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Vector alignment with unitary matrices

Definition 1.1. The left polar decomposition of a square matrix M ∈ M n (C) is a matrix decomposition of the form M = PU where UU † = I n and P is a positivesemidefinite Hermitian matrix, verifying P † = P and ∀z ∈ C, z † Pz ∈ R + . Definition 1.2. The right polar decomposition of a square matrix M ∈ M n (C) is of the form M = UP where U is the same as before and P is also Hermitian and positive-semidefinite.

The existence of the left and right polar decompositions and their relations directly come from the definition of the singular value decomposition [START_REF] Gene | Matrix computations[END_REF].

A simple and direct application of the polar decomposition is to find a matrix U such that y = Ux. Theorem 1.3. Let M = PU be the polar decomposition of the matrix M = yx † . Then, y = Ux.

Proof. We have yx † = PU, hence P = yx † U † = Uxy † , by unitarity of U and Hermiticity of P. Thus,

Py = Ux = (x † U † y)y, with x † U † y = y † Py ∈ R + . 1 = x † U † Ux = (x † U † y) 2 . It follows that x † U † y = 1 and y = Ux.

Construction of a symmetric unitary matrix

Given two non-null vectors x and y in C 2 such that x † x = y † y = 1, we want to find a symmetric unitary matrix U satisfying y = Ux.

Lemma 2.1. For x ∈ C 2 non null, if y = Ux = U x then U = U .
Proof. Let u ij , i, j ∈ {1, 2}, be the matrix elements of U, and x i the coordinates of the vector x.

U -U x = 0 =⇒ (u 12 -u 21 )x 1 = (u 21 -u 12 )x 2 = 0. x non null, hence u 12 = u 21 and U = U . Theorem 2.2. Let M = PU be the polar decomposition of the matrix M = 1 2 yx † + x * y ∈ M 2 (C). Then, y = Ux = U x and U = U . Proof. M = 1 2 yx † + x * y = PU with P Hermitian, thus P = MU † = UM † . This gives P = 1 2 yx † U † + x * y U † = 1 2 Uyx † + Ux * y .
We denote c = x y = y x ∈ C, and get the following equations:

PUx = 1 2 (y + cx * ) (1) 
Py = 1 2 (Ux + cUy * ) (2) 
PUy * = 1 2 (x * + c * y) (3) 
Px * = 1 2 (Uy * + c * Ux) . (4) 
By combining equations ( 1) to (4), we get another set of equations:

P(Ux -cUy * ) = 1 2 1 -|c| 2 y (5) P(Uy * -c * Ux) = 1 2 1 -|c| 2 x * (6) 
P(y -cx * ) = 1 2 1 -|c| 2 Ux (7) P(x * -c * y) = 1 2 1 -|c| 2 Uy * . ( 8 
)
We then need to split the demonstration into three cases:

• |c| 2 = 1
This implies that y = cx * , and also y * = c * x. Equations (1) to (4) give the relations PUx = y, Py = Ux, PUy * = x * and Px * = Uy * . It comes that

y † Ux = y † Py ∈ R + and x Uy * = x Px * ∈ R + . y -Ux 2 = y † -x † U † (y -Ux) = 2 1 -y † Ux ≥ 0, hence y † Ux ≤ 1. Also, y † -x † U † P (y -Ux) = y † -x † U † (Ux -y) = 2 y † Ux -1 ≥ 0, hence y † Ux ≥ 1.
This implies that y † Ux = 1 and y = Ux. Similarly, by symmetry of the previous relations when x * plays the role of y and y * the role of x, we get x * = Uy * . This leads to x = U * y and then y = U x. Then, by application of the Lemma 2.1 in dimension 2 we get U = U .

• |c| 2 = 0

Equations ( 1) to (4) give the same relations as before, up to a factor 1/2, thus leading to the same results.

• 0 < |c| 2 < 1 Since U is invertible, we have rank(P) = rank(M) ≤ 2. Since |c| 2 < 1, y and x * are linearly independent, and both belong to P image from equations ( 5) and ( 6). We thus have rank(P) = 2. Then, both Ux and Uy * , also belonging to P image from equations ( 7) and (8), can be written as linear combinations of the vectors y and x * forming a basis of P image. Equation (1) implies that

x † U † y + cx † U † x * ∈ R + , so y † Ux + c * x Ux ∈ R + . Equation (7) implies that y † Ux -c * x Ux ∈ R + . By denoting α = y † Ux, β = c *
x Ux, and combining these two results we conclude that α, β ∈ R + . Then, we must have

Ux = αy + α - β |c| 2 y -c
x * |c| 2 . Moreover, computing Ux 2 in two different ways we get

1 = x † U † Ux = α 2 + α - β |c| 2 2 = α 2 + α - β |c| 2 2 y -c x * |c| 2 2 , with y -c x * |c| 2 2 = 1 -|c| 2 |c| 2 .
The only solution is α = 1 and β = |c| 2 , leading to y = Ux. As before, the relation y = U x is obtained by interverting the roles of y with x * and x with y * (and c becomes c * ). Again, by application of the Lemma 2.1 in dimension 2 we get U = U .

Remark 2.3. The main sketch of this proof remains valid in the n-dimensional case with n > 2, except for the very last conclusion on the symmetry of U which can not be achieved that way.

3 Construction of a special unitary matrix Theorem 3.1. Let x = (x 1 , x 2 ) and y = (y 1 , y 2 ) ∈ C 2 verifying x † x = y † y = 1. Then, the matrix 

U = x * 1 y 1 + x 2 y * 2 x * 2 y 1 -x 1 y * 2 x * 1 y 2 -x 2 y * 1 x 1 y * 1 + x *

2 y 2

 2 belongs to SU(2) and y = Ux.Proof. Knowing that x * 1 x 1 + x * 2 x 2 = y * 1 y 1 + y * 2 y 2 = 1, we easily verify that • det U = 1 • U † U = UU † = 1 : note that U has the form α β -β * α * • y = Ux.