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2 Aix-Marseille Université, CNRS, ENSAM, LIS, UMR 7020, 13397 Marseille, France

3 HCMC University of Technology and Education, Faculty of IT, HCM City, Vietnam

ABSTRACT

An efficient framework for dynamic texture (DT) representa-
tion is proposed by exploiting local features based on Local
Binary Patterns (LBP) from filtered images. First, Gaussian
smoothing filter is used to deal with near uniform regions and
noise which are typical restrictions of LBP operator. Second,
the receptive field of Difference of Gaussians (DoG), which is
exploited in DT description for the first time, allows to make
the descriptor more robust against the changes of environ-
ment, illumination, and scale which are main challenges in
DT representation. Experimental results of DT recognition
on different benchmark datasets (i.e., UCLA, DynTex, and
DynTex++), which give outstanding performance compared
to the state of the art, verify the interest of our proposal.

Index Terms— Dynamic Texture, Dynamic Texture
Recognition, DoG, Gaussian Filter, LBP, CLBP.

1. INTRODUCTION

A dynamic texture is a repetition of its features in a spatio-
temporal domain, such as fountain, fire, clouds, blowing
flag, trees, waves, etc. Efficiently describing DTs is one of
the crucial factors in computer vision applications. Many
efforts, which have addressed different techniques for DT
representation, can be mainly grouped into six categories as
follows. Firstly, optical-flow-based methods [16, 14] effec-
tively capture the characteristics of chaotic motions in natural
ways for DT recognition. Secondly, model-based meth-
ods [25, 30] are mostly based on Linear Dynamical System
[25] to model spatial-temporal features. Thirdly, filter-based
methods [3, 24] have taken various filters into account deal-
ing with the problems of noise and illumination in encoding
videos. Fourthly, geometry-based methods [31, 32, 21] are
focused on fractal analysis of dynamic properties for DT de-
scription. Fifthly, learning-based methods are in two main
trends: deep learning techniques (e. g., Convolutional Neural
Network (CNN)) are primarily utilized for learning features
[18, 1, 2] while the kernel sparse coding is taken into account
in dictionary-learning-based approaches [19, 20]. Lastly,
local-feature-based methods [12, 26, 27, 29, 28, 13] take ad-
vantages of LBP operator in simple and efficient computation

for DT representation. Most of them are based on two fol-
lowing variants: Volume LBP (VLBP) [33] and LBP on three
orthogonal planes (LBP-TOP) [33].

In spite of obtaining the promising rates on DT recog-
nition tasks, several restrictions in local-feature-based meth-
ods have been addressed in following works: illumination
and noise problems [3, 11] in filter-based methods; near uni-
form regions, sensitivity to noise [27, 12]; and large dimen-
sional puzzles [33, 23, 26]. To mitigate these shortcomings,
we propose in this paper an efficient framework to encode a
DT video in two main stages. First, Gaussian-based kernels
(Gaussian and DoG) are applied on each orthogonal plane of
the video sequence to capture their smooth and invariant fea-
tures against illumination and noise problems. Second, a local
feature extractor (e.g., CLBP [7]) is exploited to encode the
relationships of local patterns in these filtered images. Finally,
a prominent descriptor is formed by concatenating and nor-
malizing the obtained probability distributions. Evaluations
of the proposed framework on different benchmark datasets
in DT classification task validate that our method significantly
outperforms in comparison with the state-of-the-art results.

2. PROPOSED METHOD

The typical local-feature-based methods are often limited by
the problems of sensitivity to illumination and noise. To deal
with those, hereafter, we firstly take a look of LBP and its
variants as well as Gaussian-based filtering kernels. We then
propose a robust descriptor based on smooth-invariant Gaus-
sian features to enhance discrimination power. It should be
noted that DoG is involved in DT encoding for the first time.

2.1. A brief review of LBP and CLBP

Ojala et al. [15] introduced a LBP as a string of binary val-
ues to depict the local relationships of textural features in an
image. Let I denote a 2D gray-scale image. A LBP code of
a center pixel qc is formed by considering the difference of
qc’s gray-level and its local neighbors’ as follows.

LBPP,R(qc) =

P−1∑
i=0

f
(
I(pi)− I(qc)

)
2i (1)



in which {pi}P−1i=0 means P local neighbors of qc that are
sampled by a circle of radius R, I(.) returns the gray-scale
value of a pixel, and function f(.) is defined as

f(x) =

{
1, x ≥ 0

0, otherwise.
(2)

The LBP code has thus large dimension of 2P bins. In
practice, different mappings are used to reduce the curse of
dimensionality: u2 for capturing uniform patterns, riu2 for
addressing rotation invariant uniform patterns, Local Binary
Count [35] - an alternative of uniform features, TAPA map-
ping [10] for taking into account topological information.

Guo et al. [7] introduced two more complementary parts
so that they can be integrated together with LBP to form
CLBP model as follows: CLBP S that is identical to LBP,
CLBP M that exploits local variations of magnitudes, and
CLBP C that addresses the gray-value difference of a center
pixel against the average level of the entire image. In prac-
tice, the joint of these components (i.e., CLBP S/M/C) is
utilized because of its effectiveness in performance.

2.2. Smooth-Invariant Gaussian features

A Gaussian filter is a convolution filter whose convoluted re-
sults comply with the rule of the Gaussian distribution. Its 2D
kernel is defined as follows.

Gσ(x, y) =
1

2πσ2
exp
(
− x2 + y2

2σ2

)
(3)

where σ is a standard derivation, and x, y ∈ [−3σ, 3σ] are
settings for our implementation. Accordingly, a kernel of the
difference of Gaussian filters is defined as

DoGσ1,σ2
(x, y) = Gσ1

(x, y)−Gσ2
(x, y) (4)

Two above kernels are used to produce corresponding
smooth (IG) and invariant (IDoG) filtered images as follows.{

IG = Gσ1
(x, y) ∗ I

IDoG = |DoGσ1,σ2
(x, y)| ∗ I

(5)

where I denotes a 2D image texture, σ1 < σ2 , “*” is the con-
volution operator. Figure 1 shows an instance of this filtering.

(a) (b) (c) (d)

Fig. 1. A sample of Gaussian filtering. (a): an input gray-
scale image; (b), (c): smoothed images of σ1 = 0.5, σ2 = 4
respectively; (d): the difference of Gaussians of (b) and (c).
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Fig. 2. Our proposed framework of encoding a video V .

2.3. Proposed DT descriptor

Given a video V . For DT representation, we analysis and
compute its features in three stages (see Figure 2 for graphical
illustration). First, V is split into separative images accord-
ing to its three orthogonal planes {XY,XT, Y T}. Second,
the Gaussian filtering kernels are taken into account on these
planes to extract smooth and invariant images against noise
and illumination. Finally, a local encoding function is used
for each of them to capture spatio-temporal patterns of DTs.
The obtained probability distributions are concatenated and
normalized to construct a robust descriptor with features of
smooth-invariant Gaussians FoSIG(V) as follows.

FoSIG(V) =
[
ψ(IG,XY ), ψ(IDoG,XY )
ψ(IG,XT ), ψ(IDoG,XT )
ψ(IG,Y T ), ψ(IDoG,Y T )

] (6)

where ψ(.) denotes a local encoding operator (e.g., LBP,
CLBP, ...) for capturing local features in an image.

2.4. Advantages of our descriptor

FoSIG improves the performance based on several properties:
• Robust to illumination and environment changes: It

is well-known that DoG filtered images are invariant
against illumination changes. Moreover, by consider-
ing the difference between two Gaussians of different
scales, they are robust against scale changes. This
makes our encoding more robust against following
main challenges of DT representation: illumination,
scale, and environment changes.
• Robust to noise: Local DT features captured on IG and
IDoG are more insensitive to noise in comparison to
that in the original image. It should be noted that Gaus-
sian filtering has been introduced together with LBP for



2D texture representation [9]. However, contrariwise to
[9], the Gaussian filtering is directly calculated on the
entire image in our encoding instead of on neighbor-
hoods at various local scale areas of a pixel.

• Forceful discrimination: Mentioned as an approxima-
tion of Laplacian of Gaussian (LoG), DoG produces
beneficial invariant features for recognition. It is along
with the Gaussian smooth filtering to form two critical
complemented components in order to significantly en-
hance the discriminant power (see Table 2).

• Low computational cost: It only takes less than 0.92s
to structure a video of 48 × 48 × 75 dimension with a
raw MATLAB code of our algorithm which is run on a
Linux laptop of CPU Intel Core i7 1.9 Ghz, 4G RAM.

3. EXPERIMENTS

In this section, we verify our proposed method for recognition
issue on various benchmark DT datasets. The obtained results
are evaluated in comparison with the existing approaches. A
linear multi-class SVM algorithm of the LIBLINEAR1 library
[5] with the default parameters are used for DT classification.

3.1. Experimental settings

We conduct σ1 = 0.5 and σ2 = {3, 4, 5, 6} for computing
smooth-invariant filtered features. To capture local relation-
ships, we use the popular operator CLBP with joint settings
of riu2 mapping and (P,R) = (8, 1), i.e., ψ = CLBPriu2

8,1 .
As the result, the obtained descriptor has dimension of 1200
bins. The pair of (σ1, σ2) = (0.5, 6) is addressed for com-
parison with the existing methods due to its outperformance.
Empirically, values of σ1 and σ2 should be in the range of
above parameters because the informative appearance of DTs
will be sharply diminished when σ2 is close to σ1 or σ2 > 6.

3.2. Datasets and protocols

UCLA dataset: It includes 200 DT videos which are divided
into 50 categories with four sequences per one group [25].
Each original video is recorded in 110×160×75 dimension to
capture textural motions, such as fountain, waterfall, flower,
plant, etc. In experiment, its small version with 48× 48× 75
sequences of main appearances of DTs is usually addressed
and composed more challenging subsets for DT recognition
as follows. Table 1 shows a brief of key features for a glance.
• 50-class: 50 groups using two protocols: leave-one-out

[3, 29] and 4-fold cross validation [12, 27].
• 9-class and 8-class: A sub-dataset of 9 classes is rear-

ranged from the 50 classes consisting of “boiling wa-
ter” (8), “plants” (108), “sea” (12), “fire” (8), “flow-
ers” (12), “fountains” (20), “smoke” (4), “water” (12),
and “waterfall” (16), where the numbers beside indicate

1https://www.csie.ntu.edu.tw/∼cjlin/liblinear

Table 1. A summary of main properties of DT datasets.
Dataset Sub-dataset #Videos Resolution #Classes Protocol

UCLA
50-class 200 48× 48× 75 50 Loo and 4fold
9-class 200 48× 48× 75 9 50%/50%
8-class 92 48× 48× 75 8 50%/50%

DynTex

DynTex35 350 different dimensions 10 Loo
Alpha 60 352× 288× 250 3 Loo
Beta 162 352× 288× 250 10 Loo
Gamma 264 352× 288× 250 10 Loo

DynTex++ 3600 50× 50× 50 36 50%/50%
Note: Loo and 4fold are leave-one-out and four cross-fold validation respectively. 50%/50% denotes a

protocol of taking randomly 50% samples for training and the remain (50%) for testing.

their quantities. The “plants” is removed from 9-class
to structure 8-class with more challenging [32]. Fol-
lowing [6, 12], a half of samples is randomly chosen
for training and the rest for testing. The final rate is
returned from the average of 20 runtimes.

DynTex dataset: It includes more than 650 high-quality
videos captured in diversities of environmental conditions
[17]. Following [3, 27, 33], a challenging sub-dataset (named
DynTex35) with 10 categories is composed by cropping 35
videos as follows: 8 non-overlapping sub-sequences obtained
by randomly splitting each video with various cutting points
but not in the half of X, Y, and T axes; 2 sub-videos by only
splitting along its T axis. Other challenging sub-datasets are
also assembled from the original DynTex using leave-one-out
protocol for DT recognition as follows: Alpha − three cate-
gories with 20 videos in each of them, Beta − 162 sequences
divided into 10 classes with different numbers of items for
each, and Gamma − 10 classes of 264 DT videos [2, 3].
DynTex++ dataset: Ghanem et al. [6] selected 345 raw
videos of DynTex to compose DynTex++. These videos,
which are filtered and fixed in size of 50× 50× 50 to capture
the major chaotic motions, are categorized into 36 classes
with 100 items for each, i.e., 3600 DTs in total. Following
[3, 6], a half of samples of each class is randomly selected for
training and the rest for testing. The final recognition rate is
the mean of 10 repetitions.

3.3. Experimental results

It can be seen in Table 2 that taking smooth-invariant fea-
tures into account describing DTs points out a robust descrip-
tor with outperformance. Specific evaluations of FoSIG de-
scriptor on the datasets are presented in Table 3, in which the
highest recognition rates are in bold. The experimental re-
sults are then compared to the state of the art in Tables 4 and
5, in which the highest rates are in bold. Evaluations of VLBP
and LBP-TOP are referred to the implementations in [27, 18]
while the rest are directed from the original works. In gen-
eral, FoSIG significantly outperforms in comparison to most
of the existing methods on various DT datasets for recogni-
tion issue. It just operates on DynTex less efficiently than
deep-learning-based methods taking enormous cost of com-
putation with complex algorithms for learning DT features.
Hereafter, the performance of our proposed descriptor on the



Table 2. Contribution of IDoG on DynTex++.
(σ1, σ2) (0.5, 3) (0.5, 4) (0.5, 5) (0.5, 6)
Gσ1

95.73 95.73 95.73 95.73
DoGσ1,σ2

93.19 93.33 93.52 93.78
Gσ1 + DoGσ1,σ2 96.38 96.39 96.12 95.99

Table 3. Recognition rates (%) on DT benchmark datasets.
Dataset UCLA DynTex
(σ1, σ2) 50-Loo 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma Dyn++
(0.5, 3) 99.50 99.50 97.25 98.59 98.29 96.67 91.98 93.56 96.38
(0.5, 4) 99.00 100 99.15 98.48 98.57 96.67 91.98 92.05 96.39
(0.5, 5) 99.00 99.50 97.20 98.04 98.57 96.67 92.59 91.67 96.12
(0.5, 6) 99.50 100 98.95 98.59 99.14 96.67 92.59 92.42 95.99
Note: 50-Loo and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold valida-
tion. Dyn35 and Dyn++ are abbreviated for DynTex35 and DynTex++ sub-datasets respectively.

particular datasets is evaluated in detail.
UCLA dataset: It can be verified from Tables 3 and 4 that

the proposed descriptor obtains the best results on scenarios
of 50-class (99.50%) and 50-4fold (100%) compared to all
existing methods, including deep-learning-based. In terms of
9-class and 8-class with rates of 98.95% and 98.59%, FoSIG
nearly has the same performance as DT-CNN’s [1]. In the
meanwhile, those are the best evaluations among the LBP-
based methods, except CVLBC [34]. However, it is not better
than ours on other datasets (see Table 5). The highest rate of
9-class is 99.15% with setting of (σ1, σ2) = (0.5, 4) and of
8-class is 98.59% at σ1 = 0.5 and σ2 = {3, 6} (see Table 3).

Table 4. Comparison of recognition rates (%) on UCLA.
Group Encoding method 50-Loo 50-4fold 9-class 8-class

A FD-MAP [14] 99.50 99.00 99.35 99.57

B AR-LDS [25] 89.90N - - -
Chaotic vector [30] - - 85.10N 85.00N

C
3D-OTF [31] - 87.10 97.23 99.50
DFS [32] - 100 97.50 99.20
STLS [21] - 99.50 97.40 99.50

D MBSIF-TOP [3] 99.50N - - -
DNGP [24] - - 99.60 99.40

E

VLBP [33] - 89.50N 96.30N 91.96N

LBP-TOP [33] - 94.50N 96.00N 93.67N

CVLBP [26] - 93.00N 96.90N 95.65N

HLBP [27] 95.00N 95.00N 98.35N 97.50N

CLSP-TOP [12] 99.00N 99.00N 98.60N 97.72N

MEWLSP [28] 96.50N 96.50N 98.55N 98.04N

WLBPC [29] - 96.50N 97.17N 97.61N

CVLBC [34] 98.50N 99.00N 99.20N 99.02N

CSAP-TOP [13] 99.50 99.50 96.80 95.98
FoSIG 99.50 100 98.95 98.59

F

DL-PEGASOS [6] - 97.50 95.60 -
PI-LBP+super hist [22] - 100N 98.20N -
Orthogonal Tensor DL [20] - 99.80 98.20 99.50
PCANet-TOP [2] 99.50* - - -
DT-CNN-AlexNet [1] - 99.50* 98.05* 98.48*

DT-CNN-GoogleNet [1] - 99.50* 98.35* 99.02*

Note: “-” means “not available”. Superscript “*” indicates result using deep learning algo-
rithms. “N” is rate with 1-NN classifier. 50-Loo and 50-4fold denote results on 50-class break-
down using leave-one-out and four cross-fold validation respectively. Group A denotes optical-
flow-based methods, B: model-based, C: geometry-based, D: filter-based, E: local-feature-
based, F: learning-based.

DynTex dataset: With rate of 99.14%, FoSIG is the best
performance on DynTex35, except CSAP-TOP [13] (100%)
and MEWLSP [28] (99.71%). However, MEWLSP has not

been verified on more challenging datasets (i.e., Alpha, Beta,
Gamma) while CSAP-TOP is about 2% lower than ours on
Gamma and has been missing on DynTex++ (see Table 5).
In respect of Alpha (96.67%), Beta (92.59%), and Gamma
(92.42%), our proposed descriptor outperforms significantly
compared to most of the state of the art, except st-TCoF [18],
D3 [8], DT-CNN [1] (see Table 5). These methods use deep
learning techniques with sophisticated algorithms to learn DT
features while the cost of time is crucial in real applications.

DynTex++ dataset: It can be observed from Table 5 that
our result (95.99%) is the best in comparison with all ap-
proaches, except MEWLSP [28], HLBP [27], and DT-CNN
[1]. However, MEWLSP and HLBP are not better than ours
on UCLA as well as have not been verified on more chal-
lenging sub-datasets of DynTex (i.e., Alpha, Beta, Gamma).
In the meanwhile, DT-CNN with complicated frameworks of
AlexNet and GoogleNet takes much time for learning DTs to
achieve over 2% better than ours.

Table 5. Comparison of rates (%) on DynTex and DynTex++.
Group Encoding method Dyn35 Alpha Beta Gamma Dyn++

A FD-MAP [14] 98.86 98.33 92.59 91.67 95.69

C

3D-OTF [31] 96.70 83.61 73.22 72.53 89.17
DFS [32] 97.16 85.24 76.93 74.82 91.70
2D+T [4] - 85.00 67.00 63.00 -
STLS [21] 98.20 89.40 80.80 79.80 94.50

D MBSIF-TOP [3] 98.61N 90.00N 90.70N 91.30N 97.12N

DNGP [24] - - - - 93.80

E

VLBP [33] 81.14N - - - 94.98N

LBP-TOP [33] 92.45N 98.33 88.89 94.18 94.05N

DDLBP with MJMI [23] - - - - 95.80
CVLBP [26] 85.14N - - - -
HLBP [27] 98.57N - - - 96.28N

CLSP-TOP [12] 98.29N 95.00N 91.98N 91.29N 95.50N

MEWLSP [28] 99.71N - - - 98.48N

WLBPC [29] - - - - 95.01N

CVLBC [34] 98.86N - - - 91.31N

CSAP-TOP [13] 100 96.67 92.59 90.53 -
FoSIG 99.14 96.67 92.59 92.42 95.99

F

DL-PEGASOS [6] - - - - 63.70
PCA-cLBP/PI/PD-LBP [22] - - - - 92.40
Orthogonal Tensor DL [20] - 87.80 76.70 74.80 94.70
Equiangular Kernel DL [19] - 88.80 77.40 75.60 93.40
st-TCoF [18] - 100* 100* 98.11* -
PCANet-TOP [2] - 96.67* 90.74* 89.39* -
D3 [8] - 100* 100* 98.11* -
DT-CNN-AlexNet [1] - 100* 99.38* 99.62* 98.18*

DT-CNN-GoogleNet [1] - 100* 100* 99.62* 98.58*

Note: “-” means “not available”. Superscript “*” indicates result using deep learning algorithms. “N” is
rate with 1-NN classifier. Dyn35 and Dyn++ are stood for DynTex35 and DynTex++ sub-datasets. Group
A denotes optical-flow-based methods, B: model-based, C: geometry-based, D: filter-based, E: local-
feature-based, F: learning-based.

4. CONCLUSIONS

We have presented an effective framework for DT description
in which the advantages of Gaussian and DoG filtering ker-
nels are taken into account feature encoding to make the pro-
posed descriptor more robust against noise and illumination
changes. Assessments of DT recognition on various datasets
have validated that our proposal significantly outperforms
in comparison with the state-of-the-art results. Analysis in
multi-scale solutions can be considered in future works.
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