
HAL Id: hal-02133698
https://hal.science/hal-02133698v1

Submitted on 19 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On aggregate and comparison functions for Motus/Lingo
playing

Nathalie Chetcuti-Sperandio, Fabien Delorme, Sylvain Lagrue

To cite this version:
Nathalie Chetcuti-Sperandio, Fabien Delorme, Sylvain Lagrue. On aggregate and comparison func-
tions for Motus/Lingo playing. International Computer Games Association Journal, 2018, 40 (3),
pp.258-268. �10.3233/ICG-180056�. �hal-02133698�

https://hal.science/hal-02133698v1
https://hal.archives-ouvertes.fr

On aggregate and comparison functions for
Motus/Lingo playing

Nathalie Chetcuti-Sperandio, Fabien Delorme, and Sylvain Lagrue

CRIL Univ. Artois & CNRS, F-62300 Lens, France,
chetcuti|delorme|lagrue@cril.fr,

Home pages: http://www.cril.univ-artois.fr/~chetcuti|delorme|lagrue

Abstract Motus (Lingo) is a TV show based on a word game where
each player has to guess a word, of which she knows only the length
and the first letter. To do this, the player makes different proposals and
she is given some hints based on the positions of the letters. We first
show in this article that there is no strategy to find all the words with
the available number of proposals. Next, we study different strategies
based on aggregate functions and tie-breaks. All these strategies were
tested on all the 5 to 10 letter French words, which finally leads us to
discuss the respective performance of these strategies. We show that the
criteria of average number of tries used, worst case and number of fails
are conflicting.

1 Introduction

Motus is a TV word guessing game show aired since 1990 in France. It is the
adaptation of the American TV game show Lingo, which was first broadcast in
1988. It combines phases of chance (close to bingo) and word searching phases,
in the spirit of Mastermind. If the latter was studied [3,5], there has been no
work on Motus to our knowledge. The major difference between both games is
that the words considered in Motus come from dictionaries and do not form a
homogeneous search space contrary to codes in Mastermind.

In this article, we focus on the last part of the game, where a player must
guess 10 words of which she knows only the length and the first letter, in a given
time. To do this, the player proposes various words and is notified of correctly-
placed and incorrectly-placed letters. For each word, the player is entitled to six
proposals at most. If she fails, a new word is proposed to her, until the time
expires or until she guesses ten words. So the goal of the player is to fail as
seldom as possible (otherwise all the time spent to look for the right answer
will have been spent for nothing), while using as few proposals as possible (the
allotted time is too short for the player to guess all the words using the granted
six proposals each time).

This article presents various original experimental results. We first show that
there is no strategy to find all the words with the granted number of proposals.
Then, we study different strategies based on aggregate and tie-break functions.

These strategies were tested on all 5 to 10 letter words of the official French
Scrabble dictionary (version 5), which finally enables us to discuss the respective
performance of these strategies using a sizable number of words. In particular we
show that the criteria of average number of tries used, worst case and number
of fails are conflicting.

This article connects game resolution with techniques that are well known to
the community. The problem considered here is a problem of decision making
with incomplete information. The proposed solutions are based on well-known
aggregate and comparison methods which are used, for example, for merging
uncertain information.

2 Rules of the game and working assumptions

2.1 Rules of the game

We introduce here the rules of the game on which we rely in the remainder of
this article. We focus on a two-player game with incomplete information. The
first player (the “environment”) does only one action: choosing one word among
a set of authorized words. As regards the French TV game show, all the words
from French reference dictionaries (Larousse and Robert) are authorized, except
proper nouns, compound words and conjugated verbs (only present infinitive
and past and present participles are accepted).

Once a word is selected, the number of letters as well as the first letter are
given to the second player (the “contestant”), simply called “the player” in what
follows. This one has a limited number of tries to guess the word (5 for 5-letter
words, 6 for 6 to 10-letter words). For a proposal to be valid, it must be part of
the reference dictionary, start with the first letter of the word to guess and have
the correct number of letters in length.

After each proposal, the player is shown the correctly-placed letters (i.e.
letters that are part of the word to guess and located in the same place in this
word) and incorrectly-placed letters (i.e. letters that are part of the word to
guess but located elsewhere in the word). If the player guesses the right word
within the given number of tries, she wins, otherwise she loses.

Example 1 The word to guess is the word “logique”. The player is informed
that she must guess a seven-letter word beginning with an L. She proposes the
word “légales” first:

L E G A L E S

Both words contain an L in the first position and a G in the third position:
these letters are correctly placed. Moreover, both words contain the letter E, but
at different locations (in the second and the sixth positions in the word “légales”,
in the seventh position in the word “logique”): the letter E is incorrectly placed.
As the word to guess contains only one occurrence of this letter and the word

provided by the player contains two, it is considered, by convention, that only the
first occurrence of the letter E is incorrectly placed. The other letters (A, L and
S as well as the second occurrence of the letter E) are considered to be missing
from the word to guess.

Then the player proposes the word “livides”:

L I V I D E S

The letters in the first and the fourth positions are correctly placed, the letter
E in the sixth position is incorrectly placed and the the other letters are missing.
It should be noted that the letter I in the second position, although present in
the word to guess at another place, is not part of the incorrectly-placed letters
since another occurrence of the letter has already been indicated as being correctly
placed.

The player is now able to guess the word: “logique”:

L O G I Q U E

From these basic rules, many variations can be applied. In particular the
player can be encouraged to guess the word in a minimum of tries, whether by
granting her more points if she answers in a minimum of tries, or by giving her
a list of words to guess in a limited time.

2.2 Working assumptions

Given the availability of the different dictionaries, the set of valid words is built
from the“official Scrabble dictionary”, which has a much greater number of words
than permitted by the original rules. Indeed it includes conjugated verbs, as well
as some rare or obsolete words that are not part of the usual dictionaries.

We also consider that the words of this reference dictionary have the same
probability of occurrence. This last assumption is not true in the TV game show
where only words likely to be known by the players are selected. An algorithm
could take advantage of this specificity, assuming that the words most present
in a corpus of reference texts are more likely to be selected by the environment,
but such an assumption is beyond the scope of this article.

3 Game modelling

We present in this part a modelling of the problem and an alternative game,
“Evil Motus”, which leads to an interesting result from the point of view of game
theory. In this context, an evil genius can change the word after each proposal
of the player.

First of all, we start with a more formal modelling of the game.

3.1 Definitions

Let D be the set of valid words. A word w ∈ D is seen as a vector of letters
where wi represents the ith component of w.

Dn
l represents the set of valid n-letter words beginning with the letter l.

BP (w,w′) = {i : wi = w′
i} represents the set of the indices of the correctly-

placed letters.
MP (w,w′) = {i /∈ BP (w,w′) : ∃j 6= i : wi = w′

j , j /∈ BP (w,w′) and
j has not been used yet} represents the set of the indices of the incorrectly-placed
letters in w compared to w′. Since several solutions are possible for MP (w,w′),
we consider only the minimal element from a lexicographical point of view. That
is, if the same letter is used only once in the word to guess but appears several
times in the proposal, we will consider only the lowest index (index of the first
occurrence of the letter in the proposal).

Example 2 Consider the following dictionary:
D7

L = {LEGALES,LIGNIEZ,LIGNINE, LIGNITE,LIGUIEZ,
LIV IDES, LOGIONS,LOGIQUE}.

Then BP (LEGALES,LOGIQUE) = {1, 3} and
MP (LEGALES,LOGIQUE) = {2}.

One can notice that BP is symmetric while MP is not.
Indeed, MP (LOGIQUE,LEGALES) = {7}

In order to compute the player’s reasoning, we model her knowledge as fol-
lows: the player gave a set of proposals S and for each w element of S, she
knows BPS(w) the set of the indices of the correctly-placed letters in w and
MPS(w) the set of the indices of the incorrectly-placed letters in w. Then the
subset of Dn

l of possible words (words likely to be the word to guess) is defined
as Poss(Dn

l , S,BP
S ,MPS) = {w ∈ Dn

l : ∀w′ ∈ S,BPS(w′) = BP (w,w′) and
MPS(w′) = MP (w,w′)}, i.e. the set of words matching all the words proposed
by the player in terms of correctly and incorrectly-placed letters.

3.2 Evil Motus

From a game theory point of view,“Evil Motus” is a two-player asymmetric game
with incomplete information. The rules are as follows: after “Evil Motus” chooses
a first word, the player makes a proposal.“Evil Motus”has the right to change the
word to guess, as long as the newly selected word has the same correctly-placed
and incorrectly-placed letters for all the previous proposals: the information pre-
viously given is never changed and remains valid. Then the player is shown the
correctly-placed and the incorrectly-placed letters for her last proposal.

Example 3 Evil Motus chooses the word “logique”. Thus it indicates to the
player that she has to find a 7-letter word beginning with the letter L. The player
proposes the word “légales”. Evil Motus then indicates that the first and third
letters are correctly placed, while the first E is incorrectly placed:

L E G A L E S

Then the player proposes the word “livides”. If it keeps the same word, Evil
Motus will have to indicate that the L and the second I are correctly placed, while
the E is incorrectly placed:

L I V I D E S

The only possible word would then be the word “logique” and, if the player is
insightful, she will find it at the next try. Evil Motus therefore chooses to change
the word to guess, and chooses the word “lignine”. Then it indicates that, in the
proposal made by the player (the word “livides”) the first two letters are correctly
placed, while the second I and the E are incorrectly placed:

L I V I D E S

There remain two possible words (namely “lignine” and “lignite”). Then the
player proposes the word “lignine”. If it keeps the same word, Evil Motus lost. So
it chooses the word “lignite” and indicates that all the letters are correctly placed,
except the penultimate one (the letter N) which is not present in the word:

L I G N I N E

The player will certainly guess the word at the next try, but no other word
would have delayed her victory. It took the player four tries to guess the word.

Using a Minimax-type algorithm [8] for each initial letter and each length
of words, one can determine the minimal number of words a player will have to
propose to be sure to guess the word. We call this value the EMI (Evil Motus
Index). If an EMI is greater than the number of tries available to the player
to guess the word, it is possible to assert that no strategy ensures to guess all
the words systematically. On the contrary, if the EMI is lower than the number
of tries granted to the player, it means that there is at least one strategy for
guessing all the words, given an initial letter and a length.

Table 1 gathers all the EMI found for all 5 to 10 letter words. For each cell of
the table, it took between 1s and 3 days of calculations (program in Go language
on Intel i7 3.1GHz, 16GB of RAM), the average duration being about 1 hour.

Some values deserve to be highlighted. For example the column of the letter X
gives an EMI of 2 for a length of 7 letters or more. This ensures the player to
guess the word at the next proposal after choosing a first “good” word. Some of
these good words are the following ones (there may be others):

7 letters: XIMENIA
8 letters: XANTHIES
9 letters: XANTINES
10 letters: XENELASIES

Table 1. Evil Motus Index (lines correspond to the length of the words and columns
to the initial letter)

A B C D F G H I J K L M N O P Q R S T U V W X Y Z

5 5 5 7 5 4 5 4 4 4 4 5 5 5 4 5 3 6 5 5 3 5 3 3 3 4
6 5 5 5 5 4 4 4 4 4 4 4 5 4 4 4 4 5 4 4 3 4 3 3 3 3

7 5 5 4 5 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 3 4 3 2 3 3

8 4 4 4 4 4 4 4 4 3 3 4 4 3 4 4 3 4 4 4 3 4 3 2 3 3

9 4 4 4 4 4 4 3 4 3 3 4 4 3 3 4 3 4 4 4 3 4 3 2 3 3

10 4 4 4 4 4 4 3 4 3 3 4 4 3 3 4 3 4 4 4 3 3 3 2 3 3

A second series of results can be put forward. These are related to 5-letter
words beginning with C or R. Indeed, these have an EMI greater than 5, which
is the maximum number of proposals in the rules for 5-letter words. As said
previously, the EMI represents the worst case for any strategy. In other words:

Proposition 1. There is no strategy to find all the 5-letter words with the num-
ber of tries allowed in the initial rules.

4 Decision procedures

The Minimax algorithm, mentioned in the previous section, guarantees to find
as many words as possible. It does not take into account the number of proposals
needed and takes an utterly pessimistic view. Nevertheless, as mentioned in the
introduction, in some variations of the game, it is better to guess the word in as
few attempts as possible. For example, the player can be given a limited time to
guess a predefined number of words. It is then not possible to use all the tries
to guess each one of the words, but it is possible to fail on certain words, even if
it means having to guess the following ones more quickly.

In this section, we look at other approaches in order to limit as much as
possible the average number of tries used per word, without necessarily trying to
guess as many words as possible. For that purpose, we consider Comp(Dn

l , w, S)
the set of words of Dn

l compatible with the set of proposals S when the word to
guess is w (that is, all the words with the same correctly-placed and incorrectly-
placed letters as the set of proposals S)1. Thus this is a game with complete
information.

Given a set of proposals S, BPS and MPS the indices of the correctly-placed
and incorrectly-placed letters, we associate with each word w ∈ Dn

l \S, a vector
of the sizes of the spaces of the possible words ν(w) = 〈α1, α2, ..., αm〉 such that
if Poss(Dn

l , S,BP
S ,MPS) = {w1, w2, ..., wi, ..., wm}:

αi = |Comp(Dn
l , wi, S ∪ {w})|

1 Note that Comp(Dn
l , w, S) = Poss(Dn

l , S,BPS ,MPS) but the inputs are different
as they depend on the available information.

i.e. for each word w which is valid and has not been proposed yet and for each
possible word w′, we calculate the number of compatible words when w is pro-
posed next and w′ is the actual word to guess.

This amounts to calculating the size of the solution space for each valid word
that can still be chosen.

Example 4 Consider the following dictionary:
D7

L = {LEGALES,LIGNIEZ,LIGNINE, LIGNITE,LIGUIEZ,
LIV IDES, LOGIONS,LOGIQUE}.

The player proposes “légales” first:

L E G A L E S

Then the player proposes the word “livides”:

L I V I D E S

In this case, only the words “lignine” and “lignite” are possible (i.e. could be
the word to guess) and the valid words not proposed yet are: “ligniez”, “lignine”,
“lignite”, “liguiez”, “logions” and “logique”. The following table presents, for each
valid word not proposed yet (in the first column), the number of compatible words
if it is proposed next, depending on the possible words (on the first line).

Table 2.

LIGNINE LIGNITE

LIGNIEZ 2 2

LIGNINE 1 1
LIGNITE 1 1
LIGUIEZ 2 2

LOGIONS 1 1

LOGIQUE 2 2

For example, the player considers proposing the word “ligniez” next2. If the
word to guess is “lignine”, the environment will indicate that the first five letters
are correctly placed, that the letter E is incorrectly placed and the letter Z absent.
Then there will still remain two possible words. In the same way, if the word to
guess is “lignite”, there will also remain two possible words.

Now if the player considers proposing the word “logions” next then there will
remain only one possible word: the word to guess.

In a decision-making point of view, given a dictionary Dn
l and a set of pro-

posals S, the set of the “best” words to choose is the set of preferred words for
a total preorder E such that :

C = {w ∈ Dn
l \ S : ∀ω′ ∈ Dn

l \ S,w E w′}
2 The player can propose a word if she thinks it can provide useful information even

if she knows for sure that this word cannot be the one to guess.

When this set is not reduced to a singleton, we consider as tie-break by
default the alphabetical order.

4.1 The different aggregate and comparison functions used

Table 3.

LIGNIEZ LIGNINE LIGNITE LIGUIEZ LOGIQUE Sum Max Gini Entropy
LIGNIEZ 1 2 2 1 1 7 2 0.17 2.24
LIGNINE 1 1 1 1 1 5 1 0.00 2.32
LIGNITE 1 1 1 1 1 5 1 0.00 2.32
LIGUIEZ 1 2 2 1 1 7 2 0.17 2.24
LIVIDES 2 2 2 2 1 9 2 0.09 2.28
LOGIONS 2 2 2 1 1 8 2 0.15 2.25
LOGIQUE 1 2 2 1 1 7 2 0.17 2.24

Consider table 3, built after the first proposal of the player (see Example 4).
Once the table is built, it remains to determine which aggregate function to use
for each valid word. The various aggregate functions which we implemented are
the following ones.

Sum The Sum function selects a word whose sum of possible words is the lowest.
In the case above, the words are associated with values from 5 to 9. The words
“lignine” and “lignite” are the ones associated with the value 5. One of these
words will thus be chosen.

Max The Max function selects a word whose maximal value is the lowest. In the
example above, the words“ligniez”,“liguiez”,“livides”,“logions”and“logique”are
associated with the value 2, while the words “lignine” and “lignite” are associated
with the value 1. One of these latter words will thus be chosen.

Gmax The Gmax function [6,4] selects the word whose maximal number of
possible words is the lowest. In case of a tie, it selects the word whose maxi-
mal number of possible words, after removing one occurrence of the maximal
number of possible words, is the lowest, and so on, until only one word has the
lowest maximal number of possible words or until the minimal and the maximal
numbers of possible words are equal.

Gini The function, based on the Gini index [2], an index used in economics in
the context of the distribution of wealth, selects the word for which the number
of possible words has the lowest Gini index, that is to say, whose distribution is
the most “egalitarian”. Let v = 〈α1, . . . , αn〉 and σ be a permutation such that
σ(v) = 〈α′

1, . . . , α
′
n〉 where ∀i, j ∈ {1, . . . , n}, i ≤ j ⇐⇒ α′

i ≤ α′
j (i.e. σ(v) is

the vector of the values of v, sorted in ascending order). The Gini index of v is
defined as

G(v) =
2
∑n

i=1 iα
′
i

n
∑n

i=1 α
′
i
− n+ 1

n

Entropy The Entropy function selects the word whose entropy [7] is the lowest.
Let v = 〈α1, . . . , αn〉 and v′〈α′

1, . . . , α
′
n〉 its normalized counterpart (i.e. α′

i =
αi/

∑n
i=1 αi), the entropy of v is defined as

H(v) = −
n∑

i=1

α′
i log (α′

i)

Bobo The Bobo function is a control method which alphabetically orders the
words and chooses the first possible word from the list. This is the first method
we implemented in a Nao robot [1].

4.2 Possible Gmax

This function is a variant of Gmax where, instead of considering the set of valid
words, we consider only the set of possible words. This variant gave good results
only within the framework of Gmax.

4.3 Tie breaks

For each of the methods presented above, ties may occur. In this case, each of
the algorithms chooses a possible word rather than a valid word that is not part
of the possible words. If the tie is still not broken, by convention the first word
in alphabetical order is chosen.

Thus, in Example 4, and for the aggregate function Sum, the words “lignine”,
“lignite” and “logions” are tied. The last word does not belong to the set of the
possible words, consequently it is discarded. It is therefore the word “lignine”,
preceding “lignite” in the alphabetical order, which is selected.

SumGini The function SumGini behaves like the function Sum but, in case of
tie break, it selects the word with the lowest Gini index.

5 Experiments

These methods were tested on the set of 5 to 10 letter words of the official
Scrabble dictionary in the French version, in accordance with the standard rules
described in Section 2. This corresponds to 212 017 words tested on the 9 meth-
ods in a cumulative time of more than 52 hours of calculation. For each word, we
noted the number of attempts needed, including failures, i.e. when the granted
number of tries was exceeded.

We then noticed there was a strong correlation between the length of a word
and the number of tries needed to guess it. Some 5-letter words were impossible
to guess, whereas all the 10-letter words were found by most of the implemented
methods. We could also observe that, even if the Minimax algorithm guessed
more words (except for the 5-letter words beginning with C or R) than the other
methods, it also needed more attempts on average to guess a word. The results
of the experiments are presented in Table 4. Averages are calculated including
failures. The values concerning Minimax are given for information purposes,
some values being missing (timeouts).

Table 4. Summary table

Method Average Fails Worst case

Sum Gini 2,8145 53 8
Possible Gmax 2,8779 560 13
Sum 2,9834 81 8
Gmax 3,0117 75 7
Max 3,0482 76 7
Bobo 3,2852 1730 11
Gini 3,5434 2069 9
Entropy 3,7225 6596 10

Minimax 3,3952 ? 7

If the average number of tries is considered as the key criterion, SumGini
(the sum with the Gini index as tie-break) is the most effective before Possible
GMax (cf. Figure 1). The method based on the Gini index gives results below
the average. The Gini index makes it possible to highlight differences in terms of
distribution, but it does not take into account the scale of this difference. Thus,
the distribution 1, 1, 1, 1, 10 will have the same index as the distribution 1, 1, 1,
1, 100. Nevertheless, the Gini index seems to be a good metrics to decide between
tied words within another method. For example, the “SumGini” method, which
applies the “Sum” method and, in the event of a tie, selects the word with the
lowest Gini index, achieved good results.

On the other hand, if the main criterion is the longest sequence before guess-
ing the word (worst case), Gmax, Max and Minimax are better (cf. Figure 2).
Entropy-based methods perform poorly, regardless of the criteria.

Finally, note that if the 5-letter words starting with C or R are removed,
Minimax guesses all the possible words. But it was not possible to determine
the number of words that can not be guessed in these subsets of words, since
the calculation times turned out to be prohibitive. A new implementation of the
algorithm as well as additional experiments are needed to know the total number
of words that this method can guess.

Figure 1. Average number of tries used

6 Conclusion

In this article, we presented a set of methods to play Motus effectively. We first
demonstrated that for some common dictionaries it is not always possible to
define a winning strategy. We also showed that even if the Minimax algorithm
can guess most of the words, it requires using more tries on average than other
methods. Thus the algorithm to use depends on the adopted rules. If the main
criterion is to guess as many words as possible, regardless of the number of tries
needed (as is the case, for example, in the first round of the television show),
the Minimax algorithm must be favored with the exception, maybe, of 5-letter
words beginning with the letters C or R. If, on the contrary, one tries to reduce
as much as possible the average number of attempts to guess a word, even if it
means failing from time to time, other methods are preferable.

The algorithms we developed are used as a demo for the general public3. Peo-
ple are invited to propose a list of words that, according to them, our algorithm
will not be able to guess in a limited time. For example, the public proposes a
list of 10 words, which the software has to guess within 3 minutes. If the software
guesses all the words within the granted time, it wins the game. If it fails to guess
a word or exceeds the allotted time, the audience wins. We impose here the two
constraints mentioned above: it is both necessary to find all the words and to
limit as much as possible the average number of tries used. For the software to
maximize its chances of winning, it must therefore find a compromise. Finally an
online version of the demo can be found here: http://lagrue.ninja/motus/.

It would be interesting to test the different algorithms on other dictionaries, in
French but also in other languages. We also plan to weight the different possible
words according to their probability of occurrence in the French language, rather

3 https://youtu.be/s-1ySiJR0ew

http://lagrue.ninja/motus/
https://youtu.be/s-1ySiJR0ew

Figure 2. Worst tries

than to consider that they are equiprobable, then to observe the consequences
of these choices on the results.

7 Acknowledgments

The authors would like to thank Francois Bonnet for his insightful comments
and for presenting the original version of this paper at CG 2008.

References

1. Cardon, S., Delorme, F., Lagrue, S.: Nao joue à motus. In: actes du 18ème con-
grès francophone sur la Reconnaissance des Formes et l’Intelligence Artificielle
(RFIA’12). p. 978 (2012), (Demo session)

2. Gini, C.: Measurement of inequality of income. Economic Journal 21, 22–43 (1921)
3. Knuth, D.E.: The computer as master mind. Journal of Recreational Mathematics

9(1), 1–6 (1976)
4. Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical

framework. Journal of Logic and Computation 12(5), 773–808 (2002)
5. Kooi, B.: Yet another mastermind strategy. International Computer Games Associ-

ation Journal 28(1), 13–20 (2005)
6. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press

(1988)
7. Shannon, C.E.: A mathematical theory of communication. The Bell System Tech-

nical Journal 27, 379–423 (1948)
8. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.

Prince-ton University Press (1947)

	On aggregate and comparison functions for Motus/Lingo playing

