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Aix-Marseille Université, CNRS, ENSAM, LIS, UMR 7020, 13397 Marseille, France

ABSTRACT

A novel method for reflection symmetry detection is ad-
dressed using a projection-based approach that allows to deal
effectively with additional noise, non-linear deformations,
and composed shapes that are not evident for classic contour-
based approaches. A new symmetry measure is also proposed
to measure how good the detected symmetry is. Experiments
validate the interest of our proposed method.

Index Terms— Reflection symmetry, Radon,R-transform

1. INTRODUCTION

Symmetry is very popular in both artificial and natural scenes
because most mand-made and biological objects have sym-
metric properties. In addition, symmetric structures are im-
portant visual features for human attention, therefore symme-
try detection plays an important role in computer vision.

There are two main problems in symmetry detection. The
first one aims at detecting and measuring the rotational sym-
metries in a shape. Lin et al. [1] proposed fold-invariant
shape-specific points for detecting the orientations of rota-
tionally symmetric shapes. Cornelius and Loy [2] detected
planar rotational symmetry under affine projection. Prasad
and Davis [3] localized multiple rotational symmetries in nat-
ural images using gradient magnitude field. Loy and Eklunhd
[4] grouped symmetric pairs of feature points and character-
izing the symmetries presented in an image. Flusser and Suk
[5] introduced a new set of invariant moments for recognition
of objects having n-fold rotation symmetry. Yip introduced
different methods using Hough transform [6] or Fourier de-
scriptor [7] for the detection of rotational symmetry.

The second one groups the methods for reflection symme-
try detection. Ogawa [8] used Hough transform to detect axis
of symmetry in shapes of line drawing. Yip [9] then devel-
oped this approach to deal with both reflection symmetry and
skew-symmetry. Lei and Wong [10] also used Hough trans-
form for detecting and recovering the pose of a reflection and
rotational symmetry from a single weak perspective image.
Cornelius and Loy [11] detected bilateral symmetry in im-
ages under perspective projection by matching pairs of sym-
metric features. Nagar and Raman [12] proposed an energy
minimization approach to detect multiple reflection symme-

tries. They also introduced an another work [13] for detecting
approximated reflection symmetry in a set of points using op-
timization on manifold. Kazhdan [14] used Fourier methods
to detect and compute reflective symmetries. In [15], Der-
rode and Ghorbel applied Fourrier-Melin transform for rota-
tion and reflection symmetry estimation. Kiryati and Gofman
[16] converted reflection symmetry detection into a global op-
timization problem. Cornelius et al. [17] used local affine
frames (LAFs) constructed on maximally stable extremal re-
gions to improve the detection of symmetric objects under
perspective distortion.

We address in this paper a new method for reflection sym-
metry detection using R-transform. Based on the projec-
tion based approach, this can deal naturally with composed
shapes, additional noise, and non-linear deformations.

2. BASIC MATERIALS

Let us recall some basic materials of Radon transform and
R-transform [18]. Those will be used in the next section to
propose a new method for reflection symmetry detection.

2.1. Radon transform

Let f ∈ R2 be a 2D function and L(θ, ρ) = {x ∈ R2 |
x · n(θ) = ρ} be a straight line in R2, where θ is the angle
L makes with the y axis, n(θ) = (cos θ, sin θ), and ρ is the
radial distance from the origin to L. The Radon transform
[19] of f , denoted asRf , is a functional defined on the space
of lines L(θ, ρ) by calculating the line integral along each line
as follows.

Rf (θ, ρ) =

∫
f(x) δ(ρ− x · n(θ)) dx (1)

In shape analysis, the function f is constrained to take value
1 if x ∈ D and 0 otherwise, where D is the domain of the
binary shape represented by f (see Figure 1).

f(x) =

{
1 if (x) ∈ D
0 otherwise

(2)

Radon transform is robust to additive noise and has some
interesting geometric properties [19] which are the base to



Fig. 1. Radon transform of a function f(x, y)
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Fig. 2. Illustration ofR-transforms [18].

developpe an effective shape signature, namely R-transform
[18], presented in Section 2.2.

We also introduce the following notion that will be used
latter. For each projection direction θ, the radial distances ρθ1
and ρθ2 are respectively defined as ρθ1 = inf {ρ | RD(θ, ρ) >
0} and ρθ2 = sup {ρ | RD(θ, ρ) > 0}. The “profile” (or
Radon projection) of D in the direction θ, denoted as CθD,
is defined as RD(θ, ρθ1:ρθ2). More precisely, CθD(ρ − ρθ1) =
RD(θ, ρ), ∀ρ ∈ [ρθ1, ρ

θ
2].

2.2. R-transform

Tabbone et al. [18] introduced a transform, called R-
transform, for an effective shape representation as follows.

Rf2(θ) =

∫ +∞

−∞
R2
f (θ, ρ)dρ (3)

They have shown the following properties of this transform.

• Periodicity: Rf2 is periodical with period of π.

• Rotation: A rotation of the image by an angle θ0 leads
to a circular shift of Rf2 of θ0.

• Translation: Rf2 is invariant against translation

• Scaling: A scaling of f implies only a scaling in the
amplitude of Rf2

Please refer to [18] for more illustrations about the ro-
bustness of R-transform against similarity transforms (trans-
lation, rotation, scaling), and non-linear deformations. These
properties make R-transform useful for shape analysis. It is
also a base for different shape descriptors [20, 21, 22].

3. REFLECTION SYMMETRY DETECTION

3.1. R-transform and reflection symmetry

Let us consider an arbitrary shape D. It has reflection sym-
metry if there is at least one line which splits the shape in half
so that one side is the mirror image of the other. For simplic-
ity, D is called reflectionally symmetric in direction θ if it is
reflectionally symmetric and contains an axis of symmetry in
that direction.

As we have pointed out in Section 2.2, R-transform has
been proven to be robust against additive noise, nonlinear de-
formations [18]. It is invariant against similarity transforms:
translation, and rotation. In addition, it is also invariant
against scaling if the transform is normalized by a scaling
factor. Those beneficial properties suggest that R-transform
can be served as an useful tool for shape analysis.

We propose in this section an another interesting prop-
erty of R-transform for reflection symmetry detection. The
main idea is to convert the problem of detecting and measur-
ing reflection symmetry of an arbitrary shape D into measur-
ing the reflection symmetry in its R-transform. Due to [18],
Rf2(θ) is periodical of period π with respect to θ, it is suffi-
cient to consider R-transform only on the set of projections
Θ = [0, π) or Θ = 00, 10, . . . , 1790 for relection symmetry
detection.

Figure 2 shows the R-transforms of two reflection-
ally symmetric shapes. Similarly, Figures 3.b presents R-
transform of a synthetic shape which is an isosceles triangle
in Figure 3.a. It should be noted that the studied shape con-
tains evidently one axis of reflection symmetry in direction
O0 while its R-transform has two reflection symmetries at
directions 0 and π

2 . In addition, Figure 3.d shows the Radon
projection ofD in two above directions. We could make some
important following remarks from those Figures.

• R-transform contains rich information about rotational
symmetric properties of shapes. If D contains reflec-
tion symmetry, its R-transform is also reflectionally
symmetric.

• Each detected axis of reflection symmetry of D in di-
rection θ0 leads to 2 reflection symmetries which sepa-
rate by an interval of π2 . Those correspond generally to
two orthogonal directions: θ0 and θ0 + π

2 . This comes
from the fact thatR-transform treats equally all projec-
tion values in each direction.

• Between two above detected directions, the profile of
Radon projection (Rf (θ, ρ)) is also reflectionally sym-
metric in the direction θ0. For the direction θ0 + π

2 , it is
reflectionally symmetric if and only if D contains also
reflection symmetry in direction θ0 + π

2 . Indeed, con-
trariwise to R-transform, Radon projection (Rf (θ, ρ))
consider the distribution of projection values for each
direction. Rf (θ, ρ) presents the distribution of two



symmetric parts ofD in direction θ0 of symmetric axis,
therefore is is also reflectionally symmetric. It is not
the same in direction θ0 + π

2 because D is not reflec-
tionally symmetric in this direction. Hence, it brings
out the direction containing reflection symmetry. This
allows to eliminate false reflection symmetry detection
of a shape by considering itsR-transform.

3.2. Proposed method for symmetry detection

The analysis in Section 3.1 suggest an effective algorithm for
reflection symmetry detection of a shape by considering its
R-transform. The main idea is to measure the similarity be-
tween its forward and backward circular shifts of each an-
gle θ0. If this similarity is perfect, angle θ0 is candidate for
a reflectionally symmetric direction. This can be confirmed
by verifying if the Radon projection in this direction (Cθ0D )
is symmetric. This property can be checked simply by cal-
culating the similarity between it and its inversion (I(Cθ0D )).
We propose to use Pearson’s Linear Correlation Coefficient
[23] to measure those similarities. For the simplicity, let us
consider two vectors X , and Y having a same dimensional-
ity. The similarity between them is defined by function Ω as
follows.

Ω(X,Y ) =

∑n
j=1(X −X)(Y − Y ){∑n

i=1(X −X)2
∑n
i=1(Y − Y )2

}1/2
(4)

,where n is the number of element in vectorX , and Y ;X , and
Y are respectively mean values of X , and Y . Values of the
correlation coefficient can range from −1 to +1. A value of
−1 indicates perfect negative correlation, while a value of +1
indicates perfect positive correlation. A value of 0 indicates
no correlation between the columns.

Algorithm 1 addresses the proposed method for reflec-
tion symmetry detection by using some notations presented
in Definition 1. Threshold τ is empirically set to 0.75 to sim-
ply remove non-signiticative candidates.

Definition 1 Given x = {x1, x2, . . . , xn}, a vector of n el-
ements. F iζ(x) (resp. Biζ(x)), which is called forward (resp.
backward) circular shift of x of step i, is defined as follows:
F iζ(x) = {xi, xi+1, . . . , xn, x1, . . . , xi−1} (resp. Biζ(x) =
{xi, xi−1, . . . , x1, xn, . . . , xi+1}). Specially, the inversion of
x, called I(x), is defined by I(x) = Bnζ (x)

Figure 3 illustrates how Algorithm 1 works. First, R-
transform (Figure 3.b) of the studied shape (Figure 3.a) is
constructed. Then, the merit profile, presented in Figure 3.c,
is calculated by measuring the similarity between the for-
ward and backward circular shifts at each direction θ of R-
transform. This gives two peaks being closed to 1 at direc-
tions 00 and π

2 as candidates of symmetric direction. A sim-
ple check using correlation is then applied on Radon projec-
tion of each candidate direction (Figure 3.d) allows to elimi-
nate direction π

2 and to confirm that direction 0 contains axis

Algorithm 1 Reflection symmetry detection of a shape D.
Input: D – arbitrary shape, τ – threshold for symmetry de-
tection
Output: n – number of detected symmetric axis, ψ – reflec-
tion symmetry measures ∆ – set of detected symmetric direc-
tions

1: Use [18] to construct Rf2(D,Θ) – R-transform of D
over Θ = {00, 10, . . . 1790}

2: merit = [];
3: for θ = 00 . . . 1790 do
4: merit(θ) = Ω

(
F θζ (Rf2(D,Θ), Bθζ (Rf2(D,Θ)

)
5: end for
6: Detect peaks and ids – the peaks of merit that are

greater than τ (values and indices respectively)
7: ψ = n = 0 – Initially, no symmetry found
8: for k = 1 . . . length(peaks) do
9: if Ω(C

ids(k)
D , I(C

ids(k)
D )) > τ then

10: n = n+1 – found a new axis of reflection symmetry
11: ∆(n) = ids(k);
12: ψ(n) = peaks(k) – corresponding symmetry mea-

sure
13: end if
14: end for

Algorithm 2 Detection the centroid of a shape D.
Input: D – arbitrary shape, Output: c – detected centroid

1: sX =
∑
p∈D

px; sY =
∑
p∈D

py; s =
∑
p∈D

1

2: c = ( sXs ,
sY
s )

of reflection symmetry. In addition, the corresponding peak
of merit profile defines how good the detection symmetry is.
Therefore, is is proposed as measure of reflection symmetry at
this direction. The more it closes to 1, the more the symmetry
is perfect. The corresponding symmetric axis is simply de-
fined as the line of this direction and passes through the cen-
troid of shape D. Algorithm 2 recalls a well-known moment-
based method to detect centroid of an arbitrary shape.

4. EXPERIMENTS

We first evaluate the proposed methods on synthetic shapes
to verify its behavior. To do that, we create different regu-
lar polygons of which the size, orientation are varied. Figure
4 shows the obtained results with different synthetic shapes
(i.e. arbitrary, and regular polygons). It could be noted that
for 3-polygon and 5-polygon, the number of detected candi-
dates on merit profile is twice the number of detected axis. A
half of them have been removed after a simple verification to
eliminate false symmetric axis. In addition, the first row of
Figure 4 shows an experiment on a non-symmetric shape, its
merit profile give highest value at only 0.59, so no reflection
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Fig. 3. Different steps to detect reflection symmetry.
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Fig. 4. Experiments on synthetic shapes.

symmetry is detection. The last row of Figure 4 presents an
experiment on a heavy noisy regular polygon (SNR=1). Re-
garding its R-transform, we can conclude that thanks to the
the robustness of R-transform against additional noise, and
non-linear transform, the detection of symmetry detection is
always robust in such conditions.

Figure 5 presents the results of our methods on real-world
images. For each shape, a couple sets (∆, ψ) determining
the detected directions and estimated symmetry measures is
shown. It could be said that the proposed method can deal
with well with natural images thanks to the projection-based
approach.

5. CONCLUSIONS

We have introduced a novel method for reflection symme-
try detection based on R-transform. It detect the symmetry
axes and measure how good the symmetry is for each detected
axis. Thanks to the beneficial properties of projection-based

(a) ({760}, {1}) (b) ({1070}, {0.9957})

(c) ({1410}, {0.9994}) (d) ({480}, {0.9996})

(e) ({580}, {0.9916})

Fig. 5. Experiments on realworld images: each shape is de-
fined by the symmetry direction together with symmetry mea-
sure.

approach, the method can deal with addition noise, and non-
linear deformation. Moreover, it can process compounded
shapes that are difficult for typical contour-based methods.
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