0.1% TFA), LC–MS-
grade water (0.1% TFA), N,N-diisopropylethylamine (DIEA), and acetic anhydride
were purchased from Biosolve and Fisher-Chemical. Trifluoroacetic acid (TFA)
was obtained from Biosolve. Decane (synthesis grade) was purchased from Merck.
Solvents and reagents were used as received. Water was purified with a Milli-Q
UltraPure Water Purification System.

Peptide synthesis. SEAon peptides 4c-p were synthesized from SEA polystyrene
resin using classical Fmoc SPPS protocols37. In brief, amino acids (10 equiv.) were
activated using HBTU (9.5 equiv.)/DIEA (10 equiv) in DMF. The peptidyl resin
was acetylated after each coupling step using acetic anhydride (10% by vol) and
DIEA (5% by vol.) in DMF. The removal of the Fmoc group was performed by
treating the peptidyl resin with piperidine (20% by vol.) in DMF. The peptides were
deprotected and cleaved from the resin using TFA/water/TIS/thiophenol cocktail
(92.5/2.5/2.5/2.5 by vol.). The crude SEAon peptides 4c-k were used without further
purification. SEAon peptides 4l-p were purified by reversed-phase HPLC prior to
cyclization.

Microfluidic modules. Microfluidic modules were constructed with commercially
available elements from IDEX/Upchurch Scientific, including high purity PFA
capillaries, connectors, ferrules, static micromixers, and in-line check-valves
(Supplementary Tables 1 and 2). High force syringe pumps (Nexus 6000) for feed

delivery were purchased from Chemyx, and the dome-type BPR was purchased
from Zaiput Flow Technologies (Supplementary Methods).

Optimized microfluidic setup. The microfluidic ligation setup consisted of two
microfluidic modules constructed from high purity PFA capillary (µF1= 400 µL
internal volume and µF2= 170 µL internal volume) fluidically connected in series
(Supplementary Fig. 17, Supplementary Methods). The temperature of µF1 was set
at 90 °C or 65 °C, and µF2 was operated at 37 °C or 45 °C (Supplementary Table 8
and 9). The ligation setup was operated with a counter-pressure of 2.5 bar. Static
mixers were utilized upstream module µF1 for establishing the segmented regime
prior to the activation step and upstream µF2 for the injection of the MPAA feed
solution for the ligation step (Supplementary Fig. 12 and 17, Supplementary
Methods).

Typical microfluidic ligation procedure. The first module (µF1) was con-
comitantly fed with a solution of the desired starting SEAon peptide 4 (pH 1) and
n-decane (flow rate= 3.3 µLmin−1 for each). The effluent of µF1 was then mixed
with a solution of MPPA (flow rate= 35 µLmin−1, pH 7.8), and the resulting
reaction mixture (pH 7.3) was conveyed to the second module (µF2). Details of the
procedures can be found in Supplementary Methods. The reactor effluent was
collected at steady state, and processed. Specific downstream purification proce-
dures including post-ligation procedures, MPAA extraction, and HPLC purifica-
tion were established for each peptide sequence.

Typical post-ligation procedures. Workup 1 was used for peptides 7c, 7l-p
(Supplementary Methods). The reactor effluent was collected in a 10% aqueous
acetic acid solution. MPAA was extracted 5 times with diethylether. The aqueous
solution was analyzed by HPLC or LC–MS and subsequently purified by HPLC.

Workups 2 and 1 were used for peptides 7d-k. For workup 2 (Supplementary
Methods), the reactor effluent was collected in a solution of AcA-MPA46 (8, 1.2
equiv.) and TCEP.HCl (100 mM) in sodium phosphate buffer (0.2 M, pH= 7.4),
and maintained overnight at room temperature under a nitrogen atmosphere. The
corresponding reaction mixture was next treated according to workup 1.

Peptide purification. The peptides were purified by reversed-phase HPLC on a
C18 column using a linear gradient of increasing concentration of eluent B in
eluent A (eluent A: 0.1% by vol. of trifluoroacetic acid (TFA) in water; eluent B:
0.1% vol. of TFA in acetonitrile/water: 4/1 by vol., flow rate of 6 mLmin−1, UV
detection at 215 nm). The selected fractions were then combined, frozen, and
lyophilized.

Peptide characterization. The peptides were characterized by analytical LC–MS
on a reversed-phase XBridge BEH300 C18 column (3.5 μm, 300 Å, 4.6 × 150 mm)
at 30 °C using a linear gradient: 0–100% of eluent B in eluent A over 30 min at a
flow rate of 1 mLmin−1. The column eluate was monitored by UV at 215 nm, by
evaporative light scattering or by electrospray ionization mass spectrometry (ESI-
MS). MALDI-TOF mass spectra were recorded with a Bruker Autoflex Speed using
alpha cyano 4-hydroxycinnaminic acid, sinapinic acid or 2,5-dihydroxybenzoic
acid (DHB) as matrix.

Kinetic studies. The aliquots (2 µL) were quenched with aqueous acetic acid (10%
by vol., 100 µL). MPAA was removed by extracting the aqueous phase with die-
thylether (5 times). The samples were then analyzed by LC–MS using a
C18XBridge column as described above in the Methods section: peptide
characterization.

RTD-1 antibacterial activity. E. coli BW25113 (kindly provided by Coli Genetic
Stock Centre, CGSC), and S. aureus SH1000 (kindly provided by Prof. S.J. Foster,
University of Sheffield) were grown overnight in Cation-Adjusted Mueller Hinton
II Broth (37 °C, 150 rpm)51. Cultures were then diluted 1 in 20 and grown for 2 h
(37 °C, 150 rpm) to obtain a log phase bacterial culture. Log phase cultures were
then pelleted (3000× g, 5 min) and washed twice in 10 mM PIPES (pH 7.4) with
5 mM glucose. The bacterial suspension was diluted in piperazine-N,N′-bis(2-
ethanesulfonic acid) buffer (10 mM, pH 7.4) with 5 mM glucose to an optical
density of 0.00125 at 600 nm. A volume of 150 µL of the bacterial suspensions were
added to the wells of a 96-well plate. A volume of 3 µL of RTD-1 serially diluted in
water (at 50 × final concentration, 800–25 µg mL−1) was then added to the bacteria
to give a final concentration range of 16–0.5 µg mL−1. Bacteria viability was then
determined by counting colony-forming units following plating on LB agar.

Data availability. All relevant data are included in the manuscript and Supple-
mentary Information. More data are available from the authors upon request.
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