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Abstract

Coherency loss of misfitting precipitates by nucleation of dislocations at the interface is investigated using a nonlinear elastic model.
This is made possible because the model inherently takes into account, in addition to long-range elastic interactions, phenomena involv-
ing dislocation cores such as dislocation nucleation and cross-slip. It is also shown that the model naturally delivers viscous motion laws
above a threshold stress. The mechanism of prismatic punching proposed by Ashby and Johnson is confirmed by the present work for
small precipitates. For larger precipitates, more complex situations are predicted which involve several dislocations, beyond the scope of
the available analyses, but often observed experimentally.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In the solid state, the coexistence of different phases
often generates internal stresses which influence mechanical
and physical properties. Hence, understanding how these
stresses can be accommodated is an important step in pre-
dicting the properties of materials. While, in several sys-
tems, accommodation can proceed by solute
redistribution in the precipitate vicinity (e.g. [1]), coherency
loss processes involving interface dislocations and plastic
relaxation of the matrix phase are most frequently
encountered.

In diffusion-controlled phase transformation, coherency
loss can have a significant influence on the precipitate
growth regime. For instance in Ref. [2], the authors show
that the lengthening rate of platelet-like g and h0 precipi-
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tates in Al–Au and Al–Cu alloys is slowed down when pre-
cipitates become semicoherent. The presence of interface
dislocations reduces the stress field generated by the misfit-
ting precipitate, which provokes a decrease in the driving
force, slowing down the precipitate growth. An opposite
situation is encountered for the coarsening behavior of Al3-

Sc precipitates in Al–Sc alloys [3], where the appearance of
interface dislocations increases the precipitate surface
energy and increases the coarsening rate.

Generally, the onset of coherency loss is assessed in
terms of a simple free energy balance between the contribu-
tions from misfit dislocations and the interface energy [4,5].
This is due to the complexity and the variety of the mech-
anisms proposed so far, often based on early post-mortem
observations: (i) nucleation and growth of dislocations by
the condensation of point defects within the precipitate
[6–8]; (ii) attraction of dislocations at interfaces from the
bulk matrix [7,9]; and (iii) formation and emission of dislo-
cation loops of prismatic nature (i.e. purely edge loops with
their normal parallel to the Burgers vector), also called
prismatic punching [10,8,11]. As noted in Ref. [12], this last
eserved.
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Fig. 1. Edge dislocation seen as a frontier between sheared and unsheared
parts of the crystal.
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process is likely to prevail for small precipitates with strong
misfit, in particular when the dislocation density in the
matrix is low. Indeed, prismatic punching has been
observed in many multiphase materials. This is the case,
for example, during precipitation of hydrides in zirconium
alloys due to the misfit-generated stresses [13,14], or in
metal matrix composites (MMCs) with the build-up of
thermal stresses during non-isothermal treatments [15,16].
It has been noted in Ref. [17] that a significant hardening
can be achieved by such a process in MMCs.

The very first models proposed for coherency loss by
prismatic punching are based on analytical expressions
for the elastic interactions between a single precipitate
and static dislocation loops with simplified geometries
[10,18,19]. Among them, the model of Ashby and Johnson
[10] is the most appealing as testified by its recurrent use in
subsequent studies [12,13,20,21]. Unfortunately, it relies on
a particular sequence of events which is assumed rather
than proved: first, a shear dislocation loop nucleates at
the interface, expands into the matrix and forms a pris-
matic loop by cross-slip of its screw segments. Hence, val-
idating this sequence requires a dynamic modeling
approach. This would also be beneficial for investigating
more complex situations such as rows of loops as observed
in, for example, Refs. [14,15,22] or tangles ensuing from the
interaction between prismatic loops [12,14].

However, very few attempts to tackle coherency loss
have been made with the current modeling techniques. Pris-
matic punching around an inclusion has recently been
obtained with a molecular statics approach in Ref. [23].
However, due to the small length scales available in atom-
istic simulations, the observed processes are likely to be
influenced by the boundary conditions. In Ref. [24], a
level-set method accounting for dislocation dynamics has
been used to investigate the by-pass mechanisms of disloca-
tions around a misfitting inclusion and the resulting coher-
ency loss of the precipitates. However, this method does
not take into account dislocation nucleation and thus can-
not be used to investigate prismatic punching mechanisms.
Although the phase field modeling in Ref. [25] attempted to
account for a change in the nature of the interface with
some effective eigenstrain, the actual process was unfortu-
nately not described.

In the present work, we propose a continuum modeling
of dislocation dynamics able to describe nucleation, glide
and cross-slip of dislocations based on nonlinear elasticity,
which is subsequently used to investigate loss of coherency
of a misfitting precipitate. This model can be seen as an
extension to three dimensions of the Peierls–Nabarro
model [26,27].

The paper is organized as follows. We describe the
model in Section 2 before presenting its validation in static
and dynamic conditions in Section 3. Then, results con-
cerning the loss of coherency by prismatic punching are
discussed in Section 4, demonstrating the relevance of
our model and bringing new insights into the physical
process.
2. Nonlinear elastic model

Our model relies on an elastic energy which is periodic
with respect to the shear components of the strain tensor.
It is comparable to the models of Carpio and Bonilla
[28,29] and Onuki and Minami [30,31]. Whereas the former
authors resort to a discrete atomic lattice, the latter con-
sider a continuous framework, as followed in the present
work. Nonetheless, both approaches yield similar equa-
tions after discretization. The major advantages of this
kind of model over standard phase-field models of disloca-
tions [32,33] are the following: (i) it incorporates naturally
dislocation nucleation, a necessary feature for investigating
coherency loss mechanisms and (ii) it does not resort to
some gradient term which artificially smooths dislocation
cores. Finally, it incorporates naturally cross-slip of screw
dislocations which is absent in previous phase-field models
of dislocations.

Assuming isotropic elasticity, the total elastic energy of
the system is written as follows:

F ¼
Z
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where k and l are the Lamé coefficients which may be po-
sition dependent, eij denote the strain tensor components,
e0

ij are eigenstrain components associated with the micro-
structure, and b and d are respectively the norm of Burgers
vector and the grid spacing. This elastic energy contains the
usual harmonic contributions of the diagonal components
of the strain tensor, whereas the shear components are
embedded into nonlinear periodic potentials accounting
for lattice periodicity. For example, if we consider a perfect
crystal which is sheared by the quantity b=2d on a platelet
of height d and normal n ¼ z, the expression (1) recovers a
minimum energy because of these periodic functions. On its
glide plane, a dislocation can then be seen as a frontier be-
tween a sheared and an unsheared part of the crystal, both
stabilized as minimum energy states (see Fig. 1). The pre-
factors of the periodic terms are chosen such that, for small
deformations, the elastic energy of a linear elastic solid is
recovered. Cosines have been chosen for simplicity and
generality reasons but they can easily be replaced by more
complicated forms such as the c-surfaces obtained from
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ab initio calculations. Moreover, the generalization to an
elastically anisotropic material is straightforward.

Assuming that small strain theory holds, the strain ten-
sor is defined in a Cartesian framework ðxiÞi¼1;3 as:

eij ¼
1

2

@ui

@xj
þ @uj

@xi

� �
ð2Þ

with respect to the components ui of the displacement field.
It is worth mentioning that the choice of small strain is a
restriction than can be overcome by following the work
of Finel et al. [34,35] on martensitic transformation.

Time-dependent equations for the displacements ui are
derived assuming a dissipative dynamics. Indeed, inertial
effects can generally be neglected on the dislocation motion
when compared to damping caused by the phonon drag
mechanisms. For simplicity, external dissipation has been
associated with displacements rather than internal dissipa-
tion with strains; it is considered that this would not affect
the results significantly. Moreover, Langevin noises have
been added to introduce random forces in the dynamics
that mimick qualitatively thermal fluctuations. Then:

g
@ui

@t
¼ @rij

@xj
þ ni ð3Þ

where g is a damping coefficient and ni are Gaussian noises
satisfying niðx; tÞniðx0; t0Þ ¼ Cdðx� x0Þdðt � t0Þ with C pro-
portional to the temperature. As usual, the stress field is de-
rived from F as rij ¼ dF=deij. The kinetic equations for the
strain components are easily deduced using Eq. (2):
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where tildes denote non-dimensionalized quantities
~xi ¼ xi=b; ~t ¼ gb2=l; ~rij ¼ rij=l and ~n ¼ nb=l. It is worth
mentioning that Eq. (4) guarantee the Saint–Venant com-
patibility conditions because they derive from the kinetic
equations for the displacements.
Fig. 2. Staggered finite difference grids.
Eq. (4) are discretized on four staggered grids [36,37]
shown with diamonds and squares in Fig. 2: one1 for the
diagonal components of strain and stress (green diamond),
and one for each off-diagonal component (blue squares).
The four grids are staggered by a distance d=2 in all three
directions where d is the internode spacing in a given grid.
The choice of staggered grids has been made to handle
sharp variations of coupled strain fields, and prevents the
appearance of oscillatory artifacts, as observed, for exam-
ple, in Ref. [38].

Two kinds of finite differences are defined on the grids.
First, forward differences written as Dþ1 u ¼ ½uðiþ 1; j; kÞ�
uði; j; kÞ�=d, where u is any field, ði; j; kÞ denotes the coordi-
nates in the grid, and where the subscript of D stands for the
direction along which the difference is performed. Second,
backward differences are defined by D�1 u ¼
½uði; j; kÞ � uði� 1; j; kÞ�=d. It is worth mentioning that
the use of such operators on staggered grids ensures that
only first neighbors are involved in the computational sten-
cils used for differentiation.

First, the components of the stress field are expressed
with respect to the components of the strain field on the
same respective grids using the homogeneous elastic con-
stants, i.e. rii ¼ ðkþ 2lÞðeii � e0

iiÞ þ k
P

j–iðejj � e0
jjÞ on the

green grid, and rij ¼ 2l ðeij � e0
ij) (i – j) on the three blue

grids. Then, the components of the divergence of the stress
field are expressed on three auxiliary staggered grids (red
circles in Fig. 2) used to define the three components of
the displacement field u. Storing any symmetric order 2 ten-
sors s in vectors as ðs11; s22; s33; s12; s13; s23Þ, the divergence
of stress is written in compact form as D0 � rðeÞ where:

D0 ¼
D�1 0 0 Dþ2 Dþ3 0

0 D�2 0 Dþ1 0 Dþ3
0 0 D�3 0 Dþ1 Dþ2

2
64

3
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The components ni of Gaussian noises are also defined on
the auxiliary grids associated with the displacement com-
ponents. Finally, all quantities defined on these auxiliary
grids are used for the discretization of the partial differen-
tiation that links the stress components eij to the displace-
ment components ui (Eq. (2)). In compact form, this
relation is written as e ¼ D � u with operator D defined as:

D ¼
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Hence, after discretization Eq. (4) reads:

_� ¼ D �D0 � rðeÞ þD � n ð7Þ
1 For interpretation of color in Figs. 2, 5 and 9, the reader is referred to
the web version of this article.



P.-A. Geslin et al. / Acta Materialia 71 (2014) 80–88 83
Time integration of the resulting system of ordinary differ-
ential equations is performed with a simple explicit Euler
scheme:

etþdt ¼ et þ dt D �D0 � rðetÞ þD � ntð Þ ð8Þ
where the superscript indicates the time step at which the
quantity is assessed.

Periodic boundary conditions have been considered for
simplicity. Moreover, the model has been implemented in
a finite-difference code parallelized using the MPI standard.

It must be stressed that the choice of components of the
strain tensor entering the periodic potential in Eq. (1) must
comply with the grid. Indeed, whereas the grid imposes the
glide planes, the arguments of the periodic potentials are
linked to the glide directions, i.e. possible Burgers vectors
in these planes. In the present case, the glide planes are
those of a simple cubic structure, i.e. f100g, and the cosines
render h100i the easiest directions for gliding. More com-
mon crystal structures, i.e. body-centere cubic (bcc), face-
centered cubic (fcc) and hexagonal close-packed (hcp),
would necessitate grids that display the symmetries of the
glide systems, and a natural choice would be to conform
to the atomic lattice as in Ref. [29].

3. Validation

First, the stress field around an edge dislocation is com-
pared to the classical solution of linear elasticity, for two
grid spacings d ¼ b and d ¼ 10b. For that purpose, a static
dislocation dipole is introduced in a large simulation cell
and the elastic energy (Eq. 1) is relaxed using the dissipative
dynamics (Eq. 4). The stress components r12 and r11 are
plotted in Fig. 3a and b. Their profiles across the disloca-
tion core along the x and y axes respectively, compare very
well to the analytical solution (black dashed line) for the far
fields decaying as 1=r. Close to the dislocation, the nonlin-
ear part of the elastic energy introduces a dislocation core
and avoids the singularity of the analytical solution. For
a

Fig. 3. components (a) r12 and (b) r11 of the stress tensor around an edge disloc
line shows the analytical solution of linear elasticity. (For interpretation of the
version of this article.)
d ¼ b, and m ¼ 1=3, the dislocation core width is
w ¼ 1:3b, close to the value found by Peierls [26], i.e.
wp ¼ 1:5b. It must be noted that this value is small when
compared to dislocation cores in fcc or bcc lattices where
dislocations are generally dissociated into partials. How-
ever, recovering such a dissociation is not an issue with
the present model provided that a more general periodic
function is employed based on generalized stacking fault
energy. For d ¼ 10b, the core is much wider and spans over
13b. Correlatively, the maximum stress at the dislocation is
10 times smaller than for the fine grid. As expected, discret-
ization has a great impact on the core structure. Similar
statements can be made for screw dislocations.

Second, the model is examined in dynamic situations.
The velocity of a single dislocation, either edge or screw,
is determined for different applied shear stresses. The
resulting curves are shown in Fig. 4 for two grid spacings,
d ¼ b and d ¼ 10b. In all cases, a threshold stress (Peierls
stress) must be overcome to move the dislocations; indeed,
due to the discretization, the dislocations experience a pin-
ning effect below the threshold. In the work of Peierls [26]
and Nabarro [27] (PN model), the Peierls stress is found by
introducing discreteness on the position of the atomic half-
planes located above and below the glide plane. The energy
of the dislocation function of its position (i.e. the Peierls
energy) is calculated by summing the energy on both upper
and lower atomic half-planes and displays a period b=2.
The fact that the dislocation recovers a minimum of energy
after being displaced by b=2 has been noted to be unrealis-
tic [39]. Other derivations [39–41] of the Peierls stress con-
sist in performing the summation of the Peierls energy on
the atomic bounds linking the atoms of both sides of the
glide plane. This approach leads to the expected b-period-
icity for the Peierls energy. In our case, the numerical val-
ues of the Peierls stress should be compared to this later
derivation since the lattice friction experienced by the dislo-
cation comes from the discretization of the stress fields that
can be seen as interatomic bounds.
b

ation with d ¼ b (red circles) and d ¼ 10b (blue squares). The black dashed
references to colour in this figure legend, the reader is referred to the web

https://www.researchgate.net/publication/249656382_The_Theory_of_Dislocations?el=1_x_8&enrichId=rgreq-3f233421-80e1-430d-b2f3-96b1d1a842e4&enrichSource=Y292ZXJQYWdlOzI2MTE4MzY3NDtBUzoxMDMyOTgzNzU4ODA3MTJAMTQwMTYzOTY2MTQxNg==
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Fig. 4. Normalized velocity vs. normalized applied stress of edge (red
circles) and screw (blue squares) dislocations for d ¼ b. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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The values of the Peierls stress found with our numerical
model are reported in Table 1 and compared to the analyt-
ical expression taken from Ref. [41]. The differences
between the values corresponding to d ¼ b and the PN
model can be attributed to some limitations of the PN
model that are lifted in our model: (i) the shear elastic
energy appears twice in the PN model, once in the elastic
bulk contribution and once in the periodic potential; (ii)
in the PN model, the periodic potential appears solely in
the glide plane, while it is active on every other parallel
plane in our model—consequently, the dislocation core
can also spread in the direction normal to the glide plane;
(iii) in the PN model, the elastic displacements are assumed
to be stress independent when computing the Peierls stress,
while our model takes into account the relaxation of these
displacements. For d ¼ 10b, the Peierls stresses are divided
by 10, as a direct consequence of the drop of the maximum
stress at the dislocation. Above the Peierls stress, linear
relationships between the dislocation velocities and the
applied stress are rapidly observed after small nonlinear
regimes. These linear regimes correspond to the usual law
of motion v ¼ br=B, where B is the phonon drag coeffi-
cient. It is worth noting that the slopes, i.e. b=B, are the
same for a given viscosity g irrespective of the nature of
the dislocation and the grid spacing. Moreover, a linear
relationship exists between g and B. Thus, one can choose
Table 1
Normalized Peierls stress (m ¼ 1=3).

Edge Screw

Present model

d ¼ b 4:72� 10�3 1:59� 10�2

d ¼ 10b 4:72� 10�4 1:59� 10�3

Peierls–Nabarro

1=a expð�p=aÞ 1:35� 10�2 4:32� 10�2

with a 1� m 1
the numerical value of the damping coefficient g in order to
reproduce a physical drag coefficient.

In the following, a grid spacing d ¼ 10b is used to han-
dle large precipitates with radii up to 400b, which are gen-
erally beyond the reach of atomic-scale methods (e.g. [23]).
Moreover, with this discretization, the Peierls stresses are
of the order of 10�3l closer to realistic values than with
d ¼ b. Finally, for the coarser grid, the stress necessary to
nucleate a dislocation loop is lb=ð2pdÞ ’ 1:6� 10�2l, a
realistic value when nucleation is assisted by thermal fluc-
tuations [42].

4. Results

We first investigate the process of coherency loss by pris-
matic punching. A schematic mechanism has been pro-
posed by Ashby and Johnson [10] and is reproduced in
Fig. 5a. We consider a misfitting spherical precipitate of
radius R (red). According to Eshelby’s solution [43], the
shear stress is maximum on planes defined by
x; y; z ¼ �R=

ffiffiffi
2
p

and forming the parallelepiped (often
called the glide cylinder) shown in Fig. 5a. Consequently,
a dislocation shear loop (blue) is more likely to nucleate
on one of these planes (e.g. the top plane). This loop bulges
out until it reaches a critical size with screw segments par-
allel to the edges of the parallelepiped. Then, the screw seg-
ments cross-slip down the vertical sides of the
parallelepiped until they merge at the bottom of the precip-
itate and form a prismatic dislocation loop. This prismatic
loop is punched out due to the stress field generated by the
precipitate. We note that the complementary loop remain-
ing at the precipitate interface is not shown as in Ref. [10].

In order to see whether this process can be reproduced
with our model, a precipitate of radius R ¼ 200b with a
dilatation eigentrain e0

ii ¼ 1:75% is considered (orange in
Fig. 5b) in a large 1280� 1280� 1280b3 system. The pre-
cipitate shape is defined with a static phase field: the matrix
and precipitate phases are defined a priori and no thermo-
dynamics is associated with their evolution. However, let us
highlight that it would be straightforward to embed the
phase field into a free energy functional and make it evolve
according to an adapted time-dependent Ginzburg equa-
tion, but this is not the purpose of this paper. To avoid
the simultaneous nucleation of shear loops on symmetric
locations, the misfit is chosen just below the critical misfit
for spontaneous nucleation. Moreover, to prevent nucle-
ation on asperities at the interface induced by the grid,
the precipitate/matrix interface is smoothed over four grid
spacings (i.e. 40b). Both the matrix and the precipitate have
been attributed the same isotropic elastic constants with
k ¼ 2l. Four snapshots of the process predicted by our
model are shown in Fig. 5b. The level-set corresponding
to 12% of the maximum energy is shown in blue to locate
the dislocation loop.

Thanks to the Langevin noise ni in Eq. (3), a single shear
loop with a Burgers vector along the [00 1] direction nucle-
ates. Once the loop is nucleated, the noises are shut down
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Fig. 5. Prismatic punching mechanism: (a) as described in Ashby and Johnson [10]; (b) resulting from the model (~t ¼ 20; 80; 140 and 800 after nucleation).

Fig. 6. Front view of the last snapshot in Fig. 5 (time ~t ¼ 800 after
nucleation). Black lines indicate the principal glide planes of the prismatic
loop (glide cylinder).
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so as not to influence the growth process. The subsequent
stages are in good agreement with the picture proposed
by Ashby and Johnson. First, the shear loop expands
and reaches a critical size at which cross-slip of the screw
segments can proceed. Finally, a complete interstitial loop
is formed and is punched out from the precipitate. The
loop remaining at the surface of the precipitate penetrates
a few grid spacings (� 20b) into the diffuse interface to bet-
ter relax the stress field. It must be stressed that screw dis-
locations can cross-slip easily in the present model: the
mechanism is simply controlled by the local shear stress
and is triggered when it reaches a threshold value, without
any modification of the configuration of the dislocation
core. This is different from the real processes in fcc crystals
where the dislocations are dissociated. Indeed, partials
have to be constricted to be able to cross-slip and to change
glide plane [39]. Thus, the mechanism proposed by Ashby
and Johnson is likely to be operative in systems displaying
only simple cross-slip processes. Nonetheless, accounting
for partials and complex cross-slip could be achieved in
the present modeling framework by replacing the simple
cosine potential by complex c-surface energies and adopt-
ing discretization grids displaying the fcc symmetry.

Our process exhibits a few differences with the process
proposed by Ashby and Johnson, as shown in Fig. 6 with
the front view (i.e. projection on ðx; zÞ) of the punched-
out loop. (i) Because of the diffuse interface, the region of
maximum shear stress where the first loop has nucleated
is not located exactly at z ¼ R=

ffiffiffi
2
p

as predicted by Eshelby’s
solution but ahead of the interface at z ¼ 0:825R (2 grid
spacings above). (ii) The prismatic loop exhibits blunted
corners unlike the parallelepipedic loop in the scheme of
Ashby and Johnson (Fig. 5). This difference can be attrib-
uted to the difference in the respective stress fields: whereas
only the stress field generated by the misfitting precipitate is
considered in Ref. [10], our calculations take into account
all the elastic interactions, i.e. between the dislocation
and the precipitate as well as between the different seg-
ments of the dislocation. Hence, when the shear loop
reaches its critical size, the screw segments experiencing
the complex and evolving stress field move by successive
elementary (i.e. one grid spacing d) cross-slip events in
alternating perpendicular directions. The resulting step-like
cross-slip, smoothed by the interpolations of the visualiza-
tion software in Fig. 6, explains the shape of the loop cor-
ners. (iii) As observed in Fig. 5, the prismatic loop is not
centered with respect to the spherical precipitate. This
results again from the perturbation of the stress field by
the dislocation which shifts the maximum shear stress in
planes at z � �0:5R > �0:825R.

Beyond the previous mechanism, more complex situa-
tions can be encountered which cannot be rationalized with
tractable analytical solutions. First, large precipitates can
induce multiple prismatic punching as shown in Fig. 7.
The calculation has been carried out considering a precip-
itate with R ¼ 320b and e0

ii ¼ 1:55%. As in the Ashby–John-
son mechanism, the loss of coherency starts with the
nucleation of a shear loop and its subsequent expansion.
Because the loop is large, the cross-slip of the screw seg-
ments gives rise to a complex process: the screw segments
roll up (Fig. 7b) to give small shear loops (Fig. 7c). These
secondary loops expand due to the stress generated by
the misfitting precipitate and merge to give a second
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Fig. 7. Double prismatic punching from a precipitate with radius
R ¼ 320b and with e0

ii ¼ 1:55%. Snapshots at times ~t ¼ 16, 40, 64, 104,
136, 160, 176, 200 after nucleation.
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“inner” shear loop (Fig. 7d). This “inner” loop reacts with
the primary loop that lies on the precipitate surface and
recombines with it (Fig. 7e). When the screw segments of
the inner shear loop start to cross-slip, the screw segments
Fig. 8. (a) Two prismatic loops linked together forming a short helix (R ¼ 36
(from Ref. [14]) where helices are indicated by arrows.
of the first loop have already reached the lower part of the
glide cylinder and start to join in a more complex way than
during the Ashby–Johnson mechanism (Fig. 7e). Indeed,
after their cross-slip, the screw segments of the “outer”

loop exhibit a roll-up mechanism similar to the one
described above and which, by splitting, leads to the forma-
tion of two small shear loops. Afterwards, these small
loops merge together and with the bottom part of the first
complementary loop (Fig. 7e and f). This leads to the for-
mation of a protruding dislocation component on the bot-
tom part of the first loop that finally merges with the inner
loop (Fig. 7f and g). This last mechanism leads to the for-
mation of the second punched-out prismatic loop (Fig. 7h).
It can be noticed that the glide cylinders of the loops are
not identical: complementary loops 1 and 3 are larger than
complementary loops 2 and 4 in Fig. 7h.

A second situation where loss of coherency is more com-
plex than the Ashby–Johnson scenario arises when the mis-
fit is large enough to promote the nucleation of many
dislocations at the precipitate interface. In that case, the
formation of short helices, i.e. two prismatic loops linked
together, is often observed as shown in Fig. 8a for a precip-
itate radius R ¼ 360b and e0

ii ¼ 2:5% (to make the picture
clearer only one helix is shown). This configuration is very
close to what is observed experimentally around hydrides
in Nb, as indicated by arrows in Fig. 8b [14]. This mecha-
nism differs from the processes leading to long helical dis-
locations that result from the absorption of vacancies by
a screw dislocation or the interaction between a sequence
of prismatic loops with a screw dislocation line [44,45].
The present calculations clearly show that in our case the
short helices are due to the asymmetry and complexity in
the nucleation process occurring at the interface and are
not occurring following the creation of the loops.

Most often, prismatic punching generates trains of loops
aligned along the glide cylinders, as shown in Fig. 8b. It can
be shown that the number N of loops depends on the size
and on the eigenstrain of the precipitate. Indeed, N can
0b and e0
ii ¼ 2:5%). (b) TEM micrograph of an hydride precipitate in Nb



Fig. 9. Number of punched-out dislocations vs. eigentrain for R ¼ 200b
(red dotted line). The estimate of Eq. (9) is shown by the black dashed line.
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be crudely estimated by assuming that the dislocations left
on the precipitate relax entirely the misfits in the directions
of emission [16]. For a spherical precipitate of radius R
with a dilatation eigenstrain e0 and emissions along three
orthogonal directions:

N ¼ 3� 2Re0

b
ð9Þ

Although this rough estimate does not take into account the
elastic interactions and neglects the threshold stress for
nucleation, it is often used to assess the size of the plastic
zone around misfitting inclusions and precipitates (e.g.
[46,47]). To check the trend predicted by Eq. (9), i.e. the lin-
ear increase of N with e0 (the linear increase with R is more
difficult to investigate due to limitations in computational
resources), we have carried out a series of calculations con-
sidering a precipitate with R ¼ 200b and with various eigen-
strains. A large simulation box 2560� 2560� 2560b3 has
been chosen such that the interactions with periodic images
are sufficiently small.

The number of loops emitted from the precipitate is
plotted as a function of e0 in Fig. 9 (red dotted line). N

increases linearly with the eigenstrain with a slope in agree-
ment with the simplified estimate. The difference between
both lines is due to nucleation: below a threshold eigen-
strain of 1:5%, no dislocation can nucleate for R ¼ 200b.
Moreover, above 35 loops, stresses from periodic images
become important and inhibit the nucleation of further dis-
locations: for large e0 (around 5%), N deviates from its lin-
ear dependence with the eigenstrain.

5. Discussion

The above results demonstrate that our model has great
potential for investigating many phenomena involving
phase transformations and dislocations. However, its cur-
rent implementation, which relies on a cubic grid and a
cosine for the periodic function, restricts its application
to the glide systems of a simple cubic lattice, and conse-
quently its generalization to fcc, bcc or hcp lattices is nec-
essary to capture more realistic phenomena. As briefly
mentioned above, this generalization requires: (i) identify-
ing the relevant strain components entering the periodic
potentials which must comply with the glide directions
and (ii) discretizing the partial differential Eqs. 4 on a grid
displaying the same planes as dislocation glide. The first
item is straightforward as it can easily be achieved by
expanding the relevant c-surface into a Fourier series.
The second item is slightly involved in terms of numerical
implementation because the grid structure has to conform
to the atomic lattice, at least for fcc, hcp and bcc. For
example, for fcc and hcp, triangular (2-D) or tetrahedral
(3-D) finite-difference grids must be used.

In this work, we have studied the influence of frozen
microstructures on the nucleation of dislocations and their
subsequent glide and cross-slip. However, dislocations are
also known to promote or inhibit interface movements,
either when the transformations are diffusion controlled
[3,48–50], or when they are displacive [51,52]. Indeed, as
shown above in a particular example, the stress fields gen-
erated by interface dislocations are significant and may
have a considerable impact on the transformation kinetics
as well as on the precipitate morphologies. Hence, the
straightforward coupling of the present model with a
phase-field approach for handling interface movements
would bring new insights into the mechanisms of phase
transformations at the solid state in crystalline materials.

In particular, it has been suggested [21,53] that interface
dislocations contribute significantly to the precipitation of
c-hydride. It is assumed that the phase change from the
hcp f-hydride to fcc c-hydride is performed through shear-
ing of the precipitate by partial Shockley dislocations.
Alongside this process, the hydrogen composition of the
precipitate increases and the precipitate grows [53]. This
complex phase change involving a diffusive phase transfor-
mation as well as dislocation nucleation and motion is
beyond the reach of the standard phase-field method
[54,55] but could be investigated with the present model
coupled with a phase-field approach.

At the time and temperature scales involved in diffusive
phase transformations, dislocation climb by vacancy diffu-
sion and absorption is activated and likely to play a signif-
icant role. In a recent contribution [56], we propose a
phase-field model for dislocation climb based on vacancy
absorption and emission. This model can be coupled to a
phase-field model for dislocation glide and then provide a
complete and coherent framework to treat interactions
between dislocation motion and precipitate evolution.

Finally, it can be stressed that besides improving the
current model, it is straightforward to use it for investigat-
ing void growth by prismatic punching, without resorting
to analytical solutions available only for prescribed and
oversimplified shapes as in Ref. [57], and at length scales
much larger than what can be achieved with atomic-scale
models as done in Ref. [58].
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6. Conclusion

We have developed a continuum model for dislocations
that inherently accounts for their nucleation, cross-slip and
interactions without introducing any ad hoc rules. Careful
examinations of its prediction in static and simple dynamic
situations have shown that it delivers the expected results:
(i) the nonlinearity of the elastic energy naturally gives rise
to a dislocation core and prevents the divergence encoun-
tered in the classical models for dislocations that rely on
linear elasticity; (ii) long-range elasticity is recovered a
few grid spacings from the dislocation core; and (iii) linear
motion laws are obtained above a threshold stress com-
mensurate with the Peierls stress, in accordance with the
viscous dynamics of dislocations.

We have used this model to investigate coherency loss
mechanisms of misfitting precipitates by punching of pris-
matic dislocation loops. We have confirmed that, in the
simplest situation where only one prismatic loop is emitted,
the coherency loss mechanism follows qualitatively the pro-
cess proposed by Ashby and Johnson [10]. Quantitative dif-
ferences have been observed with the original scheme which
can be attributed to the complex interactions between pris-
matic loops and precipitate. Beyond the elementary pro-
cess, we have been able to study more complex situations
involving several loops. In particular, it has been shown
that large loops emitted by large precipitates can evolve
into two prismatic loops via a complex process involving
recombinations of different segments. When many loops
nucleate at the interface, short helical loops appear in
agreement with experimental observations. Finally, we
have shown that trains of loops are well reproduced and
follow the expected trends.
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[19] Brown L, Woolhouse G, Valdrè U. Philos Mag 1968;17(148):781–9.
[20] Carpenter G. J Nucl Mater 1978;73:190–-197.
[21] Carpenter G. Acta Metall 1978;26(8):1225–35.
[22] Tan T, Tice W. Philos Mag 1976;34(4):37–41.
[23] Tsuru T, Shibutani Y. J Phys D Appl Phys 2007;40:2183–8.
[24] Quek S, Xiang Y, Srolovitz D. Acta Mater 2011;59(14):5398–410.
[25] Appolaire B, Aeby-Gautier E, Da Costa Teixeira J, Dehmas M, Denis

S. Philos Mag 2010;90(1–4):461–83.
[26] Peierls R. Proc Phys Soc 1940;52(1):34–7.
[27] Nabarro F. Proc Phys Soc 1947;59:256.
[28] Carpio A, Bonilla L. Phys Rev Lett 2003;90(13):135502.
[29] Carpio A, Bonilla L. Phys Rev B 2005;71(13):134105.
[30] Onuki A. Phys Rev E 2003;68(6):061502.
[31] Minami A, Onuki A. Phys Rev B 2005;72(10):100101.
[32] Wang Y, Jin Y, Cuitino A. Acta Mater 2001;49:1847–57.
[33] Rodney D, Le Bouar Y, Finel A. Acta Mater 2003;51:17–30.
[34] Finel A, Le Bouar Y, Gaubert A, Salman O. C R Phys 2010;11(3–4):

245–56.
[35] Salman O. Modeling of spatio-temporal dynamics and patterning

mechanisms of martensites by phase-field and Lagrangian methods.
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