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STABILITY FOR QUANTITATIVE PHOTOACOUSTIC
TOMOGRAPHY REVISITED

ERIC BONNETIER, MOURAD CHOULLI, AND FAOUZI TRIKI

Abstract. This paper is concerned with the stability issue in determining
absorption and diffusion coefficients in quantitative photoacoustic imaging.
Assuming that the optical wave is generated by point sources in a region
where the optical coefficients are known, we derive pointwise Hölder stability
estimate of the inversion. This result shows that the reconstruction of the op-
tical coefficients is stable in the region close to the optical illumination sources
and deteriorate exponentially far away. Our stability estimate is therefore in
accordance with known experimental observations.
Mathematics subject classification : 35R30.
Key words : Elliptic equations, diffusion coefficient, absorption coefficient,
stability estimates, multiwave imaging.
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1. Introduction

Throughout this text n ≥ 3 is a fixed integer. If 0 < α ≤ 1 we denote by
C0,α(Rn) the vector space of bounded continuous functions f on Rn satisfying

[f ]α = sup
{
|f(x)− f(y)|
|x− y|α

; x, y ∈ Rn, x 6= y

}
<∞.
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C0,α(Rn) is then a Banach space when it is endowed with its natural norm

‖f‖C0,α(Rn) = ‖f‖L∞(Rn) + [f ]α.

Define C1,α(Rn) as the vector space of functions f from C0,α(Rn) so that ∂jf ∈
C0,α(Rn), 1 ≤ j ≤ n. C1,α(Rn) equipped with the norm

‖f‖C1,α(Rn) = ‖f‖C0,α(Rn) +
n∑
j=1
‖∂jf‖C0,α(Rn)

is a Banach space.
For λ > 1 and κ > 1, denote by D(λ, κ) the set of couples (a, b) ∈ C1,1(Rn) ×

C0,1(Rn) satisfying

λ−1 ≤ a and ‖a‖C1,1(Rn) ≤ λ,(1.1)
κ−1 ≤ b and ‖b‖C0,1(Rn) ≤ κ,(1.2)

Define further the elliptic operator La,b acting as follows

(1.3) La,bu(x) = −∂i(a(x)∂ju(x)) + b(x)u(x).

We will show in Theorem 2.2 that if (a, b) ∈ D(λ, κ) then the operator La,b admits
a unique fundamental solution Ga,b satisfying

Ga,b(·, ξ) ∈ C(Rn \ {ξ}), ξ ∈ Rn,
Ga,b(x, ·) ∈ C(Rn \ {x}), x ∈ Rn,

La,bGa,b(·, ξ) = 0 in D ′(Rn \ {ξ}), ξ ∈ Rn,

and for any f ∈ C∞0 (Rn),

u(x) =
ˆ
Rn
Ga,b(x, ξ)f(ξ)dξ,

belongs to H2(Rn), and is the unique solution of La,bu = f . Moreover, for any
0 < β < 1 and O b Rn \ {ξ}, Ga,b(·, ξ) belongs to C2,β(O) and

‖Ga,b(·, ξ)‖C2,β(O) ≤ C,

the constant C only depends on n, O, β and λ.

Let Ω be a bounded C1,1 domain of Rn with boundary Γ. We deal with the
problem of reconstructing (a, b) ∈ D(λ, κ) from energies generated by two sources
located at ξ1 and ξ2, two distinct points in Rn \Ω. Precisely if uj(a, b) = Ga,b(·, ξj),
j = 1, 2, we want to determine (a, b) from the internal measurements

vj(a, b) = buj(a, b), in Ω, j = 1, 2.

This inverse problem is related to photoacoustic tomography (PAI) where opti-
cal energy absorption causes thermoelastic expansion of the tissue, which in turn
generates a pressure wave [23]. This acoustic signal is measured by transducers dis-
tributed on the boundary of the sample and it is used for imaging optical properties
of the sample. The internal data v1(a, b) and v2(a, b) are obtained by performing a
first step consisting in a linear initial to boundary inverse problem for the acoustic
wave equation. Therefore the inverse problem that arises from this first inversion
is to determine the diffusion coefficient a and the absorption coefficient b from the
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internal data v1(a, b) and v2(a, b) that are proportional to the local absorbed op-
tical energy inside the sample. This inverse problem is known in the literature as
quantitative photoacoustic tomography [1, 4, 2, 3, 9, 8, 20].

Photoacoustic imaging provides in theory images of optical contrasts and ultra-
sound resolution [23]. Indeed, the resolution is mainly due to the small wavelength
of acoustic waves, while the contrast is somehow related to the sensitivity of optical
waves to absorption and scattering properties of the medium in the diffusive regime.
However in practice it has been observed in various experiments that the imaging
depth, i.e. the maximal depth of the medium at which structures can be resolved at
expected resolution, of PAI is still fairly limited, usually on the order of millimeters.
This is mainly due to the fact that optical waves are significantly attenuated by ab-
sorption and scattering. In fact the generated optical signal decays very fast in the
depth direction. This is indeed a well know faced issue in optical tomography [22].
In most physicists works dealing with quantitative PAI, the absorption b > 0 is
assumed to be constant and the optical wave is simplified to Ce−bz, as a function
of the depth z, which is known as the Beer-Lambert-Bouguer law [6]. Recently in
[21], assuming that medium is layered, the authors derived a stability estimate that
shows that the reconstruction of the optical coefficients is stable in the region close
to the optical illumination source and deteriorate exponentially far away. The main
objective of this work is to provide a mathematical analysis of the issue of imaging
depth in PAI in a general setting. To be more precise, assuming that the optical
waves are generated by two point sources δξi , i = 1, 2, we aim to derive a stability
estimate for the recovery of the optical coefficients from internal data. We point
out that taking the optical wave generated by a point source outside the sample
seems to be more realistic than assuming a boundary condition.

We show in Lemma 2.4 that there exist ρ > 0, x∗ ∈ R \ {ξ1, ξ2} close to ξ2 and
η > 0 only depending on ξ1, ξ2, λ, κ, and n so that B(x∗, ρ) b R \ {ξ1, ξ2} and

η ≤
∥∥∥∥∇(u2

u1

)∥∥∥∥
L2(B(x∗,ρ))

.

Theorem 1.1. Let 0 < θ < 1/2 and 0 < β < 1. Then there exists a constant c̃ > 0,
only depending on n, Ω, ξ1, ξ2, κ, λ, θ and β so that, for (a, b), (ã, b̃) ∈ D(λ, κ)
satisfying (a, b) = (ã, b̃) on Γ, we have

|a(x)−ã(x)|+ |b(x)− b̃(x)|(1.4)

≤ c̃ec̃|x−x
∗|
(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ(|x−x∗|)
, x ∈ Ω,

where

µ(s) =
(

θ

2 + θ

)
β

cecs + β + n− 1 , s ≥ 0,

the constant c > 0 only depends on n, Ω, ξ1, ξ2, κ and λ.

The derived stability estimate shows clearly that the resolution of PAI may dete-
riorate exponentially in the depth direction far from the sources ξ1 and ξ2. Indeed,
µ(|x−x∗|) is of order e−c|x−x∗| when |x−x∗| is sufficiently large. Consequently the
right hand side of (1.4) may be close to a constant whenever |x− x∗| is sufficiently
large even if the term ‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω) is too small. Moreover, the
term c̃ec̃|x−x

∗| increase exponentially with respect to |x− x∗|.
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The result of Theorem 1.1 is therefore in a good agreement with observations
made in various experiments that the imaging depth is fairly limited.

The rest of this text is organized as follows. In section 2 we construct a fundamen-
tal solution and give its regularity induced by that of the coefficients of operators
under consideration. We also establish in this section a lower bound of the local
L2-norm of the gradient of the quotient of two fundamental solutions near one of
the point sources. This is the key point for establishing our stability estimate. This
last result is then used in Section 3 to obtain a uniform polynomial lower bound of
the local L2-norm of the gradient in a given region. This polynomial lower bound
is obtained in two steps. In the first step we derive, via a three-ball inequality for
the gradient, a uniform lower bound of negative exponential type. We use then in
the second step an argument based on the so-called frequency function in order to
improve this lower bound. In the last section we prove our main theorem following
the known method consisting in reducing the original problem to the stability of
an inverse conductivity problem.

2. Fundamental solutions

2.1. Constructing fundamental solutions. In this subsection we construct a
fundamental solution of divergence form elliptic operators. Since our construction
relies on heat kernel estimates, we first recall some known results.

Consider the parabolic operator Pa,b acting as follows

Pa,bu(x, t) = −La,bu(x, t)− ∂tu(x, t)

and set

Q = {(x, t, ξ, τ) ∈ Rn × R× Rn × R; τ < t}.
Recall that a fundamental solution of the operator Pa,b is a function Ea,b ∈

C2,1(Q) verifying Pa,bE = 0 in Q and, for every f ∈ C∞0 (Rn),

lim
t↓τ

ˆ
Rn
Ea,b(x, t, ξ, τ)f(ξ)dξ = f(x), x ∈ Rn.

The classical results in the monographs by A. Friedman [13], O. A. Ladyzenskaja,
V. A. Solonnikov and N.N Ural’ceva [19] show that Pa,b admits a on negative
fundamental solution when (a, b) ∈ D(λ, κ).

It is worth mentioning that if a = c for some constant c > 0, and b = 0, the
fundamental solution Ec,0 is explicitly given by

Ec,0(x, t, ξ, τ) = 1
(4πc(t− τ))n/2

e−
|x−ξ|2

4c(t−τ) , (x, t, ξ, τ) ∈ Q.

Examining carefully the proof of the two-sided Gaussian bounds in [12], we see
that these bounds remain valid whenever a ∈ C1,1(Rn) satisfies

(2.1) λ−1 ≤ a and ‖a‖C1,1(Rn) ≤ λ,

λ > 1 is a constant.
More precisely we have the following theorem in which

Ec(x, t) = c

tn/2
e−
|x|2
ct , x ∈ Rn, t > 0, c > 0.
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Theorem 2.1. There exists a constant c > 1 only depending on n and λ so that,
for any a ∈ C1,1(Rn) satisfying (2.1), we have, for (x, t, ξ, τ) ∈ Q,
(2.2) Ec−1(x− ξ, t− τ) ≤ Ea,0(x, t; ξ, τ) ≤ Ec(x− ξ, t− τ).

It is worth mentioning the following relationship between Ec and Ec,0

(2.3) Ec(x− ξ, t− τ) = (πc)n/2−1

π
Ec/4,0(x, t, ξ, τ), (x, t, ξ, τ) ∈ Q.

The following comparaison principle will be useful in the sequel.

Lemma 2.1. Let (a, b1), (a, b2) ∈ D(λ, κ) so that b1 ≤ b2. Then Ea,b2 ≤ Ea,b1 .

Proof. Pick 0 ≤ f ∈ C∞0 (Rn). Let u be the solution of the initial value problem
Pa,b1u(x, t) = 0 ∈ Rn × {t > τ}, u(x, τ) = f.

We have

(2.4) u(x, t) =
ˆ
Rn
Ea,b1(x, t; ξ, τ)f(ξ)dξ ≥ 0.

On the other hand, as Pa,b1u(x, t) = 0 can be rewritten as Pa,b2u(x, t) = (b1(x) −
b2(x))u(x, t), we obtain

u(x, t) =
ˆ
Rn
Ea,b2(x, t; ξ, τ)f(ξ)dξ(2.5)

−
ˆ t

τ

ˆ
Rn
Ea,b2(x, t; ξ, s)(b1(ξ)− b2(ξ))u(ξ, s)dξds.

Combining (2.4) and (2.5), we getˆ
Rn
Ea,b2(x, t; ξ, τ)f(ξ)dξ ≤

ˆ
Rn
Ea,b1(x, t; ξ, τ)f(ξ)dξ,

which yields in a straightforward manner the expected inequality. �

Consider, for (a, b) ∈ D(λ, κ), the unbounded operator Aa,b : L2(Rn)→ L2(Rn)
defined

Aa,b = −La,b, D(Aa,b) = H2(Rn).
It is well known that Aa,b generates an analytic semigroup etAa,b . Therefore in
light of [7, Theorem 4 on page 30, Theorem 18 on page 44 and the proof in the
beginning of Section 1.4.2 on page 35], ka,b(t, x; ξ), the Schwarz kernel of etAa,b , is
Hölder continuous with respect to x and ξ and satisfies
(2.6) |ka,b(t, x, ξ)| ≤ e−δtEc(x− ξ, t− τ)

and, for |h| ≤
√
t+ |x− ξ|,

|ka,b(t, x+ h, ξ)− ka,b(t, x, ξ)| ≤ e−δt
(

|h|√
t+ |x− ξ|

)η
Ec(x− ξ, t− τ),(2.7)

|ka,b(t, x, ξ + h)− ka,b(t, x, ξ)| ≤ e−δt
(

|h|√
t+ |x− ξ|

)η
Ec(x− ξ, t− τ),(2.8)

the constants c > 0 and δ > 0 only depend on n, λ and κ, and η > 0.
By the uniqueness of solutions of the Cauchy problem

(2.9) u′(t) = Aa,bu(t), t > 0 u(0) = f ∈ C∞0 (Rn)
we deduce in a straightforward manner that ka,b(t, x; ξ) = Ea,b(x, t; ξ, 0).
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Prior to give the construction of the fundamental solution for the variable coef-
ficients operators, we state a result for operators with constant coefficients. This
result is proved in Appendix A.

Lemma 2.2. Let µ > 0 and ν > 0 be two constants. Then the fundamental solution
for the operator −µ∆ + ν is given by Gµ,ν(x, ξ) = Gµ,ν(x− ξ), x, ξ ∈ Rn, with

Gµ,ν(x) = (2πµ)−n/2(√νµ/|x|)n/2−1Kn/2−1(
√
ν|x|/√µ), x ∈ Rn.

Here Kn/2−1 is the usual modified Bessel function of second kind. Moreover the
following two-sided inequality holds

(2.10) C−1 e
−
√
ν|x|/√µ

|x|n−2 ≤ Gµ,ν(x) ≤ C e
−
√
ν|x|/(2√µ)

|x|n−2 , x ∈ Rn,

the constant C > 1 only depends on n, µ and ν.

The main result of this section is the following theorem.

Theorem 2.2. Let (a, b) ∈ D(λ, κ). Then there exists a unique function Ga,b
satisfying Ga,b(·, ξ) ∈ C(Rn \ {ξ}), ξ ∈ Rn, Ga,b(x, ·) ∈ C(Rn \ {x}), x ∈ Rn and
(i) La,bGa,b(·, ξ) = 0 in D ′(Rn \ {ξ}), ξ ∈ Rn,
(ii) for any f ∈ C∞0 (Rn),

u(x) =
ˆ
Rn
Ga,b(x, ξ)f(ξ)dξ

belongs to H2(Rn), and is the unique solution of La,bu = f ,
(iii) there exist a constant c > 1, only depending on n and λ, and a constant C > 0,
only depending on n, λ and κ, so that

C−1 e
−2
√
cκ|x−ξ|

|x− ξ|n−2 ≤ Ga,b(x, ξ) ≤ C
e
− |x−ξ|√

cκ

|x− ξ|n−2 .(2.11)

Proof. Pick s ≥ 1 arbitrary. Applying Hölder inequality, we findˆ
Rn
ka,b(t, x, ξ)|f(ξ)|dξ ≤ ‖ka,b(t, x, ·)‖Ls(Rn)‖f‖Ls′ (Rn),

where s′ is the conjugate exponent of s.
But, according to (2.6)

‖ka,b(t, x, ·)‖sLs(Rn) ≤
( c

tn/2

)s ˆ
Rn
e−

s|x−ξ|2
ct dξ.

Next, making a change of variable ξ = (
√
ct/s)η + x, we get

‖ka,b(t, x, ·)‖sLs(Rn) ≤
( c

tn/2

)s(ct
s

)n/2 ˆ
Rn
e−|η|

2
dη.

Hence
‖ka,b(t, x, ·)‖Ls(Rn) ≤ tn(1/s−1)/2Cs,

with

Cs = c
( c
s

)n/2(ˆ
Rn
e−c|η|

2
dη

)1/s
.
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Under the choice 1 ≤ s ≤ n
n−2 < s̃, we have

ˆ +∞

0

ˆ
Rn
ka,b(t, x, ξ)|f(ξ)|dξdt

=
ˆ 1

0

ˆ
Rn
ka,b(t, x, ξ)|f(ξ)|dξdt+

ˆ +∞

1

ˆ
Rn
ka,b(t, x, ξ)|f(ξ)|dξdt

≤ Cs‖f‖Ls′ (Rn)

ˆ 1

0
t
n
2 (1/s−1)dt+ Cs̃‖f‖Ls̃′ (Rn)

ˆ +∞

1
t
n
2 (1/s̃−1)dt.

In light of Fubini’s theorem, we get

(2.12)
ˆ +∞

0

ˆ
Rn
ka,b(t, x, ξ)f(ξ)dξdt =

ˆ
Rn

(ˆ +∞

0
ka,b(t, x, ξ)dt

)
f(ξ)dξ.

Define Ga,b as follows

Ga,b(x, ξ) =
ˆ +∞

0
ka,b(t, x, ξ)dt.

Then (2.12) takes the form

(2.13)
ˆ +∞

0

ˆ
Rn
ka,b(t, x, ξ)f(ξ)dξdt =

ˆ
Rn
Ga,b(x, ξ)f(ξ)dξ.

Noting that Aa,b is invertible, we obtain

−A−1
a,bf(x) =

(ˆ +∞

0
etAa,bfdt

)
(x)

=
ˆ +∞

0

ˆ
Rn
ka,b(t, x, ξ)f(ξ)dξdt, x ∈ Rn.

This and (2.13) entail

−A−1
a,bf(x) =

ˆ
Rn
Ga,b(x, ξ)f(ξ)dξ, x ∈ Rn.

In other words, u defined by

u(x) =
ˆ
Rn
Ga,b(x, ξ)f(ξ)dξ x ∈ Rn

belongs to H2(Rn) and satisfies La,bu = f .

Noting that, for x 6= ξ,ˆ +∞

0

1
tn/2

e−
|x−ξ|2
ct dt =

(
cn/2−1

ˆ +∞

0
τn/2−2e−τdτ

)
1

|x− ξ|n−2 ,

we get in light of (2.7)

|Ga,b(x+ h, ξ)−Ga,b(x, ξ)| ≤
C

|x− ξ|n+2+η |h|
η, x 6= ξ, |h| ≤ |x− ξ|.

the constant C only depends on n, λ and κ. In particular Ga,b(·, ξ) ∈ C(Rn \ {ξ}).
Similarly, using (2.8) instead of (2.7), we obtain Ga,b(x, ·) ∈ C(Rn \ {x}). More
specifically we have

(2.14) |Ga,b(x, ξ + h)−Ga,b(x, ξ)| ≤
C

|x− ξ|n+2+η |h|
η, x 6= ξ, |h| ≤ |x− ξ|.
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Take ξ ∈ Rn and K a compact subset of Rn \ ξ. Then set

wa,b(y) =
ˆ
K

Ga,b(x, y)dx, y ∈ B(ξ,dist(ξ,K)).

It follows from (2.14) that

|wa,b(y + h)− wa,b(y)| ≤ C

dist(y,K)n+2+η |h|
η, x ∈ K, |h| < dist(y,K).

Therefore wa,b ∈ C(B(ξ,dist(ξ,K)).
Let M(Rn) be the space of bounded measures on Rn. Pick a sequence (fn) of

a positive functions of C∞0 (Rn) converging inM(Rn) to δξ and let un = −A−1
a,bfn.

In consequence according to Fubini’s theorem we haveˆ
K

un(x)dx =
ˆ
K

ˆ
Rn
Ga,b(x, y)fn(y)dy

=
ˆ
Rn
wa,b(y)fn(y)dy −→ wa,b(ξ) =

ˆ
K

Ga,b(x, ξ)dx,

where we used that suppfn ⊂ B(ξ,dist(ξ,K)), provided that n is sufficiently large.
That is we proved that un converges to Ga,b(·, ξ) in L1

loc(Rn \ {ξ}).
Now, as La,bun = fn, we find La,bGa,b(·, ξ) = 0 in Rn \ {ξ} in the distributional

sense.
We note that the uniqueness of Ga,b is a straightforward consequence of that of

u.
As κ−1 ≤ b ≤ κ we deduce from Lemma 2.1 that

Ea,κ(x, t, ξ, 0) ≤ Ea,b(x, t, ξ, 0) ≤ Ea,κ−1(x, t, ξ, 0).

But a simple change of variable shows

(2.15) Ea,κ−1(x, t, ξ, 0) = e−κ
−1tEa,0(x, t, ξ, 0),

and

(2.16) Ea,κ(x, t, ξ, 0) = e−κtEa,0(x, t, ξ, 0).

Therefore from Theorem 2.1 and identity (2.3) there exists a constant c > 1
depending only on n and λ so that

e−κt
(πc−1)n/2−1

π
Ec−1/4,0(x, t, ξ, 0) ≤ Ea,b(x, t, ξ, 0)

≤ e−κ
−1t (πc)n/2−1

π
Ec/4,0(x, t, ξ, 0),

which combined again with identities (2.15) and (2.16) give

(πc−1)n/2−1

π
Ec−1/4,κ(x, t, ξ, 0) ≤ Ea,b(x, t, ξ, 0)

≤ (πc)n/2−1

π
Ec/4,κ−1(x, t, ξ, 0).

From the uniqueness of Ga,b we obtain by integrating over (0,+∞) each member
of the above inequalities

(πc−1)n/2−1

π
Gc−1/4,κ(x, ξ) ≤ Ga,b(x, ξ) ≤

(πc)n/2−1

π
Gc/4,κ−1(x, ξ).
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This two-sided inequality together with (2.10) yield in a straightforward manner
(2.11). �

The function Ga,b given by the previous theorem is usually called a fundamental
solution of the operator La,b.

2.2. Regularity of fundamental solutions.

Proposition 2.1. Let O b Rn \ {ξ}, ξ ∈ Rn and 0 < β < 1. Then Ga,b(·, ξ) ∈
C2,β(O) and

(2.17) ‖Ga,b(·, ξ)‖C2,β(O) ≤ C,

the constant C > 0 only depends on n, O, β, λ, κ and ξ.

Proof. In this proof C > 0 is a constant only depending on n, O, β, λ, κ and ξ.
Fix O b O′ b Rn \ {ξ} with O′ of class C1,1. As Ga,b(·, ξ) ∈ C(∂O′) by

[16, Theorem 6.18, page 106] Ga,b(·, ξ) belongs to C2,β(O′). Applying then [16,
Corollary 6.3, page 93] in order to get

‖Ga,b(·, ξ)‖C2,β(O) ≤ C‖Ga,b(·, ξ)‖C(O′).

This estimate together with the one in Theorem 2.2 (iii) yield (2.17). �

2.3. Gradient estimates of the quotient of two fundamental solutions.
Fix ξ1, ξ2 ∈ Rn with ξ1 6= ξ2 and set uj = Ga,b(·, ξj), j = 1, 2, where Ga,b is the
fundamental solution constructed in Theorem 2.2 corresponding to (a, b) ∈ D(λ, κ).

It is useful in the sequel to observe that u = u2/u1 is the solution of the equation

div(σ(x)w(x)) = 0, in Rn \ {ξ1, ξ2},

with σ = au2
1.

Also, we see that as an immediate consequence of Proposition 2.1 we have

Corollary 2.1. Let O be a bounded domain of Rn \ {ξ1, ξ2} and 0 < β < 1. Then
there exists a constant M > 0 only depending on O, β, λ, ξ1 and ξ2 so that∥∥∥∥u2

u1

∥∥∥∥
C2,β(O)

≤M.

Pick 0 < ϑ < 1/2 and 1/2 +ϑ < β < 1. Then by the definition of W s,p-spaces in
[17, Definition 1.3.2.1, page 16] we deduce that C2,β(O) is continuously embedded
in H2+ϑ(O). In light of Corollary 2.1 we can state the following result

Lemma 2.3. Let O be a bounded domain of Rn \ {ξ1, ξ2} and 0 < ϑ < 1/2. Then
there exists a constant M > 0 only depending on O, ϑ, λ, ξ1 and ξ2, so that∥∥∥∥u2

u1

∥∥∥∥
H2+ϑ(O)

≤M.

Lemma 2.4. There exist x∗ ∈ Rn, C > 0 and ρ > 0 only depending only on n, λ,
κ, ξ1 and ξ2 so that B(x∗, ρ) ⊂ Rn \ {ξ1, ξ2} and

C ≤
∥∥∥∥∇(u2

u1

)∥∥∥∥
L2(B(x∗,ρ))

.
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Proof. Pick R > 0 is such a way that ξ1, ξ2 ∈ B(0, R). Set w = u2/u1. Then
according to Theorem 2.2 we have

(2.18) C−1 |x− ξ1|n−2

|x− ξ2|n−2 ≤ w(x) ≤ C |x− ξ1|
n−2

|x− ξ2|n−2 , |x| ≤ R,

the constant C > 1 only depends on n, λ, κ ξ1 and ξ2.
Set t̃ = dist(ξ2, ∂B(0, R))/2 and define

ϕ(t, θ) = w(ξ2 + tθ), (t, θ) ∈ (0, t̃]× Sn−1.

We deduce from Corollary (2.1) that ϕ ∈ C2,β
loc ((0, t̃]× Sn−1) and consequently

ϕ(t̃, θ)− ϕ(t, θ) =
ˆ t̃

t

∇w(ξ2 + sθ) · θds,

which in turn gives

|ϕ(t̃, θ)− ϕ(t, θ)|2 ≤ (t̃− t)
ˆ t̃

t

|∇w(ξ2 + sθ)|2 ds

≤ t̃
ˆ t̃

t

|∇w(ξ2 + sθ)|2 ds

≤ t̃
ˆ t̃

t

sn−1

tn−1 |∇w(ξ2 + sθ)|2 ds, (t, θ) ∈ (0, t̃]× Sn−1.

Whence, where t ∈ (0, t̃],

tn−1
ˆ
Sn−1
|ϕ(t̃, θ)− ϕ(t, θ)|2dθ ≤ t̃

ˆ
Ct

|∇w(x)|2 dx.(2.19)

Here

Ct =
{
x ∈ Rn : t < |x− ξ2| < t̃

}
.

On the other hand inequalities (2.18) imply, where (t, θ) ∈ (0, t̃]× Sn−1,

C−1 |ξ2 − ξ1 + tθ|n−2

tn−2 ≤ ϕ(t, θ) ≤ C |ξ2 − ξ1 + tθ|n−2

tn−2 .

Hence

C−1
(

3 |ξ1 − ξ2|
4t

)n−2
≤ ϕ(t, θ) ≤ C

(
5 |ξ1 − ξ2|

4t

)n−2
,

provided that t ∈ (0, t̂) and θ ∈ Sn−1 with t̂ ≤ min(t̃, |ξ1 − ξ2|/4). Let us then
choose t̂ sufficiently small in such a way that

C−1
(

3 |ξ1 − ξ2|
4t

)n−2
− C

(
5|ξ1 − ξ2|

4t̃

)n−2
≥ 0, t ∈ (0, t̂).

Therefore

(2.20)
(
C−1

(
3 |ξ1 − ξ2|

4t

)n−2
− C

(
5|ξ1 − ξ2|

4t̃

)n−2
)2

≤ |ϕ(t̃, θ)− ϕ(t, θ)|2

if (t, θ) ∈ (0, t̂)× θ ∈ Sn−1.
We then obtain by combining inequalities (2.19) and (2.20)
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|Sn−1|

(
C−1

(
3 |ξ1 − ξ2|

4t

)n−2
− C

(
5|ξ1 − ξ2|

4t̃

)n−2
)2

≤ t̃
ˆ

Ct

|∇w(x)|2 dx,

for t ∈ (0, t̂).
As the left hand side of this inequality converges to ∞ when t tends to 0, we

find t0 ∈ (0, t̂), depending only on λ, κ, ξ1 and ξ2, so that

C0 ≤
ˆ

Ct0

|∇w(x)|2 dx.

Here and until the end of this proof C0 > 0 is a generic constant only depending
on n, λ, κ ξ1 and ξ2.

Set ρ = t0/4. Then it is straightforward to check that, for any x ∈ Ct0 ,

B(x, ρ) ⊂ {y ∈ Rn; 3t0/4 ≤ |y − ξ2| ≤ 5t̃/4} ⊂ B(0, R).

Since Ct0 is a compact we find a positive integer N , only depending on λ, κ, ξ1
and ξ2, and xj ∈ Ct0 , j = 1, · · · , N , so that

Ct0 ⊂
N⋃
j=1

B(xj , ρ).

Hence

C0 ≤
ˆ
∪N
j=1B(xj ,ρ)

|∇w(x)|2 dx.

Pick then x∗ ∈ {xj , 1 ≤ j ≤ N} in such a way thatˆ
B(x∗,ρ)

|∇w(x)|2 dx = max
1≤j≤N

ˆ
B(xj ,ρ)

|∇w(x)|2 dx.

Therefore

C0 ≤
ˆ
B(x∗,ρ)

|∇w(x)|2 dx,

which finishes the proof. �

3. Uniform lower bound for the gradient

In this section we derive a polynomial lower bound of the local L2-norm of
the gradient of solutions of Lσ,0u = 0. In a first step we derive, via a three-ball
inequality for the gradient, a uniform lower bound of negative exponential type. We
use then in a second step an argument based on the so-called frequency function in
order to improve this lower bound.

Let O be a Lipschitz bounded domain of Rn and σ ∈ C0,1(O) satisfying

κ−1 ≤ σ and ‖σ‖C0,1(O) ≤ κ,(3.1)

for some fixed constant κ > 1.
For simplicity convenience we use in the sequel the notation Lσ instead of Lσ,0.
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3.1. Preliminary lower bound. We need hereafter the following three-ball in-
equality for the gradient.

Theorem 3.1. Let 0 < k < ` < m be real. There exist constants C > 0 and
0 < γ < 1, only depending on n, k, `, m and κ, so that, for any v ∈ H1(O)
satisfying Lσv = 0, y ∈ O and 0 < r < dist(y, ∂O)/m, we have

C‖∇v‖L2(B(y,`r)) ≤ ‖∇v‖γL2(B(y,kr))‖∇v‖
1−γ
L2(B(y,mr)).

A proof of this theorem can be found in [10] .
Define the geometric distance dDg on the bounded domain D of Rn by

dDg (x, y) = inf {`(ψ); ψ : [0, 1]→ D Lipschitz path joining x to y} ,

where

`(ψ) =
ˆ 1

0
|ψ̇(t)|dt

is the length of ψ.
Note that according to Rademacher’s theorem any Lipschitz continuous function

ψ : [0, 1] → D is almost everywhere differentiable with |ψ̇(t)| ≤ k a.e. t ∈ [0, 1],
where k is the Lipschitz constant of ψ.

Lemma 3.1. Let D be a bounded Lipschitz domain of Rn. Then dDg ∈ L∞(D×D)
and there exists a constant cD > 0 so that

|x− y| ≤ dDg (x, y) ≤ cD|x− y|, x, y ∈ D.(3.2)

This lemma is due to Tom ter Elst. We provided its proof in [11, Appendix A].
In this subsection we use the following notations

Oδ = {x ∈ O; dist(x, ∂O) > δ}

and
χ(O) = max{δ > 0; Oδ 6= ∅}.

Let δ ∈ (0, χ(O)/3), x0 ∈ O3δ. Let η and M satisfy 0 < η < M . Define then

S (O, x0,M, η, δ) =
{
u ∈ H1(O); Lσu = 0 in O,(3.3)

‖∇u‖L2(O) ≤M, ‖∇u‖L2(B(x0,δ)) ≥ η
}
.

Lemma 3.2. There exists a constant c > 0 only depending on n, η, κ and M so
that, for any u ∈ S (O, x0,M, η, δ) and x ∈ O3δ, we have

(3.4) e−c|x−x0|/δ ≤ ‖∇u‖L2(B(x,δ)).

Proof. Pick u ∈ S (O, x0,M, η, δ). Let x ∈ O3δ and ψ : [0, 1] → O be a Lipschitz
path joining x = ψ(0) to x0 = ψ(1), so that `(ψ) ≤ 2dg(x0, x). Here and henceforth
for simplicity convenience we use dg(x0, x) dg and c instead of dOg (x0, x), dOg and
cO.

Let t0 = 0 and tk+1 = inf{t ∈ [tk, 1]; ψ(t) 6∈ B(ψ(tk), δ)}, k ≥ 0. We claim
that there exists an integer N ≥ 1 verifying ψ(1) ∈ B(ψ(tN ), δ). If not, we would
have ψ(1) 6∈ B(ψ(tk), δ) for any k ≥ 0. As the sequence (tk) is non decreasing
and bounded from above by 1, it converges to t̂ ≤ 1. In particular, there exists an
integer k0 ≥ 1 so that ψ(tk) ∈ B

(
ψ(t̂), δ/2

)
, k ≥ k0. But this contradicts the fact

that |ψ(tk+1)− ψ(tk)| ≥ δ, k ≥ 0.
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Let us check that N ≤ N0 where N0 depends only on |x − x0| and δ. Pick
1 ≤ j ≤ n so that

max
1≤i≤n

|ψi(tk+1)− ψi(tk)| = |ψj(tk+1)− ψj(tk)| ,

where ψi is the ith component of ψ. Then

δ ≤ n |ψj(tk+1)− ψj(tk)| = n

∣∣∣∣ˆ tk+1

tk

ψ̇j(t)dt
∣∣∣∣ ≤ nˆ tk+1

tk

|ψ̇(t)|dt.

Consequently, where tN+1 = 1,

(N + 1)δ ≤ n
N∑
k=0

ˆ tk+1

tk

|ψ̇(t)|dt = n`(ψ) ≤ 2ndg(x0, x) ≤ 2nc|x− x0|.

Therefore
N ≤ N0 =

[
2nc|x− x0|

δ

]
.

Let y0 = x and yk = ψ(tk), 1 ≤ k ≤ N . If |z − yk+1| < δ, then |z − yk| ≤
|z − yk+1|+ |yk+1 − yk| < 2δ. In other words B(yk+1, δ) ⊂ B(yk, 2δ).

We get from Theorem 3.1
(3.5) ‖∇u‖L2(B(yj ,2δ)) ≤ C‖∇u‖

1−γ
L2(B(yj ,3δ))‖∇u‖

γ
L2(B(yj ,δ)), 0 ≤ j ≤ N,

the constants C > 0 and 0 < γ < 1 only depend on n and κ.
Set Ij = ‖∇u‖L2(B(yj ,δ)), 0 ≤ j ≤ N and IN+1 = ‖∇u‖L2(B(x0,δ)). Since

B(yj+1, δ) ⊂ B(yj , 2δ), 1 ≤ j ≤ N − 1, estimate (3.5) implies

(3.6) Ij+1 ≤ CM1−γ
0 Iγj , 0 ≤ j ≤ N,

where we set M0 = max(M, 1).
Let C1 = C1+γ+...+γN+1 and β = γN+1. Then by a simple induction argument

estimate (3.6) yields

(3.7) IN+1 ≤ C1M
1−β
0 Iβ0 .

Without loss of generality, we assume in the sequel that C ≥ 1 in (3.6). Using
that N ≤ N0, we have

β ≥ β0 = sN0+1,

C1 ≤ C
1

1−s ,(
I0
M0

)β
≤
(
I0
M0

)β0

.

These estimates in (3.7) give

IN+1

M0
≤ C

1
1−γ

(
I0
M0

)γN0+1

,

from which we deduce that
‖∇u‖L2(B(x0,δ)) ≤ C

1
1−γM1−γN0+1

0 ‖∇u‖γ
N0+1

L2(B(x,δ)).

But M0 ≥ 1. Whence

η ≤ ‖∇u‖L2(B(x0,δ)) ≤ C
1

1−γM0‖∇u‖γ
N0+1

L2(B(x,δ)).

The expected inequality follows readily from this last estimate. �
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3.2. An estimate for the frequency function. Some tools in the present section
are borrowed from [14, 15, 18]. Let u ∈ H1(O) and σ ∈ C0,1(O) satisfying the
bounds (3.1). We recall that the usual frequency function, relative to the operator
Lσ, associated to u is defined by

N(u)(x0, r) = rD(u)(x0, r)
H(u)(x0, r)

,

provided that B(x0, r) ⊂ O, with

D(u)(x0, r) =
ˆ
B(x0,r)

σ(x)|∇u(x)|2dx,

H(u)(x0, r) =
ˆ
∂B(x0,r)

σ(x)u2(x)dS(x).

Define also

K(u)(x0, r) =
ˆ
B(x,r)

σ(x)u(x)2dx.

Prior to study the properties of the frequency function, we prove some technical
lemmas.

Fix u ∈ H2(O) so that Lσu = 0 in O and, for simplicity convenience, we drop
in the sequel the dependence on u of N , D, H and K.

Lemma 3.3. For x0 ∈ Oδ and 0 < r < δ we have

∂rH(x0, r) = n− 1
r

H(x0, r) + H̃(x0, r) + 2D(x0, r),(3.8)

∂rD(x0, r) = n− 2
r

D(x0, r) + D̃(x0, r) + 2Ĥ(x0, r).(3.9)

Here

H̃(x0, r) =
ˆ
∂B(x0,r)

u2∇σ(x) · ν(x)dS(x),

Ĥ(x0, r) =
ˆ
∂B(x0,r)

σ(x)(∂νu(x))2dS(x),

D̃(x0, r) =
ˆ
B(x0,r)

|∇u(x)|2∇σ(x) · (x− x0)dx.

Proof. Pick x0 ∈ Oδ and 0 < r < δ. A simple change of variable yields

H(x0, r) =
ˆ
B(0,1)

σ(x0 + ry)u2(x0 + ry)rn−1dS(y).
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Hence

∂rH(x0, r) = n− 1
r

H(x0, r) +
ˆ
B(0,1)

∇(σu2)(x0 + ry) · yrn−1dS(y)

= n− 1
r

H(x0, r) +
ˆ
B(0,1)

u2∇σ(x0 + ry) · yrn−1dS(y)

+
ˆ
∂B(0,1)

σ∇(u2)(x0 + ry) · yrn−1dS(y)

= n− 1
r

H(x0, r) +
ˆ
∂B(x0,r)

u2∇σ(x) · ν(x)dS(x)

+
ˆ
∂B(x0,r)

σ(x)∇(u2)(x) · ν(x)dS(x)

= n− 1
r

H(x0, r) + H̃(x0, r) +
ˆ
∂B(x0,r)

σ∇(u2)(x) · ν(x)dS(x).

Identity (3.8) will follow if we prove

2D(x0, r) =
ˆ
∂B(x0,r)

σ∇(u2)(x) · ν(x)dS(x).

To do so we note that, since div(σ∇u) = 0, we have

div(σ∇(u2)) = 2udiv(σ∇u) + 2σ|∇u|2 = 2σ|∇u|2.

Applying the divergence theorem we get

2D(x0, r) =
ˆ
B(x0,r)

div(σ(x)∇(u2)(x))dx(3.10)

=
ˆ
∂B(x0,r)

σ(x)∇(u2)(x) · ν(x)dS(x).

By a change of variable we have

D(x0, r) =
ˆ r

0

ˆ
∂B(0,1)

σ(x0 + ty)|∇u(x0 + ty)|2tn−1dS(y)dt.

Hence

∂rD(x0, r) =
ˆ
∂B(0,1)

σ(x0 + ry)|∇u(x0 + ty)|2rn−1dS(y)

=
ˆ
∂B(x0,r)

σ(x)|∇u(x)|2dS(x)

= 1
r

ˆ
∂B(x0,r)

σ(x)|∇u(x)|2(x− x0) · ν(x)dS(x).

Then an application of the divergence theorem gives

∂rD(x0, r) = 1
r

ˆ
B(x0,r)

div(σ(x)|∇u(x)|2(x− x0))dx.
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Therefore

∂rD(x0, r) = 1
r

ˆ
B(x0,r)

|∇u(x)|2div(σ(x)(x− x0))dx

+ 1
r

ˆ
B(x0,r)

σ(x)(x− x0) · ∇(|∇u(x)|2)dx

implying

∂rD(x0, r) = n

r
D(x0, r) + 1

r
D̃(x0, r)(3.11)

+ 1
r

ˆ
B(x0,r)

σ(x)(x− x0) · ∇(|∇u(x)|2)dx.

On the other hand,ˆ
B(x0,r)

σ(x)(xj − x0,j)∂j(∂iu(x))2dx

= 2
ˆ
B(x0,r)

σ(x)(xj − x0,j)∂2
iju∂iu(x)dx

= −2
ˆ
B(x0,r)

∂i [∂iu(x)σ(x)(xj − x0,j)] ∂ju(x)dx

+ 2
ˆ
∂B(x0,r)

σ(x)∂iu(x)(xj − x0,j)∂ju(x)νi(x)dS(x)

= −2
ˆ
B(x0,r)

∂2
iiu(x)σ(x)(xj − x0,j)∂ju(x)dx

− 2
ˆ
B(x0,r)

∂iu(x)∂ju(x)∂i [σ(x)(xj − x0,j)] dx

+ 2
ˆ
∂B(x0,r)

σ(x)∂iu(x)(xj − x0,j)∂ju(x)νi(x)dS(x).

Thus taking into account that σ∆u = −∇σ · ∇u we getˆ
B(x0,r)

σ(x)(x− x0) · ∇(|∇u(x)|2)dx = −2
ˆ
B(x0,r)

σ(x)|∇u(x)|2dx

+ 2r
ˆ
∂B(x0,r)

σ(x)(∂νu(x))2dS(x).

This identity in (3.11) yields

∂rD(x0, r) = n− 2
r

D(x0, r) + 1
r
D̃(x0, r) + 2Ĥ(x0, r).

That is we proved (3.9). �

Lemma 3.4. We have

K(x0, r) ≤
δneδκ

2

n
H(x0, r), x0 ∈ Oδ, 0 < r < δ.

Proof. Since

H(x0, r) = 1
r

ˆ
∂B(x0,r)

σ(x)u2(x)(x− x0) · ν(x)dS(x),
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we get by applying the divergence theorem

(3.12) H(x0, r) = 1
r

ˆ
B(x0,r)

div
(
σ(x)u2(x)(x− x0)

)
dx.

Hence

H ′(x0, r) = −1
r
H(x0, r) + 1

r

ˆ
∂B(x0,r)

div
(
σ(x)u2(x)(x− x0)

)
dS(x)

= n− 1
r

H(r) +
ˆ
∂B(x0,r)

∂νσ(x)u2(x)dS(x)

+ 2
ˆ
∂B(x0,r)

σ(x)∂νu(x)u(x)dS(x).

But ˆ
∂B(x0,r)

σ(x)∂νu(x)u(x)dS(x)

=
ˆ
B(x0,r)

div(σ(x)∇u(x))u+
ˆ
B(x0,r)

σ(x)|∇u|2dx

=
ˆ
B(x0,r)

σ(x)|∇u(x)|2dx = D(x0, r).

Therefore

H ′(x0, r) = n− 1
r

H(x0, r) + 2D(x0, r) +
ˆ
∂B(x0,r)

∂νσ(x)u2(x)dS(x)

≥
ˆ
∂B(x0,r)

∂νσ(x)u2(x)dS(x)

≥
ˆ
∂B(x0,r)

∂νσ(x)
σ(x) σ(x)u2(x)dS(x) ≥ −κ2H(x0, r),

where we used that H(x0, r) ≥ 0 and D(x0, r) ≥ 0.
Consequently r → erκ

2
H(x0, r) is non decreasing and thenˆ r

0
H(x0, t)tn−1dt ≤

ˆ r

0
etκ

2
H(x0, t)tn−1dt

≤
ˆ r

0
erκ

2
H(x0, r)tn−1dt ≤ rn

n
erκ

2
H(x0, r).

As
K(x0, r) =

ˆ r

0
H(x0, t)tn−1dt,

we end up getting

K(x0, t) ≤
δneδκ

2

n
H(x0, r).

This completes the proof. �

Now straightforward computations yield, for x0 ∈ Oδ and 0 < r < δ,

(3.13) ∂rN(x0, r)
N(x0, r)

= 1
r

+ ∂rD(x0, r)
D(x0, r)

− ∂rH(x0, r)
H(x0, r)

.
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Lemma 3.5. For x0 ∈ Oδ and 0 < r < δ, we have

N(x0, r) ≤ eµδN(x0, δ),

with µ = κ2 (1 + χ(O)).

Proof. We have from formulas (3.8) and (3.9) and identity (3.13)

∂rN(x0, r)
N(x0, r)

= D̃(x0, r)
D(x0, r)

− H̃(x0, r)
H(x0, r)

+ 2Ĥ(x0, r)
D(x0, r)

− 2D(x0, r)
H(x0, r)

(3.14)

= D̃(x0, r)
D(x0, r)

− H̃(x0, r)
H(x0, r)

+ 2Ĥ(x0, r)H(x0, r)−D(x0, r)2

D(x0, r)H(x0, r)
.

But from (3.10) we have

D(x0, r) =
ˆ
∂B(x0,r)

σ(x)u(x)∂νu(x)dS(x).

Then we find by applying Cauchy-Schwarz’s inequality

D(x0, r)2 ≤

(ˆ
∂B(x0,r)

σ(x)u2(x)dS(x)
)(ˆ

∂B(x0,r)
σ(x)(∂νu)2(x)dS(x)

)
.

That is

(3.15) D2(x0, r) ≤ H(x0, r)Ĥ(x0, r).

This and (3.14) lead

(3.16) ∂rN(x0, r)
N(x0, r)

≥ D̃(x0, r)
D(x0, r)

− H̃(x0, r)
H(x0, r)

.

On the other hand

(3.17)
∣∣H̃(x0, r)

∣∣ ≤ κ‖∇a‖∞H(x0, r) ≤ κ2H(x0, r),

and similarly

(3.18)
∣∣D̃(x0, r)

∣∣ ≤ κ2δD(x0, r).

In light of (3.16), (3.17) and (3.18), we derive

∂rN(x0, r)
N(x0, r)

≥ −µ,

that is to say
∂r(eµrN(x0, r)) ≥ 0.

Consequently

N(x0, r) ≤ eµ(δ−r)N(x0, δ) ≤ eµδN(x0, δ),

as expected. �
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3.3. Polynomial lower bound.

Lemma 3.6. There exist a constant c > 0, only depending on n, κ, η, δ and M ,
so that, for any u ∈ S (O, x0,M, η, δ/3), we have

‖N(u)(x, ·)‖L∞(0,δ) ≤ cec|x−x0|, x ∈ Oδ,

Proof. In this proof c > 0 is a generic constant only depending on n, κ, η, δ and
M .

Pick x ∈ Oδ. Then from Lemma 3.2

‖∇u‖L2(B(x,δ/3)) ≥ e−c|x−x0|.

Whence

(3.19) K(u)(x, δ) = ‖u‖2L2(B(x,δ)) ≥ e
−c|x−x0|

by Caccioppoli’s inequality.
In light of Lemma 3.4, we derive from (3.19)

(3.20) H(u)(x, δ) ≥ e−c|x−x0|.

But we have from Lemma 3.5

N(x, r) ≤ c̃
‖∇u‖L2(O)

H(u)(x, δ) , 0 < r < δ,

the constant c̃ only depends on κ and O. This inequality and (3.20) give the
expected one. �

Proposition 3.1. There exist two constants c > 0 and c̃ > 0, only depending on
n, κ, η, δ and M , so that if u ∈ S (O, x0,M, η, δ/3) then

c̃−1e−c̃|x−x0|
(r
δ

)cec|x−x0|+n−1
≤ ‖u‖2L2(B(x,r)), x ∈ Oδ, 0 < r < δ.

Proof. In this proof c > 0 is a generic constant only depending on n, κ, η, δ and
M .

Observing that, where H = H(u),

∂r

(
ln H(x, r)

rn−1

)
= ∂rH(x, r)

H(x, r) −
n− 1
r

,

we get from Lemma 3.6, (3.8) and the fact that |H̃(x, r)| ≤ κ2H(x, r),

∂r

(
ln H(x, r)

rn−1

)
≤ κ2 + N(x, r)

r
≤ κ2 + cec|x−x0|

r
, 0 < r < δ,

Thusˆ sδ

sr

∂t

(
ln H(x, t)

tn−1

)
dt = ln H(x, sδ)rn−1

H(x, sr)δn−1 ≤ κ2(δ − r)s+ cec|x−x0| ln δ
r
,

for 0 < s < 1 and 0 < r < δ.
Hence

H(x, sδ) ≤ eκ
2δ

(
δ

r

)cec|x−x0|+n−1
H(x, sr),
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and then

‖u‖2L2(B(x,δ)) = δn−1
ˆ 1

0
H(x, sδ)sn−1ds

≤ eκ
2δ

(
δ

r

)cec|x−x0|+n−1
rn−1

ˆ 1

0
H(x, rs)sn−1ds

≤ δn−1eκ
2δ

(
δ

r

)cec|x−x0|+n−1
‖u‖2L2(B(x,r)).

Combined with (3.19) this estimate yields in a straighforward manner

c̃−1e−c̃|x−x0|
(r
δ

)cec|x−x0|+n−1
≤ ‖u‖2L2(B(x,r)).

This is the expected inequality. �

For a bounded domain D, we denote the first non zero eigenvalue of the Laplace-
Neumann operator on D by µ2(D). Since µ2(B(x0, r)) = µ2(B(0, 1))/r2, we get by
applying Poincaré-Wirtinger’s inequality

‖w − {w}‖2L2(B(x,r) ≤
1

µ2(B(x, r))‖∇w‖
2
L2(B(x,r))(3.21)

≤ r2

µ2(B(0, 1))‖∇w‖
2
L2(B(x,r)),

for any w ∈ H1(B(x, r)), where {w} = 1
|B(x,r)|

´
B(x,r) w(x)dx.

Noting that S (O, x0,M, η, δ/3) is invariant under the transformation u → u −
{u}, we can state the following consequence of Proposition 3.1

Corollary 3.1. There exist two constants c > 0 and c̃ > 0, only depending on n,
κ, η, δ and M , so that if u ∈ S (O, x0,M, η, δ/3) then

c̃−1e−c̃|x−x0|
(r
δ

)cec|x−x0|+n−1
≤ ‖∇u‖2L2(B(x,r)), x ∈ Oδ, 0 < r < δ.

The following consequence of the preceding corollary will be useful in the proof
of Theorem 1.1.

Lemma 3.7. Let ω b O, 0 < β < 1 and set δ = dist(ω, ∂O). Then there exist two
constants C > 0 and c > 0 only depending on n, κ, η, δ and M so that, for any
u ∈ S (O, x0,M, η, δ/3) and f ∈ C0,β(O), we have
(i) for any x ∈ ω,

(3.22) |f(x)| ≤ c̃ec̃|x−x0|‖f‖1−µc,β(|x−x0|)
C0,β(O)

‖f |∇u|2‖µc,β(|x−x0|)
L1(O) ,

where
µc,β(s) = β

cec|x−x0| + β + n− 1
, s ≥ 0.

(ii) if

γ = β

cecm + β + n− 1 ,

with m = max{|x− x0|; x ∈ ω}, then

(3.23) ‖f‖L∞(ω) ≤ c̃ec̃m‖f‖1−γC0,β(O)
‖f |∇u|2‖γL1(O)
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Proof. By homogeneity it is enough to consider those functions f ∈ C0,β(O) satis-
fying ‖f‖C0,β(O) = 1.

Let u ∈ S (O, x0,M, η, δ/3) and f ∈ C0,β(O) satisfying ‖f‖C0,β(O) = 1. Pick
then x ∈ ω. From Corollary 3.1 there exist two constants c > 0 and c̃ > 0, only
depending on n, κ, η, δ and M , so that

(3.24) c̃−1e−c̃|x−x0|
(r
δ

)cec|x−x0|+n−1
≤ ‖∇u‖L2(B(x,r)), 0 < r < δ.

On the other hand it is straightforward to check that
|f(x)| ≤ |f(y)|+ rβ , y ∈ B(x, r).

Whence

|f(x)|
ˆ
B(x,r)

|∇u(y)|2dy ≤
ˆ
B(x,r)

|f(y)||∇u(y)|2dy

+ rβ
ˆ
B(x,r)

|∇u(y)|2dy.

That is we have
|f(x)|‖∇u‖2L2(B(x,r) ≤ ‖f |∇u|

2‖L1(B(x,r)) + rβ‖∇u‖2L2(B(x,r)).

Since u is non constant, ‖∇u‖2L2(B(x,r)) 6= 0 for any 0 < r < δ by the unique
continuation property. Therefore

|f(x)| ≤
‖f |∇u|2‖L1(B(x,r))

‖∇u‖2L2(B(x,r))
+ rβ , 0 < r < δ.

This and (3.24) entail

|f(x)| ≤ c̃ec̃|x−x0|
(
δ

r

)cec|x−x0|+n−1
‖f |∇u|2‖L1(B(x,r)) + rβ , 0 < r < δ.

Equivalently, we have

(3.25) |f(x)| ≤ c̃ec̃|x−x0|
(

1
s

)cec|x−x0|+n−1
‖f |∇u|2‖L1(B(x,r)) +δβsβ , 0 < s < 1.

Changing c̃ if necessary, we mat assume that c̃ec̃|x−x0| ≥ δβ .
We introduce the following temporary notations

ℵ = ‖f |∇u|2‖L1(B(x,r)), α = cec|x−x0|

and
Λ = c̃ec̃|x−x0|.

Then (3.25) takes the form

(3.26) |f(x)| ≤ Λ
(
ℵ
sα

+ sβ
)
, 0 < s < 1.

If 0 < ℵ < 1 we can take in (3.26) s = ℵ1/(α+β). This choice yields

(3.27) |f(x)| ≤ 2Λℵβ/(α+β).

When ℵ ≥ 1 we have
(3.28) |f(x)| ≤ 1 ≤ ℵ ≤ ℵℵβ/(α+β).

Inequality (3.23) follows then from (3.27) and (3.28).
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To prove (ii), we see that (3.25) yields

‖f‖L∞(ω) ≤ c̃ec̃m
(

1
s

)cecm+n−1
‖f |∇u|2‖L1(B(x,r)) + δβsβ , 0 < s < 1.

We then mimic the preceding proof to derive inequality (3.23). �

4. Proof Theorem 1.1

Pick (a, b), (ã, b̃) ∈ D(λ, κ) and let uj = Ga,b(·, ξj) and ũj = Gã,b̃(·, ξj), j = 1, 2.
As we have seen before w = u2/u1 is the solution of the equation

div(σ∇w) = 0 in Rn \ {ξ1, ξ2},

where

σ = au2
1 = av2

1
b2

.

Similarly, w̃ = ũ2/ũ1 is the solution of the equation

div(σ̃∇w̃) = 0 in Rn \ {ξ1, ξ2},

where

σ̃ = ãũ2
1 = ãũ2

1

b̃2
.

We know from Lemma 2.4 that there exist ρ > 0, x∗ ∈ R \ {ξ1, ξ2} and η > 0
only depending on ξ1, ξ2, λ, κ, and n so that B(x∗, ρ) b R \ {ξ1, ξ2} and

(4.1) η ≤ ‖∇w‖L2(B(x∗,ρ)).

Fix then a bounded domainQ of Rn\{ξ1, ξ2} is such a way that Ω∪B(x∗, ρ) b Q,
and set

δ = dist(Ω ∪B(x∗, ρ), ∂Q).
According to Lemma 2.3

(4.2) ‖∇w‖L2(O) ≤M,

the constant M only depending on λ, κ, ξ1, ξ2, and Ω.
Now if ρ ≤ δ/3 then (4.1) yields obviously

(4.3) η ≤ ‖∇w‖L2(B(x0,δ/3)),

with η as in (4.1).
When ρ > δ/3 we can use the three-ball inequality in order to get

C̃‖∇w‖L2(B(x∗,ρ)) ≤ ‖∇w‖sL2(B(x0,δ/3))‖∇w‖
1−s
L2(B(x∗,ρ+δ/3)),

the constants C̃ and 0 < s < 1 only depend on λ, κ, Ω, δ, ξ1 and ξ2. This and (4.1)
imply that that (4.1) holds again in the present case with a constant C that can
depend also on δ, ξ1, and ξ2.

In light of (4.2) and (4.3), we can assert that w ∈ S (Q, x∗,M, η, δ/3), where
S (Q, x∗,M, η, δ/3) was introduced in (3.3).

Lemma 4.1. Let 0 < θ < 1/2. Then

(4.4) C‖(σ − σ̃)|∇w|2‖L1(Ω) ≤ ‖w − w̃‖
θ/(2+θ)
L2(Ω) + ‖σ − σ̃‖L∞(Γ),

the constant C > 0 only depends on n, Ω, κ, λ, θ, ξ1 and ξ2.
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Proof. Clearly, if ζ = σ − σ̃ and u = w − w̃, then

div(ζ∇u) = div(σ̃∇u).

Recall that sgn0 is the sign function defined on R by: sgn0(t) = −1 if t < 1,
sgn0(0) = 0 and sgn0(t) = 1 if t > 0. Since

div(|ζ|∇w) = ∇|ζ| · ∇w + |ζ|∆w
= sgn0(ζ)∇ζ · ∇w + sgn0(ζ)ζ∆w
= sgn0(ζ)div(ζ∇w) = sgn0(ζ)div(σ̃∇u),

we get by integrating by partsˆ
Ω
|ζ|∇w|2dx = −

ˆ
Ω

div(|ζ|∇w)wdx+
ˆ

Γ
|ζ|w∂νwdS(x)(4.5)

= −
ˆ

Ω
sgn0(ζ)div(σ̃∇u)wdx+

ˆ
Γ
|ζ|w∂νwdS(x).

Thus ˆ
Ω
|ζ|∇w|2dx ≤ C

(
‖u‖H2(Ω) + ‖ζ‖L∞(Γ)

)
.

The previous inequality, the following interpolation inequality

‖u‖H2(Ω) ≤ cΩ‖u‖
θ/(2+θ)
L2(Ω) ‖u‖

2/(2+θ)
H2+θ(Ω),

and Lemma 2.3 give (4.4). �

Fix x ∈ Ω and for simplicity convenience we set

µ = µc,β(|x− x∗|) = β

cec|x−x∗| + β + n− 1
.

Thereafter c̃ is generic constant only depending on n, κ, λ, β, θ, Ω, ξ1, and ξ2,
and c > 0 is a generic constant only depending on n, κ, λ, Ω, ξ1, and ξ2.

We have from (3.22) in Lemma 3.7

|σ̃(x)− σ(x)| ≤ c̃ec̃|x−x
∗|‖σ̃ − σ‖1−µ

C0,β(Ω)
‖(σ − σ̃)|∇w|2‖µL1(Ω),

from which we derive

|σ̃(x)− σ(x)| ≤ c̃ec̃|x−x
∗|max

(
1, ‖σ̃ − σ‖C0,β(Ω)

)
‖(σ − σ̃)|∇w|2‖µL1(Ω).

Combined with Proposition 2.1, this inequality gives

|σ̃(x)− σ(x)| ≤ c̃ec̃|x−x
∗|‖(σ − σ̃)|∇w|2‖µL1(Ω).

Therefore we obtain in light of Lemma 4.1

|σ̃(x)− σ(x)| ≤ c̃ec̃|x−x
∗|
(
‖w − w̃‖θ/(2+θ)

L2(Ω) + ‖σ − σ̃‖L∞(Γ)

)µ
.

Since ã = a and b̃ = b on Γ and regarding the regularity of ui and ũi, i = 1, 2,
we finally get

|σ̃(x)− σ(x)| ≤ c̃ec̃|x−x
∗|
(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ0
,(4.6)

with
µ0 = θµ

2 + θ
.
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Lemma 4.2. Let 0 < θ < 1/2 and 0 < β < 1. There exist two constants 0 < γ1 < 1
and C > 0, only depending on n, β, Ω, κ, λ, θ, Ω, ξ1 and ξ2, so that

(4.7) ‖u−1
1 − ũ

−1
1 ‖C2,β(Ω) ≤ C

(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)γ1
.

Proof. In this proof C > 0 is a generic constant only depending on n, Ω, κ, λ, θ,
Ω, ξ1 and ξ2.

We firstly note that is not hard to check that

− div(σ∇u−1
1 ) = v1 in Ω,

− div(σ̃∇ũ−1
1 ) = ṽ1 in Ω.

Hence

−div(σ∇(u−1
1 − ũ

−1
1 )) = (v1 − ṽ1) + div((σ − σ̃)∇ũ−1

1 ) in Ω.

By the usual Hölder a priori estimate (see [16, Theorem 6.6, page 98])

C‖u−1
1 − ũ

−1
1 ‖C2,β(Ω) ≤ ‖v1 − ṽ1‖C0,β(Ω)

+ ‖div((σ − σ̃)∇ũ−1
1 )‖C0,β(Ω) + ‖u−1

1 − ũ
−1
1 ‖C0,β(Γ).

Consequently

(4.8) ‖u−1
1 − ũ

−1
1 ‖C2,β(Ω) ≤ C

(
‖v1 − ṽ1‖C0,β(Ω) + ‖σ − σ̃‖C1,β(Ω)

)
,

where we used that

‖u−1
1 − ũ

−1
1 ‖C0,β(Γ) = ‖b(v−1

1 − ṽ−1
1 )‖C0,β(Γ).

On the other hand, since

‖σ − σ̃‖C1,1(Ω) ≤ C, ‖v1 − ṽ1‖C0,β(Ω) ≤ C

and Ω is C1,1, by the interpolation inequality in [16, Lemma 6.35, page 135] we get

(4.9) ‖σ − σ̃‖C1,β(Ω) ≤ C‖σ − σ̃‖
τ
C(Ω), ‖v1 − ṽ1‖C0,β(Ω) ≤ ‖v1 − ṽ1‖τC(Ω),

the constant 0 < τ < 1 only depends on β and Ω.
Inequality (4.9) in (4.8) yields

(4.10) ‖u−1
1 − ũ

−1
1 ‖C2,β(Ω) ≤ C

(
‖v1 − ṽ1‖τC(Ω) + ‖σ − σ̃‖τ

C(Ω)

)
.

On the other hand similarly to (4.6) we have, by using inequality (3.23) instead
of (3.22) in Lemma 3.7,

‖σ̃ − σ‖L∞(Ω) ≤ C
(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)γ0
,(4.11)

with
γ0 = θγ

2 + θ
,

the constant γ is the same as in (ii) of Lemma 3.7.
Whence we get in light of inequalities (4.10) and (4.11), where γ1 = τγ0.

‖u−1
1 − ũ

−1
1 ‖C2,β(Ω) ≤ C

(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)γ1
.

This is the expected inequality. �
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From the identity
a− ã = σu−2

1 − σ̃ũ1
−2 = (σ − σ̃)u−2

1 + σ̃(u−2
1 − ũ

−2
1 )(4.12)

= (σ − σ̃)u−2
1 + σ̃(u−1

1 + ũ−1
1 )(u−1

1 − ũ
−1
1 ),

we get

|a(x)− ã(x)| ≤ C
(
|σ(x)− σ̃(x)|+ ‖u1 − ũ1‖C(Ω)

)
, x ∈ Ω.

In light of inequalities (4.6) and (4.7) we find

c̃−1e−c̃|x−x
∗||a(x)− ã(x)| ≤

(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ0

+
(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)γ1
, x ∈ Ω.

We have

µ0 =
(

θ

2 + θ

)
β

cec|x−x∗| + β + n− 1
≥ γ1 = τ

(
θ

2 + θ

)
β

cecm + β + n− 1 ,

where m = max{|x− x∗|; x ∈ Ω}.
Therefore if ‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω) ≤ 1 then

|a(x)− ã(x)| ≤ c̃ec̃|x−x
∗|
(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ0
, x ∈ Ω.

Such an estimate is obviously satisfied when ‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω) ≥ 1.
We can proceed similarly for b− b̃ since

b− b̃ = v1u
−1
1 − ṽ1ũ

−1
1 = (v1 − ṽ1)u−1

1 + ṽ1(u−1
1 − ũ

−1
1 ),

The proof of Theorem 1.1 is then complete.

Remark 4.1. The notations in this remark are those of the preceding proof.
We have according to identity (4.12)

(4.13) ‖a− ã‖C1,β(Ω) ≤ C
(
‖v1 − ṽ1‖C0,β(Ω) + ‖σ − σ̃‖C1,β(Ω)

)
.

This inequality together with the interpolation inequality (4.9) entail

‖a− ã‖C1,β(Ω) ≤ C
(
‖v1 − ṽ1‖C(Ω) + ‖σ − σ̃‖C(Ω)

)τ
.

In light of (4.11) this inequality yields

‖a− ã‖C1,β(Ω) ≤ C
(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)τγ0
.

We have similarly

‖b− b̃‖C0,β(Ω) ≤ C
(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)τγ0
.

In other words we proved the following result, where we fixed 0 < θ < 1/2 appearing
in the preceding proof .

Theorem 4.1. Let 0 < β < 1. Then there exists two constants C > 0 and 0 < µ <
1, only depending on n, ξ1, ξ2, κ, λ, Ω, and β so that, for (a, b), (ã, b̃) ∈ D(λ, κ)
satisfying (a, b) = (ã, b̃) on Γ, we have

‖a− ã‖C1,β(Ω) + ‖b− b̃‖C0,β(Ω) ≤ C
(
‖v1 − ṽ1‖C(Ω) + ‖v2 − ṽ2‖C(Ω)

)µ
.
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Appendix A. Proof of Lemma 2.2

In this appendix C > 1 is a generic constant only depending on n, µ and ν.
For a given constant ν > 0 , it is well known that G1,ν , the fundamental solution

of the operator −∆ + ν, is given by G1,ν(x, ξ) = G1,ν(x− ξ), x, ξ ∈ Rn, with

G1,ν(x) = (2π)−n/2(
√
ν/|x|)n/2−1Kn/2−1(

√
ν|x|).

In the particular case n = 3, we have K1/2(z) =
√
π/(2z)e−z and therefore

G1,ν(x) = e−
√
ν|x|

4π|x| ,

in dimension three.
Let f ∈ C∞0 (Rn), µ > 0, and ν > 0 be two constants, and denote by u the

solution of the equation
(−µ∆ + ν)u = f in Rn.

Then

(A.1) u(x) =
ˆ
Rn
Gµ,ν(x, ξ)f(ξ)dξ, x ∈ Rn.

We remark that v(x) = u(√µx), x ∈ Rn satisfies (−∆ + ν)v = f(√µ ·). Whence

u(√µx) = v(x) =
ˆ
Rn
G1,κ(x− ξ)f(√µξ)dξ

= µ−n/2
ˆ
Rn
G1,ν(x− ξ/√µ)f(ξ)dξ, x ∈ Rn.

Hence

(A.2) u(x) = µ−n/2
ˆ
Rn
G1,ν((x− ξ)/

√
c)f(ξ)dξ, x ∈ Rn.

Comparing (A.1) and (A.2) we find

Gµ,ν(x, ξ) = c−n/2G1,ν((x− ξ)/
√
c), x, ξ ∈ Rn.

Consequently Gµ,ν(x, ξ) = Gµ,ν(x− ξ) with

(A.3) Gµ,ν(x) = (2πµ)−n/2(√νµ/|x|)n/2−1Kn/2−1(
√
ν|x|/√µ), x ∈ Rn.

By the usual asymptotic formula for modified Bessel functions of the second kind
(see for instance [5, 9.7.2, page 378]) we have, when |x| → ∞,

Kn/2−1(
√
ν|x|/√µ) =

(
π
√
µ

2
√
ν|x|

)1/2
e−
√
ν|x|/√µ (1 +O(1/|x|)) ,

where O(1/|x|) only depends on n, µ and ν.
Consequently, there exits R > 0, only depending on n, µ and ν, so that

(A.4) C−1 e
−
√
ν|x|/√µ

|x|1/2
≤ Kn/2−1(

√
ν|x|/√µ) ≤ C e

−
√
ν|x|/√µ

|x|1/2
, |x| ≥ R.

Substituting if necessary R by max(R, 1), we have

(A.5) 1
|x|n/2−1 ≤

1
|x|1/2

, |x| ≥ R.
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Moreover, we have
e−
√
ν|x|/√µ

|x|1/2
=
[
|x|(n−3)/2e−

√
ν|x|/(2√µ)

] e−√ν|x|/(2√µ)

|x|n/2−1 , |x| ≥ R.

Since the function x→ |x|(n−3)/2e−
√
ν|x|/(2√µ) is bounded in Rn, we deduce

(A.6) e−
√
ν|x|/√µ

|x|1/2
≤ C e

−
√
ν|x|/(2√µ)

|x|n/2−1 , |x| ≥ R.

Using (A.5) and (A.6) in (A.4) in order to obtain

(A.7) C−1 e
−
√
ν|x|/√µ

|x|n/2−1 ≤ Kn/2−1(
√
ν|x|/√µ) ≤ C e

−
√
ν|x|/(2√µ)

|x|n/2−1 , |x| ≥ R.

We now establish a similar estimate when |x| → 0. To this end we recall that
according to formula [5, 9.6.9, page 375] we have

Kn/2−1(ρ) ∼ 1
2Γ(n/2− 1)

(
2
ρ

)n/2−1
as ρ→ 0,

from which we deduce in a straightforward manner that there exists 0 < r ≤ R, so
that

(A.8) C−1 e
−
√
ν|x|/√µ

|x|n/2−1 ≤ Kn/2−1(
√
ν|x|/√µ) ≤ C e

−
√
ν|x|/(2

√
ν)

|x|n/2−1 , |x| ≤ r.

The expected two sided inequality (2.10) follows by combining (A.4), (A.7) and
(A.8).
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