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Abstract

In this paper we develop a novel methodology for studying the dynamic functional
connectivity within the brain from EEG traces. Our observations consist of replicated
realizations of spatio-temporal processes that are locally time-harmonizable. We
propose a novel method to estimate both the spatial time-varying Loève-spectrum and
the spatial time-varying dual-frequency coherence functions under realistic modeling
assumptions. We apply block bootstrap approach to construct confidence intervals
for these parameters of interest. We illustrate the application of this methodology on
a data set arising from an experiment designed to assess the visual working memory
capacity. Our real data analysis pipeline starts with the clustering of our replicated
time series obtained from toroidal mixture modeling of the corresponding response
variables which describe the quality of memorization. Then, we estimate the spatial
time-varying dual-frequency coherence functions and the corresponding connectivity
matrices within each cluster. This procedure allows us to potentially identify specific
patterns in the dynamic functional connectivity characterizing each cluster. More
specifically we reveal that better visual working memory performance is apparently
associated to longer connectivity period within the prefrontal cortex between the
alpha-beta frequency bands during the memorization task.

Keywords: Harmonizable spatio-temporal processes, functional connectivity, visual working
memory, EEG traces, Circular Block Bootstrap.
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1 Introduction

Working Memory (WM) is an essential cognitive resource since it is strongly correlated to

the overall cognitive abilities. Its role is to keep relevant information accessible during a

brief time-span which enables for human activity alike navigation, communication, solving

problems. . . The study of the brain mechanisms underlying WM often rely on ElectroEn-

cephaloGraphy (EEG) techniques. In short, the electrical currents generated in the brain

by ensembles of neurons which fires in a synchronized manner propagate through the cortex

to the scalp where they are recorded by EEG electrodes. These electrodes measure electric

potentials over the time which represents brain waves oscillations. Spectral analysis is a

key tool for neuroscientists for inference on these time series data. Previous studies have

shown variations in the dynamic of different frequency bands associated to WM tasks but

the role of each of them remains unclear.

Over the last 20 years there has been an explosion of more specific research on Visual

Working Memory (WSM). We define VWM following Luck and Vogel (2013) as an ”active

maintenance of visual information to serve the needs of ongoing tasks”. There are key issues

at stake in describing and identifying the sources of limitation and variability of the VWM

(Fougnie et al., 2012). VWM presumably involves sophisticated functional connections

within different areas of the brain, in particular the visual cortex and the prefrontal cortex

appears to play fundamental roles (Grimault et al., 2009; Li et al., 2011; Barton and Brewer,

2013; Dai et al., 2017). Elucidating the nature of these connections is supposedly a doorway

to fruitful inference on these brain cognitive processes. There are different ways to assess

the existence of these connections. The coherence, which is a spectral cross-correlation

between two signals, has proved to be useful to reveal interesting facts for WM (Sauseng

et al., 2005). A challenging aspect is that these dynamic functional connections may involve
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brain waves’ oscillatory components of possibly different frequencies (Gorrostieta et al.,

2012; Pascual-Marqui et al., 2016). In other terms, bursts of high frequencies in some area

of the brain could occur preferentially during specific phases of low frequency activity in

other areas.

It is therefore essential to develop methods to accurately estimate the dynamics of the

coherence between different part of the brain at different oscillating frequencies, so-called

dual-frequency coherence hereafter. The use of the dual-frequency coherence in EEG data

analysis is not new (Gündoğdu and Akan (2010); Gorrostieta et al. (2019)). From a math-

ematical perspective, in order to model the dual-frequency coherence, we require a proper

class of stochastic processes named harmonizable which naturally generalize the class of sta-

tionary processes (see Section 2). They were introduced in the stochastic analysis literature

by Loève (1948) and are associated to a generalized spectrum also called Loève spectrum.

An estimation procedure of the Loève spectrum was suggested in Soedjak (Soedjak), but

in order to capture enough of the complexity of the brain mechanisms these results have

to be properly extended. This was achieved in a recent and important contribution due

to Gorrostieta et al. (2019). They follow the approach of Dahlhaus (Dahlhaus) to in-

troduce multivariate locally-harmonizable processes. They describe a windowed Fourier

based estimation procedure of the time-varying dual-frequency coherence. They derive ex-

act confidence intervals for testing if the coherence differs from zero under iid Gaussian

assumptions and also obtain asymptotic confidence intervals.

In this paper, we introduce a class of spatio-temporal processes that are locally time-

harmonizable. We consider available replicates and seek for the estimation of both the

Spatial Time-Varying Loève-spectrum and the Spatial Time-Varying Dual-Frequency co-

herence function (hereafter STV Loève spectrum and STVDF coherence function respec-
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tively). In other words we measure a time evolutionary squared correlation coefficient

across different frequencies between any pairs of spatial locations. Our method exploits the

spatial correlations in order to improve the location specific estimation of these quantities

in the spirit of Ombao et al. (2008). In order to construct proper confidence intervals for

the STVDF coherence function, we adapt the Circular Block Bootstrap method and show

its consistency.

We apply our method to real data set coming from an experiment designed to test the

performance of visual working memory of subjects. In this experiment, the distribution

of the response variables describing the memorization performance of patients is properly

modeled through a toroidal mixture which serves us for unsupervised classification of the

subject-specific replicates. Within each of these labeled replicates we estimate the cor-

responding STVDF coherence functions. The final stage of our method is to build from

the STVDF coherence functions dynamic functional connectivity networks. It allows us

to notably reveal that connectivity within the prefrontal cortex in between the alpha-beta

frequency bands during the first stage of experiment is associated to better spatial and

color memorization performance. The computational complexity of our method can be

reasonably tackled considering the nature of our real data and by a two-step approach

which consists in using bootstrap in anatomical regions and time laps of interest only, that

is, wherever the coherence function is above a user predefinite threshold.

The contribution of this paper is two-fold. First, from neuroscientists point of view, we

propose a coherent data analysis pipeline which could be easily adapt to other similar

experiments. We illustrate that there may be some interesting information in the dual-

frequency coherence which can help to understand the VWM brain mechanisms. Second,

from a statistical point of view, we unify and generalize the two important contributions
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of Ombao et al. (2008); Gorrostieta et al. (2019).

The paper is organized as follows. In an introductory section we recall the basics of co-

herence analysis for multivariate stationary and harmonizable time series. In Section 3 we

introduce the spatial and locally time-harmonizable time series model along with a proper

estimation procedure under realistic modeling assumptions. In Section 4 we apply our

method to a real data set.

2 Review of coherence analysis for multivariate time

series

Hereafter the symbol (·)′ denotes the transpose of a vector. The spectral or Cramer’s

representation of a centered P -variate discrete-time stationary process {X t, t ∈ Z}, where

X t = (X
(1)
t , . . . , X

(P )
t )′, is given by the following Fourier-Stieltjes integral (Brockwell and

Davis, 1991)

X t =

∫ π

−π
eitωdZ (ω) ,

where
{
Z(ω) = (Z(1)(ω), . . . , Z(P )(ω))′, ω ∈ [−π, π)

}
is a zero-mean stochastic process with

orthogonal and cross-orthogonal increments
{
dZ(j) (ω) ; j = 1, . . . , P, ω ∈ [−π, π)

}
. More-

over,

Cov(dZ(ω1), dZ(ω2)) = δ(ω1 − ω2)f(ω1)dω1dω2,

where f is the P × P spectral density matrix and δ(ω1 − ω2) the Dirac-delta function.

The squared coherence can be defined in terms of spectral density or of the incremental

process as follows:
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ρ(pq) (ω) :=
Cov

(
dZ(p) (ω) , dZ(q) (ω)

)
{Var (dZ(p) (ω)) Var (dZ(q) (ω))}1/2

=

∣∣f (pq) (ω)
∣∣2

{f (pp) (ω) f (qq) (ω)}1/2
(1)

This quantity is a correlation of the global oscillatory behavior at a frequency ω between

the vector components p and q. We see that within the class of stationary processes, we

cannot capture the cross-oscillatory behavior between different frequency bands. The class

of (strongly) harmonizable processes is required. This is a more general class than the

one of stationary processes (Loève, 1948; Rozanov, 1959; Cramér, 1961) and it contains for

instance periodically correlated processes (Hurd and Miamee, 2007).

The spectral representation of harmonizable process {X t, t ∈ Z} is given by

X t =

∫ π

−π
eitωdZ (ω) ,

where dZ (ω) =
(
dZ(1), . . . , dZ(P )

)′
is a random vector process with zero mean and possibly

correlated increments. Moreover,

Cov(dZ(p)(ω1), dZ
(q)(ω2)) = f (pq)(ω1, ω2)dω1dω2,

where f (pq)(ω1, ω2) is known as the Loève spectrum.

The dual frequency coherence between a pair of time series
{
X(p), X(q), t ∈ Z

}
and a pair

of frequencies (ω1, ω2) is defined as

ρ(pq) (ω1, ω2) :=
Cov

(
dZ(p) (ω1) , dZ

(q) (ω2)
)

{Var (dZ(p) (ω1)) Var (dZ(q) (ω2))}1/2

=

∣∣f (pq) (ω1, ω2)
∣∣2

f (pp) (ω1, ω1) f (qq) (ω2, ω2)
.
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Note that the dual-frequency coherence given by the previous equation is constant in time.

In the next section we propose a proper model to capture spatial and dynamic behaviors

of the dual-frequency coherence function.

3 Spatial time-varying dual-frequency coherence esti-

mation

In this section we unify and extend the work of Ombao et al. (2008); Gorrostieta et al.

(2019). For the sake of clarity, we first introduce the spatial time-harmonizable processes

before giving their locally time-harmonizable version. We define the corresponding spatial

time-varying Loève spectrum and spatial time-varying dual-frequency coherence function.

Then we set-up our modeling assumptions, in particular the space-time rescaling which

enables for infill asymptotic theory. We construct the estimator of the spatial time-varying

dual-frequency coherence and derive its asymptotic performances. Finally we show how to

adapt the CBB method to build bootstrap confidence intervals and we prove the bootstrap

consistency.

3.1 Location dependent Loève spectrum

Let
{
XS

t

}
=
{
XS

t , t ∈ Z
}

:=
{
XS
t (s), t ∈ Z, s ∈ {1, . . . , S1} × {1, . . . , S2}

}
, S := (S1, S2) ∈

{1, . . . }×{1, . . . }, be a family of spatial (location-dependent) time-harmonizable processes,

i.e.,

XS
t (s) =

∫ π

−π
e−iωtdZS

s (ω) ,
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such that

Cov
(
dZS

s1
(ω1) , dZ

S
s2

(ω2)
)

= fSs1,s2 (ω1, ω2) dω1dω2,

where fSs1,s2 (ω1, ω2) is the spatial Loève spectrum.

We observe the process XS
t (s) for t = 1, . . . , T in S1× S2 different locations, i.e. s1 and s2

can take S1 and S2 different values, respectively: si = 1, . . . , Si for i = 1, 2.

Notice that a sufficient condition for time-harmonizability and existence of a two-dimensional

spectral density for second order spatial random processes is

∑
(t1,t2)∈Z2

∣∣∣CS
s1,s2

(t1, t2)
∣∣∣ <∞,

where CS
s1,s2

(t1, t2) = Cov
(
XS
t1(s1), X

S
t2(s2)

)
.

Then the Loève spectrum is a continuous function and it coincides with

fSs1,s2 (ω1, ω2) =
1

4π2

∑
(t1,t2)∈Z2

CS
s1,s2

(t1, t2) e
−i(ω1t1−ω2t2).

Since we observe the time series on [0, T ], we are going to estimate

f+,S
s1,s2

(ω1, ω2) :=
1

4π2

∑
(t1,t2)∈N2

CS
s1,s2

(t1, t2) e
−i(ω1t1−ω2t2).

Then for t1, t2 ≥ 0,

CS
s1,s2

(t1, t2) =

∫ π

−π

∫ π

−π
f+,S
s1,s2

(ω1, ω2) e
i(ω1t1−ω2t2)dω1dω2.

Let C+,S
s1,s2

(t1, t2) := Cs1,s2(t1, t2) for t1, t2 ≥ 0, and C+,S
s1,s2

(t1, t2) = 0 otherwise.

For the purpose our application we have to make this spatial process locally time-harmonizable

to account for possible changes in the Loève spectrum over the time and therefore in the

dual-frequency coherence function.
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3.2 Location dependent time-varying Loève spectrum

We consider a spectral representation of XT,S
t based on an unknown and finite number of

Fourier frequencies of the form ω
(M)
k = πk/M, −M ≤ k < M :

XT,S
t =

M−1∑
k=−M

exp
(
−iω(M)

k t
)

∆ZM,T,S
t (ω

(M)
k ), (2)

where

Cov
(

∆ZM,T,S
t1,s1

(ω1) ,∆Z
M,T,S
t2,s2

(ω2)
)
≈ fT,St1,t2,s1,s2

(ω1, ω2) ∆ω1∆ω2

and fT,St1,t2,s1,s2
(ω1, ω2) is the time-varying spatial Loève spectrum.

This modeling choice, given by the equation (2), is motivated by our real data application

for which we typically consider a finite number of frequency bands of interest. Moreover,

it will become clear hereafter that this choice allows us to keep more tractable the multiple

asymptotic theory of Section 3.5.

fT,S,Mt1,t2,s1,s2
(ω1, ω2) :=

1

4π2

t1+M−1∑
k1=t1−M

t2+M−1∑
k2=t2−M

CT,S
s1,s2

(k1, k2) e
−i(ω1k1−ω2k2) (3)

=
1

4π2

M−1∑
k1=−M

M−1∑
k2=−M

CT,S
s1,s2

(t1 + k1, t2 + k2) e
−i(ω1k1−ω2k2)e−i(ω1t1−ω2t2),

where CT,S
s1,s2

(k1, k2) := E
(
X
T,S1
k1

(s)X
T,S2
k2

(s)
)

.

Then we readily obtain that

CT,S
s1,s2

(t1, t2) =
π2

N2

M−1∑
j1=−M

M−1∑
j2=−M

fT,S,Mt1,t2,s1,s2

(
ω
(M)
j1

, ω
(M)
j2

)
e
i
(
ω
(M)
j1

t1−ω(M)
j2

t2
)
, (4)

where ω
(M)
j = πj

M
, j = −M, . . . ,M − 1, denote the Fourier frequencies of the obser-

vations. Notice that π
M

is the increment between two consecutive Fourier frequencies :
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ω
(M)
j+1 − ω

(M)
j = π

M
.

3.3 Assumptions

In the following we state our modeling assumptions. Our observations consist in sampled

and replicated time-spatial random arrays{
XS,r

t : t = 0, . . . , T ; r = 1, . . . , R, S := (S1, S2) ∈ {1, . . . } × {1, . . . }
}
.

The location dependent time-varying Loève spectrum fT,S,Nt1,t2,s1,s2
(ω1, ω2) defined by the equa-

tion (3) is rescaled in space and in time. Hereafter, we denote as fτ1,τ2,u1,u2(ω1, ω2) the

rescaled spatio-temporal Loève spectrum, where u1, u2 ∈ [0, 1]2 and τ1, τ2 ∈ [0, 1].

We define s̈ := (s̈1, s̈2) =
(
s1
S1
, s2
S2

)
for s = (s1, s2) ∈ {1, . . . , S1}×{1, . . . , S2}. For u ∈ [0, 1]2

denote u ∼ s̈ when s = (bu1S1c, bu2S2c) and ẗ := t
T

for t ∈ {1, . . . , T}. For τ ∈ [0, 1] denote

τ ∼ ẗ when t = bτT c.

We assume the following conditions:

(L) There exists a function f : [0, 1]6 × [−π, π)2 → C which is Lipschitz-continuous with

respect to the space and the time components uniformly on the frequency components,

that is there exists some constant L > 0 such that for each u1, u2, u3, u4,∈ [0, 1]2,

τ1, τ2 ∈ [0, 1] and each ω1, ω2 ∈ [−π, π),

∣∣fτ1,τ2,u1,u2(ω1, ω2)− fτ3,τ4u3,u4(ω1, ω2)
∣∣ ≤ L (|τ1 − τ3|+ |τ2 − τ4|+ ‖u1 − u3‖+ ‖u2 − u4‖) ,

(5)
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and there exists some constant Q > 0 such that∣∣∣fT,S,Nt1,t2,s1,s2
(ω1, ω2)− fẗ1,ẗ2,s̈1,s̈2(ω1, ω2)

∣∣∣ ≤ Q

S1S2T
, (6)

where si = (si,1, si,2), s̈i = (si,1/S1, si,2/S2), ẗi = ti/T, i = 1, 2.

(F) We consider a finite number (2M) of frequencies in equation (2) which are Fourier

frequencies : ωi = πki
M

, k1 = −M, . . . ,M − 1, i = 1, 2.

(M) We let {XS,r
t (s)} be α-mixing with respect to the replicates, i.e., αX(k) → 0 as

k →∞, where

αX(k) = sup
k

sup
A∈FX (1,r)

B∈FX (r+k,∞)

|P (A ∩B)− P (A)P (B)|

and FX(1, r) = σ
(
{XS,q

t (s) : q ≤ r, t ∈ Z and all locations s}
)

,

FX(r + k,∞) = σ
(
{XS,q

t (s) : q ≥ r + k, t ∈ Z and all locations s}
)

.

α-mixing is a weak dependence measure. Hence, replicated time-series closed to

each other in time can be dependent while when they are far away they are almost

independent. This generalizes the modeling assumptions of Gorrostieta et al. (2019).

For properties and examples of other dependence measures, we refer the reader to

(Doukhan, 1994).

(B) Boundedness :

(i) either, there exists some constant C > 0 such that supt,r,s

∣∣∣XS,r
t (s)

∣∣∣ ≤ C and∑
r α(r) <∞,

(ii) or, for some δ > 0, supt,r,s E

(∣∣∣XS,r
t (s)

∣∣∣4+δ) <∞ and
∑

r α(r)δ/(4+δ) <∞.
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This assumption is used to prove the convergence of second order moment of our estimator.

In order to prove asymptotic normality of our estimator we state the following additional

assumptions.

(GR) The time-spatial random array{
XT,S,r
t (s) : t ∈ {0, . . . , T}, s ∈ {1, . . . , S1} × {1, . . . , S2}, r = 1, . . . , R

}
is Gaussian for any R > 0.

(LR) There exists a family of functions f r1,r2 : [0, 1]2 × [0, 1]4 × [−π, π)2 → C, r1, r2 ∈ N,

which are Lipschitz-continuous with respect to the space and the time components

uniformly on the frequency components and to the index (r1, r2), that is there exists

some constant L > 0 such that for each τ1, τ2, τ3, τ4 ∈ [0, 1], each u1, u2, u3, u4 ∈ [0, 1]2

and each ω1, ω2 ∈ [−π, π),∣∣∣f r1,r2τ1,τ2,u1,u2
(ω1, ω2)− f r1,r2τ3,τ4,u3,u4

(ω1, ω2)
∣∣∣ ≤ L (|τ1 − τ3|+ |τ2 − τ4|+ ‖u1 − u3‖+ ‖u2 − u4‖) ,

(7)

And there exists some constant Q > 0 such that∣∣∣fT,S,N,r1,r2t1,t2,s1,s2
(ω1, ω2)− f r1,r2ẗ1,ẗ2,s̈1,s̈2

(ω1, ω2)
∣∣∣ ≤ Q

S1S2T
, (8)

where si = (si,1, si,2) and s̈i = (si,1/S1, si,2/S2), i = 1, 2.

When r1 = r2 = r we denote f r,rτ1,τ2,u1,u2(ω1, ω2) = f rτ1,τ2,u1,u2(ω1, ω2).

Note that the constants L and Q do not depend on r1, r2, s1, s2, u1, u2, ω1, ω2 and can

be different from the constants given in condition (LR).
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(SR) Stationarity with respect to the replications (replications are stationary with respect

to r). We have

f r+k,rτ1,τ2,u1,u2
(ω1, ω2) = fk,0τ1,τ2,u1,u2

(ω1, ω2) := fkτ1,τ2,u1,u2(ω1, ω2)

for each k ∈ Z and each non negative number r ≥ −k.

Note that the condition (LR) is a generalization of condition (L) accross replicates.

3.4 Construction of the estimator

In this section we build an estimation procedure for the rescaled spatio-temporal Loève

spectrum fτ1,τ2,u1,u2(ω1, ω2). We define wu(s) the two-dimensional kernel function which

allows us to rescale in space and the one-dimensional kernel function Wτ (·) that acts as a

window for time localization. For simplicity we consider over space an isotropic kernel of

the form

wu(s) := wu1(s1)wu2(s2),

where u = (u1, u2) and s = (s1, s2) and

wu(si) :=
1

Sih
w

(
ui − si/Si

h

)
,

for u ∈ (0, 1), h → 0 as S1, S2 → ∞. Moreover, the window for time localization is of the

form

Wτ (t) :=
1

T~
W

(
τ − t/T

~

)
,

for τ ∈ (0, 1), ~→ 0 as T →∞.

We assume that the kernel functions w(·) : R → [0,∞) and Wτ (·) are symmetric non-

negative with support contained in [−1, 1] and such that
∫ 1

−1w(u)du = 1 and
∫ 1

−1W (u)du =

14



1. Moreover we assume that they are piecewise Lipschitz-continuous in the sense that there

exist k, k′ ∈ N, u1, . . . , uk ∈ [−1, 1] and τ1, . . . , τk′ ∈ [−1, 1] such that w(·) and W (·) are

Lipschitz-continuous on each interval (uj, uj+1); 1 ≤ j ≤ k − 1 and (τj′ , τj′+1); 1 ≤ j′ ≤

k′ − 1, respectively.

We define the dual-frequency periodogram of the r-th replicate between times t1 and t2,

spatial locations s1, s2, at frequencies ω1, ω2 and over a time-window of size N as

IT,S,N,rt1,t2,s1,s2
(ω1, ω2) :=

1

4π2
dT,S,N,rt1,s1

(ω1) d
T,S,N,r
t2,s2

(ω2),

where

dT,S,N,rt,s (ω) :=
t+N−1∑
k=t−N

XT,S,r
k (s) e−iωk =

N−1∑
k=−N

XT,S,r
k+t (s) e−iω(k+t)

is the Fourier transform of the r-th replicate at location s and time moment t.

In order to estimate the time-varying Loève spectrum, we considered (local) windows

around the time points of interest. We define the time-varying Loève spectrum of the

observations XT,S
t (s) by taking the window length equal to an integer multiple of M in

order to ensure the identifiability of the frequencies.

Let

f̂T,S,N,Rt1,t2,s1,s2
(ω1, ω2) :=

1

R

R∑
r=1

IT,S,N,rt1,t2,s1,s2
(ω1, ω2) .

The estimator of fτ1,τ2,u1,u2(ω1, ω2) is defined as follows

f̃T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2) :=

∑
t1

∑
t2

∑
s1

∑
s2

Wτ1(t1)Wτ2(t2)wu1(s1)wu2(s2)f̂
T,S,N,R
t1,t2,s1,s2

(ω1, ω2) .

From now on, for the sake of simplicity, when there is no possibility of confusion, we

denote f̃T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2) by f̃R1,2 (ω1, ω2), and fτ1,τ2,u1,u2(ω1, ω2) by f1,2(ω1, ω2). Moreover,
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let us denote

d̃ri (ω) = d̃T,S,N,rτi,ui
(ω) :=

∑
ti

∑
si

Wτi(ti)wui(si)d
T,S,r
ti,si

(ω)

=
∑
ti

∑
si

Wτi(ti)wui(si)

ti+N−1∑
ki=ti−N

XT,S,r
ki

(si) e
−iωki ,

where i = 1, 2. Then the estimator f̃R1,2 (ω1, ω2) can be equivalently expressed as

f̃R1,2 (ω1, ω2) =
1

R

R∑
r=1

ĨT,S,N,rτ1,τ2,u1,u2
(ω1, ω2) =

1

4π2R

R∑
r=1

d̃r1 (ω1) d̃r2 (ω2), (9)

where the space and time smoothed periodogram ĨT,S,N,rτ1,τ2,u1,u2
(ω1, ω2) is defined by

Ĩr1,2(ω1, ω2) = ĨT,S,N,rτ1,τ2,u1,u2
(ω1, ω2) :=

1

4π2
d̃r1 (ω1) d̃r2 (ω2). (10)

The rescaled time-varying spatial coherence is defined as

ρτ1,τ2,u1,u2 (ω1, ω2) :=

∣∣∣fτ1,τ2,u1,u2 (ω1, ω2)
∣∣∣2

fτ1,τ1,u1,u1 (ω1, ω1) fτ2,τ2,u2,u2 (ω2, ω2)
, (11)

and its estimator is of the form

ρ̃T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2) :=

∣∣∣f̃T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2)

∣∣∣2
f̃T,S,N,Rτ1,τ1,u1,u1 (ω1, ω1) f̃

T,S,N,R
τ2,τ2,u2,u2 (ω2, ω2)

. (12)

3.5 Asymptotic properties

In the sequel, we exhibit some important properties of our estimation procedure starting

with the convergence in quadratic mean and the asymptotic normality. All the proofs are

deferred to the companion document.

In the following any complex number z is treated as a vector of its real and imaginary

parts, i.e., z = (<z,=z)′.
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3.5.1 Convergence in quadratic mean

Theorem 3.1. (Convergence in quadratic mean)

Under conditions (F), (LC), (M) and (B) the estimator f̃T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2) (see equation (9))

satisfies

lim
R→∞

f̃T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2) = fτ1,τ2,u1,u2(ω1, ω2) in quadratic mean,

for ωi = πki
M

, k1 = −M, . . . ,M−1, i = 1, 2, provided that N = nM , as well as R−1N4, (S1+

S2)h
2, T~2 →∞, n2(S1S2T )−1 → 0 and n2(h+ ~), n3T−1 → 0 as T, S1, S2 →∞, h, ~→ 0

independently of the behavior of n > 1.

Lemma 3.1. Assume that conditions (LR), (SR) and (F) are satisfied as well as the

condition ∑
k∈Z

∣∣∣fkτj ,τj′ ,uj ,uj′ (ωj, ωj′)∣∣∣ <∞.
Then,

lim
R→∞

RCov
(
f̃R1,2 (ω1, ω2) , f̃

R
3,4 (ω3, ω4)

)
=
∑
k∈Z

(
fkτ1,τ3,u1,u3(ω1, ω3)f

k
τ2,τ4,u2,u4

(−ω2,−ω4) + fkτ1,τ4,u1,u4(ω1,−ω4)f
k
τ2,τ3,u2,u3

(−ω2, ω3)
)

for any ωj, τj, j = 1, . . . , 4 and for any rescaled spatial locations u1, . . . , u4, provided that

RN2

(
1

S1S2T
+ h+ ~ +

N

T

)
→ 0, R, S1, S2, T →∞.

Thus, we have,

lim
R→∞

RVar
(
f̃R1,2 (ω1, ω2)

)
=
∑
k∈Z

(
fkτ1,τ1,u1,u2(ω1, ω1)f

k
τ2,τ2,u2,u2

(−ω2,−ω2) + fkτ1,τ4,u1,u2(ω1,−ω2)f
k
τ2,τ1,u2,u1

(−ω2, ω1)
)
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From the equality (9) and because the observed process
{
XS

t

}
is real-valued, we remark

that f̃R1,2 (ω1, ω2) coincides with f̃R1,2 (−ω1,−ω2) and

<f̃R1,2 (ω1, ω2) =
1

2

(
f̃R1,2 (ω1, ω2) + f̃R1,2 (−ω1,−ω2)

)
=f̃R1,2 (ω1, ω2) =

1

2i

(
f̃R1,2 (ω1, ω2)− f̃R1,2 (−ω1,−ω2)

)
.

Then we can compute the elements of the covariance matrix of f̃R1,2 (ω1, ω2). Hence

Var
(
<f̃R1,2 (ω1, ω2)

)
=

1

2

(
Var

(
f̃R1,2 (ω1, ω2)

)
+ <Cov

(
f̃R1,2 (ω1, ω2) , f̃

R
1,2 (−ω1,−ω2)

))
,

Cov
(
<f̃R1,2 (ω1, ω2) ,=f̃R1,2 (ω1, ω2)

)
=

1

2
=Cov

(
f̃R1,2 (ω1, ω2) , f̃

R
1,2 (−ω1,−ω2)

)
,

Var
(
=f̃R1,2 (ω1, ω2)

)
=

1

2

(
Var

(
f̃R1,2 (ω1, ω2)

)
−<Cov

(
f̃R1,2 (ω1, ω2) , f̃

R
1,2 (−ω1,−ω2)

))
.

These formulas and the Lemma 3.1 are used to derive the form of the covariance matrix of

the limit distribution of
√
Rf̃R1,2 (ω1, ω2) as R→∞.

Let us introduce some additional notations that we use to formulate the multivariate central

limit theorem hereafter

f̃
T,S,N,R

:=

((
f̃T,S,N,Rτ1,1,τ2,1,u1,1,u2,1

(ω1,1, ω2,1)
)′
, . . . ,

(
f̃T,S,N,Rτ1,k,τ2,k,u1,k,u2,k

(ω1,k, ω2,k)
)′)′

,

f :=

((
fτ1,1,τ2,1,u1,1,u2,1 (ω1,1, ω2,1)

)′
, . . . ,

(
fτ1,k,τ2,k,u1,k,u2,k (ω1,k, ω2,k)

)′)′
,

where k is some positive integer and τj,l ∈ [0, 1], uj,l ∈ [0, 1]2, ωj,l ∈ (−π, π], j = 1, 2, l =

1, . . . , k.

Theorem 3.2. Assume that the time-spatial random arrays
{
XS,r

t : t = 0, . . . , T, r = 1, . . . , R
}

,

R ≥ 1, are Gaussian (condition (GR)), stationary with respect to r (condition (SR)). As-

sume also that conditions (LR), (F) and (M) are satisfied as well as the conditions

sup
t,s,S

E
(∣∣XS

t (s)
∣∣4+2δ

)
<∞ and

∑
k

αX(k)δ/(2+δ) <∞
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for some δ > 0, and ∑
k∈Z

∣∣∣fkτj ,τj′ ,uj ,uj′ (ωj, ωj′)∣∣∣ <∞.
Then

lim
R→∞

L
(√

R
(
f̃
T,S,N,R − f

))
= N2k (0,Σ2k) ,

where the components of the variance (2k×2k)-matrix Σ2k = Σ(ω1,1,ω2,1,...,ω1,k,ω2,k)
τ1,1,τ2,1,...,τ1,k,τ2,k,u1,1,u2,1,...,u1,k,u2,k

can be computed from Lemma 3.1.

Corollary 3.1. Under conditions of Theorem 3.2

√
R
(
ρ̃T,S,N,Rτ1,τ2,u1,u2

(ω1, ω2)− ρτ1,τ2,u1,u2 (ω1, ω2)
)

=⇒ N (0, γ2), (13)

provided that fτ1,τ1,u1,u1 (ω1, ω1) fτ2,τ2,u2,u2 (ω2, ω2) 6= 0.

Here γ2 = (∇(ω1,ω2)
τ1,τ2,u1,u2)Σ6(∇(ω1,ω2)

τ1,τ2,u1,u2)
′, where ∇ denotes the gradient operator. The vari-

ance 6 × 6-matrix Σ6 is given in Theorem 3.2, with k = 3, τ1,1 = τ2,1 = τ1,3 = τ1, τ1,2 =

τ2,2 = τ2,3 = τ2, u1,1 = u2,1 = u1,3 = u1, u1,2 = u2,2 = u2,3 = u2, ω1,1 = ω2,1 = ω1,3 = ω1,

and ω1,2 = ω2,2 = ω2,3 = ω2. Moreover,

∇(ω1,ω2)
τ1,τ2,u1,u2

=

(
−
∣∣fτ1,τ2,u1,u2 (ω1, ω2)

∣∣2(
fτ1,τ1,u1,u1 (ω1, ω1)

)2
fτ2,τ2,u2,u2 (ω2, ω2)

, 0 ,
−
∣∣fτ1,τ2,u1,u2 (ω1, ω2)

∣∣2
fτ1,τ1,u1,u1 (ω1, ω1)

(
fτ2,τ2,u2,u2 (ω2, ω2)

)2 ,
0 ,

2<fτ1,τ2,u1,u2 (ω1, ω2)

fτ1,τ1,u1,u1 (ω1, ω1) fτ2,τ2,u2,u2 (ω2, ω2)
,

2=fτ1,τ2,u1,u2 (ω1, ω2)

fτ1,τ1,u1,u1 (ω1, ω1) fτ2,τ2,u2,u2 (ω2, ω2)

)′
.

3.6 Bootstrap approach

Using Corollary 3.1 one may construct confidence interval for spatial time-varying dual-

frequency coherence ρτ1,τ2,u1,u2 (ω1, ω2). However, since the asymptotic variance γ2 de-

pends on unknown parameters, it is in practice very difficult to estimate. Thus, we
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present below a bootstrap approach that allows to obtain consistent confidence intervals

for ρτ1,τ2,u1,u2 (ω1, ω2).

Let us recall that
{
XS,r
t (s)

}
is stationary in r and nonstationary in t. We will bootstrap

our observations in replicates not in time. For that purpose we use the Circular Block

Bootstrap (CBB) of Politis and Romano (1992). The CBB is a modification of the Moving

Block Bootstrap method (Künsch (1989), Liu and Singh (2018)), which allows to reduce

bias of the bootstrap estimator. Below we present how to adapt the CBB algorithm to our

problem.

Let us recall that we have R replicates of
{
XS

t

}
=
{
XS
t (s)

}
, which we denote by X(r) ={

XS,r
t (s)

}
, r = 1, . . . , R. Moreover, let Bi, i = 1, . . . , R be the block of replicates from our

sample
(
X(1), . . . ,X(R)

)
, that starts with replicate X i and has the length b ∈ N, i.e.

Bi :=
(
X(i), . . . ,X(i+b−1)

)
.

If i+b−1 > R then the missing part of the block is taken from the beginning of the sample

and we get

Bi =
(
X(i), . . . ,X(R),X(1), . . . ,X(b−R+i−1)

)
for i = R− b+ 2, . . . , R.

CBB algorithm

1. Choose a block size b < R. Then our sample
(
X(1), . . . ,X(R)

)
can be divided into l

blocks of length b and the remaining part is of length r, i.e. R = lb+r, R = 0, . . . , b−1.

2. From the set {B1, . . . , BR} choose randomly with replacement l + 1 blocks.
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3. Join the selected l + 1 blocks (B∗1 , . . . , B
∗
l+1) and take the first R observations to get

the bootstrap sample
(
X∗(1), . . . ,X∗(R)

)
of the same length as the original one.

We apply the CBB to get bootstrap estimators of fτ1,τ2,u1,u2 (ω1, ω2) and ρτ1,τ2,u1,u2 (ω1, ω2)

and finally to be able to construct confidence intervals for these characteristics. We use the

bootstrap algorithm described above. The bootstrap version of f̃T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2) is of the

form

f̃ ∗,R1,2 (ω1, ω2) = f̃ ∗,T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2) =

1

R

R∑
r=1

Ĩ∗,r1,2 (ω1, ω2) (14)

=
1

4π2R

R∑
r=1

d̃∗,r1 (ω1) d̃
∗,r
2 (ω2), (15)

where for i = 1, 2,

d̃∗,ri (ω) = d̃∗,T,S,N,rτi,ui
(ω) :=

∑
ti

∑
si

Wτi(ti)wui(si)d
∗,T,S,r
ti,si

(ω)

=
∑
ti

∑
si

Wτi(ti)wui(si)

ti+N−1∑
ki=ti−N

X∗,T,S,rki
(si) e

−iωki .

3.6.1 Bootstrap consistency

Below we state the consistency of our bootstrap approach for the spatial time-varying dual-

frequency coherence function. The bootstrap estimator of the spatial coherence is defined

as

ρ̃∗,T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2) :=

∣∣∣f̃ ∗,T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2)

∣∣∣2
f̃ ∗,T,S,N,Rτ1,τ1,u1,u1 (ω1, ω1) f̃

∗,T,S,N,R
τ2,τ2,u2,u2 (ω2, ω2)

.

21



Theorem 3.3. Under conditions of Theorem 3.2 and assuming that b−1 +R−1b = o(1) the

CBB is consistent i.e.,

sup
x∈R

∣∣∣∣∣∣∣P ∗
√R

ρ̃∗,T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2)−

(
E∗<

(
f̃
∗,T,S,N,R
τ1,τ2,u1,u2 (ω1, ω2)

))2
+
(

E∗=
(
f̃
∗,T,S,N,R
τ1,τ2,u1,u2 (ω1, ω2)

))2
E∗
(
f̃
∗,T,S,N,R
τ1,τ1,u1,u1(ω1, ω1)

)
E∗
(
f̃
∗,T,S,N,R
τ2,τ2,u2,u2(ω2, ω2)

)
 ≤ x


−P

(√
R
(
ρ̃T,S,N,Rτ1,τ2,u1,u2

(ω1, ω2)− ρτ1,τ2,u1,u2 (ω1, ω2) ≤ x
))∣∣∣ p−→ 0 as R −→∞.

While applying block bootstrap a natural question that appears concerns the choice of the

block length. In the case of stationary sequences this problem is well investigated (see

Lahiri (2003)). It is well known that for the CBB the optimal block length obtained by

minimization of the mean squared error of the bootstrap estimator is b = O(R1/3) (see

Theorem 5.4 in Lahiri (2003)).

4 Real Data Analysis

In order to illustrate the previously developed methodology, we apply it to a real data set

that has been collected in order to assess the VWM performance of subjects. We will use

our method to potentially identify specific patterns in the dynamic functional connectivity

related to the capacity of the VWM.

4.1 Experiment and data analysis pipeline

The experiment consists in the following three steps (an illustration is provided in Section 2

of the Companion document):

• memory set: a patient is placed in front of a computer screen. An arrow appears and

the patient has 2 seconds to memorize its orientation and color,
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• retention time: then a blank screen appears for 0.3 seconds, for the next 0.1 second

many arrows appear to knock out the immediate memory, then a blank screen appears

again for 0.9 second,

• memory test: finally, the patient, using a joystick, has to reproduce the orientation

and the color of the arrow. This final step lasts 1.7 seconds.

Notice that the RGB color scale is presented to the patient on a circle. Henceforth we

compute the VWM error for both orientation and color as an angle between the true one

and the patient guess. The set of bivariate measures of the errors is denoted hereafter as

{y(r) ∈ (0, 2π]2, r = 1, . . . , R}.

While the patient is performing these tasks the EEG traces are recorded. We use a standard

Hydrocel geodesic sensor with 128 electrodes that are placed on the scalp of a patient at

specific spatial locations. These electrodes record the electric potential (in micro-volts)

over the time at a sampling rate of 256 Hz. The test is replicated 2400 times.

Once the data are collected, we apply the standard preprocessing pipeline (see Bigdely-

Shamlo et al. (2015)) to remove eye blink and eye movement, for filtering. . . Notice that

the Hydrocel localization has been converted to the 10-10 standard to be used with the R

package EEGkit (Helwig, 2018).

Hereafter, we denote the set of replicated spatially localized EEG traces as {XS,r
t (s) , s ∈

M, r = 1, . . . , R}, whereM is the set of the projected coordinates of the electrodes on the

two-dimensional plane.

In the sequel, we consider the two following frequency bands α and β ([7.5, 12.5]-Hz and

[12.5, 20]-Hz., respectively), denoted as Ωα and Ωβ.

Following the description of our method and its theoretical performances, it is clear that

the estimation of the spatial time-varying dual-frequency Loève spectrum relies on pooling
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information from many replicated time series. Hence, in order to identify specific patterns

in the STVDF Loève spectrum accordingly to the VWM performance we propose the

following data analysis pipeline:

• perform unsupervised clustering of the EEG traces accordingly to the response vari-

ables,

• within each cluster of the corresponding EEG traces, we perform the estimation of

the spatial time-varying dual-frequency coherence function.

4.2 Clustering with toroidal mixture

The Figure 2 represents the bivariate errors response for all replicates available for our

test subject. For practical purposes the distribution of the errors is centered around (π, π)

rather than (0, 0). We observe seemingly more precise quality of memorization for color

than for angles. We fit an L components mixture of bivariate wrapped normal distributions

using the ”BAMBI” R package(Chakraborty and Wong, 2019, 2018). The mixture density

is given by:

f(y|p1, . . . , pL−1; θ1, . . . , θL) =
L∑
l=1

plfWN(y|θl)

fWN(y|θl) = fWN(.|µl,Σl) =

√
κ1κ2 − κ3

2π

∑
(ω1,ω2)∈Z2

exp

{
−1

2

{
κ1,l(y1 − µ1,l − 2πw1)

2

+κ2,l(y2 − µ2,l − 2πω2)
2 + 2κ3,l(y1 − µ1,l − 2πw1)(y2 − µ2,l − 2πω2)

}}
,
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where L is an unknown number of components, pl are such that
∑L

l=1 pl = 1, y1, y2, µ1,l, µ2,l ∈

[0, 2π), κ1,l, κ2,l > 0, κ23,l ≤ κ1,lκ2,l and

∆l =

 κ1,l κ3,l

κ3,l κ2,l

 .

We found out that a mixture model with L = 2 components gives a satisfying classification

as testified on the Figure 2. Table (1) summarizes the parameter estimates. The first

component (colored in red) represents ’poor’ memorization capacity and concerns about

10 percent of the available replicates. The second component (colored in green) is nicely

centered around π showing that on the average the memorization is unbiased for both colors

and angles. The precision parameters κ’s show much lower precision for orientation errors.

This is probably due to the additional mass observed around 0 and 2π which presumably

corresponds to guessed values for which the patient recalled well the direction but inverted

the orientation. An interesting follow up study could focus on studying clusters of replicates

accordingly to the orientation inversion or not. Nevertheless, only a few replicates are

concerned so that the estimation of the coherence function cannot be precisely done with

this dataset.
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Parameters Component 1 Component 2

p 0.093 (0.082, 0.11) 0.91 (0.89, 0.92)

κ1 0.31 (0.097, 0.61) 2.60 (2.60, 2.60)

κ2 0.00029 (1e-04, 7e-04) 16.75 (16.75, 16.75)

κ3 -1.73 (-1.95, -1.58) 2e-04 (2e-04, 2e-04)

µ1 4.91 (4.64, 5.11) 3.14 (3.14, 3.14)

µ2 4.64 (4.53, 4.77) 3.16 (3.16, 3.16)

Figure 1: Parameters of the mixture of bivariate wrapped-normal distributions
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Figure 2: Angular errors associated to each replicates; x-axis: arrow orientation error; y-

axis: arrow color error. The elements part of the first and second component mixture are

in red and blue.
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4.3 Two-stages procedure for label-specific estimation of the spa-

tial time-varying dual-frequency coherence

In our approach we are dealing with a eight dimensional coherence function and our method-

ology involves bootstrapping over the replicated time-spatial random arrays. This seems

obviously to be a computationally cumbersome approach. Nevertheless, the specific char-

acteristics of our data analysis reduces significantly the computational demand. First, we

estimate a coherence, which is basically a correlation coefficient, therefore we are only in-

terested in ”large” values. Second, in EEG data analysis we are interested in estimating

the coherence between a few frequency bands that are of interest. Moreover, from a neuro-

physiological stand point it is reasonable to assume that the brain connectivity is sparse at

each time of observation. Third, the spatial smoothing ensure pooling information across

space but ultimately we are only interested in initial locations sampling of our EEG elec-

trodes. Finally, we will not evaluate the coherence across two different time points τ1, τ2.

These facts suggest to design a two-stage method as described below and which makes our

methodology computationally feasible:

• compute the spatial time-varying dual-frequency coherence ρ̃T,S,N,Rτ,τ,u1,u2
(Ω1,Ω2),

• apply the bootstrap method only for spatial and time points of interest, i.e., when

the estimate ρ̃T,S,N,Rτ,u1,u2
(Ω1,Ω2) is above a user-specific threshold value.

Our final step is to built connectivity matrices which relate different spatial locations at

a time point and for a given combination of frequency bands. From these matrices we

construct sequence of graphs as one of displayed in the Figure 3. The lines are drawn in

between locations for which the lower limit of the left-sided bootstrap confidence interval for
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the dual-frequency coherence passes over a predefinite threshold value of 0.3. The graphs

represent the connectivity estimated from the set of replicates related to poor (left-hand

side) and to good (right-hand side) VWM capacity. A sequence of these graphs at different

time points is presented in the Section 4 of the companion document. It allows us to

capture the dynamics of the (dual-frequency)-dependent functional connectivity.

More specifically, we observe that the persistence of connections in the first stage of the

experiment, corresponding to ’memory set’, between the α − β frequency bands in the

prefrontal cortex (channels: FP1, FPZ, FP2), lasts on much longer period for the group 2

than for the group 1. That is when the replicate results in lower VWM errors. Our results

are consistent with other known results that highlight the role of the prefrontal cortex

for encoding task relevant information in working memory tasks (Lara and Wallis (2015);

Funahasi (2017)). Our results additionally suggest that the functional connectivity occurs

at different oscillating frequencies.
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Figure 3: Estimated functional connections between α and β frequency bands associated

to poor VWM results (left-side graph), to good VWM results (right-side graph).

Remark 4.1. In our analysis we choose the block length in the CBB step to be b = 3
√
R.

The size of the Fourier window along the time is chosen in an ad hoc way to ensure the

estimability of the frequency bands of interest and to preserve a reasonable time resolution.

5 Conclusions

We proposed a method for dual-frequency coherence estimation based on replicated, spa-

tially localized time-varying harmonizable time series. We showed the ability of this method

to describe the dynamic functional connectivity across different frequencies of EEG time

series. Our study reveals different alpha-beta connectivity patterns in the prefrontal cortex
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during the memorization stage of the experiment that may be related to the capacity of

the visual working memory.

SUPPLEMENTARY MATERIAL

Companion Document: Contains some connectivity graphs and all proofs of the paper.

For pedagogical purposes we provided all detailed proofs in the particular case of

location dependent Loève spectrum estimation. (pdf file)
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