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STABILITY FOR QUANTITATIVE PHOTOACOUSTIC
TOMOGRAPHY REVISITED

ERIC BONNETIER, MOURAD CHOULLI, AND FAOUZI TRIKI

ABSTRACT. This paper is concerned with the stability issue in determining
absorption and diffusion coefficients in quantitative photoacoustic imaging.
Assuming that the optical wave is generated by point sources in a region
where the optical coefficients are known, we derive pointwise Holder stability
estimate of the inversion. This result shows that the reconstruction of the op-
tical coefficients is stable in the region close to the optical illumination sources
and deteriorate exponentially far away. Our stability estimate is therefore in
accordance with known experimental observations.

Mathematics subject classification : 35R30.

Key words : Elliptic equations, diffusion coefficient, absorption coefficient,
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1. INTRODUCTION

Throughout this text n > 3 is a fixed integer. If 0 < a < 1 we denote by
C%*(R™) the vector space of bounded continuous functions f on R” satisfying

[f]a _ sup{|f(x) _f(y)|

e,y R x££y < oo,
|z —yl|*
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C%*(R"™) is then a Banach space when it is endowed with its natural norm

Il fllco.e@ny = I fllzoe®n) + [fla-

Define C1*(R™) as the vector space of functions f from C%*(R™) so that 9;f €
CY*(R"), 1 < j <n. CH*(R"™) equipped with the norm

I £llcre @y = Ifllcoa@ny + D 105 fllcoe@n

j=1
is a Banach space.

For A > 1 and s > 1, denote by D(\, k) the set of couples (a,b) € CL1(R™) x
CY1(R") satisfying
(1.1) At <a and allcragny < A
(12) Hil < b and ”bHCOﬂl(R") < K,

Define further the elliptic operator L, acting as follows
(1.3) Lo pu(z) = —0;(a(z)0ju(z)) + b(z)u(x).

We will show in Theorem 2.2 that if (a,b) € D(A, ) then the operator L, ; admits
a unique fundamental solution G, ; satisfying

Gap(€) € C(R"\ {£}), £€R,
Gap(z,-) € C(R"\ {z}), xeR",
LapGap(€§) =0in Z'(R"\ {¢}), &eR",

and for any f € C5°(R™),

w@) = | Gap(x,E)f(£)dE,

R‘VL
belongs to H?(R™), and is the unique solution of L,,u = f. Moreover, for any
0< B <1land O €R"\{¢&}, Gup(:, &) belongs to C2#(O) and

||Ga,b('7£)HC'2ﬁ(6) < Ca
the constant C' only depends on n, O, 8 and A.

Let Q be a bounded C'! domain of R™ with boundary I'. We deal with the
problem of reconstructing (a,b) € D(\, k) from energies generated by two sources
located at & and &, two distinct points in R™\ Q. Precisely if uj(a,b) = Gop(-, &),
j =1,2, we want to determine (a,b) from the internal measurements

vj(a,b) = buj(a,b), inQ, ;=12

This inverse problem is related to photoacoustic tomography (PAI) where opti-
cal energy absorption causes thermoelastic expansion of the tissue, which in turn
generates a pressure wave [23]. This acoustic signal is measured by transducers dis-
tributed on the boundary of the sample and it is used for imaging optical properties
of the sample. The internal data v;(a,b) and va(a,b) are obtained by performing a
first step consisting in a linear initial to boundary inverse problem for the acoustic
wave equation. Therefore the inverse problem that arises from this first inversion
is to determine the diffusion coefficient a and the absorption coefficient b from the
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internal data vi(a,b) and vs(a,b) that are proportional to the local absorbed op-
tical energy inside the sample. This inverse problem is known in the literature as
quantitative photoacoustic tomography [1, 4, 2, 3, 9, 8, 20].

Photoacoustic imaging provides in theory images of optical contrasts and ultra-
sound resolution [23]. Indeed, the resolution is mainly due to the small wavelength
of acoustic waves, while the contrast is somehow related to the sensitivity of optical
waves to absorption and scattering properties of the medium in the diffusive regime.
However in practice it has been observed in various experiments that the imaging
depth, i.e. the maximal depth of the medium at which structures can be resolved at
expected resolution, of PAT is still fairly limited, usually on the order of millimeters.
This is mainly due to the fact that optical waves are significantly attenuated by ab-
sorption and scattering. In fact the generated optical signal decays very fast in the
depth direction. This is indeed a well know faced issue in optical tomography [22].
In most physicists works dealing with quantitative PAI, the absorption b > 0 is
assumed to be constant and the optical wave is simplified to Ce~%?, as a function
of the depth z, which is known as the Beer-Lambert-Bouguer law [6]. Recently in
[21], assuming that medium is layered, the authors derived a stability estimate that
shows that the reconstruction of the optical coefficients is stable in the region close
to the optical illumination source and deteriorate exponentially far away. The main
objective of this work is to provide a mathematical analysis of the issue of imaging
depth in PATI in a general setting. To be more precise, assuming that the optical
waves are generated by two point sources d¢,,7 = 1,2, we aim to derive a stability
estimate for the recovery of the optical coefficients from internal data. We point
out that taking the optical wave generated by a point source outside the sample
seems to be more realistic than assuming a boundary condition.

We show in Lemma 2.4 that there exist p > 0, * € R\ {&1,&} close to & and
1 > 0 only depending on &1, &2, A, K, and n so that B(z*,p) € R\ {1, &} and

<7 (i)
U

Theorem 1.1. Let 0 < 0 < 1/2 and 0 < 8 < 1. Then there exists a constant ¢ > 0,
only depending on n, Q, &, &2, K, A, 6 and B so that, for (a,b),(a,b) € D(A, k)
satisfying (a,b) = (a,b) on T', we have

(14)  la(@)=a(2)| + [b(z) — b(=)|

L2(B(z*,p))

R ) ) (e
< Ze (Hvl—vluc(ﬁ)ﬂm—wuc@)) . 1eQ,

where

4 B
= >
1(s) <2+0)cecs+ﬁ+n—1’ 5> 0,

the constant ¢ > 0 only depends on n, Q, &1, &2, k and A.

The derived stability estimate shows clearly that the resolution of PAI may dete-
riorate exponentially in the depth direction far from the sources £; and &. Indeed,
(| —2*]) is of order e=°1*=*"| when |z — 2*| is sufficiently large. Consequently the
right hand side of (1.4) may be close to a constant whenever |z — x*| is sufficiently
large even if the term ||v; — ﬂch(ﬁ) + [Jvg — 52”0(5) is too small. Moreover, the

term ¢e®l*—*"| increase exponentially with respect to |l — 2*|.
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The result of Theorem 1.1 is therefore in a good agreement with observations
made in various experiments that the imaging depth is fairly limited.

The rest of this text is organized as follows. In section 2 we construct a fundamen-
tal solution and give its regularity induced by that of the coefficients of operators
under consideration. We also establish in this section a lower bound of the local
L?-norm of the gradient of the quotient of two fundamental solutions near one of
the point sources. This is the key point for establishing our stability estimate. This
last result is then used in Section 3 to obtain a uniform polynomial lower bound of
the local L?-norm of the gradient in a given region. This polynomial lower bound
is obtained in two steps. In the first step we derive, via a three-ball inequality for
the gradient, a uniform lower bound of negative exponential type. We use then in
the second step an argument based on the so-called frequency function in order to
improve this lower bound. In the last section we prove our main theorem following
the known method consisting in reducing the original problem to the stability of
an inverse conductivity problem.

2. FUNDAMENTAL SOLUTIONS

2.1. Constructing fundamental solutions. In this subsection we construct a
fundamental solution of divergence form elliptic operators. Since our construction
relies on heat kernel estimates, we first recall some known results.

Consider the parabolic operator P, ; acting as follows

P, yu(z,t) = —Lgpu(z, t) — Oyu(z, t)

and set

Q={(z,t,§,7) e R"" x Rx R" xR; 7 < t}.

Recall that a fundamental solution of the operator P,; is a function E,; €
C*Y(Q) verifying P, ,E = 0 in @ and, for every f € C§°(R"),

lim [ Bus(a,t,67)/(€)d¢ = (@), @ € R,
T JRn
The classical results in the monographs by A. Friedman [13], O. A. Ladyzenskaja,
V. A. Solonnikov and N.N Ural’ceva [19] show that P,; admits a on negative
fundamental solution when (a,b) € D(A, k).
It is worth mentioning that if a = ¢ for some constant ¢ > 0, and b = 0, the
fundamental solution E. g is explicitly given by
Eeolwt,6,7) = 7t e R, (1,67 €Q
c,0\ Ty 1, G, T) = (477C(t—7'))n/2e ) €T,0,8, T .
Examining carefully the proof of the two-sided Gaussian bounds in [12], we see
that these bounds remain valid whenever a € C11(R") satisfies

(2.1) A1 <a and HaHCl,l(Rn) <A,

A > 1is a constant.
More precisely we have the following theorem in which

c |=|2

“et, zeR" t>0,c>0.

gc(xat) = We )
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Theorem 2.1. There exists a constant ¢ > 1 only depending on n and A so that,
for any a € CH1(R™) satisfying (2.1), we have, for (x,t,&,7) € Q,

(22) 86*1 (x - ga t— T) S Ea,O(xv tv 57 T) S 50('1: - fv t— T)'
It is worth mentioning the following relationship between &. and E,

n/2—1
(23) EC(Z - fat - 7_) = LEC/&O(xataga’r), (Sﬂ,t,f, T) € Q

The following comparaison principle will be useful in the sequel.
Lemma 2.1. Let (a,by1), (a,b2) € D(A\, k) so that by < bs. Then Eqp, < Eqp, -
Proof. Pick 0 < f € C§°(R™). Let u be the solution of the initial value problem
P,pou(x,t)=0 e R" x {t > 7}, ulz,7)=1.
We have
(2.4) u(z,t) = Egp, (z,t;€,7)f(£)dE > 0.

Rﬂ,
On the other hand, as P, , u(z,t) = 0 can be rewritten as P, p,u(z,t) = (by(x) —
ba(x))u(x,t), we obtain

(2.5)  u(z,t) = Ea,bz (z,t;€,7)f(£)dE

[ Fana 5010 - ba(© e sy

Combining (2.4) and (2.5), we get
/ Ea bz z, t; 57 (f)df S ,/]Rn Ea,b1 (x,t,€77)f(§)d£,

which yields in a straightforward manner the expected inequality. O

Consider, for (a,b) € D(), k), the unbounded operator A4, : L*(R") — L*(R")

defined
Aup=—Lap, D(A.p) = H*(R™).

It is well known that A,; generates an analytic semigroup e Therefore in
light of [7, Theorem 4 on page 30, Theorem 18 on page 44 and the proof in the
beginning of Section 1.4.2 on page 35|, kq (¢, 7;€), the Schwarz kernel of et4et  is
Holder continuous with respect to = and £ and satisfies
(26) |ka,b(t> x, §)| S e—5tgc(x - fvt - T)

anda for |h| < \/¥+ |$ 7€|a

@7)  Jhap(ta 4+ 1) — kas(t, 2, )] < e ('h')"sc(a: _et—1),

tAab

Vitle —¢
n
@8 Mheatta €+ ) k(e < (o) o),

the constants ¢ > 0 and ¢ > 0 only depend on n, A and k, and n > 0.
By the uniqueness of solutions of the Cauchy problem

(2.9) u'(t) = Agpu(t), t >0 u(0) = f e CFR")
we deduce in a straightforward manner that kq (¢, 2; &) = Eqp(2,t;€,0).
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Prior to give the construction of the fundamental solution for the variable coef-
ficients operators, we state a result for operators with constant coefficients. This
result is proved in Appendix A.

Lemma 2.2. Let pt > 0 and v > 0 be two constants. Then the fundamental solution
for the operator —pA + v is given by G, ,(x,&) = G, (x —§), x,§ € R™, with

Gpuw () = 2mp) "2 (op/ |2 )P K o 1 (V2] [/, @ € R
Here K, /o1 is the usual modified Bessel function of second kind. Moreover the
following two-sided inequality holds

eVl o V7lzl/(2/i)

(2.10) 2 <Guu(z) < , x €R™,

|$‘"_2
the constant C' > 1 only depends on n, p and v.
The main result of this section is the following theorem.

Theorem 2.2. Let (a,b) € D(\, k). Then there exists a unique function G
satisfying Gap(-,§) € C(R™\ {£}), £ € R™, Gop(z,-) € C(R™\ {z}), x € R™ and
(1) LapGap(-,€) =0 in Z'(R"\ {¢}), £ € R,

(ii) for any f € C5°(R"),

u(z) = | Gap(x,8)f(€)dE
R‘IL
belongs to H2(R™), and is the unique solution of L, yu = f,
(iii) there exist a constant ¢ > 1, only depending onn and X\, and a constant C > 0,
only depending on n, A and k, so that

(2.11) e (,6) < C e
. O Ao = a,b 9 = T ¢n—2"
|z — &2 |z — &2

Proof. Pick s > 1 arbitrary. Applying Holder inequality, we find

[ Rt UEIE < Lt a.)

Ls(Rn)||f| Ls' (Rn)»

where s’ is the conjugate exponent of s.
But, according to (2.6)

c \* _sle—g?
||ka,b(’5a$»')||SLs(Rn)§(W) / e” e de.

Next, making a change of variable £ = (\/ct/s)n + =, we get
n/2
s c \*$[ct Ip|2
[kab(t, 2, )| 7smny < (W> <5> /ne .

Lo (Rn) < im(l/sfl)/2cv57

Hence
||ka7b(ta Z, ) ‘

co=<(9" ([ ecwdn)”i

with
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Under the choice 1 < s < nﬁ2 < §, we have

+oo
/ /ka,ba,x,fnf(fndadt
0 R
1 +oo
- / Fa(t, 2, €) F(€)|dedt + / Fap(t, 2, €)|£(6)|dedt
0 R 1 R»

+oo . ~
< Cs”ﬂ L3 (R™) / t3(/5=D gy,
1

1
L &) /0 t30/7Vdt + G| |

In light of Fubini’s theorem, we get

e [ [ hatnor©dsi= [ ([7 katnga) s

0
Define G, as follows

—+o0
Go@.&) = [ Funlta, .

Then (2.12) takes the form

+oo
e [ ke of@ds = | Gu (s

Noting that A, ; is invertible, we obtain

~agse = ([ - e i) (o

+oo
:/ / kao(t,z, &) f(€)dedt, x € R
O n

This and (2.13) entail
SA@) = [ Gualw 05 R
In other words, u defined by
u@) = [ Guw () a R
belongs to H2(R™) and satisfies L, yu = f.

Noting that, for = # &,

oo q o2 Foo 1
/ o R g Cn/2—1/ n/2=2 =T g ’
o tn/? 0 lx — &[n—2

we get in light of (2.7)

C
|Gap(z 4+ h, &) = Gap(x, €| < @ W7, @ #& b <z —¢.

— £|n+2+77

the constant C only depends on n, A and x. In particular G (-, &) € C(R™\ {¢}).
Similarly, using (2.8) instead of (2.7), we obtain Gy (z, ) € C(R™\ {z}). More
specifically we have

C
(2.14)  |Gap(z, &+ h) — Gap(x,8)] < W\hl", z#&, |h <z —¢|
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Take £ € R™ and K a compact subset of R™ \ . Then set

uw@aéamwm y € B(E, dist(€, K)).

It follows from (2.14) that

‘ < #
— dist(y, K)n+2+n
Therefore w, , € C(B(,dist(&, K)).
Let M(R™) be the space of bounded measures on R™. Pick a sequence (f,) of
a positive functions of C§°(R"™) converging in M(R") to & and let u, = —A_ } fs.
In consequence according to Fubini’s theorem we have ’

[tz = [ [ Gosten)fuwiy
K K JRn®
- /n wa,b(y)fn(y)dy ? wa,b(g) = /I;Ga,b(x7£)dx7

where we used that suppf, C B(&,dist(¢, K)), provided that n is sufficiently large.
That is we proved that u,, converges to G (-, &) in Lj, (R™\ {£}).

Now, as Lg ptn, = fr, we find L, Gop(-,€) = 0 in R™\ {{} in the distributional
sense.

We note that the uniqueness of G is a straightforward consequence of that of

|wa,b(y + h) - wa,b<y) ‘h|’7’ S K7 |h‘ < dlSt<yaK)

.
As k7! < b < k we deduce from Lemma 2.1 that

Eor(2,t,8,0) < Eap(2,1,£,0) < Ey -1 (2,1,£,0).
But a simple change of variable shows
(2.15) Byt (2,6,6,0) = % 1B, o(x,1,€,0),
and
(2.16) Eo(z,t,£,0) = e " Eyo(2,t,€,0).

Therefore from Theorem 2.1 and identity (2.3) there exists a constant ¢ > 1
depending only on n and A so that

(Wc—l)n/Q—l

™

e—fit

EC—1/470({E,1§,§,0) < Ea,b(xatgﬂ 0)

n/2-1
_k~1 e
S € t%Ec/&O(II;utvgao)a

which combined again with identities (2.15) and (2.16) give

(ﬂcfl)n/zfl
™

Ec*1/4,n(x7 t, 57 O) < Ea,b(xa t, ga 0)

(ﬂ,c)n/Qfl
< TEC/AL,/{*I (1'7 L, €7 O)
From the uniqueness of G, we obtain by integrating over (0,4o00) each member
of the above inequalities
(71—6*1)"/2*1

™

(ﬂc)n/271

Gc*1/4,m(gja§) < Ga,b(xag) < T

C;c/él,i{*1 (Ia f)
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This two-sided inequality together with (2.10) yield in a straightforward manner
(2.11). O

The function G, given by the previous theorem is usually called a fundamental
solution of the operator L .

2.2. Regularity of fundamental solutions.

Proposition 2.1. Let O € R"\ {¢}, £ e R" and 0 < B < 1. Then Ggp(-,§) €
C?*B(0) and

(217) ||Ga,b('v§)|‘c2ﬂ(6) < C7
the constant C' > 0 only depends onn, O, B, A\, k and &.

Proof. In this proof C' > 0 is a constant only depending on n, O, 8, A, k and £.

Fix O € O € R"\ {¢} with O of class CVL. As G.p(-,€) € C(90') by
[16, Theorem 6.18, page 106] G,(-,&) belongs to C%#(O'). Applying then [16,
Corollary 6.3, page 93] in order to get

||Ga,b('vf)‘|c2ﬁ(5) < CHGa,b('af)”c(@)'
This estimate together with the one in Theorem 2.2 (iii) yield (2.17). O
2.3. Gradient estimates of the quotient of two fundamental solutions.
Fix &1,& € R™ with & # & and set u; = Gap(+, &), 7 = 1,2, where G, is the

fundamental solution constructed in Theorem 2.2 corresponding to (a,b) € D(\, k).
It is useful in the sequel to observe that u = ug/uy is the solution of the equation

div(o(z)w(z)) =0, inR"\ {£1,&),

with o = au?.
Also, we see that as an immediate consequence of Proposition 2.1 we have

Corollary 2.1. Let O be a bounded domain of R™\ {{1,&2} and 0 < 8 < 1. Then
there exists a constant M > 0 only depending on O, B, A\, & and & so that

U2

Uy

< M.

C2:8(0)

Pick 0 <9 < 1/2and 1/2+9 < 8 < 1. Then by the definition of W*P-spaces in
[17, Definition 1.3.2.1, page 16] we deduce that C?#(0O) is continuously embedded
in H2+?(0). In light of Corollary 2.1 we can state the following result

Lemma 2.3. Let O be a bounded domain of R™ \ {£1,&2} and 0 <9 < 1/2. Then
there exists a constant M > 0 only depending on O, ¥, X\, & and &, so that

U
-2 < M.

H2+9(0)

Uy

Lemma 2.4. There exist z* € R", C' > 0 and p > 0 only depending only on n, A,
K, &1 and & so that B(z™, p) CR"\ {&1, &} and

e=lv ()

L2(B(z*,p))
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Proof. Pick R > 0 is such a way that £,& € B(0,R). Set w = ug/u;. Then
according to Theorem 2.2 we have

o —& "2 |z — &|"2
5~ <oz 5
P R P Tk

the constant C' > 1 only depends on n, A, k & and &s.
Set t = dist(&2,0B(0, R))/2 and define

p(t,0) = w(& +10), (t.0) € (0,7 x 8",
We deduce from Corollary (2.1) that ¢ € C2?((0,4] x S"1) and consequently

loc

(2.18) Cc lz| < R,

t
o(t,0) — p(t,0) = /t Vw(&s + sb) - 0ds,

which in turn gives
i
[P(E.0) ~ plt.0) < (=) [ [Tw(ea+s0) ds
t

t
< f/ \Vw (& + s0)|° ds
t

- fsn—l .
< t/t P |[Vw(&s —|—.99)|2 ds, (t,0) € (0,f xS 1

Whence, where t € (0,1],

(2.19) t"—l/ lo(Z,0) — o(t,0)|>d6 gf/ \Vw(z)|? da.
sn—t %,
Here
%z{xeR": t<|x—£2|<f}.
On the other hand inequalities (2.18) imply, where (,0) € (0,7] x S*~1,

-1 & — & + 10" < o(t.0) < C|§2 —& 10" 2
tn72 — ? — tnf2 .
Hence ) )
(316 - &N\ 5[& — &\
=he 52l < p(t,0) < B 5el
o (0 <o) <o (Mo

provided that t € (0,) and § € S"~! with £ < min(¢,]& — &|/4). Let us then
choose ¢ sufficiently small in such a way that

n—2 n—2
o-1 (3|§14t_52|> —C (5|£14g§2|> >0, te(0,7).

Therefore

(2.20) <01 (3'54755') ¢ (554??5')_) < IolE0) - plt,0)7

if (t,0) € (0,1) x § € S*~1.
We then obtain by combining inequalities (2.19) and (2.20)
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- L (316 -6\ sle - &\ 2\ _; 2
I Gl e e et N T
| |< - = <i [ 1vu@)fds

for t € (0,1).
As the left hand side of this inequality converges to co when ¢ tends to 0, we
find to € (0,%), depending only on \, &, & and &, so that

cog/ V(o)) da.
G

[¢]

Here and until the end of this proof Cy > 0 is a generic constant only depending
on n, A\, k & and &,. o
Set p = to/4. Then it is straightforward to check that, for any x € ;,,

B(a,p) C {y € R™; 3to/4 < |y — &| < 5t/4} C B(0, R).

Since %, is a compact we find a positive integer N, only depending on \, , &;
and &, and z; € 6;,, j =1,--- , N, so that

N
Gy C | Bl p).
j=1

Hence

Cy < / |V (z)|* de.
U;‘Vle(xj ,P)

Pick then z* € {z;, 1 < j < N} in such a way that

/ \Vw(x)|” de = max/ \Vw(z)| de.
B(z*,p) 1<GSN JB(x;.p)

Therefore
Co g/ Vw(z)|” dz,
B(z*,p)

which finishes the proof. O

3. UNIFORM LOWER BOUND FOR THE GRADIENT

In this section we derive a polynomial lower bound of the local L?-norm of
the gradient of solutions of L,ou = 0. In a first step we derive, via a three-ball
inequality for the gradient, a uniform lower bound of negative exponential type. We
use then in a second step an argument based on the so-called frequency function in
order to improve this lower bound.

Let O be a Lipschitz bounded domain of R™ and o € C%!(0) satisfying

(3.1) »x 1 <o and lollgoa @) < 2

for some fixed constant » > 1.
For simplicity convenience we use in the sequel the notation L, instead of L, .
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3.1. Preliminary lower bound. We need hereafter the following three-ball in-
equality for the gradient.

Theorem 3.1. Let 0 < kK < £ < m be real. There exist constants C > 0 and

0 < v < 1, only depending on n, k, £, m and s, so that, for any v € H'(O)
satisfying Lov =0, y € O and 0 < r < dist(y, 00)/m, we have

ClIVollz2(y.er) < ||VU||’IY/2(B(y,kr))‘IVUH};?B(y,mr))'

A proof of this theorem can be found in [10] .
Define the geometric distance df on the bounded domain D of R™ by

d, (z,y) = inf {£(¢); ¥ : [0,1] — D Lipschitz path joining z to y} ,
where .
(W) = [ ol
0

is the length of .

Note that according to Rademacher’s theorem any Lipschitz continuous function
¥ : [0,1] = D is almost everywhere differentiable with |¢)(t)| < k a.e. t € [0,1],
where k is the Lipschitz constant of 1.

Lemma 3.1. Let D be a bounded Lipschitz domain of R". Then d? € L>°(D x D)
and there exists a constant ¢cp > 0 so that

(3.2) |xfy|§d_(l])(x,y)§cD\x*y|, x,y € D.

This lemma is due to Tom ter Elst. We provided its proof in [11, Appendix A].
In this subsection we use the following notations

O° = {z € O; dist(x,00) > 6}
and
x(0) = max{d > 0; O° # (}.
Let § € (0,x(0)/3), mo € 0. Let n and M satisfy 0 < n < M. Define then
(3.3) (0,39, M,n,8) ={ue€ H(0); Lyu=0in O,
IVullz20) < M, [IVullz2(Bwo.s)) = 1} -

Lemma 3.2. There exists a constant ¢ > 0 only depending on n, n, » and M so
that, for any u € (O, x9, M,n,d) and x € O3, we have

(3.4) e~ el < ||Vl L2(B(a.0))-

Proof. Pick u € .#(O,x9, M,n,0). Let z € 03 and v : [0,1] — O be a Lipschitz
path joining x = 9(0) to xy = ¥ (1), so that £(v)) < 2d,(x, ). Here and henceforth
for simplicity convenience we use dg(zo, ) dg and ¢ instead of dS (zo, ), dS and
co.

Let tg = 0 and tgy1 = inf{t € [ty,1]; ©(t) & B((tx),0)}, & > 0. We claim
that there exists an integer N > 1 verifying ¢ (1) € B(¢(tn), ). If not, we would
have (1) ¢ B(¥(tr),d) for any k& > 0. As the sequence (¢x) is non decreasing
and bounded from above by 1, it converges to < 1. In particular, there exists an
integer ko > 1 so that 9(t) € B (¢(£),6/2), k > ko. But this contradicts the fact
that [¢(tg1) — ¥(te)] = 6, k > 0.
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Let us check that N < Ny where Ny depends only on |z — xg| and ¢. Pick
1 <j < n so that

max [V (tkr1) — Yite)| = [ (tes1) — ¥ (te)l,

1<i<n
where ; is the ith component of ¢. Then

AT ey

tr tr

6 < nlj(trer) — ¢i(te)| =n

Consequently, where ty11 =1,
N thy1 |
(N+1)6 < nZ/ [Y(t)|dt = nl(v) < 2ndg(xo, ) < 2nclz — x|
k=0""tx

Therefore

NSNO—[M_%'},

0

Let yo = z and y, = Y(tx), 1 < k < N. If [z — ygy1| < 9§, then |2 — yi| <
|2 — Ykt1| + |Yk+1 — yr| < 20. In other words B(yx+1,0) C B(yx, 20).

We get from Theorem 3.1

(3.5) ||vu||L2(B(yj,25)) < CHVUHE(’YB(%,%))Hquzz(B(yj,(;))a 0<j<N,
the constants C' > 0 and 0 < v < 1 only depend on n and s.
Set Ij = ||vu||L2(B(yj,§))7 0 < j < N and IN+1 = ||vu||L2(B(w075)). Since
B(y;+1,9) C B(y;j,20), 1 <j < N —1, estimate (3.5) implies
(3.6) Ija SCM(}_WI]’ 0<j <N,

where we set My = max (M, 1).

Let Cy = C*7+-+7""" and B = y¥N+1. Then by a simple induction argument
estimate (3.6) yields
(3.7) Ing <CiMyPIP.

Without loss of generality, we assume in the sequel that C' > 1 in (3.6). Using
that N < Ny, we have

ﬂ > BO = SNOJFI?

Clécﬁv
L\ (D"
My) — \ M,

These estimates in (3.7) give

from which we deduce that
No+1

1 _ . No+1
IVull 2 (Beosy < CT7 My~ VUl 2 (o,

But My > 1. Whence

No+1

1
N < IVullr2(Bo,6) < CT7 Mol Vull 125, 5

The expected inequality follows readily from this last estimate. [
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3.2. An estimate for the frequency function. Some tools in the present section
are borrowed from [14, 15, 18]. Let u € H'(O) and o € C%'(0) satisfying the
bounds (3.1). We recall that the usual frequency function, relative to the operator
L, associated to u is defined by

provided that B(zg,r) C O, with

D(u)(xo,r) = / a(x)\Vu(x)\zd:z:,

B(zo,r)

Hw)(z0,7) = / (212 (2)dS (x).

9B (zo,r)

Define also
K(u)(zo,7) :/ o(x)u(z)?dz.
B(z,r)

Prior to study the properties of the frequency function, we prove some technical
lemmas.

Fix u € H%(O) so that L,u = 0 in O and, for simplicity convenience, we drop
in the sequel the dependence on v of N, D, H and K.

Lemma 3.3. For zg € @ and 0 < r < § we have
1 .
(3.8) OpH(wo,7) = “——H(zo,7) + H(xo,1) + 2D(x0,7),

— ~ A

(3.9) 8,D(zo,7) = ”TD(xo,r) + D(zo,r) + 2H (20, 7).

Here

H(zg,r) = /GB(zo,r) u*Vo(x) - v(x)dS(z),

A

H(xg,r) = /(93@0770 o(x)(0,u(x))*dS(x),

D(zg,7) = /B( : |Vu(z)|*Vo(z) - (x — xo)da.

Proof. Pick xo € ©° and 0 < r < §. A simple change of variable yields

H(xo,r) = / o (o + ry)u? (o + ry)r"LdS(y).
B(0,1)
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Hence

1
Hro,r) = ")+ [ Vow) ) -y as()

-1
=0 H(zg,r) + / UQVO'(.’EO +ry) - yr"_ldS(y)
r B(0,1)

+ / aV(u2)(x0 + ry) -yr"‘ldS(y)
8B(0,1)

_n-t H(zo,7) + / Vo (z) - v(z)dS(z)

r OB(zo,T)

olx U2 X)) -vVlx X
+ /aB(W) )V (2)() - v(2)dS ()

n—1

= "L H(zo, ) + H(zo,r) + / oV () (@) - v(z)dS(z).

OB(xo,r)

Identity (3.8) will follow if we prove
2D(xg,1) = / oV (u?)(x) - v(z)dS ().
9B(xo,r)
To do so we note that, since div(cVu) = 0, we have

div(oeV(u?)) = 2udiv(eVu) + 20|Vu|? = 20|Vul?.

Applying the divergence theorem we get
(3.10) 2D(xo,T) :/ div(o(2)V (u?)(z))d
B(zo,r)
- / o(2)V () (z) - v(2)dS ().
OB (zo,r)

By a change of variable we have

D(zg,7) = / / o(zo + ty)|Vu(zo + ty) 2"~ 1dS(y)dt.
0 JoB(0,1)
Hence

0 D(zg,7) = / o(xo + ry)|Vu(zo + ty)*r"~1dS(y)
8B(0,1)

_ / o(2)|Vu(z)2dS(x)
9B(zo,r)

_1 o\x UCC2ZL'—.T -V x).
- /QB(W) (@) V(@)@ - 20) - v(z)dS(x)

r

Then an application of the divergence theorem gives

0, D (z0, 1) = 1/3( {0 (@) Vu(@) *(x — o))

r



16 ERIC BONNETIER, MOURAD CHOULLI, AND FAOUZI TRIKI

Therefore
0,D(z0,7) = * / V() 2div(o(z) (@ — 0))dz
T JB(xo,r)
1
41 / o(@)(x — 70) - V(| V() ) da

T JB(xo,r)
implying
(3.11) 0rD(zg,7) = %D(xoﬂ") + %b(xo,r)

1
+ - o(x)(x — xo) - V(|Vu(a:)\2)dx

On the other hand,
/ o(x)(z; — w0,)0;(diu(x)) dz
B(zo,Tr)
=7 /B(aco,r) o(@)(@; = xo’j)aijuaiu(m)dl'
=9 /B(xo,r) 9; [Oiu(x)o(x)(xj — w0 ;)] Oju(x)dx
+ 2/33( )a(x)ﬁiu(ar)(a?j — 20,)05u(z)vi(z)dS ()
- /J:fi(zo,r) 8MU($)O’($)($] - $0,j)3ju(1‘)d$
-9 /B(xoyr) 81’&(1')8]11(33)81 [g(x)(x] _ l'O,j)] dx
w2 @) ) Oue aS(@)

Thus taking into account that cAu = —Vo - Vu we get

/ o(z)(x — x0) - V(|Vu(z)|*)dx = —2/ o(z)|Vu(z)*dx
B(zo,r)

B(zo,r)
+or / o (2) (Byulx))2dS ().
OB(zo,r)

This identity in (3.11) yields

-2 1=~ .
i D(xq,r) + ;D(xo,r)+2H(xo,r).

OrD(xg,7) =
That is we proved (3.9).

Lemma 3.4. We have
57166%2

K(xq,7) < H(zo,r), xp€©, 0<r <.

Proof. Since

H(zo,r) = / o (2)u2(z) (@ — 20) - v()dS(2),
OB(zo,r)

r
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we get by applying the divergence theorem

(3.12) H(zo,r) = i/B( )div (o(2)u?(2)(x — z0)) d.
Hence
H'(zg,7) = —lH(xo,r) + 1/ div (o(z)u?(z)(z — 20)) dS(z)
r " JoB(zo,r)
n-l 2(2)dS(x
= — H(r) +/6B(9:0,r) Oyo(x)u®(z)dS(x)
+ 2/{93(9107& o(x)0,u(x)u(z)dS(z).
But
/ o ()0, u(z)u(z)dS (z)
OB(zo,r)
= /B(%’T) div(a(w)Vu(x))u—i—/B(xom) o(z)|Vul“dz
= / o(z)|Vu(z)|*de = D(xo, 7).
B(xo,r)
Therefore
H'(xg,7) = - lH(JL‘Q,T‘) + 2D(xo, ) + /BB( : dy0(x)u?(z)dS(z)

> /8 o DuEAS )

e ’ —32H (g, 7
- /aB(xo,r) o(z) o(x)u”(z)dS(x) = —s"H(xo,7),

where we used that H(zo,r) > 0 and D(zg,r) > 0.
Consequently r — e H (zo,r) is non decreasing and then

/H(xo,t)t”*dtg/ " H(z, t)t" Lt
0 0
S/ emzH(xo,r)tn_ldt < 7d—er”zH(xo,r).
O n
As
K(xo,r):/ H(o, t)i"dt,
0
we end up getting

on 532
K(xzo,t) < c

H(SIJO, 'I’) .
This completes the proof. ([l

Now straightforward computations yield, for zg € ©@% and 0 < r < 4,

OpN(zg,r) 1 0.D(xo,7) 0pH(x0,7)
(3.13) N(zg,7) o r+ D(zo,r) H(xg,r)
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Lemma 3.5. For zo € O and 0 < r < 6, we have
N(zo,7) < e’ N(z0,0),
with = 3% (1 + x(0)).

Proof. We have from formulas (3.8) and (3.9) and identity (3.13)

OpN(wg,7) D(zq,7) _ H(zo,r) H(zo,7) 5 D(xo,7)
(3.14) N(zo,7)  D(zo,r) H(wg,r) +2D(x0,r) 2H(w0,r)
_ D(Z’O,’I’) . .FI(.’E(),T') + Z_H({EO,T‘)H((E(],’I") — D(SC(),’I‘)2
D(xzg,7) H(zo,r) D(xg,r)H (xq,T)

But from (3.10) we have
D(zg,r) :/ o(z)u(x)o,u(x)dS(z).
OB (zo,T)

Then we find by applying Cauchy-Schwarz’s inequality

Do, r)? < < /B LT (x)dS(x)) ( /a o O (ac)dS(m)).

That is
(3.15) D?(zo,7) < H(xo,r)H (x0,7).

This and (3.14) lead

s St fnd for
On the other hand

(3.17) |}~I(m0,r)’ < x| VallooH(20,7) < 3*H (0,7),
and similarly

(3.18) |D(x0,7)| < 5*6D(x0,7).

In light of (3.16), (3.17) and (3.18), we derive

OrN(xz9,7)

N(zo, ) —H

that is to say
Or(e"" N (z9,7)) > 0.
Consequently
N(zg,7) < O N(zg,8) < e’ N(x,6),

as expected.
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3.3. Polynomial lower bound.

Lemma 3.6. There exist a constant ¢ > 0, only depending on n, s, n, 6 and M,
so that, for any u € (O, x9, M,n,8/3), we have

[N (u)(z,)=0,5) < ceclz=mol g e 09

Proof. In this proof ¢ > 0 is a generic constant only depending on n, s, 1, 6 and
M.
Pick 2 € @°. Then from Lemma 3.2

IVull L2 (B(w,s/3)) > e 70l
Whence
(3.19) K(u)(2,0) = |[ullf2 (s =€ "
by Caccioppoli’s inequality.
In light of Lemma 3.4, we derive from (3.19)
(3.20) H(u)(z,8) > e~clz=wol,
But we have from Lemma 3.5
NVullzz(0)
N <eg——2 0 1)
(x’T)_CH(u)(x,é)’ <r <9,

the constant ¢ only depends on » and @. This inequality and (3.20) give the
expected one. O

Proposition 3.1. There exist two constants ¢ > 0 and ¢ > 0, only depending on
n, »x,n, 0 and M, so that if u € (O, x9,M,n,6/3) then

cle—zol 41
~—1_—¢lz—zo| (C>ce
¢ e 5
Proof. In this proof ¢ > 0 is a generic constant only depending on n, s, 1, 6 and
M.
Observing that, where H = H (u),

0, (m H“”ﬂ”) _ O H@r) n-1

) TG

< ||UH%2(B(%T))7 €0’ 0<r<d.

we get from Lemma 3.6, (3.8) and the fact that [H (z,r)| < »2H(z,r),
H N clz—wo|
Oy (ln(x’f)> §%2+M§%2+L, 0<r<y,
rn- T T

Thus

56 n—1
H(x,t) H(z,sd)r 9 _ )
1 ’ t=In——"—2 < - elz=woly —
/S Oy (n P )d n Hiz,sr)01 = 2 (6 —r)s+ce n-,

T

for0<s<land0O<r<$.
Hence

S cel*==0lyn_1
H(z,s0) < =9 <> H(z,sr),
r
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and then

1
el 07y = 57 / H(w, 56)s™~Lds

) 5 cecl®=z0l p_1 1
<e*? () 7‘"_1/ H(z,rs)s" 1ds
0

r

cle—zgl 4.
n—1_3?2§ 4 “ et 2
<" e - lullz2(B(2,r))-

Combined with (3.19) this estimate yields in a straighforward manner

cle—zol 4y
A r\ ce +n—1
& 16 élz—xo| (5> S HUH%Q(B(w,T))
This is the expected inequality. O

For a bounded domain D, we denote the first non zero eigenvalue of the Laplace-
Neumann operator on D by (D). Since uz(B(xo,7)) = pu2(B(0,1))/r?, we get by
applying Poincaré-Wirtinger’s inequality

1
3.21 w—{wH P2 g < —m— |V} :
( ) || { }HLQ(B(.L,T) LLQ(B(.’E,T’))” ||L2(B(I,7))

7“2

o 2
[LQ(B(O, 1)) ||Vw||L2(B(:1:,T))’

for any w € HY(B(z,r)), where {w} = m fB(I »y w(z)da.
Noting that .7 (O, xo, M, n,4/3) is invariant under the transformation v — u —
{u}, we can state the following consequence of Proposition 3.1

Corollary 3.1. There exist two constants ¢ > 0 and ¢ > 0, only depending on n,
x,m, 0 and M, so that if u € S (O, x9,M,n,6/3) then

c\mfwo\_i_n_l

N ce
¢ teell (5) < |Vul2epary, ©€O° 0<r<a.

The following consequence of the preceding corollary will be useful in the proof
of Theorem 1.1.

Lemma 3.7. Letw € O, 0 < 8 < 1 and set 6 = dist(w,dO). Then there exist two
constants C' > 0 and ¢ > 0 only depending on n, s, n, § and M so that, for any
u € .7(0,x9,M,n,6/3) and f € C*P(O), we have

(i) for any x € w,

~ Clr—x 1—pe, - . _
(3.22) F@) < iy AT ey
where
_ B
fre,8(s) = s> 0.

ceclz=wol 4 3+ —1’
(ii) if
B
ce™ +B+mn—1’
with m = max{|x — xo|; = € W}, then

(3.23) 1wty < @™ A1 ) M1Vl o)

’)/:
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Proof. By homogeneity it is enough to consider those functions f € C%#(0) satis-
fying || fl|co.s(0) = 1.

Let u € (0,20, M,n,6/3) and f € C%#(O) satisfying || f|lco.so) = 1. Pick
then « € @. From Corollary 3.1 there exist two constants ¢ > 0 and ¢ > 0, only
depending on n, 7, n, § and M, so that

cla—ag|

1 _—éle—aol 7\ ce +n—1
(3.24) & le (3) < |Vull L2 Bary), 0<r <6

On the other hand it is straightforward to check that
[f(@)| < |fW)l+77, ye Bla,r).
Whence

(@) IVu(y)Pdy < / ()| Vuly) [2dy

B(z,r) B(z,r)
+’I“B/ |Vu(y)|2dy.
B(z,r)
That is we have

F @Vl 2 < IAVUPlL B + P IVl 2 ()

Since u is non constant, ||Vu||2LQ(B(x my 7 0 for any 0 < r < 4 by the unique
continuation property. Therefore

B

+r?, 0<r<é.
”VUHQLQ(B(IJ'))

This and (3.24) entail

ceflr==ol 411
Al 1)
@) < eeeel () 1£1VuPllzs By +77, 0<r <6
Equivalently, we have
1 ceflr==ol 11
329) (@)l < eeel (1) VAV 21 ey +0%5, 0 <s < 1.

Changing ¢ if necessary, we mat assume that éefl*=%ol > §6,
We introduce the following temporary notations
N = Hf‘vu|2||Ll(B(:1:,'r))a o= C€C|z—zo\
and
A = gefle—wol

Then (3.25) takes the form

N
(3.26) |f(2)] §A<8a+sﬁ), 0<s<l.
If 0 < X < 1 we can take in (3.26) s = RY/(@+8) This choice yields
(3.27) |f(z)] < 2ARP/(@FB),
When X > 1 we have
(3.28) If(z)] <1 <N <R/ (ath),

Inequality (3.23) follows then from (3.27) and (3.28).



22 ERIC BONNETIER, MOURAD CHOULLI, AND FAOUZI TRIKI

To prove (ii), we see that (3.25) yields

. 1 ce™4n—1
Il < 0 (1) VR ey + 6757, 0 <5<
We then mimic the preceding proof to derive inequality (3.23). (]

4. PROOF THEOREM 1.1

Pick (a,b), (@,0) € D(\, k) and let u; = Gy (-, &;) and @, = Gap(+ &), 7 =1,2.
As we have seen before w = ug/u; is the solution of the equation

div(cVw) =0 inR"\ {£1,&},

where

o av?
o =au; = bT

Similarly, @ = s/ is the solution of the equation
le(&V'[T)) =0 in R" \ {fl, 52},

where
aa?
2N
We know from Lemma 2.4 that there exist p > 0, z* € R\ {&1,&} and n > 0
only depending on &1, &2, A, K, and n so that B(z*,p) € R\ {1, &} and

&= ail =

(4.1) 1 < [[Vwll2(s@e,p)-

Fix then a bounded domain Q of R™\{&;, &>} is such a way that QUB(x*, p) € Q,
and set

d = dist(Q U B(z*, p), 09).
According to Lemma 2.3
(4.2) Vwllzz0) < M,

the constant M only depending on A, k, &1, &2, and Q.
Now if p < 6/3 then (4.1) yields obviously

(4.3) N < |Vl L2(B(zo.6/3))
with n as in (4.1).
When p > §/3 we can use the three-ball inequality in order to get
CVwll2(Br py) < HVWHEZ(B(;CO,(;/?,))\\Vw||1L§{qB(z*,p+5/3)),

the constants C' and 0 < s < 1 only depend on \, &, ©, 8, & and &. This and (4.1)
imply that that (4.1) holds again in the present case with a constant C' that can
depend also on §, &1, and &s.

In light of (4.2) and (4.3), we can assert that w € .#(Q,z*, M,n,d/3), where
S(Q,x*, M, n,0/3) was introduced in (3.3).

Lemma 4.1. Let 0 < 6 < 1/2. Then
~ ~160/(2+6 ~
(4.4) Cll(o =)Vl < lw -5 + llo = &l m),

the constant C' > 0 only depends on n, Q, k, A, 0, & and &;.
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Proof. Clearly, if ( =0 — 6 and u = w — W, then
div((Vu) = div(6Vu).
Recall that sgn, is the sign function defined on R by: sgng(t) = —1 if ¢ < 1,
sgn,(0) = 0 and sgny(t) = 1 if ¢ > 0. Since
div(|¢|Vw) = V|| - Vw + [¢|Aw

=sgn,(()V( - Vw + sgny (¢)CAw

— sgng(O)div(CVw) = sgng(C)div(5Vu),
we get by integrating by parts

(4.5) /Q IC|Vw|?dz = — /Q div(|¢|Vw)wdz + /F IC[wd,wdS(z)

—/ sgno(()div(&Vu)wdx—i—/ [Clwd,wdS (z).
Q I
Thus

/Q ¢[Vwl?dz < C (ullmzey + ICllz=y) -

The previous inequality, the following interpolation inequality

0/(2+0) 2/(2+6
HUHHZ(Q) SCQ||U||L/2((Q [lu HH/2+9 5%)7

and Lemma 2.3 give (4.4). O

Fix z € Q and for simplicity convenience we set
p
cecle=z"l 1 B4 —1°

Thereafter ¢ is generic constant only depending on n, k, A, 8, 6, £, &, and &5,
and ¢ > 0 is a generic constant only depending on n, x, A, €, &, and &s.
We have from (3.22) in Lemma 3.7

= prep(lr —z*)) =

|6 (x) = o(x)| < & |G — UIICM(Q)H( )| Vwl?[}1 g

from which we derive
5(2) = o(@)] < @ T max (1,115 = 7l o.s ) ) 10 = IVl o).
Combined with Proposition 2.1, this inequality gives
|6(z) — ()] < & (0 = 8)[Vwl?||] g

Therefore we obtain in light of Lemma 4.1

- - Elo—a* ~116/(246 - K

6(2) — o)) < 2o~ (Jlw — @355 + o = Fllwcr) )

Since @ = a and b = b on T and regarding the regularity of u; and @;, i = 1,2,
we finally get

~ ~ ¢lz—x* ~ ~ fo
(4.6)  |6(z) — o(x)| < & | (HU1 - lec(ﬁ) + [lv2 — UQHC@)) )

with
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Lemma 4.2. Let0 < 0 < 1/2 and 0 < 8 < 1. There exist two constants 0 < y; < 1
and C' > 0, only depending on n, B, Q, k, A, 8, Q, & and &, so that

_ o ~ - 71
D)l = s < € (Il = Bille) + llee = Tl -

Proof. In this proof C' > 0 is a generic constant only depending on n, Q, k, A, 6,
Q, & and &.
We firstly note that is not hard to check that

—div(eVurl) =v; inQ,
—div(eVart) =9, in Q.
Hence
—div(eV(u;t — @) = (v1 — o) + div((c — 5)Va; ) in Q.
By the usual Hélder a priori estimate (see [16, Theorem 6.6, page 98])
CHUfl - f‘?”@@ﬁ(ﬁ) < o1 = 51||co,/f(§)
+ [ldiv((o = &)V s + lur = @3 Hleos -
Consequently
(48)  lur =3 gms@ < € (o1 = 1l o + 1o = Fllorsm ) -
where we used that
Juyt — ﬁ1_1||00ﬁ(r) = |[boy " = 57 ) [0 ry-
On the other hand, since
o — 5”01,1(5) <C, v - z71”(;0,/3(5) <C
and €2 is C11, by the interpolation inequality in [16, Lemma 6.35, page 135] we get
(4'9) ||O' - 6'”01,5(5) < CHU - 5'”;(5)7 Hvl - ﬁcho,s(ﬁ) < ||’U1 - 171”;(5)7

the constant 0 < 7 < 1 only depends on § and 2.
Inequality (4.9) in (4.8) yields

(410) ot = oms < C (lor = 0illfg + o = ol )

On the other hand similarly to (4.6) we have, by using inequality (3.23) instead
of (3.22) in Lemma 3.7,

~ ~ ~ Yo
(4.11) |6 —ollLe@) <C (Hvl - Ul”c(ﬁ) + [lv2 — U2||c(§)) )
with
_
Ty

the constant v is the same as in (ii) of Lemma 3.7.
Whence we get in light of inequalities (4.10) and (4.11), where 1 = 7.

luit = @ ey < C <||U1 ~Uille) + llv2 = “QHC@) '

This is the expected inequality. [
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From the identity

P=(o—o)u P +6(up =iy ”)

= (o -+ o +ar !t —arh),

(4.12) a—a=ouy’— &l

we get
a(@) — a(@)| < C (lo@) = 5@)| + ur — @nllem) . @€

In light of inequalities (4.6) and (4.7) we find

O R Do ~ ~ ~ Ho
&l élz—z ‘\a(m) — a(x)| < (Hvl — ’U1||C(§) + ||112 - 7}2”0(5))

71
+ (Ilon = il +lle2 = Ballog) » zEQ.

We have

(8 8 (0 g
Fo=\o50) el T 3+n—1-"""\2560) cem 4 g1n_1’

where m = max{|z — 2*|; = € Q}.
Therefore if [[v1 — 01| oq) + [[v2 — D2/l o) < 1 then

la(z) — d(z)] < aele—"| (Hvl = llo@) + llv2 — @QHC@)“O , o€ Q.
Such an estimate is obviously satisﬁ?d when [lvy — 01l oq) + vz = D2llgm) = 1
We can proceed similarly for b — b since
b—b=vu ' =it = (vg — 0)uy 4 o (uy b —art),
The proof of Theorem 1.1 is then complete.
Remark 4.1. The notations in this remark are those of the preceding proof.
We have according to identity (4.12)
(413)  la=dlens < C (o1 = Billgos + I = Gl ) -
This inequality together with the interpolation inequality (4.9) entail

lo = @llens@ < C (v = 1llog, + o = llo))

In light of (4.11) this inequality yields
~ ~ ~ 70
la = allus @ < € (llor = Billog, + o2 = T2llog))
We have similarly
TY0

16 =Bllgos < C (o1 = Bullogy + vz = Tallo)

25

In other words we proved the following result, where we fixed 0 < § < 1/2 appearing

in the preceding proof .

Theorem 4.1. Let 0 < 8 < 1. Then there exists two constants C' > 0 and 0 <

<

1, only depending on n, &1, &2, K, A, Q, and (8 so that, for (a, b), (a,b) € D(\, k)

satisfying (a,b) = (a,b) on T', we have

~ ~ ~ ~ 12
la = allrs + 15 = Blons@ < C (Il = Bilo) + o2 = Tallo) ) -
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APPENDIX A. PROOF OF LEMMA 2.2

In this appendix C' > 1 is a generic constant only depending on n, y and v.
For a given constant v > 0 , it is well known that G ., the fundamental solution
of the operator —A + v, is given by G, (2,§) = G1,(x — &), x,€ € R", with

Gro(x) = (2m) 2 (V0 |2])" 2 K pa o (VL))
In the particular case n = 3, we have K /3(2) = \/m/(22)e™* and therefore
e_\/glx‘

dr|z|

gl u(x) =

)

in dimension three.
Let f € CP(R"™), p > 0, and v > 0 be two constants, and denote by u the
solution of the equation

(—pA+v)u=f inR™
Then
(A1) u@) = [ Guulw (@, z R,

We remark that v(z) = u(\/pz), € R" satisfies (=A + v)v = f(\/& -). Whence
u(viin) = v(o) = [ Gnlo = f(VE)E
=i [ G- VIO, zeR

Hence

(A.2) u(@) =" | G —&/Ve)f(€)dE, x e R

R’!L
Comparing (A.1) and (A.2) we find

(@) = cT"2G1, (v = €)/Ve), € ER™.
Consequently G, ,(z,§) = G, ,(x — ) with
(A3)  Guu(z) = @up) " P(onf|e)"* Koo (Vol2l/ Vi), z €R™

By the usual asymptotic formula for modified Bessel functions of the second kind
(see for instance [5, 9.7.2, page 378]) we have, when |z| — oo,

1/2
KoasVlal Vi) = (5505 ) e ¥ PN (14 01 lal).

where O(1/|z|) only depends on n, y and v.
Consequently, there exits R > 0, only depending on n, p and v, so that

71€7ﬁ‘z|/\f e—VVIzl/V/E
(A.4) C W_ Koo 1(f\x|/f)<0 [z lz| > R.

Substituting if necessary R by max(R,1), we have

1

(A-5) |I‘n/2—1 - |x|1/2’

|z[ > R.
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Moreover, we have
o= Volol/ /T
2|17
Since the function z — |z|("~3)/2e=V¥I#l/2VE) is bounded in R", we deduce

e~ VIlEl/VE  o=v/Plal/(2VE)

N eND)

_ [,(n=3)/2 —mx\/(zm] e v
|.’L'| € |$‘n/271 ’

|z| > R.

(A6) e SO 2R
Using (A.5) and (A.6) in (A.4) in order to obtain

an o e (el i) < e > R
. T = n/2-1 ) < ERCEE |z[ = R.

We now establish a similar estimate when |z| — 0. To this end we recall that
according to formula [5, 9.6.9, page 375] we have

1 9 n/2—-1
Kn/271(/)) ~ if(n/Q — 1) (p) as p — O,

from which we deduce in a straightforward manner that there exists 0 < r < R, so
that

A o1 e—Vvizl/vE K - Ce—ﬁ\w\/@ﬁ) _

(A.8) W_ n/z—l(ﬁm/\/ﬁ)_ W7 x| <7

The expected two sided inequality (2.10) follows by combining (A.4), (A.7) and
(A.B).
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