Light-Stimulatable Molecules/Nanoparticles Networks for Switchable Logical Functions and Reservoir Computing
Abstract
We report the fabrication and electron transport properties of nanoparticles self-assembled networks (NPSAN) of molecular switches (azobenzene derivatives) interconnected by Au nanoparticles, and we demonstrate optically-driven switchable logical operations associated to the light controlled switching of the molecules. The switching yield is up to 74%. We also demonstrate that these NPSANs are prone for light-stimulable reservoir computing. The complex non-linearity of electron transport and dynamics in these highly connected and recurrent networks of molecular junctions exhibit rich high harmonics generation (HHG) required for reservoir computing (RC) approaches. Logical functions and HHG are controlled by the isomerization of the molecules upon light illumination. These results, without direct analogs in semiconductor devices, open new perspectives to molecular electronics in unconventional computing.
Origin | Files produced by the author(s) |
---|