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In this companion document we give in the first two sections complementary information on
the experiment and on an assumption used to derived our theoretical results. In Section 3
we give all the proofs of the results appearing in the paper. Finally, in Section 4, for ped-
agogical purposes, we provide the detailed proofs in the case of spatial time-harmonizable
process.

1 Illustration of the experiment designed in order to

assess the VWM capacity

2 Remark on the conditions (L) of Section 3.3

In Section 3.3 we assume the condition (L) on the spectrum. It could be replaced by a
condition on the covariance:

(LC) There exists a function C : [0, 1]6 × Z2 → R which is Lipschitz-continuous with
respect to the space and the time components uniformly on the frequency components,
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tasks within subsidy of Ministry of Science and Higher Education.
†Denes Scuzs and Lincoln Colling are funded by James S. McDonnell Foundation 21st Century Science

Initiative in Understanding Human Cognition (grant number 220020370; received by Denes Scuzs).
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that is there exists some constant L > 0 such that for each u1, u2, u3, u4,∈ [0, 1]2,
τ1, τ2 ∈ [0, 1] and each k1, k2 ∈ Z,∣∣Cτ1,τ2,u1,u2(k1, k2)− Cτ3,τ4u3,u4(k1, k2)∣∣ ≤ L (|τ1 − τ3|+ |τ2 − τ4|+ ‖u1 − u3‖+ ‖u2 − u4‖) ,

(1)
and there exists some constant Q > 0 such that∣∣∣CT,S,N

s1,s2
(t1 + k1, t2 + k2)− Cẗ1,ẗ2,s̈1,s̈2(k1, k2)

∣∣∣ ≤ Q

S1S2T
, (2)

for any k1, k2 = 0,±1, . . . ,±N , where si = (si,1, si,2), s̈i = (si,1/S1, si,2/S2), ẗi =
ti/T, i = 1, 2.

N fixed or going to ∞ with some rate.

3 Proofs for the location dependent time-varying case

We start with properties of the kernel that are used later in the document to prove prop-
erties of our estimators.
Let us recall that the kernel w(·) is bounded and piecewise Lipschitz and supp(w(·) ⊂
[−1, 1]. Thus, there are k = kw ∈ N, 0 = u1 < · · · < uk such that w(·) is Lipschitz on each
interval (uj, uj+1). This includes the rectangular kernel, as well as the triangular kernel.

3.1

Lemma 1 (1). For S = 1, 2, . . .

1

Sh

S∑
s=1

w

(
u− s/S

h

)
= 1 +O

(
1

Sh2

)
uniformly with respect to u such that h ≤ u ≤ 1− h.

Proof. Notice that

S∑
s=1

1

Sh
w

(
u− s/S

h

)
=

1

h

∫ 1

0

w

(
u− v
h

)
dv +

1

h

S∑
s=1

∫ s
S

s−1
S

(
w

(
u− s/S

h

)
− w

(
u− v
h

))
dv.
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Note that for h ≤ u ≤ 1− h

1

h

∫ 1

0

w

(
u− v
h

)
dv = 1.

Next for each v, (s− 1)/S ≤ v ≤ s/S

1

Sh

∣∣∣∣w(u− s/Sh

)
− w

(
u− v
h

)∣∣∣∣ ≤ 1

S2h2

except for a finite number of s that is bounded by kw (which is defined above Lemma 1)
and which does not depend on u and on S. In any case

1

Sh

∣∣∣∣w(u− s
S

h

)
− w

(
u− v
h

)∣∣∣∣ ≤ 2 supxw(x)

Sh
= o

(
1

Sh2

)
(because h→ 0). Hence

1

h

S∑
s=1

∫ s
S

s−1
S

(
w

(
u− s/S

h

)
− w

(
u− v
h

))
dv ≤ 1

Sh2
+ kw ×

2 supxw(x)

Sh
= O

(
1

Sh2

)
,

which completes the proof.

From Lemma 1, we deduce∑
s

wu(s) =

(
1 +O

(
1

S1h2

))(
1 +O

(
1

S2h2

))
= 1 +

1

h2
O
(

1

S2

+
1

S2

)

uniformly with respect to h � u � 1− h, S1h
2, S2h

2 →∞.

To get the uniformity with respect to u varying in [0, 1]× [0, 1], it suffices choose the kernel
function w(·) with a compact support which is a subset of the open interval (0, 1).

3.2 Proof of Theorem 3.1

From Lemma 2 and Lemma 3 hereafter we readily deduce Theorem 3.1.
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Lemma 2. (Limit of the expectation)

Under conditions (F) and (LC), the expectation E
(
f̃T,S,N,Rτ1,τ2,u1,u2

(ω1, ω2)
)

does not depend on

R and converges to f
(ω1,ω2)
τ1,τ2,u1,u2, for ωi = πki

M
, k1 = −M, . . . ,M − 1, i = 1, 2, provided that

N = nM , as well as (S1 + S2)h
2, T~2 → ∞, n2(S1S2T )−1 → 0 and n2(h + ~), n3T−1 → 0

as T, S1, S2 →∞, h, ~→ 0 whatever is the behaviour of n > 1.

Proof.
Let τ1, τ2, u1, u2, ω1, ω2 be fixed. From the definitions of f̃R1,2 (ω1, ω2), d̃

r
1(ω1) and d̃r2(ω2), we

have

4π2E
(
f̃R1,2 (ω1, ω2)

)
= E

(
d̃r1 (ω1) d̃r2 (ω2)

)
=
∑
t1

∑
t2

∑
s1

∑
s2

Wτ1(t1)Wτ2(t2)wu1(s1)wu2(s2)

×
t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

E
(
XT,S,r
k1

(s1)X
T,S,r
k2

(s2)
)
e−i(ω1k1−ω2k2).

Note that
CT,S
s1,s2

(k1, k2) = E
(
XT,S,r
k1

(s1)X
T,S,r
k2

(s2)
)

does not depend on r. Recall that

CT,S
s1,s2

(t1, t2) =
π2

N2

N−1∑
j1=−N

N−1∑
j2=−N

fT,S,Nt1,t2,s1,s2

(
ω
(N)
j1
, ω

(N)
j2

)
e
i
(
ω
(N)
j1

t1−ω(N)
j2

t2
)
. (3)

This entails

E
(
f̃R1,2 (ω1, ω2)

)
=

1

4N2

∑
t1

∑
t2

∑
s1

∑
s2

Wτ1(t1)Wτ2(t2)wu1(s1)wu2(s2)

×
t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

N−1∑
j1=−N

N−1∑
j2=−N

fT,S,Nk1,k2,s1,s2

(
ω
(N)
j1
, ω

(N)
j2

)
e
i
(
ω
(N)
j1

k1−ω(N)
j2

k2
)
e−i(ω1k1−ω2k2).(4)

Since ∣∣∣f (ω1,ω2)
τ1,τ2,u1,u2

− f (ω1,ω2)
τ3,τ4u3,u4

∣∣∣ ≤ L (|τ1 − τ3|+ |τ2 − τ4|+ ‖u1 − u3‖+ ‖u2 − u4‖) , (5)
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and there exists some constant Q > 0 such that∣∣∣fT,S,Nt1,t2,s1,s2
(ω1, ω2)− fẗ1,ẗ2,s̈1,s̈2(ω1, ω2)

∣∣∣ ≤ Q

S1S2T
, (6)

we have

fT,S,Nk1,k2,s1,s2

(
ω
(N)
j1
, ω

(N)
j2

)
= fk̈1,k̈2,s̈1,s̈2(ω

(N)
j1
, ω

(N)
j2

) +O
(

1

S1S2T

)
= fτ1,τ2,u1,u2(ω

(N)
j1
, ω

(N)
j2

) +O
(

1

S1S2T

)
+O(h) +O(~) +O

(
N

T

)
for |τi − ẗi| ≤ ~, |ti − ki| ≤ N and ‖ui − s̈i‖ ≤ h, i = 1, 2. Hence

E
(
f̃R1,2 (ω1, ω2)

)
=
∑
t1

∑
t2

∑
s1

∑
s2

Wτ1(t1)Wτ2(t2)wu1(s1)wu2(s2)

× 1

4N2

t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

N−1∑
j1=−N

N−1∑
j2=−N

(
fτ1,τ2,u1,u2(ω

(N)
j1
, ω

(N)
j2

) +O
(

1

S1S2T

)
+O(h) +O(~) +O

(
N

T

))
e
i
(
ω
(N)
j1
−ω1

)
k1e
−i

(
ω
(N)
j2
−ω2

)
k2

=

(
1 +O

(
1

S1h2

))(
1 +O

(
1

S2h2

))(
1 +O

(
1

T~2

))2

×
(
fτ1,τ2,u1,u2(ω1, ω2) +

16N4

4N2

(
O
(

1

S1S2T

)
+O(h) +O(~) +O

(
N

T

)))

Above we used the fact that for k 6= 0

N−1∑
j=−N

e
iπjk
N = 0. (7)

Then we can refine Lemma 2 stating the rate of convergence.

Corollary 1. (Rate of convergence the expectation)
Under conditions (F) and (L),

lim
R→∞

√
R
(

E
(
f̃T,S,N,Rτ1,τ2,u1,u2

(ω1, ω2)
)
− fτ1,τ2,u1,u2(ω1, ω2)

)
= 0
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for ωi = πki
M

, ki = −M, . . . ,M − 1, i = 1, 2, provided that N = nM , as well as R(S−21 +
S−22 )h−4, RT−2~−4, Rn4(S1S2T )−2, Rn4(h2+~2), Rn6T−2 → 0, as T, S1, S2 →∞, h, ~→ 0,
independently of the behavior of n > 1.

Lemma 3. Assume that the mixing and boundedness assumptions (M) and (B) are satis-
fied. Then,

Var
(
f̃R1,2 (ω1, ω2)

)
≤ cN4

R
.

for all ω1, ω2 ∈ [−π, π]. Here c does not depend on R, T, S,N, τ1, τ2, u1u2, ω1, ω2.

Proof. First

Var
(
f̃R1,2 (ω1, ω2)

)
=

1

R2

R∑
r1=1

R∑
r2=1

Cov
(
Ĩr11,2(ω1, ω2), Ĩ

r2
1,2(ω1, ω2)

)
.

From (M) and (B) we have

16π4
∣∣∣Cov

(
Ĩr11,2(ω1, ω2), Ĩ

r2
1,2(ω1, ω2)

)∣∣∣ =
∣∣∣Cov

(
d̃r11 (ω1) d̃

r1
2 (ω2), d̃

r2
1 (ω1) d̃

r2
2 (ω2)

)∣∣∣
≤
∑
t1

∑
t2

∑
t3

∑
t4

∑
s1

∑
s2

∑
s3

∑
s4

Wτ1(t1)Wτ2(t2)Wτ3(t3)Wτ4(t4)

×wu1(s1)wu2(s2)wu3(s3)wu4(s4)

×
N−1∑
k1=−N

N−1∑
k2=−N

N−1∑
k3=−N

N−1∑
k4=−N

∣∣∣Cov
(
XT,S,r1
k1+t1

XT,S,r1
k2+t2

, XT,S,r2
k3+t3

XT,S,r2
k4+t4

)∣∣∣
≤ c

∑
t1

∑
t2

∑
t3

∑
t4

∑
s1

∑
s2

∑
s3

∑
s4

Wτ1(t1)Wτ2(t2)Wτ3(t3)Wτ4(t4)

×wu1(s1)wu2(s2)wu3(s3)wu4(s4)N
4α

δ
4+δ

X (|r1 − r2|).

Then

Var
(
f̃R1,2 (ω1, ω2)

)
≤ 1

R2

R∑
r1=1

R∑
r2=1

cN4α
δ

4+δ

X (|r1 − r2|)

≤ cN4

R

R−1∑
k=−R+1

(
1− |k|

R

)
α

δ
4+δ

X (|k|).

The lemma is proved.
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3.3 Proof of Lemma 3.1

Proof.

R2Cov
(
f̃R1,2 (ω1, ω2) , f̃

R
3,4 (ω3, ω4)

)
=

R∑
r1=1

R∑
r2=1

Cov
(
Ĩr1τ1,τ2,u1,u2(ω1, ω2), Ĩ

r2
τ3,τ4,u3,u4

(ω3, ω4)
)

=
1

16π4

R∑
r1=1

R∑
r2=1

Cov
(
d̃r11 (ω1) d̃

r1
2 (ω2), d̃

r2
3 (ω3) d̃

r2
4 (ω4)

)
.

Moreover,

Cov
(
d̃r11 (ω1) d̃

r1
2 (ω2), d̃

r2
3 (ω3) d̃

r2
4 (ω4)

)
= E

(
d̃r11 (ω1) d̃

r1
2 (ω2)d̃

r2
3 (ω3)d̃

r2
4 (ω4)

)
−E

(
d̃r11 (ω1) d̃

r1
2 (ω2)

)
E
(
d̃r23 (ω3)d̃

r2
4 (ω4)

)
.

Using the fact that observations are Gaussian we obtain

Cov
(
d̃r11 (ω1) d̃

r1
2 (ω2), d̃

r2
3 (ω3) d̃

r2
4 (ω4)

)
= E

(
d̃r11 (ω1) d̃

r2
3 (ω3)

)
E
(
d̃r12 (ω2)d̃

r2
4 (ω4)

)
+ E

(
d̃r11 (ω1) d̃

r2
4 (ω4)

)
E
(
d̃r12 (ω2)d̃

r2
3 (ω3)

)
.

Additionally, because of the finite number M of Fourier frequencies and the fact that we
choose N = nM .

E
(
d̃r11 (ω1) d̃

r2
3 (ω3)

)
=
∑
t1

∑
t3

∑
s1

∑
s3

Wτ1(t1)Wτ3(t3)wu1(s1)wu3(s3)

×
t1+N−1∑
k1=t1−N

t3+N−1∑
k3=t3−N

CT,S,r1,r2
s1,s3

(k1, k3) e
−i(ω1k1−ω3k3)

=
∑
t1

∑
t3

∑
s1

∑
s3

Wτ1(t1)Wτ3(t3)wu1(s1)wu3(s3)

× 1

4N2

t1+N−1∑
k1=t1−N

t3+N−1∑
k3=t3−N

N−1∑
j1=−N

N−1∑
j3=−N

fT,S,r1,r2k1,k3,s1,s3

(
ω
(N)
j1
, ω

(N)
j3

)
e
i
(
ω
(N)
j1
−ω1

)
k1e
−i

(
ω
(N)
j3
−ω3

)
k3 .
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Under condition (LR) we have

fT,S,r1,r2k1,k2,s1,s2
(ωj1 , ωj2) = f r1,r2τ1,τ2,u1,u2

(ωj1 , ωj2) +O
(

1

S1S2T

)
+O(h) +O(~) +O

(
N

T

)
We get that

E
(
d̃r11 (ω1) d̃

r2
3 (ω3)

)
=
∑
t1

∑
t3

∑
s1

∑
s3

Wτ1(t1)Wτ3(t3)wu1(s1)wu3(s3)

× 1

4N2

t1+N−1∑
k1=t1−N

t3+N−1∑
k3=t3−N

N−1∑
j1=−N

N−1∑
j3=−N

(
f r1,r2τ1,τ3,u1,u3

(ω
(N)
j1
, ω

(N)
j3

) +O
(

1

S1S2T

)
+O(h) +O(~) +O

(
N

T

))
e
i
(
ω
(N)
j1
−ω1

)
k1e
−i

(
ω
(N)
j3
−ω3

)
k3

=
∑
t1

∑
t3

∑
s1

∑
s3

Wτ1(t1)Wτ3(t3)wu1(s1)wu3(s3)

×
(
f r1,r2τ1,τ3,u1,u3

(ω1, ω3) +N2

(
O
(

1

S1S2T

)
+O(h) +O(~) +O

(
N

T

)))
=

(
1 +O

(
1

S1h2

))(
1 +O

(
1

S2h2

))(
1 +O

(
1

T~2

))2

×
(
f r1,r2τ1,τ3,u1,u3

(ω1, ω3) +N2

(
O
(

1

S1S2T

)
+O(h) +O(~) +O

(
N

T

)))
,

where ω1 and ω3 are Fourier frequencies.
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Under (SR) we get

R∑
r1=1

R∑
r2=1

E
(
d̃r11 (ω1) d̃

r2
3 (ω3)

)
× E

(
d̃r12 (ω2)d̃

r2
4 (ω4)

)
=

(
1 +O

(
1

S1h2

))2(
1 +O

(
1

S2h2

))2(
1 +O

(
1

T~2

))4

×
R−1∑

k=−R+1

(R− |k|)

×
(
fkτ1,τ3,u1,u3(ω1, ω3) +N2

(
O
(

1

S1S2T

)
+O(h) +O(~) +O

(
N

T

)))
×
(
fkτ1,τ3,u2,u4(ω2, ω4) +N2

(
O
(

1

S1S2T

)
+O(h) +O(~) +O

(
N

T

)))
.

This ends the proof.

3.4 Proof of Theorem 3.2

Theorem 3.2 is a direct consequence of application of the Cramér-Wold device to the
univariate asymptotic normality result that we deduce from the Corollary 1 and from the
Proposition 1 proved below.

Proposition 1.

Assume that the time-spatial random arrays
{
XS,r

t : t = 0, . . . , T, r = 1, . . . , R
}

, R ≥ 0,

are Gaussian (condition (GR)), stationary with respect to r (condition (SR)) and satisfy
condition (M) as well as

sup
t,s,S

E
(∣∣XS

t (s)
∣∣4+2δ)

<∞ and
∑
k

αX(k)δ/(2+δ) <∞

for some δ > 0. Then under the assumptions of Lemma 3.1, we have

lim
R→∞

L
(√

R
(
f̃R1,2(ω1, ω2)− E

(
f̃R1,2(ω1, ω2)

)))
= N2 (0,Σ2) ,

for any Fourier frequencies ω1, ω2. Here Σ2 = Σ(ω1,ω2)
τ1,τ2,u1,u2

is the limit variance (2×2)-matrix.
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Proof. To prove the convergence in distribution of the two-dimensional random vector

√
R
(
f̃R1,2 (ω1, ω2)− E

(
f̃R1,2 (ω1, ω2)

))
we use Cramér-Rao device. We show the asymptotic normality of

√
R (ηR − E (ηR)), where

ζR = a1<f̃R1,2 (ω1, ω2) + a2=f̃R1,2 (ω1, ω2)

for all real numbers a1 and a2. For the sake of simplicity, we take a1 = 1 and a2 = 0. Thus,

ζR = <f̃R1,2 (ω1, ω2) =
1

R

R∑
r=1

WR,r,

where the triangular random array WR,r := (2π)−2<
(
d̃r1 (ω1) d̃r2 (ω2)

)
, for r = 1, . . . , R,

R = 1, 2, . . . . Recall that T , S, ~ and h depend on R, and τ1, τ2, u1, u2, ω1, and ω2 are
fixed. As in Proposition 2 to get the asymptotic normality of

√
R (ζR − E (ζR)), we use

Theorem 3.3.1 from Guyon (1995) and hence we verify if the following conditions hold:

(i) supR maxr=1,...,R E
(
|WR,r|2+δ

)
<∞;

(ii) lim supR→∞
∑R−1

k=−R+1 αWR
(k)δ/(2+δ) <∞;

(iii) 1
R

Var
(∑R

r=1WR,r

)
−→ σ2 as R → ∞, where σ2 is the (1,1)-component of the vari-

ance 2× 2-matrix Σ2.

Since

d̃Ti (ω) =
∑
ti

∑
si

Wτi(ti)wui(si)
1√
N

ti+N−1∑
ki=ti−N

XT,S,r
ki

(si) e
−iωki ,

and N is fixed, the condition (i) is a direct consequence of Cauchy-Schwarz inequality,

the triangle inequality for metric and the hypothesis supt,s,R E

(∣∣∣XS,r
t (s)

∣∣∣4+2δ
)
<∞. Fur-

thermore, for each R we have that αWR
(k) ≤ αX(k) and hence the condition (ii) is a

consequence of the hypothesis
∑

k αX(k)δ/(2+δ) < ∞. Finally, condition (iii) is obtained
from Lemma 3.1.
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Theorem 1 (Asymptotic normality).

Assume that the time-spatial random arrays
{
XS,r

t : t = 0, . . . , T, r = 1, . . . , R
}

, R ≥ 1,

are Gaussian (condition (GR)), stationary with respect to r (condition (SR)). Assume also
Assume that conditions (LR), (F) and (M) are satisfied as well as the conditions

sup
t,s,S

E
(∣∣XS

t (s)
∣∣4+2δ

)
<∞ and

∑
k

αX(k)δ/(2+δ) <∞

for some δ > 0, and ∑
k∈Z

∣∣∣fkτj ,τj′ ,uj ,uj′ (ωj, ωj′)∣∣∣ <∞.
Then

lim
R→∞

L
(√

R
(
f̃Rτ1,τ2,u1,u2(ω1, ω2)− fτ1,τ2,u1,u2(ω1, ω2)

))
= N2

(
0,Σ(ω1,ω2)

τ1,τ2,u1,u2

)
,

for any Fourier frequencies ωi = 2πki
M

, ki = −M, . . . ,M − 1, provided that R(S−21 +
S−22 )h−4, RT−2~−4, Rn2(S1S2T )−1, Rn2(h + ~), Rn3T−1 → 0 as R, T, S1, S2 → ∞ and
h, ~→ 0, whatever is the behaviour of N = nM , n > 1.

Proof. Theorem is a direct consequence of Corollary 1 and Proposition 1.

3.5 Proof of Corollary 3.1

Proof. We apply the delta method (see e.g. van der Vaart (1998)) with the function φ :

((0,∞]× R)2 × R2 → R defined by φ(x1, y1, x2, y3, x3, y3) :=
x23+y

2
3

x1x2
. Indeed,

ρ̃T,S,N,Rτ1,τ2,u1,u2
(ω1, ω2) = φ

(
fT,S,N,R

)
where

fT,S,N,R =

((
f̃T,S,Ru1,u1

(ω1, ω1)
)′
,
(
f̃T,S,Ru2,u2

(ω2, ω2)
)′
,
(
f̃T,S,Ru1,u2

(ω1, ω2)
)′)′

.

Notice that as complex numbers, f̃T,S,Ruj ,uj
(ωj, ωj) = <f̃T,S,Ruj ,uj

(ωj, ωj) are real and non nega-
tive.
Since the gradient of the function φ is equal to

∇φ(x1, y1, x2, y2, x3, y3) =

(
−2(x23 + y23)

x21x2
, 0,
−2(x23 + y23)

x1x22
, 0,

2x3
x1x2

,
2y3
x1x2

)′
,

the convergence result given by the Corollary 3.1 is a direct consequence of Theorem 3.1
in van der Vaart (1998) and of Theorem 1.
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3.6 Proof of Theorem 3.2

Hereafter we state the bootstrap consistency and its multivariate version which are direct
application of Theorem 3.2 from Lahiri (2003).

We present first the notation for the multidimensional counterparts of f̃
T,S,R

and its ex-
pected value. By P ∗ and E∗ we denote the conditional probability and conditional expec-
tation given the sample. Let

f̃
∗,T,S,N,R

=
(
f̃ ∗,T,S,N,Rτ11,τ21,u11,u21

(ω11, ω21) , . . . , f̃
∗,T,S,N,R
τ1r,τ2r,u1r,u2r

(ω1r, ω2r)
)′

and

E∗
(
f̃
∗,T,S,N,R)

=
(

E∗
(
f̃ ∗,T,S,N,Rτ11,τ21,u11,u21

(ω11, ω21)
)
, . . . ,E∗

(
f̃ ∗,T,S,N,Rτ1r,τ2r,u1r,u2r

(ω1r, ω2r)
))′

.

Note that the bootstrap versions f̃ ∗,T,S,N,Rτ11,τ21,u11,u21
(ω11, ω21) , . . . , f̃

∗,T,S,N,R
τ1r,τ2r,u1r,u2r

(ω1r, ω2r) are con-
structed using the same bootstrap blocks (see step 2 of the CBB algorithm).

Theorem 2. Under assumptions of Theorem 3.2 and assuming that b−1 +R−1b = o(1) the
CBB is consistent i.e.,

sup
x∈R2

∣∣∣P ∗ (√R(f̃ ∗,R1,2 (ω1, ω2)− E∗
(
f̃ ∗,R1,2 (ω1, ω2)

))
≤ x

)
−P

(√
R
(
f̃R1,2 (ω1, ω2)− E

(
f̃R1,2(ω1, ω2)

))
≤ x

)∣∣∣ p−→ 0 as R −→∞.

Theorem 3. Under conditions of Theorem 2

sup
x∈R2r

∣∣∣P ∗ (√R(f̃ ∗,T,S,N,R − E∗
(
f̃
∗,T,S,N,R)) ≤ x

)
−P

(√
R
(
f̃
T,S,N,R − f

)
≤ x

)∣∣∣ p−→ 0 as R −→∞.

By P ∗ and E∗ we denote the conditional probability and conditional expectation given the
sample.
Then the Theorem 3.2 is an almost direct application of Theorem 4.1 in Lahiri (2003) for

the smooth function φ(x1, y1, x2, y3, x3, y3) =
x23+y

2
3

x1x2
and the sequence

1/(2π)2d̃T,S,N,ru1
(ω1) d̃

T,S,N,r
u2 (ω2), r = 1, . . . , R. We should just be aware that the mentioned

Theorem cannot be applied directly and requires a small adjustment. Indeed, Lahiri (2003)
assumes that the considered estimator is unbiased. In our problem this condition does not
hold (see equation 4 in the proof the Lemma 3.2 in the companion document), but one can
easily show that Theorem 4.1 holds in our problem.

13



4 Connectivity graphs

Estimated functional connections between α and β frequency bands associated to poor
VWM results (left-side graph), to good VWM results (right-side graph). Blue lines corre-
spond to coherence values in [0.3, 0.7); Red lines correspond to coherence values in [0.7, 1].
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5 Location dependent case

In this section, we define the spatial Loève spectrum and an estimation procedure which
smooths dual-frequency periodograms over the space using tensor kernels. This allows for
estimation of the spatial dual-frequency coherence.

Let
{
XS

t

}
=
{
XS

t , t ∈ Z
}

:=
{
XS
t (s), t ∈ Z, s ∈ {1, . . . , S1} × {1, . . . , S2}

}
, S := (S1, S2) ∈

{1, . . . }×{1, . . . }, be a family of time-harmonizable spatial (location-dependent) processes

XS
t (s) =

∫ π

−π
e−iωtdZS

s (ω) ,

such that

Cov
(
dZS

s1
(ω1) , dZ

S
s2

(ω2)
)

= fSs1,s2 (ω1, ω2) dω1dω2,

where fSs1,s2 (ω1, ω2) is the location-dependent Loève spectrum. We observe the process

XS
t (s) for t = 1, . . . , T in S1 × S2 different locations, i.e. s1 and s2 can take S1 and S2

different values, respectively: si = 1, . . . , Si for i = 1, 2.

Notice that the condition for time-harmonizability and existence of a two-dimensional spec-
tral density for second order spatial random processes is of the form∑

(t1,t2)∈Z2

∣∣∣CS
s1,s2

(t1, t2)
∣∣∣ <∞,

where CS
s1,s2

(t1, t2) designes the covariance between XS
t1(s1) and XS

t2(s2). Then the Loève
spectrum is a continuous function and coincides with

fSs1,s2 (ω1, ω2) =
1

4π2

∑
(t1,t2)∈Z2

CS
s1,s2

(t1, t2) e
−i(ω1t1−ω2t2).

We observe the time series on [0, T ] and hence we are going to estimate

f+,S
s1,s2

(ω1, ω2) :=
1

4π2

∑
(t1,t2)∈N2

CS
s1,s2

(t1, t2) e
−i(ω1t1−ω2t2).

Then for t1, t2 ≥ 0,

CS
s1,s2

(t1, t2) =

∫ π

−π

∫ π

−π
f+,S
s1,s2

(ω1, ω2) e
i(ω1t1−ω2t2)dω1dω2.

Let C+,S
s1,s2

(t1, t2) := Cs1,s2(t1, t2) for t1, t2 ≥ 0, and C+,S
s1,s2

(t1, t2) = 0 otherwise.
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5.1 Rescaling the space localisation

Following Gorrostieta et al. (2019) we make the assumption that fSs1,s2 (ω′1, ω
′
2) can be ap-

proximated by some function which is smooth with respect to the space components.

Notation Let S1, S2 = 1, . . . be fixed. For s = (s1, s2) ∈ {1, . . . , S1} × {1, . . . , S2} define
s̈ = (s̈1, s̈2) :=

(
s1
S1
, s2
S2

)
. For u ∈ [0, 1]2 denote u ∼ s̈ when s = (bu1S1c, bu2S2c). Hence

s1 ≤ u1S1 < s1 + 1 and s2 ≤ u2S2 < s2 + 1 or equivalently s̈1 ≤ u1 < s̈1 + 1/S1 and
s̈2 ≤ u2 < s̈2 + 1/S2.

(L) There exists a function f (+) : [0, 1]4 × [−π, π)2 → C, which is Lipschitz-continuous
with respect to the space components uniformly on the frequency components, that
is there exist some constant L > 0 such that for each u1, u2, u3, u4 ∈ [0, 1]2 and each
ω1, ω2 ∈ [−π, π).

|f (+)
u1,u2

(ω1, ω2)− f (+)
u3,u4

(ω1, ω2)| ≤ L (||u1 − u3||+ ||u2 − u4||) (8)

and there exist some constant Q > 0 such that∣∣∣f (+),S
s1,s2

(ω1, ω2)− f (+)
s̈1,s̈2

(ω1, ω2)
∣∣∣ ≤ Q

S1S2

, (9)

where si = (si,1, si,2) and s̈i = (si,1/S1, si,2/S2), i = 1, 2.

In the following, the function fu1,u2(ω1, ω2) will be called the rescaled space varying
Loève spectrum function.

We can consider the spatial localization of the covariance function and therefore we consider
the following condition.

(LC) There exists a function C(+) : [0, 1]4 × Z2 → R which is Lipschitz-continuous with
respect to the space components uniformly on the time components, that is, there
exist some constant values L′ > 0 and Q′ > 0 such that for each u1, u2, u3, u4 ∈ [0, 1]2,
and each t1, t2 ∈ Z∣∣∣C(+)

u1,u2
(t1, t2)− C(+)

s1,s2
(t1, t2)

∣∣∣ ≤ L′ (‖u1 − s̈1‖+ ‖u2 − s̈2‖) (10)

and ∣∣∣C(+),S
s1,s2

(t1, t2)− C(+)
s̈1,s̈2

(t1, t2)
∣∣∣ ≤ Q′

S1S2

. (11)
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Hence ∣∣∣C(+)
u1,u2

(t1, t2)− C(+),S
s1,s2

(t1, t2)
∣∣∣ ≤ Q′

S1S2

+ L′ (‖u1 − s̈1‖+ ‖u2 − s̈2‖)

where s̈i = (s̈i,1, s̈1,2), and s̈i,j = si,j/Sj. Then we can deduce that we have covariance
properties for Cu1,u2(t1, t2).
Notice that when condition (L) is satisfied then condition (LC) is also satified with L′ =
4π2L, Q′ = 4π2Q, and

C(+)
u1,u2

(t1, t2) =

∫ π

−π

∫ π

−π
f (+)
u1,u2

(ω1, ω2) e
i(ω1t1−ω2t2)dω1dω2. (12)

Furthermore, when
∑

t1,t2

∣∣∣C(+)
u1,u2(t1, t2)

∣∣∣ <∞, then

f (+)
u1,u2

(ω1, ω2) =
1

4π2

∑
(t1,t2)∈Z2

C(+)
u1,u2

(t1, t2) e
−i(ω1t1−ω2t2).

5.2 Construction of the estimator

Moreover, from now on we assume that we have R replicates of XS
t (s), which we denote

by XS,r
t (s) , r = 1, . . . , R. The covariance CS,r

s1,s2
(t1, t2) = Cov

(
XS,r
t1 (s1), X

S,r
t2 (s2)

)
does not

depend on the r-replicate.
To obtain our results we assume that S1, S2, R→∞.
We define the Fourier transform of the r-th replicate at location s

dT,S,rs (ω) :=
T−1∑
t=0

XS,r
t (s) e−iωt

and the dual-frequency periodogram of the r-th replicate

IT,S,rs1,s2
(ω1, ω2) :=

1

4π2
dT,S,rs1

(ω1) d
T,S,r
s2 (ω2).

Notice that the dual-frequency periodograms IT,S,rs1,s2
(ω1, ω2), r = 1, . . . , R are identically

distributed.
We average over the replicates to get a consistent estimate of the bispectrum. Having many
replicates, there is no need to smooth over frequencies

f̂T,S,Rs1,s2
(ω1, ω2) :=

1

R

R∑
r=1

IT,S,rs1,s2
(ω1, ω2) .
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Then smoothing and rescaling spatially, we define the Loève spectrum estimator f̃T,S,Ru1,u2
(ω1, ω2)

by relation (13). Finally, we compute the estimate of the dual-frequency spatial coherence

ρ̃T,S,Ru1,u2
(ω1, ω2) , :=

∣∣∣f̃T,S,Ru1,u2
(ω1, ω2)

∣∣∣2
f̃T,S,Ru1,u1 (ω1, ω1) f̃

T,S,R
u2,u2 (ω2, ω2)

,

which is defined as

ρ(+)
u1,u2

(ω1, ω2) :=

∣∣∣f (+)
u1,u2 (ω1, ω2)

∣∣∣2
f
(+)
u1,u1 (ω1, ω1) f

(+)
u2,u2 (ω2, ω2)

.

Rescaling the space localisation : space localisation kernel function

Let us define the two-dimensional kernel function which allows us to rescale in space the
bidimensional spectrum. For simplification of presentation, we consider an isotropic kernel
of the form

wu(s) := wu1(s1)wu2(s2)

where u = (u1, u2) and s = (s1, s2) and

wu(si) :=
1

Sih
w

(
ui − si/Si

h

)
,

for u ∈ (0, 1), h→ 0 as S1, S2 →∞. We assume that the kernel function w(·) : R→ [0,∞)

is symmetric non-negative with support contained in [−1, 1] and such that
∫ 1

−1w(u)du = 1.
Moreover, we assume that w(·) is piecewise Lipschitz-continuous in the sense that there
exist k ∈ N, u1, . . . , uk ∈ [−1, 1] such that w(·) is Lipschitz-continuous on each interval
(uj, uj+1). We deduce that w(·) is bounded. This definition includes the rectangular kernel,
as well as the triangular kernel.
Moreover, we assume that S1h and S2h tend to ∞ as S1, S2 →∞.

Estimation of the rescaled space varying Loève spectrum function

Define the estimator of f+
u1,u2

(ω1, ω2) by space-smoothing f̂T,S,Rs1,s2
(ω1, ω2)

f̃T,S,Ru1,u2
(ω1, ω2) :=

∑
s1

∑
s2

wu1(s1)wu2(s2)f̂
T,S,R
s1,s2

(ω1, ω2) .
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Besides, consider the space-smoothed space varying Fourier transform of the replicate ob-
servation

d̃T,S,rui
(ω) :=

∑
si

wui(si)

(
T−1∑
t=0

XS,r
t (si) e

−iωt

)
=

T−1∑
t=0

X̃S,r
t (ui) e

−iωt,

where X̃S,r
t (ui) :=

∑
si
wui(si)X

S,r
t (si) . Then the estimator f̃T,S,Ru1,u2

(ω1, ω2) of f+
u1,u2

(ω1, ω2)
coincides with

f̃T,S,Ru1,u2
(ω1, ω2) =

1

R

R∑
r=1

ĨT,S,ru1u2
(ω1, ω2) =

1

4π2R

R∑
r=1

d̃T,S,ru1
(ω1) d̃

T,S,r
u2 (ω2), (13)

where the space-smoothed periodogram ĨT,S,ru1u2
(ω1, ω2) is defined by

ĨT,S,ru1u2
(ω1, ω2) :=

1

4π2
d̃T,S,ru1

(ω1) d̃
T,S,r
u2 (ω2). (14)

5.3 Theoretical results

We consider a mixing condition across replicates that is allowed to vary across space. It
models the training of the brain when the same patient is performing repetitively a task.

5.3.1 Bias of the estimator: limit of the mean of the estimator

Let DT (0) := T and

DT (ω) :=
T−1∑
t=0

eiωt =
1− eiωT

1− eiω
for ω 6= 0 mod 2π.

Then we can prove that

Lemma 4 (Limit of the mean).
Let u1 and u2 be fixed in (0, 1)2, R being fixed or going to ∞.

(1) Under condition (LC), for every T > 0 fixed, E
(
f̃T,S,Ru1,u2

(ω1, ω2)
)

converges as h → 0

and S1h
2, S2h

2 →∞ to

fTu1,u2(ω1, ω2) :=
1

4π2

T−1∑
t1=0

T−1∑
t2=0

Cu1,u2(t1, t2)e
−i(ω1t1−ω2t2).
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(2) If in addition
∑

t1

∑
t2

∣∣∣C+
u1,u2

(t1, t2)
∣∣∣ <∞ then

fTu1,u2(ω1, ω2) =
1

4π2

∫ π

−π

∫ π

−π
DT (ω′1 − ω1)DT (ω′2 − ω2)f

+
u1,u2

(ω′1, ω
′
2) dω

′
1dω

′
2.

Furthermore, E
(
f̃T,S,Ru1,u2

(ω1, ω2)
)
→ f+

u1,u2
(ω1, ω2) provided that T 2h, T 2S−11 h−2, T 2S−12 h−2 →

0 as T, S1, S2 →∞ and h→ 0.

Proof.

(1) Since the time series
{
XS

t

}
is real-valued, from definition (14) of the space-smoothed

periodogram we have

4π2E
(
ĨT,S,ru1u2

(ω1, ω2)
)

=
T−1∑
t1=0

T−1∑
t2=0

E
(
X̃S,r
t1 (u1) X̃

S,r
t2 (u2)

)
e−i(ω1t1−ω2t2)

and
E
(
X̃S,r
t1 (u1) X̃

S,r
t2 (u2)

)
=
∑
s1

∑
s2

wu1(s1)wu2(s2)C
S
s1,s2

(t1, t2),

where CS
s1,s2

(t1, t2) := E
(
XS
t1 (s1)X

S
t2 (s2)

)
= E

(
XS,r
t1 (s1)X

S,r
t2 (s2)

)
does not depend on

r. Using approximation (11) we get that

E
(
XS,r
t1 (s1)X

S,r
t2 (s2)

)
= Cs̈1,s̈2(t1, t2) +O

(
1

S1S2

)
.

Then the Lipschitz-continuity property of Cu1,u2(t1, t2) (inequality (10)) and of the kernel
function w(u) as well as the fact that the support of the kernel function w(u) is contained
in [−1, 1] imply that (Lemma 1)

E
(
X̃S,r
t1 (u1) X̃

S,r
t2 (u2)

)
= Cu1,u2(t1, t2) +O(h) +O

(
1

S1h2
+

1

S2h2

)
which does not depend on r. Finally,

4π2E
(
f̃T,S,Ru1,u2

(ω1, ω2)
)

=
T−1∑
t1=0

T−1∑
t2=0

Cu1,u2(t1, t2)e
−i(ω1t1−ω2t2) +O(hT 2) +O

(
T 2

S1h2
+

T 2

S2h2

)
, (15)
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as S1, S2 →∞. This proves the first part of the lemma.

(2) Assume now that
∑

t1

∑
t2

∣∣∣C+
u1,u2

(t1, t2)
∣∣∣ <∞. Then the Loève spectrum f+

u1,u2
(ω′1, ω

′
2)

is well defined by

f+
u1,u2

(ω′1, ω
′
2) =

1

4π2

∞∑
t1=0

∞∑
t2=0

Cu1,u2(t1, t2)e
−i(ω′1t1−ω′2t2).

By relation (12), the expression on the right-hand side of the equality above can be rewritten
as follows∫ π

−π

∫ π

−π
DT (ω′1 − ω1)DT (ω′2 − ω2)f

+
u1,u2

(ω′1, ω
′
2) dω

′
1dω

′
2 +O(hT 2) +O

(
T 2

S1h2
+

T 2

S2h2

)
.

Thus∫ π

−π

∫ π

−π
DT (ω′1 − ω1)DT (ω′2 − ω2)f

+
u1,u2

(ω′1, ω
′
2) dω

′
1dω

′
2

=
1

4π2

∞∑
t1=0

∞∑
t2=0

Cu1,u2(t1, t2)

∫ π

−π

∫ π

−π
DT (ω′1 − ω1)DT (ω′2 − ω2)e

−i(ω′1t1−ω′2t2) dω′1dω
′
2.

Since ∫ π

−π
DT (ω′1 − ω1)e

−iω′1t1 dω′1 =

{
2πe−iω1t1 for t1 = 0, . . . , T − 1
0 otherwise

we obtain that ∫ π

−π

∫ π

−π
DT (ω′1 − ω1)DT (ω′2 − ω2)f

+
u1,u2

(ω′1, ω
′
2) dω

′
1dω

′
2 (16)

=
T−1∑
t1=0

T−1∑
t2=0

Cu1,u2(t1, t2)e
−i(ω1t1−ω2t2), (17)

which converges to 4π2f+
u1,u2

(ω1, ω2) as T →∞. This achieves the proof of the lemma.

Corollary 2 (Rate of convergence of the bias). Let u1 and u2 be fixed in (0, 1).
(1) Under condition (LC), for every T > 0 fixed,

lim
R→∞

√
R
(

E
(
f̃T,S,Ru1,u2

(ω1, ω2)
)
− fTu1,u2(ω1, ω2)

)
= 0.
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provided that Rh2, RS−21 h−4, RS−22 h−4 → 0 as R, S1, S2 →∞ and h→ 0.
(2) Furthermore

lim
R→∞

√
R
(

E
(
f̃T,S,Ru1,u2

(ω1, ω2)
)
− f+

u1,u2
(ω1, ω2)

)
= 0

provided that RT 4h2, RT 4S−21 h−4, RT 4S−22 h−4 → 0 as R, T, S1, S2 → ∞ and h → 0, when

the rate of convergence of
∑

t1

∑
t2

∣∣∣C+
u1,u2

(t1, t2)
∣∣∣ is greater than

√
R, that is

lim
R→∞

√
R
∞∑

t1=T

∞∑
t2=0

∣∣∣C+
uj ,u

′
j
(t1, t2)

∣∣∣ = 0. (18)

Proof.
(1) The first part is a direct consequence of relation (15), T being fixed.

(2) First notice that relation (16) implies that
∑

t1

∑
t2

∣∣∣C+
u1,u2

(t1, t2)
∣∣∣ <∞, then the exis-

tence of f+
u1,u2

(ω1, ω2) and

4π2
∣∣∣E(f̃T,S,Ru1,u2

(ω1, ω2)
)
− f+

u1,u2
(ω1, ω2)

∣∣∣ ≤ ∞∑
t1=T

∞∑
t2=0

∣∣∣C+
u1,u2

(t1, t2)
∣∣∣+

T−1∑
t1=0

∞∑
t2=T

∣∣∣C+
u1,u2

(t1, t2)
∣∣∣ .

Thanks to condition (16), the second part of the lemma is verified.

5.3.2 Consistency

We assume α-mixing property between replicates, i.e.

(M) let {XS,r
t (s)} be α-mixing with respect to r i.e., αX(k)→ 0 as k →∞ where

αX(k) = sup
k

sup
A∈FX (1,r)

B∈FX (r+k,∞)

|P (A ∩B)− P (A)P (B)|

and FX(1, r) = σ
(
{XS,q

t (s) : q ≤ r, t ∈ Z and all locations s}
)

,

FX(r + k,∞) = σ
(
{XS,q

t (s) : q ≥ r + k, t ∈ Z and all locations s}
)

.

26



(B) Boundedness :

(i) either, there exists some constant value C > 0 such that supt,r,s

∣∣∣XS,r
t (s)

∣∣∣ ≤ c

and
∑

r α(r) <∞,

(ii) or, for some δ > 0, supt,r,s E

(∣∣∣XS,r
t (s)

∣∣∣4+δ) <∞ and
∑

r α(r)δ/(4+δ) <∞.

Lemma 5. Let the mixing and boundedness assumptions (M) and (B) be satisfied. Then

E

(∣∣∣f̃T,S,Ru1,u2
(ω1, ω2)− E

(
f̃T,S,Ru1,u2

(ω1, ω2)
)∣∣∣2) ≤ cT 4

R
, (19)

where c is some positive constant which does not depend on R, T, h, S, u1, u2, ω1, ω2.

Proof. First remark that

E

(∣∣∣f̃T,S,Ru1,u2
(ω1, ω2)− E

(
f̃T,S,Ru1,u2

(ω1, ω2)
)∣∣∣2) = Var

(
f̃T,S,Ru1,u2

(ω1, ω2)
)

=
1

R2

R∑
r1=1

R∑
r2=1

Cov
(
ĨT,S,r1u1u2

(ω1, ω2), Ĩ
T,S,r2
u1u2

(ω1, ω2)
)
.

Moreover, from relation (14) we get

16π4
∣∣∣Cov

(
ĨT,S,r1u1u2

(ω1, ω2), Ĩ
T,S,r2
u1u2

(ω1, ω2)
)∣∣∣

≤
T−1∑
t1=0

T−1∑
t2=0

T−1∑
t3=0

T−1∑
t4=0

∑
s1∈Iu1

∑
s2∈Iu2

∑
s3∈Iu1

∑
s4∈Iu2

wu1(s1)wu2(s2)wu1(s3)wu2(s4)

×
∣∣∣Cov

(
XS,r1
t1 (s1)X

S,r1
t2 (s2) , X

S,r2
t3 (s3)X

S,r2
t4 (s4)

)∣∣∣
≤ c

T−1∑
t1=0

T−1∑
t2=0

T−1∑
t3=0

T−1∑
t4=0

∑
s1∈Iu1

∑
s2∈Iu2

∑
s3∈Iu1

∑
s4∈Iu2

wu1(s1)wu2(s2)wu3(s3)wu4(s4)α
δ

4+δ

X (|r1 − r2|)

≤ cT 4α
δ

4+δ

X (|r1 − r2|)
∑
s1

∑
s2

∑
s3

∑
s4

wu1(s1)wu2(s2)wu1(s3)wu2(s4),

where the second inequality is due to covariance inequality for α-mixing processes (see
i.e. Bolthausen (1982); Guyon (1995)). Here c is some positive constant that may vary
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from line to line. Moreover,∑
sj

wui(sj) =
∑
sj

1

S1h
w

(
ui,1 − sj,1/S1

h

)
1

S2h
w

(
ui,2 − sj,2/S2

h

)
≤ 1.

Thus,

Var
(
f̃T,S,Ru1,u2

(ω1, ω2)
)
≤ 1

R2

R∑
r1=1

R∑
r2=1

cT 4α
δ

4+δ

X (|r1 − r2|) ≤
cT 4

R

R−1∑
k=−R+1

(
1− |k|

R

)
α

δ
4+δ

X (|k|).

Assuming that condition (B)(ii) is satisfied, we obtain inequality (19). In the same way we
can easily prove inequality (19) under condition (B)(i).

From Lemma 4 and Lemma 5 we deduce the consistency of the estimator.

Theorem 4 (quadratic convergence).
Assume that conditions (LC), (M) and (B) are satisfied, then
(1) For every T > 0 fixed and h→ 0, S1h

2, S2h
2 →∞ as R→∞ we have

lim
R→∞

f̃T,S,Ru1,u2
(ω1, ω2)) = fTu1,u2 (ω1, ω2) in quadratic mean.

(2) If in addition
∑

t1

∑
t2

∣∣∣C+
u1,u2

(t1, t2)
∣∣∣ <∞, we have

lim
R→∞

f̃T,S,Ru1,u2
(ω1, ω2)) = f+

u1,u2
(ω1, ω2) in quadratic mean

provided that T 4R−1, T 2h, T 2S−11 h−2, T 2S−12 h−2 → 0 as R, T, S1, S2 →∞ and h→ 0.

5.3.3 Limit variance

From relation (13), the covariance of the estimator f̃T,S,Ru1,u2
(ω1, ω2) satisfies

R2Cov
(
f̃T,S,Ru1,u2

(ω1, ω2) , f̃
T,S,R
u3,u4

(ω3, ω4)
)

=
R∑

r1=1

R∑
r2=1

Cov
(
ĨT,S,r1u1u2

(ω1, ω2), Ĩ
T,S,r2
u3u4

(ω3, ω4)
)
. (20)

28



Besides, from definition (14) of the space-smoothed periodogram we have

16π4Cov
(
ĨT,S,r1u1u2

(ω1, ω2), Ĩ
T,S,r2
u3u4

(ω3, ω4)
)

=
T−1∑
t1=0

T−1∑
t2=0

T−1∑
t3=0

T−1∑
t4=0

Cov
(
X̃S,r1
t1 (u1) X̃

S,r1
t2 (u2) , X̃

S,r2
t3 (u3) X̃

S,r2
t4 (u4)

)
e−i(ω1t1−ω2t2)+i(ω3t3−ω4t4)

=
T−1∑
t1=0

T−1∑
t2=0

T−1∑
t3=0

T−1∑
t4=0

∑
s1

∑
s2

∑
s3

∑
s4

wu1(s1)wu2(s2)wu3(s3)wu4(s4)

×Cov
(
XS,r1
t1 (s1)X

S,r1
t2 (s2) , X

S,r2
t3 (s3)X

S,r2
t4 (s4)

)
e−i(ω1t1−ω2t2)+i(ω3t3−ω4t4).

Conditions on the replicates To compute the covariance

Cov
(
XS,r1
t1 (s1)X

S,r1
t2 (s2) , X

S,r2
t3 (s3)X

S,r2
t4 (s4)

)
,

we need to add some assumptions on the family of processes
{
XS,r
t (s)

}
.

For simplicity we assume the Gaussianity.

(GR) The time-spatial random array
{
XS,r
t (s) : t ∈ Z, s ∈ {1, . . . , S1} × {1, . . . , S2}, r = 1, . . . , R

}
is Gaussian for any R > 0.

Assume also that

(LCR) There is a family of functions Cr1,r2 : [0, 1]4 × Z2 → R such that there are some
constants L′ > 0 and Q′ > 0 such that for each u1, u2, u3, u4 ∈ [0, 1]2 and for each
t1, t2 ∈ Z ∣∣∣Cr1,r2

u1,u2
(t1, t2)− Cr1,r2

u3,u4
(t1, t2)

∣∣∣ ≤ L′ (‖u1 − u3‖+ ‖u2 − u4‖)

and ∣∣∣CS,r1,r2
s1,s2

(t1, t2)− Cr1,r2
s̈1,s̈2

(t1, t2)
∣∣∣ ≤ Q′

S1S2

where CS,r1,r2
sj ,sj′

(tj, tj′) = E
(
XS,r1
tj (sj)X

S,r2
tj′

(sj′)
)

.
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In this case the 2× 2-matrix
(
C
rj ,rj′
uj ,uj′ (tj, t

′
j)
)
j,j′=1,2

is a covariance matrix. Moreover, since

the replicates
{
XS,r
t (s) : t ∈ Z, s ∈ {1, . . . , S1} × {1, . . . , S2}

}
, r = 1, . . . , R, are identi-

cally distributed, we have that CS,r,r
s1,s2

(t1, t2) = CS
s1,s2

(t1, t2) does not depend on r, thus
Cr,r
uj ,uj′

(tj, t
′
j) = Cuj ,uj′ (tj, t

′
j) does not depend on r.

Then we can calculate the asymptotic covariances for the spatially smoothed periodograms
ĨT,S,r1u1u2

(ω1, ω2) and ĨT,S,r2u3u4
(ω3, ω4).

Lemma 6. Assume that conditions (GR) and (LCR) are satisfied. Then
(1) For R and T fixed as h→ 0 and S1h

2, S2h
2 →∞ we have

16π4Cov
(
ĨT,S,r1u1u2

(ω1, ω2), Ĩ
T,S,r2
u3,u4

(ω3, ω4)
)
−→ (21)(

T−1∑
t1=0

T−1∑
t3=0

Cr1,r2
u1,u3

(t1, t3)e
−i(ω1t1−ω3t3)

)(
T−1∑
t2=0

T−1∑
t4=0

Cr1,r2
u2,u4

(t2, t4)e
i(ω2t2−ω4t4)

)

+

(
T−1∑
t1=0

T−1∑
t4=0

Cr1,r2
u1,u4

(t1, t4)e
−i(ω1t1+ω4t4)

)(
T−1∑
t2=0

T−1∑
t3=0

Cr1,r2
u2,u3

(t2, t3)e
i(ω2t2+ω3t3)

)
.

(2) For R fixed, if
∑

t1

∑
t2

∣∣∣Cr1,r2
uj ,uj′

(t1, t2)
∣∣∣ <∞ then

16π4Cov
(
ĨT,S,r1u1u2

(ω1, ω2), Ĩ
T,S,r2
u3,u4

(ω3, ω4)
)
−→ (22)(

∞∑
t1=0

∞∑
t3=0

Cr1,r2
u1,u3

(t1, t3)e
−i(ω1t1−ω3t3)

)(
∞∑
t2=0

∞∑
t4=0

Cr1,r2
u2,u4

(t2, t4)e
i(ω2t2−ω4t4)

)

+

(
∞∑
t1=0

∞∑
t4=0

Cr1,r2
u1,u4

(t1, t4)e
−i(ω1t1+ω4t4)

)(
∞∑
t2=0

∞∑
t3=0

Cr1,r2
u2,u3

(t2, t3)e
i(ω2t2+ω3t3)

)

provided that T 2h, T 2S−11 h−2, T 2S−12 h−2 → 0 as T, S1, S2 →∞ and h→ 0.

Proof. From Gaussian condition (GR) and Isserlis equality

Cov
(
XS,r1
t1 (s1)X

S,r1
t2 (s2) , X

S,r2
t3 (s3)X

S,r2
t4 (s4)

)
(23)

= CS,r1,r2
s1,s3

(t1, t3)C
S,r1,r2
s2,s4

(t2, t4) + CS,r1,r2
s1,s4

(t1, t4)C
S,r1,r2
s2,s3

(t2, t3).
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Then, thanks to relation (14), we obtain

16π4Cov
(
ĨT,S,r1u1u2

(ω1, ω2), Ĩ
T,S,r2
u3,u4

(ω3, ω4)
)

=

T−1∑
t1=0

T−1∑
t3=0

∑
s1

∑
s3

wu1(s1)wu3(s3)C
S,r1,r2
s1,s3

(t1, t3)e
−i(ω1t1−ω3t3)


×

T−1∑
t2=0

T−1∑
t4=0

∑
s2

∑
s4

wu2(s2)wu4(s4)C
S,r1,r2
s2,s4

(t2, t4)e
i(ω2t2−ω4t4)


+

T−1∑
t1=0

T−1∑
t4=0

∑
s1

∑
s4

wu1(s1)wu4(s4)C
S,r1,r2
s1,s4

(t1, t4)e
−i(ω1t1+ω4t4)


×

T−1∑
t2=0

T−1∑
t3=0

∑
s2

∑
s3

wu2(s2)wu3(s3)C
S,r1,r2
s2,s3

(t2, t3)e
i(ω2t2+ω3t3)

 .

From condition (LCR)

16π4Cov
(
ĨT,S,r1u1u2

(ω1, ω2), Ĩ
T,S,r2
u3,u4

(ω3, ω4)
)

(24)

=

(
T−1∑
t1=0

T−1∑
t3=0

Cr1,r2
u1,u3

(t1, t3)e
−i(ω1t1−ω3t3) +O(T 2h) +O

(
T 2

S1h2
+

T 2

S2h2

))

×

(
T−1∑
t2=0

T−1∑
t4=0

Cr1,r2
u2,u4

(t2, t4)e
i(ω2t2−ω4t4) +O(T 2h) +O

(
T 2

S1h2
+

T 2

S2h2

))

+

(
T−1∑
t1=0

T−1∑
t4=0

Cr1,r2
u1,u4

(t1, t4)e
−i(ω1t1+ω4t4) +O(T 2h) +O

(
T 2

S1h2
+

T 2

S2h2

))

×

(
T−1∑
t2=0

T−1∑
t3=0

Cr1,r2
u2,u3

(t2, t3)e
i(ω2t2+ω3t3) +O(T 2h) +O

(
T 2

S1h2
+

T 2

S2h2

))
.

We readily deduce convergences (21) and (22).

In the next step, using (21) and (22) we obtain the form of the limiting covariance

Cov
(
f̃T,S,Ru1,u2

(ω1, ω2) , f̃
T,S,R
u3,u4

(ω3, ω4)
)

.

For this purpose we consider the following conditions.
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(HR) The matrix
(
C
rj ,rj′
uj ,uj′ (tj, t

′
j)
)
j,j′=1,2

is harmonizable with a spectral density matrix :

There exists a matrix
(
f
rj ,rj′
uj ,uj′ (ω1, ω2)

)
j,j′=1,2

of complex valued integrable functions

on (−π, π]2 such that

C
rj ,rj′
uj ,uj′ (t1, t2) =

∫ π

−π

∫ π

−π
f
rj ,rj′
uj ,uj′ (ω1, ω2)e

−i(ω1t1−ω2t2) dω1dω2.

(HRS) For j, j′ = 1, 2 we have ∑
(t1,t2)∈Z2

∣∣∣Crj ,rj′
uj ,uj′ (t1, t2)

∣∣∣ <∞.
Notice that if condition (HRS) is satisfied then condition (HR) is also satisfied and

f
rj ,rj′
uj ,uj′ (ω1, ω2) =

1

4π2

∑
(t1,t2)∈Z2

C
rj ,rj′
uj ,uj′ (t1, t2) e

−i(ω1t1−ω2t2).

Notice also that from Cauchy-Schwarz inequality, condition (HRS) is satisfied when∑
t1∈Z

∣∣∣Cuj ,uj(t1, t1)∣∣∣1/2 <∞,
recalling that Cuj ,uj(t1, t1) = Cr,r

uj ,uj
(t1, t1) does not depend on r.

Case of a fixed finite number of replications In this paragraph we suppose that the
number R of replications is finite and fixed. Lemma 6 entails the following corollary

Corollary 3.
(1) Assume that conditions (GR) and (LCR) are satisfied. Then for R and T fixed, and
h→ 0 and S1h

2, S2h
2 →∞, we have

Cov
(
f̃T,S,Ru1,u2

(ω1, ω2) , f̃
T,S,R
u3,u4

(ω3, ω4)
)
−→

1

R2

R∑
r1=1

R∑
r2=1

fT,r1,r2u1,u3
(ω1, ω3))f

T,r1,r2
u2,u4 (ω2, ω4) +

1

R2

R∑
r1=1

R∑
r2=1

fT,r1,r2u1,u4
(ω1,−ω4)f

T,r1,r2
u2,u3 (ω2,−ω3),
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where

fT,r1,r2u1,u2
(ω1, ω2) :=

1

4π2

T−1∑
t1=0

T−1∑
t2=0

C
rj ,rj′
uj ,uj′ (t1, t2) e

−i(ω1t1−ω2t2).

Under condition (HR)

fT,r1,r2u1,u2
(ω1, ω2) =

1

4π2

∫ π

−π

∫ π

−π
DT (ω′1 − ω1)DT (ω′2 − ω2)f

r1,r2
u1,u2

(ω′1, ω
′
2) dω

′
1dω

′
2.

(2) Assume that conditions (GR), (LCR) and (HRS) are satisfied. For R fixed we have

Cov
(
f̃T,S,Ru1,u2

(ω1, ω2) , f̃
T,S,R
u3,u4

(ω3, ω4)
)
−→

1

R2

R∑
r1=1

R∑
r2=1

f+,r1,r2
u1,u3

(ω1, ω3))f
+,r1,r2
u2,u4 (ω2, ω4) +

1

R2

R∑
r1=1

R∑
r2=1

f+,r1,r2
u1,u4

(ω1,−ω4)f
+,r1,r2
u2,u3 (ω2,−ω3)

provided that hT 2, T 2S−11 h−2, T 2S−12 h−2 → 0 as T, S1, S2 →∞ and h→ 0. Here

f+,r1,r2
u1,u2

(ω1, ω2) :=
∞∑
t1=0

∞∑
t1=0

Cr1,r2
u1,u2

(t1, t2)e
−i(ω1t1−ω2t2).

Proof. Relations (20) and (24) as well as condition (HR) give us the first part of the
corollary. Then under condition (HCR) we easily obtain the second part.

Then we readily deduce the form of the asymptotic covariance.

Corollary 4.

(1) Assume that conditions (GR), (LCR) and (HR) are satisfied. Then for R and T fixed,
and h→ 0 and S1h

2, S2h
2 →∞, we have

RVar
(
f̃T,S,Ru1,u2

(ω1, ω2)
)
−→

fTu1,u1(ω1, ω1)fTu2,u2(ω2, ω2) + fTu1,u2(ω1,−ω2)fTu2,u1(ω2,−ω1)

+
2

R

R∑
r1=2

r1−1∑
r2=1

<
(
fT,r1,r2u1,u1

(ω1, ω1))f
T,r1,r2
u2,u2 (ω2, ω2)

)
+

2

R

R∑
r1=2

r1−1∑
r2=1

<
(
fT,r1,r2u1,u2

(ω1,−ω2)f
T,r1,r2
u2,u1 (ω2,−ω1)

)
.
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2) Assume that conditions (GR), (LCR) and (HRS) are satisfied. For R fixed,

RVar
(
f̃T,S,Ru1,u2

(ω1, ω2)
)
−→

f+
u1,u1

(ω1, ω1)f+
u2,u2

(ω2, ω2) + f+
u1,u2

(ω1,−ω2)f+
u2,u1

(ω2,−ω1)

+
2

R

R∑
r1=2

r1−1∑
r2=1

<
(
f+,r1,r2
u1,u1

(ω1, ω1))f
+,r1,r2
u2,u2 (ω2, ω2)

)
+

2

R

R∑
r1=2

r1−1∑
r2=1

<
(
f+,r1,r2
u1,u2

(ω1,−ω2)f
+,r1,r2
u2,u1 (ω2,−ω1)

)
provided that T 2h, T 2S−11 h−2, T 2S−12 h−2 → 0 as T, S1, S2 →∞ and h→ 0, R fixed.

5.3.4 Case when the number of replicates is going to infinity

To study the asymptotic covariance of the estimator f̃T,S,Ru1,u2
(ω1, ω2) as R→∞, we need to

consider some additional assumptions on replicates.
Thus assume that

(SR) Stationarity of the replications (stationarity with respect to r). Assume that

CS,k
u1,u2

(t1, t2) := CS,r+k,r
u1,u2

(t1, t2)

for each k ∈ Z and each non negative integer r ≥ −k.

In this case, under condition (LCR), the localized covariance is stationary with respect to
r, and we can define

Ck
u1,u2

(t1, t2) := Cr+k,r
u1,u2

(t1, t2).

Moreover we have C−ku1,u2(t1, t2) = Ck
u2,u1

(t2, t1) and C0
u1,u2

(t1, t2) = Cu1,u2(t1, t2) (see condi-
tion (L)). Let

fT,ku1,u2
(ω1, ω2) =

1

4π2

T−1∑
t1=0

T−1∑
t2=0

Ck
u1,u2

(t1, t2)e
−i(ω1t1−ω2t2).

With condition (HR) we can define

fku1,u2(ω1, ω2) := f r+k,ru1,u2
(ω1, ω2),

which does not depend on r, and we have

fT,ku1,u2
(ω1, ω2) =

1

4π2

∫ π

−π

∫ π

−π
DT (ω′1 − ω1)DT (ω′2 − ω2)f

k
u1,u2

(ω1, ω2) dω
′
1dω

′
2.
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Under conditions (SR), (LCR) and (HRS), we can define

f (+),k
u1,u2

(ω1, ω2) := f (+),r+k,r
u1,u2

(ω1, ω2),

which does not depend on r.

Then we deduce the asymptotic covariance of the estimator as the number R→∞.

Corollary 5.
(1) Let T > 0 be fixed. Assume that conditions (LCR), (GR) and (SR) holds. If, in
addition, conditions (M) and (B)(ii) are satisfied or∑

k

∣∣∣C+,k
uj ,uj′

(t1, t2)
∣∣∣ <∞, 0 ≤ t1, t2 ≤ T, (25)

then

RCov
(
f̃T,S,Ru1,u2

(ω1, ω2) , f̃
T,S,R
u3,u4

(ω3, ω4)
)
−→

∞∑
k=−∞

fT,ku1,u3
(ω1, ω3)f

T,k
u2,u4(ω2, ω4) +

∞∑
k=−∞

fT,ku1,u4
(ω1,−ω4)f

T,k
u2,u3(ω2,−ω3),

provided that Rh2, RS−21 h−4, RS−22 h−4 → 0 as R, S1, S2 →∞ and h→ 0.

(2) Assume conditions (LCR), (GR), (SR) and∑
k

∑
t1

∑
t2

∣∣∣C+,k
uj ,uj′

(t1, t2)
∣∣∣ <∞. (26)

Then

RCov
(
f̃T,S,Ru1,u2

(ω1, ω2) , f̃
T,S,R
u3,u4

(ω3, ω4)
)
−→

∞∑
k=−∞

f+,k
u1,u3

(ω1, ω3)f
+,k
u2,u4(ω2, ω4) +

∞∑
k=−∞

f+,k
u1,u4

(ω1,−ω4)f
+,k
u2,u3(ω2,−ω3)

provided that RT 4h2, RT 4S−21 h−4, RT 4S−22 h−4 → 0 as R, T, S1, S2 →∞ and h→ 0.
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Proof. Using (20) and under conditions (GR), (LCR) and (SR) we get

16π4RCov
(
f̃T,S,Ru1,u2

(ω1, ω2) , f̃
T,S,R
u3,u4

(ω3, ω4)
)

=
R−1∑

k=−R+1

(
1− |k|

R

)(T−1∑
t1=0

T−1∑
t3=0

Ck
u1,u3

(t1, t3)e
−i(ω1t1−ω3t3) +O(T 2h) +O

(
T 2

S1h2
+

T 2

S2h2

))

×

(
T−1∑
t2=0

T−1∑
t4=0

Ck
u2,u4

(t2, t4)e
i(ω2t2−ω4t4) +O(T 2h) +O

(
T 2

S1h2
+

T 2

S2h2

))

+
R−1∑

k=−R+1

(
1− |k|

R

)(T−1∑
t1=0

T−1∑
t4=0

Ck
u1,u4

(t1, t4)e
−i(ω1t1+ω4t4) +O(T 2h) +O

(
T 2

S1h2
+

T 2

S2h2

))

×

(
T−1∑
t2=0

T−1∑
t3=0

Ck
u2,u3

(t2, t3)e
i(ω2t2+ω3t3) +O(T 2h) +O

(
T 2

S1h2
+

T 2

S2h2

))
.

Then we readily deduce the results of the corollary. Notice that conditions (M) and (B)(ii)
implies relation (25). Notice also that under condition (26), condition (HRS) is fulfilled
and f+,k

u1,u2
(ω1, ω2) is well defined.

From the equality (13) we have that

<f̃T,S,Ru1,u2
(ω1, ω2) =

1

2

(
f̃T,S,Ru1,u2

(ω1, ω2) + f̃T,S,Ru1,u2
(−ω1,−ω2)

)
,

=f̃T,S,Ru1,u2
(ω1, ω2) =

1

2i

(
f̃T,S,Ru1,u2

(ω1, ω2)− f̃T,S,Ru1,u2
(−ω1,−ω2)

)
,

since the conjugate f̃T,S,Ru1,u2 (ω1, ω2) coincides with f̃T,S,Ru1,u2
(−ω1,−ω2) and the observed process{

XS
t

}
is real valued. Then we can compute the limiting covariance matrix of f̃T,S,Ru1,u2

(ω1, ω2)

of the estimator. We get

Var
(
<f̃T,S,Ru1,u2

(ω1, ω2)
)

=
1

2

(
Var

(
f̃T,S,Ru1,u2

(ω1, ω2)
)

+ <Cov
(
f̃T,S,Ru1,u2

(ω1, ω2) , f̃
T,S,R
u1,u2

(−ω1,−ω2)
))

,

Cov
(
<f̃T,S,Ru1,u2

(ω1, ω2) ,=f̃T,S,Ru1,u2
(ω1, ω2)

)
=

1

2
=Cov

(
f̃T,S,Ru1,u2

(ω1, ω2) , f̃
T,S,R
u1,u2

(−ω1,−ω2)
)
,

Var
(
=f̃T,S,Ru1,u2

(ω1, ω2)
)

=
1

2

(
Var

(
f̃T,S,Ru1,u2

(ω1, ω2)
)
−<Cov

(
f̃T,S,Ru1,u2

(ω1, ω2) , f̃
T,S,R
u1,u2

(−ω1,−ω2)
))

.
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5.3.5 Central limit theorem and bootstrap

Asymptotic normality First we establish the central limit theorem for
(
f̃T,S,Ru1,u2

−E
(
f̃T,S,Ru1,u2

))
as S,R→∞, (T fixed or →∞).

Recall that for each R > 0, the observations
{
XS,r

t

}
, r = 1, . . . , R, are replications of the

same time-spatial process, so they have the same law.

Proposition 2 (Central Limit Theorem).

Assume that the time-spatial random arrays
{
XS,r

t : t = 0, . . . , T, r = 1, . . . , R
}

, R ≥ 0,

are Gaussian (condition (GR)), stationary with respect to r (condition (SR)) and satisfy
condition (M) as well as

sup
t,s,S

E
(∣∣XS

t (s)
∣∣4+2δ)

<∞ and
∑
k

αX(k)δ/(2+δ) <∞

for some δ > 0. Then under the assumptions of Corollary 5 we have

lim
R→∞

L
(√

R
(
f̃T,S,Ru1,u2

(ω1, ω2)− E
(
f̃T,S,Ru1,u2

(ω1, ω2)
)))

= N2 (0,Σ2) ,

where Σ2 = Σ(ω1,ω2)
u1,u2

is the limit covariance (2×2)-matrix. The expression of this matrix can
be deduced from the Corollary 4. Nevertheless, it depends on the unknown Loève spectrum
and it is therefore not interesting for us since we are going to use bootstrap method to
approximate the limit law and to define confidence intervals. respectively.

The proof follows exactly the same steps as proof of Proposition 1.

Theorem 5 (Asymptotic normality).

Assume that the time-spatial random arrays
{
XS,r

t : t = 0, . . . , T, r = 1, . . . , R
}

, R ≥ 0, are

Gaussian families (condition (GR)) which are stationary with respect to r (condition (SR)).
Assume also conditions (LCR) and (M) as well as

sup
t,s,S

E
(∣∣XS

t (s)
∣∣4+2δ

)
<∞ and

∑
k

αX(k)δ/(2+δ) <∞

for some δ > 0. Then
(1) for T fixed,

lim
R→∞

L
(√

R
(
f̃T,S,Ru1,u2

(ω1, ω2)− fTu1,u2(ω1, ω2)
))

= N2

(
0,V T,(ω1,ω2)

u1,u2

)
,
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provided that Rh2, RS−21 h4, RS−22 h4 → 0 as R, S1, S2 →∞ and h→ 0.
(2) Furthermore

lim
R→∞

L
(√

R
(
f̃T,S,Ru1,u2

(ω1, ω2)− f+
u1,u2

(ω1, ω2)
))

= N2

(
0,V +,(ω1,ω2)

u1,u2

)
,

provided that RT 4h2, RT 4S−21 h4, RT 4S−22 h4 → 0 as R, T, S1, S2 →∞ and h→ 0 when

lim
R→∞

√
R
∞∑

t1=T

∞∑
t2=0

∣∣∣C+
uj ,uj′

(t1, t2)
∣∣∣ = 0 and

∑
k

∑
t1

∑
t2

∣∣∣C+,k
uj ,uj′

(t1, t2)
∣∣∣ <∞.

Proof. This theorem is a direct consequence of Corollary 2 and Proposition 2.

Below we present the multidimensional version of Theorem 5. Let

f̃
T,S,R

:=

((
f̃T,S,Ru1,1,u2,1

(ω1,1, ω2,1)
)′
, . . . ,

(
f̃T,S,Ru1,k,u2,k

(ω1,k, ω2,k)
)′)′

,

fT :=

((
fTu1,1,u2,1 (ω1,1, ω2,1)

)′
, . . . ,

(
fTu1,k,u2,k (ω1,k, ω2,k)

)′)′
,

and

f+ :=

((
f+
u1,1,u2,1

(ω1,1, ω2,1)
)′
, . . . ,

(
f+
u1,k,u2,k

(ω1,k, ω2,k)
)′)′

,

where (·)′ denotes transposition, k is some positive integer and uj,l ∈ [0, 1]2, ωj,l ∈ (π, π],
j = 1, 2, l = 1, . . . , k.

Theorem 6. Under conditions of Theorem 5

lim
R→∞

L
(√

R
(
f̃
T,S,R − f (+),(T )

))
= N2k (0,Σ2k) ,

where the components of the variance (2k × 2k)-matrix Σ2k = Σ(ω1,1,ω2,1,...,ω1,k,ω2,k)
u1,1,u2,1,...,u1,k,u2,k

can be

computed using Corollary 5.

Since the proof is a direct consequence of the Cramér-Wold device, we skip the technical
details.

Finally, using the delta method one may formulate the following corollary
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Corollary 6 (Estimation of the coherence). Under conditions of Theorem 5

√
R
(
ρ̃T,S,Ru1,u2

(ω1, ω2)− ρ+u1,u2 (ω1, ω2)
)

=⇒ N (0, γ2), (27)

provided that f+
u1,u1

(ω1, ω1) f
+
u2,u2

(ω2, ω2) 6= 0.

Here γ2 = ∇(ω1,ω2)
u1,u2 Σ6∇(ω1,ω2)

u1,u2

′
. The variance 6 × 6-matrix Σ6 is given in Theorem 6, with

k = 3, u1,1 = u2,1 = u1,3 = u1, u1,2 = u2,2 = u2,3 = u2, ω1,1 = ω2,1 = ω1,3 = ω1, and
ω1,2 = ω2,2 = ω2,3 = ω2. Moreover

∇(ω1,ω2)
u1,u2

=

 −
∣∣∣f+
u1,u2

(ω1, ω2)
∣∣∣2(

f+
u1,u1

(ω1, ω1)
)2
f+
u2,u2

(ω2, ω2)
, 0 ,

−
∣∣∣f+
u1,u2

(ω1, ω2)
∣∣∣2

f+
u1,u1

(ω1, ω1)
(
f+
u2,u2

(ω2, ω2)
)2 ,

0 ,
2<f+

u1,u2
(ω1, ω2)

f+
u1,u1

(ω1, ω1) f+
u2,u2

(ω2, ω2)
,

2=f+
u1,u2

(ω1, ω2)

f+
u1,u1

(ω1, ω1) f+
u2,u2

(ω2, ω2)

)′
.
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