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Abstract

Max-stable processes have been expanded to quantify extremal depen-
dence in spatio-temporal data. Due to the interaction between space and
time, spatio-temporal data are often complex to analyze. So, character-
izing these dependencies is one of the crucial challenges in this field of
statistics. This paper suggests a semiparametric inference methodology
based on the spatio-temporal F -madogram for estimating the parameters
of a space-time max-stable process using gridded data. The performance
of the method is investigated through various simulation studies. Finally,
we apply our inferential procedure to quantify the extremal behavior of
radar rainfall data in a region in the State of Florida.

1 Introduction
Typically, extremes of environmental and climate processes like extreme wind
speeds or heavy precipitation are modelled using extreme value theory. Max-
stable processes are ideally suited for the statistical modeling of spatial extremes
as they form the natural extension of multivariate extreme value distributions
to infinite dimensions. Various families of max-stable models and estimation
procedures have been proposed for extremal data. For a detailed overview of
max-stable processes, we refer the reader to [21]. For statistical inference, it is
then often assumed that the observations at spatial locations are independent
in time, see, e.g., [29, 19, 18]. However, many extreme environmental processes
observations exhibit a spatial dependence structure, meaning that neighboring
locations within some distance show similar patterns, as well as a temporal
dependence, which can be seen from high values for two consecutive time mo-
ments (e.g., within hours). As an illustration, Figure 1 depicts the daily rainfall
maxima for the wet seasons (June-September) from the years 2007-2012 at one
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fixed grid location in Florida. We observe that it is likely that a high value is
followed by a value of a similar magnitude. So, the temporal dependence may be
present. Accordingly, the temporal dependence structure should be considered
in an appropriate way. More details on the rainfall data in Florida are given in
Section 5.
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Figure 1: Daily rainfall maxima in inches taken over hourly measure-
ments from 2007-2012 for a fixed location in Florida, USA.

Currently space-time models are still taking up little space in the literature.
Only a few papers have introduced space-time max-stable models. For instance,
[13] extended the construction of spatial Brown-Resnick (BR) model [6, 26] and
Smith’s storm profile model [34] to the space-time domain, whereas [8] extended
the space-time BR model [13] to an anisotropic setting. Additionally, [25] intro-
duced an extension of spatial Schather model [31], which comprises a truncated
Gaussian random process, so that storm shapes are stochastic, and includes a
compact random set, that allows the process to be mixing in space as well as
to exhibit a spatial diffusions, see also [17]. A common feature for these models
is that the major emphasis is in modeling asymptotic dependence treating the
time just as additional dimension of the space. So, these models do not allow
any interaction between the spatial components and temporal component in the
underlying dependence function. However it seems reasonable to suppose that
the spatial and temporal components behave asymptotically in a different way.
Therefore, a new class of space-time max-stable models have been proposed by
[23] in which the influence of time and space are partly decoupled, where the
time infuences space through a bijective operator on space.
The inference on max-stable processes in both spatial and spatiotemporal con-
texts is an open field that is still in development. Many techniques have been
proposed for parameter estimation in spatial extreme models. Each technique
has its pros and cons. As with spatial max-stable processes, the pairwise likeli-
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hood estimation has been found useful to estimate the parameters of space-time
max-stable processes due to its theoretical properties, see, e.g. [14, 25, 23].
Recently, various semiparametric estimation approaches have been proposed to
fit such processes. For instance [7] introduced a new semiparametric estima-
tion procedure based on a closed form expression of the so-called extremogram
[15] to estimate the parameters of space-time max-stable BR process. The ex-
tremogram has been estimated nonparametrically by its empirical version, where
space and time are separated. A constrained weighted linear regression is then
applied in order to produce parameter estimates. While in [1] a semiparametric
estimation procedure has been developed for spatial max-mixture processes [35]
based on the F -madogram [12]. A non-linear least squares (NLS) is then applied
to minimize the squared difference between the empirical F -madogram and its
model-based counterpart. A major advantage of the semiparametric methods
is the substantial reduction of computation time compared to the pairwise like-
lihood estimation. Hence, these methods can be applied as an alternative or a
prerequisite to the widely-adopted pairwise likelihood inference, which suffers
from some defects; first, it can be onerous, since the computation and subsequent
optimization of the objective function is time-consuming. Second, the choice of
good initial values for optimization of the composite likelihood is essential.

An implicit difficulty in any extreme value analysis is the limited amount
of data for model estimation, see, e.g. [10]. Hence, inference based on the
extremogram is difficult because few observations are available as the threshold
increases. Consequently, the semiparametric estimates obtained by [7] showed a
larger bias than the pairwise likelihood estimates and are sensible to the choice of
the threshold used for the extremogram. Accordingly, the surrogates of existing
estimation techniques should be welcomed.

In the present paper, we are interested in statistical inference for space-time
max-stable processes. Motivated by deficiencies in existing inference approaches,
we propose two novel and flexible semiparametric estimation schemes to fit
space-time max-stable processes:

(i) Scheme 1: we estimate spatial and temporal parameters separately.
Based on NLS, we minimize the squared difference between the empirical
estimates of spatial/temporal F -madograms and their model-based coun-
terparts. Our inferential methodology is close to the one that has been
proposed by [7] as an alternative or a preliminary analysis to the pairwise
likelihood approach in [14], where only isotropic space-time max-stable
BR process has been fitted via the two approaches.

(ii) Scheme 2: we generalize the NLS to estimate spatial and temporal pa-
rameters simultaneously.

The remainder of the paper is organized as follows. Section 2 defines the
space-time max-stable models. The two semiparametric estimation schemes are
described in Section 3. Section 4 illustrates the performance of our method
through various simulation studies, where also a comparison with the semipara-
metric estimation [7] is performed. In Section 5, we apply our method to radar
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rainfall data in a region in Florida by using spatial and temporal block maxima
design. The concluding remarks in Section 6 address some remaining issues and
perspectives.

2 Space-time max-stable models
Throughout the paper, X := {X(s, t) : (s, t) ∈ S × T }, S × T ⊂ Rd × R+

(generally, d = 2) is a spatiotemporal process, where the space S × T is the
spatiotemporal domain. The points s denote the spatial coordinates and are
called “sites” or “locations” or “stations” and the points t denote the temporal
coordinates and are called “times” or “moments”. The space index s and time
index t will respectively belong to the sets S and T . In addition, we will denote
by h = s1 − s2 ∈ R2 (respectively l = t1 − t2 ∈ R) the spatial (respectively
temporal) lag.

2.1 Space-time max-stable models without spectral sepa-
rability

According to [20], the simple space-time max-stable process X, where simple
means that the margins are standard Fréchet, i.e., F (x) := P(X(s, t) ≤ x) =
exp{−x−1}, x > 0, has the following spectral representation

X(s, t)
D
=

∞∨
i=1

ξiUi(s, t), (s, t) ∈ S × T . (2.1)

where
∨

denotes the max-operator, {ξi}i≥1 are independent and identically
distributed (i.i.d.) points of a Poisson process on (0,∞) with intensity ξ−2dξ
and {Ui(t, s)}i≥1 is a sequence of independent replications of some space-time
process {U(s, t), (s, t) ∈ S × T } with E{U(s, t)} < ∞ for each (t, s) ∈ S × T ,
and U(s, t) ≥ 0, which are also independent of ξi.

For D ∈ N \ {0}, s1, . . . , sD ∈ S, t1, . . . , tD ∈ T and x1, . . . , xD > 0, the
finite D-dimensional distributions of the space-time max-stable process X are
given by

P(X(s1, t1) ≤ x1, . . . , X(sD, tD) ≤ xD) =P

ξi
D∨
j=1

Ui(sj , tj)

xj
≤ 1,∀i = 1, 2, . . .


(2.2)

= exp

−E
 D∨
j=1

U(sj , tj)

xj

 .

Hence, all finite-dimensional distributions are multivariate extreme value distri-
butions with unit Fréchet margins. In particular, for x1, x2 > 0, the bivariate
cumulative distribution function (c.d.f.) Fs1,t1,s2,t2 of the space-time max-stable
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process X(s, t) in (2.1) can be expressed in terms of the underlying bivariate
spatio-temporal exponent function Vs1,t1,s2,t2 as

− logFs1,t1;s2,t2(x1, x2) =− logP [X(t1, s1) ≤ x1, X(t2, s2) ≤ x2] (2.3)
=: Vs1,t1;s2,t2 (x1, x2) .

Below, we will consider stationary space-time processes, so that Vs1,t1;s2,t2 de-
pends only on h = s1−s2 and l = t1− t2. We will write Fh,l for Fs1,t1;s2,t2 and
Vh,l for Vs1,t1;s2,t2 .

2.1.1 Spatio-temporal extremal dependence summary measures

In order to measure the spatio-temporal extremal dependence, we provide in the
next Definition, extensions to the spatio-temporal setting of some quantities that
have been introduced in the spatial context. For a stationary spatio-temporal
max-stable process X with univariate margin c.d.f. F , we have

(i) (Spatio-temporal extremal dependence function, originally due
to [33])

θ(h, l) = −x logP (X(s, t) ≤ x,X(s+ h, t+ l) ≤ x) ∈ [1, 2], x > 0. (2.4)

(ii) (Spatio-temporal upper tail dependence function, originally due
to [11])

χu(h, l) = 2− 2 logP{F (X(s, t)) < u,F (X(s+ h, t+ l)) < u}
logP{F (X(s+ h, t+ l)) < u}

(2.5)

and χ(h, l) = limu→1− χu(h, l), u ∈ [0, 1]. Similarly to spatial setting, we
have the simple link: χ(h, l) = 2− θ(h, l).

(iii) (Spatio-temporal F -madogram, originally due to [12])

νF (h, l) =
1

2
E [|F (X(s, t))− F (X(s+ h, t+ l))|] ∈ [0, 1/6]. (2.6)

Furthermore, the Fλ-madogram (originally due to [5]) and λ-madogram
(originally due to [28]) are defined analogously.

(iv) (Spatio-temporal extremogram dependence function, originally
due to [15])

ρA1,A2
(h, l) = lim

x→∞

P
{
x−1X(s, t) ∈ A1, x

−1X(s+ h, t+ l) ∈ A2

}
P {x−1X(s, t) ∈ A1}

.

(2.7)
Clearly, setting the Borel sets A1 = A2 = (1,∞) yields ρ(1,∞),(1,∞)(h, l) =
χ(h, l). The two cases χ(h, l) = 0 and χ(h, l) = 1 correspond to the
boundary cases of asymptotic independence and complete dependence.
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Both dependence functions θ(h, l) and χ(h, l) provide simple measures of ex-
tremal dependence within the class of asymptotic dependence distributions.

Example 2.1. (Stationary BR spatio-temporal process without spectral
separability) [13] introduced the spatial BR model [6, 26] in space and time.
A strictly stationary spatio-temporal BR process X has the following spectral
representation

X(s, t) =

∞∨
i=1

ξi exp {εi(s, t)− γ(s, t)} , (s, t) ∈ S × T , (2.8)

where {ξi}i≥1 are points of a Poisson process on (0,∞) with intensity ξ−2dξ, the
processes {εi(s, t) : (s, t) ∈ (S × T )} are independent replications of a Gaussian
process {ε(t, s)} with stationary increments, ε(0, 0) = 0, E[ε(s, t)] = 0 and
covariance function

Cov(ε(s1, t1), ε(s2, t2)) = γ(s1, t1) + γ(s2, t2)− γ(s1 − s2, t1 − t2),

for all (s1, t1), (s2, t2) ∈ S × T . The dependence function γ which is termed
the spatio-temporal semivariogram of the process {ε(s, t)}, is non-negative and
conditionally negative definite, that is, for any k ∈ N, (s1, t1), . . . , (sk, tk) ∈
S × T and a1, . . . , ak ∈ R,

k∑
i=1

k∑
j=1

aiajγ (si − sj , ti − tj) ≤ 0,

k∑
i=1

ai = 0.

The process X(s, t) in (2.8) is fully characterized by the dependence function
γ. In geostatistics, the function γ is given by

γ (s1 − s2, t1 − t2) =
1

2
Var (ε(s1, t1)− ε(s2, t2)) .

Let Φ denote the standard normal distribution function. For x1, x2 > 0, the
bivariate c.d.f. (Fh,l) of (X(s1, t1), X(s2, t2)) in the stationary case is given by

− logFh,l(x1, x2) =
1

x1
Φ

√γ(h, l)

2
+

log
(
x2

x1

)
√

2γ(h, l)

 (2.9)

+
1

x2
Φ

√γ(h, l)

2
+

log
(
x1

x2

)
√

2γ(h, l)

 .

Recall that if γ is assumed to depend only on the norm of s1−s2, the associated
process is spatially isotropic. The pairwise spatio-temporal extremal dependence
function for this model is θ(h, l) = 2Φ

{√
γ(h, l)/2

}
. This model has been used

in [7] to quantify the extremal behavior of radar rainfall data in a region of
Florida, where a new semiparametric procedure based on the extremogram is
applied to estimate the model parameters.
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2.2 Space-time max-stable models with spectral separa-
bility

The fundamental advantages of the spectral representation in (2.1) are (i) the
construction of spatio-temporal processes from widely studied max-stable pro-
cesses (ii) the huge literature available on spatio-temporal correlation functions
for Gaussian processes, allows for considerable diversity of spatio-temporal be-
havior. However, an important modeling issue is that they do not allow any
interaction between the spatial and the temporal components in the underlying
dependence function. Thus, the time has no specific role but is equivalent to
an additional spatial dimension; the spatial and temporal distributions belong
to a similar family of models. Hence, alternatively, a new class of space-time
max-stable models with spectral separability has been suggested in [23]. More
precisely,

X(s, t) =

∞∨
i=1

ξiUt(Qi)UR(t,Qi)s(Wi), (2.10)

where {ξi, Qi,Wi}i≥1 are the points of a Poisson process on (0,∞)× E1 × E2,
and with intensity ξ−2dξ × µ1(dq) × µ2(dw) for some Polish measure spaces
(E1, E1, µ1) and (E2, E2, µ2). The spectral function Ut : E1 → (0,∞) is measur-
able such that

∫
E1
Ut(q)µ1(dq) = 1 for each t ∈ T and contributes to the tem-

poral dynamic of the process, whereas the spectral function Us : E2 → (0,∞) is
measurable such that

∫
E2
Us(w)µ2(dw) = 1 for each s ∈ S and drives the shape

of the main spatial patterns. The operators R(t, q) are bijective from S to S
for each (t, q) ∈ T × E1 and describes how the spatial patterns move in space.

The construction (2.10) allows one to deal with the temporal and spatial
aspects separately. So, the estimation procedure can be simplified by estimating
in a first step the spatial parameters independently from the temporal ones.
Several examples of subclasses of the general class of space-time process X
(2.10) were introduced by [23], where the operator is either a translation or a
rotation. The authors in that paper focused mainly on a special case of models
where the function corresponding to the time in the spectral representation is
the exponential density (continuous-time case) or the probability values of a
geometric random variable (discrete-time case). So, the corresponding models
become Markovian and have a useful max-autoregressive representation, i.e.,

X(s, t) = max {δX(s− τ , t− 1), (1− δ)H(s, t)} , (s, t) ∈ S × T , (2.11)

where the parameter δ ∈ (0, 1) measures the influence of the past, the parame-
ter τ ∈ R2 represents some kind of specific direction of propagation/contagion
in space and H =: {H(s, t), s ∈ S, t ∈ T } is a time-independent process
and is derived from independent replications of a spatial max-stable process
{H(s), s ∈ S}. This model can be seen as an extension of the real-valued max-
autoregressive moving-average process MARMA(1,0) to the spatial context, see
[16]. The value at location s and time t is either related to the value at location
s− τ at time t− 1 or to the value of another process (the innovation), H, that
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characterizes a new event happening at location s. This model may be useful
for phenomena that propagate in space.

In the following, we will focus on the processes satisfying (2.11). Let V0,h−lτ
denote the exponent function characterizing the spatial distribution of the pro-
cess H(s, t), then the bivariate c.d.f. Fh,l of (X(0, 0), X(h, l)) can be expressed
for x1, x2 > 0 as

− logFh,l(x1, x2) = V0,h−lτ

(
x1,

x2
δl

)
+

1− δl

x2
. (2.12)

Moreover, the spatio-temporal extremal dependence function in (2.4) can be
easily deduced in this case by setting x1 = x2 = x in (2.12),

θ(h, l) = V0,h−lτ
(
1, δ−l

)
+ 1− δl. (2.13)

Clearly, space and time are not fully separated in the extremal depen-
dence function, even if τ = 0 (space and time are completely separated in
the spectral representation). Asymptotic time independence is achieved when
liml→∞ θ(h, l) → 2. In the sequel, we give two examples of a bivariate space-
time max-stable process satisfying (2.11).

(i) Spectrally separable space-time max-stable Smith process
If the innovation process H is derived from independent replications of a
spatial Smith process [34] with a covariance matrix Σ. Then the bivariate
c.d.f. Fh,l of the resulting spatio-temporal model in (2.11) has the form

− logFh,l(x1, x2) =
1

x1
Φ

(
b(h, l)

2
+

1

b(h, l)
log

(
x2
δlx1

))
(2.14)

+
δl

x2
Φ

(
b(h, l)

2
+

1

b(h, l)
log

(
δlx1
x2

))
+

1− δl

x2
,

where b(h, l) =
√

(h− lτ )tΣ−1(h− lτ ). The associated spatio-temporal
extremal dependence function with this model is

θ(h, l) =Φ

(
b(h, l)

2
+

1

b(h, l)
log
(
δ−l
))

+ δlΦ

(
b(h, l)

2
+

1

b(h, l)
log
(
δl
))

(2.15)

+ 1− δl.

(ii) Spectrally separable space-time max-stable Schlather process
The spatio-temporal model in (2.11) with an innovation process H derived
from independent replications of a spatial Schlather process [31], has a
bivariate c.d.f. Fh,l of the form

− logFh,l(x1, x2) =
1

2

(
1

x1
+
δl

x2

)
(2.16)

×

[(
1 +

√
1− 2δl(ρ(h, l) + 1)x1x2

(δlx1 + x2)2

)]
+

1− δl

x2
,
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where ρ(h, l) is the spatio-temporal exponential correlation function re-
lated to this model. The associated spatio-temporal extremal coefficient
with this model is θ(h, l) = 1

2 (1 + δl)
[(

1 +
√

1− 2δl(ρ(h,l)+1)
(1+δl)2

)]
+ 1− δl.

If the time lag l = 0, the formulas in (2.14) and (2.16) reduce to the bivariate
distributions of the max-stable spatial fields.

3 Statistical inference for space-time max-stable
processes

In what follows, we shall denote, respectively, by h = ‖h‖ =: ‖s1− s2‖, h ∈ R2

and l′ = |l| =: |t1 − t2|, l ∈ R the Euclidean norm of spatial lag h and the
absolute value of temporal lag l.

We now describe two semiparametric estimation schemes for space-time max-
stable processes based on the spatio-temporal F -madogram in (2.6), which stems
from a classical geostatistical tool; the madogram [27]. It has a clear link with
extreme value theory throughout the spatio-temporal extremal dependence func-
tion θ(.), i.e.,

νF (h, l) =
1

2
− 1

θ(h, l) + 1
. (3.1)

In practice, measurements are typically taken at various locations, some-
times on a grid, and at regularly spaced time intervals. In the following, the
process X := {X(s, t) : (s, t) ∈ S × T } is assumed to be a stationary space-
time max-stable process. It is observed on locations assumed to lie on a regular
2-dimensional (2D) grid, i.e.,

Sn =
{
si : i = 1, . . . , n2

}
= {(x, y), x, y ∈ {1, . . . , n}} ,

and at equidistant time moments, given by {t1, . . . , tT } = {1, . . . , T}. This
sampling scheme has been adopted in various studies in the literature, see e.g.,
[14, 8, 7]. For statistical inference on the process X, we develop the following
two semiparametric estimation schemes.

3.1 Scheme 1
Let ψ = (ψ(s),ψ(t)) denotes the vector gathering the parameters of the process
X to be estimated, where ψ(s) and ψ(t) denote, respectively, the vectors gath-
ering the spatial and temporal parameters. In this scheme, we consider how
the process evolves at given time of reference (a merely spatial process), and its
evolution over time at a given location (a merely temporal process). So, ψ(s)

and ψ(t) can be estimated separately. More precisely, denote by H ⊂ [0,∞)
and K ⊂ [0,∞) finite sets of spatial and temporal lags on which the estimation
is performed. Let the set Bh summarizes all pairs of Sn which give rise to the
same spatial lag h ∈ H, i.e.,

Bh = {(`, p) ∈ {1, . . . , n2}2 : ‖s` − sp‖ = ‖h‖ = h}.
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The inferential methodology is summarized in the following steps:

(i) As a first step, we estimate the purely spatial/temporal F -madogram non-
parametrically by the empirical version. Denote by ν̂

(t)
F (h), ‖h‖ ∈ H(

respectively ν̂(s)F (l′), l′ ∈ K
)

the nonparametric estimate of the purely
spatial (respectively temporal) F -madogram. As is standard in geostatis-
tics, we compute ν̂(t)F (h) from the empirical spatio-temporal F -madogram
ν̂F (h, l) at spatio-temporal distances (h, 0), that is for all {t1, . . . , tT },

ν̂
(t)
F (h) = ν̂F (h, 0) =

1

2|Bh|

n2∑
p=1

n2∑
`=1

‖s`−sp‖=‖h‖=h

|F{X(s`, t)}−F{X(sp, t)}|, h ∈ H,

where |.| denotes the cardinality of the set Bh and F is the standard
Fréchet probability distribution function. Let us remark that, a similar
estimator in the framework of λ-madogram has been adopted by [28] in an
analysis of Bourgogne (France) annual maxima of daily rainfall measure-
ments. On the other hand, ν̂(s)F (l′) is computed from the empirical spatio-
temporal F -madogram ν̂F (h, l′) at spatio-temporal distances (0, l′), that
is for all s ∈ Sn

ν̂
(s)
F (l′) = ν̂F (0, l′) =

1

2(T − l′)

T−l′∑
k=1

|F{X(s, tk)}−F{X(s, tk+l′)}|, l′ ∈ K.

(ii) Then, the overall purely spatial (respectively temporal) F -madogram es-
timates ν̂F (h) (respectively ν̂F (l′)) are computed from the means over the
temporal moments (respectively the spatial locations). More precisely,

ν̂F (h) =
1

T

T∑
k=1
‖h‖=h

ν̂
(tk)
F (h), h ∈ H. (3.2)

ν̂F (l′) =
1

n2

n2∑
`=1

ν̂
(s`)
F (l′), l′ ∈ K. (3.3)

(iii) Finally, a NLS procedure is applied to estimate the parameters of interest.

ψ̂
(s)

= arg min
ψ(s)∈Ψ(s)

∑
‖h‖=h∈H

ωh
(
ν̂F (h)− ν(s)F (h,ψ(s))

)2
, h ∈ H, (3.4)

ψ̂
(t)

= arg min
ψ(t)∈Ψ(t)

∑
l′∈K

ωl
′
(
ν̂F (l′)− ν(t)F (l′,ψ(t))

)2
, l′ ∈ K, (3.5)

where ν(s)F (h,ψ(s)) = νF (h, 0,ψ(s)) and ν(t)F (l′,ψ(t)) = νF (0, l′,ψ(t)) de-
note, respectively, the spatial and temporal model-based F -madogram
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counterparts. ωh ≥ 0 and ωl
′ ≥ 0 denote, respectively, the spatial and

temporal weights. Since it is expected that the spatio-temporal pairs
which are far away in space or in time, have only little influence on the
dependence parameters to be estimated, a simple choice for these weights
is ωh = 1{‖h‖≤r}, ωl

′
= 1{l′≤q}, where 1(.) denotes the indicator function

and (r, q) is fixed.

Note that the setup of the inferential methodology in Scheme 1 is close to the
one proposed in [7], in which the spatio-temporal extremogram in (2.7) was
adopted.

3.2 Scheme 2
We now generalize Scheme 1 in order to estimate temporal and spatial parame-
ters simultaneously. Thus, we consider how the process X evolves in both space
and time. In the classical geostatistics, for a stationary spatio-temporal process
{X(s, t) : (s, t) ∈ S × T }, the spatio-temporal empirical classical semivariogram
is defined by

γ̂(h, l) =
1

2|B(h,l)|
∑
B(h,l)

(X(si, ti, )−X(sj , tj))
2
,

where B(h,l) = {(si, ti)(sj , tj) : si − sj = h and ti − tj = l}, see e.g., [24]. By
adapting this estimator to our framework, we consider the following estimation
procedure:

(i) First, the spatio-temporal F -madogram is estimated nonparametrically
by its empirical version. Assume the set B(h,l′) summarizes all pairs of
Sn which give rise to the same spatial lag h ∈ H ⊂ [0,∞) and the same
temporal lag l′ ∈ K ⊂ [0,∞). In other words, combining the spatial and
the temporal lags from Scheme 1, i.e.,

B(h,l′) = {(si, ti), (sj , tj)) : ‖si − sj‖ = h, |ti − tj | = l′} .

We estimate νF (h, l′) by

ν̂F (h, l′) =
1

2|B(h,l′)|
∑
B(h,l′)

|F{X(si, ti) − F{X(sj , tj)}|, (3.6)

where |.| denotes the cardinality of the set B(h,l′) and (h, l′) ∈ H ×K.

(ii) Then, we apply a NLS fitting to obtain the estimates of the process pa-
rameters; ψ, i.e.,

ψ̂ = arg min
ψ∈Ψ

∑
l′∈K

∑
h∈H

‖h‖=h

ωh,l
′
(ν̂F (h, l′)− νF (h, l′,ψ))

2
, (h, l′) ∈ H ×K,

(3.7)
where ωh,l

′ ≥ 0 denotes the spatio-temporal weights and νF (h, l′,ψ) is
the model-based spatio-temporal F -madogram.

11



The idea underlying the construction of Scheme 2 is that when modeling and
predicting a given phenomenon, significant benefits may be obtained by con-
sidering how it evolves in both space and time rather than only considering its
spatial distribution at a given time of reference (a merely spatial process), or
its evolution over time at a given location (a merely temporal process), such as
those described in Scheme 1. Lastly, the establishment of the asymptotic prop-
erties of the resulting pairwise dependence estimates is deferred to future work.
The derived asymptotic properties of the unbinned empirical λ-madogram in the
spatial context, see [28] (Proposition 3 and 4) might provide a starting point.
Nevertheless, this setting is more specialized. In the real data example of that
study, a binned version of the empirical λ-madogram is adopted and deriving
the convergence of this estimator as the cardinality of the distance class (i.e.,
Bh) increases is still challenging. Therefore, we will provide some numerical
indications for the asymptotic properties of our pairwise dependence estimates.

3.3 Illustration examples
In order to illustrate how the proposed estimation schemes perform, we consider
the following two examples, which we will revisit in Section 4.

Example 3.1. (Estimation of isotropic space-time max-stable BR)
Let us consider the space-time max-stable BR process in (2.8) with bivariate
c.d.f. (2.9), where the dependence structure is given by the following stationary
isotropic fractional Brownian motion (FBM) spatio-temporal semivariogram

γ(h, l) := γ(h, l′) = 2φsh
κs + 2φtl

′κt , (3.8)

where the scalar distance h = ‖h‖ = ‖s1 − s2‖, l′ = |l| = |t1 − t2|, φs, φt > 0
determine spatial and temporal scale parameters and κs, κt ∈ (0, 2] relate to
the smoothness of the underlying Gaussian process in space and time. The
associated spatio-temporal F -madogram with this process is

νF (h, l′) =
1

2
− 1

2Φ
(√
φshκs + φtl′κt

)
+ 1

, (3.9)

where θ(h, l′) = 2Φ
(√
φshκs + φtl′κt

)
is the associated spatio-temporal extremal

dependence function. Figure 2 visualizes a 3D representation of the spatio-
temporal FBM semivariogram in (3.8) and the associated dependence summary
measures: the spatio-temporal extremal dependence function θ : R2×R+ 7→ [1, 2]
and the spatio-temporal F -madogram νF : R2 × R+ 7→ [0, 1/6]. Complete de-
pendence (respectively complete independence) is achieved at lower boundaries
(respectively upper boundaries). Moreover, Figure 3 displays the theoretical be-
haviors of the purely spatial FBM semivariogram γ(s)(h, κs) and the related
purely spatial F -madogram ν

(s)
F (h, κs). Obviously, depending on the value of

the smoothness parameter κs, these measures exhibit a large variety of depen-
dence behaviors.
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Figure 2: Spatio-temporal FBM semivariogram γ(h, l′) = 0.8h1.5 + 0.4l′

(left panel). The associated spatio-temporal extremal dependence func-
tion (middle panel). The associated spatio-temporal F -madogram (right
panel).
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Figure 3: The FBM semivariogram γ(s)(h, κs) = 0.8hκs (left
panel) and the related spatial F -madogram ν

(s)
F (h, κs) = 0.5 −{

2Φ
(√

0.4hκs
)

+ 1
}−1

(right panel) plotted as functions of space lag
h, with different smoothness parameter κs ∈ {0.1, 0.5, 1, 1.5, 2}.

With this construction, based on Scheme 1, the NLS optimization problems
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in (3.4) and (3.5) can be expressed as

(
κ̂s
φ̂s

)
= arg min

φs>0
κs∈(0,2]

∑
h∈H

ωh

(
ν̂F (h)−

{
1

2
− 1

2Φ
(√
φshκs

)
+ 1

})2

, h ∈ H,

(3.10)(
κ̂t
φ̂t

)
= arg min

φt>0
κt∈(0,2]

∑
l′∈K

ωl
′

(
ν̂F (l′)−

{
1

2
− 1

2Φ
(√
φtl′κt

)
+ 1

})2

, l′ ∈ K.

(3.11)
Lastly, with (h, l′) ∈ H×K and on the basis of Scheme 2, the NLS estimation

problem in (3.7) has the form
κ̂s
φ̂s
κ̂t
φ̂t

 = arg min
φs,φt>0

κs,κt∈(0,2]

∑
l′∈K

∑
h∈H

ωh,l
′

ν̂F (h, l′)−

1

2
− 1

2Φ
(√

φshκs + φtl′
κt
)

+ 1


2

.

(3.12)

Example 3.2. (Estimation of spectrally separable space-time max-
stable Smith process) We now describe the way to fit the spectrally separable
space-time max-stable Smith process. Indeed, the estimation procedure can be
simplified since the purely spatial parameters can be estimated independently of
the purely temporal parameters. Formally, we consider the process in (2.11),
where the innovation process H is derived from independent replications of a
spatial Smith process with covariance matrix

Σ =

(
σ11 σ12
σ12 σ22

)
. (3.13)

We donte by ψ the vector gathering the parameters to be estimated, i.e.,
ψ = (σ11, σ12, σ22, τ

t, δ)
t. It is possible to separate the estimation. Firstly,

the estimation of the spatial parameters ψ(s) = (σ11, σ12, σ22)
t is carried out.

Secondly, once ψ(s) is known, it is held fixed and we estimate the temporal
parameters ψ(t) = (τ t, δ)

t
= (τ1, τ2, δ)

t. Subsequently, under Scheme 1, the
NLS optimization problems in (3.4) and (3.5) can be expressed asσ̂11σ̂12
σ̂22

 = arg min
σ11,σ22>0
σ12∈R

∑
h∈H
‖h‖=h

ωh

ν̂F (h)−

1

2
− 1

2Φ
(√
htΣ−1h/2

)
+ 1


2

, h ∈ H,

(3.14) δ̂
τ̂1
τ̂2

 = arg min
a∈(0,1)
τ1,τ2∈R

∑
l′∈K

ωl
′
(
ν̂F (l′)−

{
1

2
− 1

θ(l′) + 1

})2

, l′ ∈ K, (3.15)
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where,

θ(l′) = Φ

(
b∗(l′)

2
+

1

b∗(l′)
log
(
δ−l

′
))

+ δlΦ

(
b∗(l′)

2
+

1

b∗(l′)
log
(
δl
′
))

+ 1− δl
′

with b∗(l′) =

√
(0− l′τ )tΣ̂

−1
(0− l′τ ).

In order to figure out the role of the temporal parameter δ for this process.
For a fixed site s ∈ S, Figure 4 displays the temporal extremal function θ(l′)

and the associated temporal F -madogram ν
(t)
F for δ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We

set Σ = 10 Id2 and τ = (1, 1)t (translation to the top right). Clearly, as the
value of δ increases, the independece (i.e., θ(l′)→ 2) occurs at larger time lags
l′.
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Figure 4: θ(l′) and the associated ν
(t)
F (l′) plotted as functions of time

lag l′ for δ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} based on the process (2.11), where
H is a sequence of i.i.d. spatial Smith processes with covariance matrix
Σ = 10 Id2.

Lastly, based on Scheme 2, the NLS estimator ψ̂ =
(
σ̂11, σ̂12, σ̂22, τ̂1, τ̂2, δ̂

)t
is given by

ψ̂ = arg min
ψ∈Ψ

∑
l′∈K

∑
h∈H

‖h‖=h

ωh,l
′
(
ν̂F (h, l′)−

{
1

2
− 1

θ(h, l′) + 1

})2

, (h, l′) ∈ H ×K,

(3.16)
where θ(h, l′) = Φ

(
b(h,l′)

2 + 1
b(h,l′) log

(
δ−l

′
))

+δl
′
Φ
(
b(h,l′)

2 + 1
b(h,l′) log

(
δl
′
))

+

1− δl′ with b(h, l′) =
√

(h− l′τ )
t
Σ−1(h− l′τ ).
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4 Simulation study
Throughout this section, we investigate the performance of the semiparametric
estimation procedures introduced in Section 3 with three simulation studies.

4.1 Simulation study 1: Fitting space-time max-stable BR
process

In this study, we adopt the same experiment plan that has been proposed in [7]
(Section 5), in order to make the results obtained there comparable with the
results here.

4.1.1 Setup for a simulation study

We simualte the space-time BR process with spectral representation (2.8) and
dependence function γ modeled as in (3.8). Namely,

γ(h, l) = 0.8h3/2 + 0.4l′. (4.1)

The simulations have been carried out using the function RFsimulate of the R
package RandomFields [32] and based on the exact method proposed by [22].
The space-time observation area is assumed to be on a n × n spatial grid and
the time moments are equidistantly, i.e.,

A = {(x, y) : x, y ∈ {1, . . . , n}} × {1, . . . , T}.

Figure 5 visualizes a realization simulated from space-time BR process with a
spatio-temporal FBM semivariogram model (4.1) at six consecutive time points.
As in [7], we choose the sets H = {1,

√
2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

17} and
K = {1, . . . , 10}, where permutation tests show that these lags are enough to
capture the relevant extremal dependence structure, see Figure 6. Equal weights
are assumed. We repeat this experiment 100 times to obtain summary plots of
the resulting estimates and to compute performance metrics: the mean estimate,
the root mean squared error (RMSE) and the mean absolute error (MAE).

4.1.2 Estimation using Scheme 1

Simulation of space-time max-stable BR processes based on the exact method
proposed in [22] can be time-consuming. Hence, for the sake of time-saving and
due to the fact that the estimation of the purely spatial (respectively purely
temporal) parameters depends on a large number of spatial observations (re-
spectively a large number of observed time instants), we examine the perfor-
mance of the purely spatial (respectively purely temporal) estimates using two
different space-time observation areas, i.e.,

• A1 = {(x, y) : x, y ∈ {1, . . . , 50}} × {1, . . . , 10}.

• A2 = {(x, y) : x, y ∈ {1, . . . , 5}} × {1, . . . , 300}.
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Figure 5: Simulation from a space-time max-stable BR process with
spatio-temporal FBM semivariogram γ(h, l) = 0.8h1.5 +0.4l′ at six con-
secutive time points (from left to right and top to bottom).

Figure 6: A regular 14 × 14 spatial grid. The distances between the
peripheral locations (shown by red square symbols) and the central one
(shown by blue square symbol) belong to the set H.
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We assess the quality of the fit between the theoretical values of spatial/temporal
F -madograms and their estimates. Figure 7 compares empirical estimates of
purely spatial/temporal F -madograms with their asymptotic counterparts. Over-
all, both the purely spatial/temporal empirical versions are consistent, with a
relatively higher variability for the temporal estimates. This is probably due to
the fairly low number of time instants (300) used for the estimation of the purely
temporal parameters compared to the number of spatial locations (2500) used
for the estimation of the purely spatial parameters. Next, we present results
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Figure 7: Scheme 1: (Top row) boxplots of purely spatial/temporal
empirical F -madograms estimates at lags (h, l′) ∈ H × K for 100 sim-
ulated BR processes (2.8) with FBM spatio-temporal semivariogram
(4.1). The middle blue dotted/red solid lines show the overall mean of
the estimates/true values. (Bottom row) boxplots of the corresponding
estimation errors.

for the semiparametric estimation with Scheme1. Figure 8 displays the result-
ing estimates of the purely spatial parameters (φs, αs) and the purely temporal
parameters (φt, αt). Generally, the estimation procedure appears to work well.
Moreover, we observe that the estimation of the purely spatial parameters is
more accurate (the RMSE and MAE are lower), see Table 1. Again this prob-
ably stems from the large number of spatial locations used in the estimation
which is (≈ 8.3) times higher than the time points.

As the last step in this study, we compare the statistical efficiency of our
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Figure 8: Scheme 1: Semiparametric estimates of ψ̂ = {φ̂s, κ̂s, φ̂t, κ̂t} for
100 simulated BR processes defined by (2.8) with FBM spatio-temporal
semivariogram (4.1). The middle blue dotted/red solid lines show the
overall mean of the estimates/true values.

method and the one proposed in [7]. Table 1 reports the performance metrics
for both methods. Although in that study, the authors used a larger grid size
(n = 70) to estimate the purely spatial parameters, clearly, the F -madogram
semiparametric estimation outperforms their approach which based on the ex-
tremogram as an inferential tool (their semiparametric estimates show a larger
bias than ours; the RMSE and MAE are higher). This is probably due to
the fact that the estimates obtained in [7] are sensitive to the choice of the
threshold used for computing (possibly bias corrected) empirical estimates of
the extremogram.

4.1.3 Estimation using Scheme 2

Based on Scheme 2, we estimate the parameters of the space-time max-stable BR
process with a similar simulation setting which is previously described in Sec-
tion 4.1.1. We consider the space-time observation area where the spatial loca-
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tions consisted of a 20×20 grid and equidistantly time points, {1, . . . , 200}. Fig-
ure 9 compares the empirical spatio-temporal F -madogram estimates ν̂F (h, l′)
with their model-based counterparts νF (h, l′) over the spatio-temporal lags
(h, l′) ∈ H×K. There is a good agreement overall. These diagnostic plots pro-
vide a satisfactory representation of the empirical spatio-temporal F -madogram
estimates. Generally, the results lend support to the agreement between the em-
pirical spatio-temporal F -madogram estimates and model-based counterparts,
especially once sampling variability is taken into account.
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Figure 9: Scheme 2: Diagnostic plots of the empirical spatio-temporal
F -madogram estimates for 100 simulated BR processes defined by (2.8)
with FBM spatio-temporal semivariogram (4.1). Histogram of the er-
rors, ν̂F (h, l′) − νF (h, l′), (h, l′) ∈ H × K (left panel). Blue/red cross
symbols show the overall mean of the empirical spatio-temporal F -
madogram estimates/model-based counterparts (right panel).

Figure 10 shows the estimation performance of the estimated parameters.
Overall, the parameters are well estimated. Moreover, we observe that the
estimation of the scale parameters {φs, φt} is more accurate than the smoothness
parameters {κs, κt} (the RMSE and MAE are lower), see Table 1.

To sum up, for both schemes, Table 1 reports the mean estimate, RMSE,
and MAE of the estimated parameters ψ̂ = {φ̂s, κ̂s, φ̂t, κ̂t}. Let us remark
that the comparison between the resulting parameter estimates from the two
estimation schemes is not completely straightforward because we consider non-
unified space-time observation areas due to the above-mentioned computational
reasons. However, with the above sampling schemes, we observe that the esti-
mation of the purely spatial parameters is more accurate when using Scheme 1
(the RMSE and MAE are lower). On the other hand, we notice a slight outper-
formance for Scheme 2 in estimating purely temporal parameters. Finally, the
QQ-plots against a normal distribution in Figure 11 provide an indication for
asymptotic normality of the resulting estimates.
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Figure 10: Scheme 2: Semiparametric estimates of ψ̂ = {φ̂s, κ̂s, φ̂t, κ̂t}
for 100 simulated BR processes defined by (2.8) with FBM spatio-
temporal semivariogram (4.1). The middle blue dotted/red solid lines
show overall mean of the estimates/true values.

Table 1: Performance of the estimation for 100 simulated BR processes
defined by (2.8) with FBM spatio-temporal semivariogram (4.1). The
mean estimate, RMSE, and MAE of the estimated parameters.

Scheme 1 Scheme 1, [7] Scheme 2
True Mean estimate RMSE MAE Mean estimate RMSE MAE Mean estimate RMSE MAE
Purely Spatial
φs = 0.4 0.3998 0.0191 0.0162 0.4033 0.0678 0.0559 0.4093 0.0389 0.0307
κs = 1.5 1.5019 0.0289 0.0243 1.4984 0.0521 0.0400 1.4921 0.1399 0.1083
Purely temporal
φt = 0.2 0.1944 0.0314 0.0246 0.2249 0.0649 0.0526 0.1909 0.0251 0.0201
κt = 1 0.9969 0.0831 0.0657 0.9563 0.0939 0.0767 1.0278 0.0785 0.0619
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Figure 11: QQ-plots of the estimates resulting from both estimation
schemes for 100 simulated BR processes defined by (2.8) with the FBM
spatio-temporal semivariogram (4.1) against the normal distribution.
Scheme 1: purely spatial parameters (top row) and purely temporal
parameters (second row). Scheme 2: purely spatial parameters (third
row) and purely temporal parameters (bottom row). Dashed red lines
correspond to 95% confidence intervals.
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4.2 Simulation study 2: Fitting spectrally separable space-
time max-stable Smith process

4.2.1 Setup for a simulation study

We simulate data from the spatio-temporal Smith process considered in Exam-
ple 3.2, with parameter vector ψ = (1, 0, 1, 1, 1, 0.7)t. As a reasonable compro-
mise between accuracy and computation time, the locations are assumed to lie
on a regular 2D grid of size n = 20. The time points are equidistant, given by
the set {1, . . . , 200}. The simulations have been carried out using R SpatialEx-
tremes package with rmaxstab function, see [30]. The spatial lags set H and
temporal lags set K are fixed as before, recall Section 4.1. Equal weights are
assumed. We repeat this experiment 100 times.

4.2.2 Results for the two estimation schemes

The top row of Figure 12 displays the density of the errors between the em-
pirical estimates of the purely spatial/temporal F -madograms and their model-
based counterparts, whereas the bottom row displays the density of the er-
rors between empirical spatio-temporal F -madogram estimates and model-based
counterparts. Generally, all of the empirical versions are congruous with their
asymptotic counterparts. Clearly, the density of the errors is close to a centered
Gaussian distribution.

Figure 13 displays boxplots the errors of the resulting estimates from both
schemes: (ψ̂ −ψ). The top row displays the estimation errors of purely spatial
parameters (σ11, σ12, σ22) and purely temporal parameters (τ1, τ2, δ) resulting
from Scheme 1, whereas the bottom row displays the estimation errors resulting
form Scheme 2. Overall, the inference procedures perform well. Altogether, we
observe that the estimates are close to the true values.

To sum up, for both schemes, Table 2 reports the mean estimate, RMSE,
and MAE of the estimated parameters ψ̂ = {σ̂11, σ̂12, σ̂22, τ̂1, τ̂2, δ̂}. Contrary
to Scheme 2, we observe that the estimation of purely spatial parameters Σ
is more accurate than the estimation of purely temporal parameters (τ and
δ) when using Scheme 1 (RMSE and MAE are lower). This probably can be
justified by the fact that in Scheme 1 the number of spatial locations used
is higher than time moments. Additionally, there is probably an impact of
the estimated covariance matrix Σ̂ on the estimation efficiency of the purely
temporal parameters, whereas, the purely temporal parameters are estimated
independently of purely spatial parameters when using Scheme 2. Moreover,
we notice that the estimation of purely spatial parameters is less accurate when
using Scheme 2 (RMSE and MAE are higher). This is probably owing to the fact
that in Scheme 2 the number of pairs used is higher than in Scheme 1, leading
more variability. Whereas, both schemes seem to have the same performance
order in estimating purely temporal parameters.

We also show QQ-plots against a normal distribution for all parameters in
Figure 14. For both schemes, it seems that the semiparametric estimates are
approximately normally distributed.
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Figure 12: Density of the errors between the empirical versions of the
F -madogram estimates and their model-based counterparts for 100 sim-
ulated spectrally separable space-time max-stable Smith processes with
parameter ψ = (1, 0, 1, 1, 1, 0.7)t. Scheme 1 (Top row): ν̂F (h)− νF (h),
‖h‖ ∈ H (left panel) ν̂F (l′)−νF (l′), l′ ∈ K (right panel). Scheme 2 (Bot-
tom row): ν̂F (h, l′)−νF (h, l′), at spatio-temporal lags (‖h‖, l′) ∈ H×K.

Finally, let us remark that a simulation study has been carried out in [23],
where only the spectrally separable spatio-temporal Smith process has been fit-
ted. Irregularly spaced locations have been considered. Two estimation schemes
based on pairwise likelihood have been adopted (a two-step approach and a one-
step approach). The obtained results have shown that, the estimation of purely
spatial parameters is more accurate with a two-step approach.

4.3 Simulation study 3: Fitting spectrally separable STMS
Schlather process

Finally, we perform a third simulation study to fit spectrally separable space-
time max-stable Schlather process. The innovation process H is derived from
independent replications of a spatial Schlather process with correlation function
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Figure 13: Boxplots of the errors ψ̂−ψ resulting from both estimation
schemes for 100 simulated spectrally separable space-time max-stable
Smith processes with parameter ψ = (1, 0, 1, 1, 1, 0.7)t. Scheme 1 (Top
row): purely spatial parameters (left panel) and purely temporal pa-
rameters (right panel). Scheme 2 (Bottom row): all parameters. The
middle blue dotted/red solid lines show the overall mean of errors esti-
mates/zero value.

of powered exponential type defined, for all ‖h‖ ≥ 0, by ρ(h) = exp[−(‖h‖/φ)κ],
φ > 0 and 0 < κ < 2, where φ and κ denote, respectively, the range and the
smoothing parameters. We denote by ψ = (φ, κ, τ1, τ2, δ)

t the vector gathering
the model parameters. We take φ = 3, κ = 3/2, τ = (1, 0)t and δ = 0.3 . As
previously, we consider the same simulation setup used in Section 4.2.1. The
results are summarized in Figure 15 and Table 3. Generally, we obtain equally
satisfying results.

5 Real data analysis
In this section, we aim to quantify the extremal behavior of radar rainfall data
in a region in the State of Florida. Our approach is to fit the data by different
space-time max-stable classes based on a space-time block maxima design using
the proposed semiparametric estimation procedure.
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Table 2: Performance of the estimation for 100 simulated spectrally
separable space-time max-stable Smith processes considered in Exam-
ple 3.2, with parameter ψ = (1, 0, 1, 1, 1, 0.7)t. The mean estimate,
RMSE, and MAE of the estimated parameters.

Scheme 1 Scheme 2
True Mean estimate RMSE MAE Mean estimate RMSE MAE
Purely Spatial
σ11 = 1 0.9973 0.0331 0.0259 0.9929 0.0888 0.0727
σ12 = 0 0.0081 0.0470 0.0369 −0.0357 0.0770 0.0609
σ22 = 1 0.9848 0.0440 0.0346 1.0295 0.0805 0.0647
Purely temporal
τ1 = 1 1.0021 0.0549 0.0426 1.0261 0.0747 0.0591
τ2 = 1 1.0107 0.0646 0.0505 0.9962 0.0620 0.0516
δ = 0.7 0.7012 0.0595 0.0482 0.6939 0.0510 0.0400

Table 3: Performance of the estimation for 100 simulated spectrally sep-
arable STMS Schlather processes, with parameter ψ = (2, 1.5, 1, 0, 0.3)t.
The mean estimate, RMSE, and MAE of the estimated parameters.

Scheme 1 Scheme 2
True Mean estimate RMSE MAE Mean estimate RMSE MAE
Purely Spatial
φ = 2 1.9841 0.0368 0.0309 2.0357 0.0812 0.0599
κ = 1.5 1.4967 0.0407 0.0327 1.4814 0.0771 0.0557
Purely temporal
τ1 = 1 0.9852 0.0442 0.0346 1.0036 0.0556 0.0393
τ2 = 0 −0.0177 0.0636 0.0512 −0.0053 0.0427 0.0353
δ = 0.3 0.3031 0.0473 0.0383 0.2913 0.0393 0.0318
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Figure 14: QQ-plots of the estimates from both estimation schemes for
100 simulated spectrally separable space-time max-stable Smith pro-
cesses with parameter ψ = (1, 0, 1, 1, 1, 0.7)t against the normal dis-
tribution. Scheme 1: purely spatial parameters (top row) and purely
temporal parameters (second row). Scheme 2: purely spatial parame-
ters (third row) and purely temporal parameters (bottom row). Dashed
red lines correspond to 95% confidence intervals.

5.1 Description of the dataset
The dataset analyzed in this section is composed of radar rainfall values (in
inches) measured on a square of 140 × 140 km region containing 4900 grid loca-
tions in the State of Florida. The database consists of radar hourly rainfall val-
ues measured on a regular grid with squared cells of size 2 km covering a region
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Figure 15: Boxplots of errors ψ̂ − ψ from both estimation schemes
for 100 simulated spectrally separable STMS Schlather processes with
parameter ψ = (2, 1.5, 1, 0, 0.3)t. Scheme 1 (Top row): purely spatial
parameters (left panel) and purely temporal parameters (right panel).
Scheme 2 (Bottom row): all parameters. The middle blue dotted/red
solid lines show the overall mean of errors estimates/zero value.

of 70 × 70 cells in the State of Florida. A map of the study area is shown in Fig-
ure 16. We only consider the wet season (June-September) over the years 2007-
2012. The data were collected by the Southwest Florida Water Management
District (SWFWMD) and freely available on ftp://ftp.swfwmd.state.fl.
us/pub/radar_rainfall. Moreover, the dataset is available in the Supplemen-
tary Material: http://math.univ-lyon1.fr/homes-www/abuawwad/Florida_
RadarRainfall/.

5.2 Data fitting
We perform a block maxima design in space and time as follows: we take block
maxima over 24 consecutive hours and over 10 km × 10 km areas (the daily
maxima over 25 grid locations), resulting in 14× 14 grid in space for all 6× 122
days of the wet seasons. So, this gives a time series of dimension 14× 14 and of
length 732. For the sake of notational simplicity, we denote the set of resulting
grid locations by S = {(x, y) : x, y ∈ {1, . . . , 14}} and the spacetime realizations
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Figure 16: Radar rainfall observation area in the State of Florida.
Source: Southwest Florida Water Management District (SWFWMD).

by {X(s, t), s ∈ S, t ∈ {t1, . . . , t732}}. This setup has been also considered in
[7, 14] for analyzing radar rainfall measurements in a region in the State of
Florida over the years 1999-2004, where only space-time max-stable BR process
has been fitted to the data by a semiparametric approach in [7] and a pair-
wise likelihood approach in [14]. Let us remark that both regions here and in
the above-mentioned two studies are located in the central portion of Florida
District, which would probably have the best square area of coverage. Having
larger grid size will lead to some cells missing in the southwestern ‘corner’ due
to the coastline. Figure 17 shows the obtained time series for daily maxima
observations at four grid locations.

According to this sampling scheme of the process X, there are 196× 731 =
143276 spatio-temporal pairs of points at distance (0, 1), that is,

{(s1, t2), (s1, t1)} , {(s2, t2), (s2, t1)} , . . . , {(s196, t2), (s196, t1)}

...

{(s1, t732), (s1, t731)} , {(s2, t732), (s2, t731)} , . . . , {(s196, t732), (s196, t731)} .

Analogously, there are 196 × 730 = 143080 spatio-temporal pairs of points at
distance (0, 2), and so forth. Generally, for a set of spatio-temporal data mea-
sured in the time moments t1, . . . , tT , on a regular n × n spatial grid, we have
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Figure 17: Plots of daily maximal rainfall in inches for four grid locations
with simplified coordinates: (1,1), (6,5), (7,10) and (11,8).

n2(tT − l′) spatio-temporal pairs of points at distance (0, l′). Computing the
F -madogram values corresponding to the above spatio-temporal distances, we
obtain the purely temporal empirical F -madogram. It is also easy to check that
there are 364× 732 = 266448 spatio-temporal pairs of points at distance (1, 0),
336 × 732 = 245952 at distance (2, 0), and so forth, see Table 4. Computing
the F -madogram values for the spatio-temporal distances (h, 0), we obtain the
purely spatial empirical F -madogram.

Since we are interested in modeling the joint occurrence of extremes over
a region, then the dependence structure of a multivariate variable has to be
explicitly stated. The usual modeling strategy consists of two steps: firstly,
estimating the marginal distribution. Secondly, characterizing the dependence
via a model issued by the multivariate extreme value theory, see e.g., [4, 29].
For marginal modeling, we explain the procedure as follows:

(i) We transform the data to stationarity by removing possible seasonal ef-
fects using a simple moving average with a period of 122 days (the num-
ber of days in the wet season considered in one particular year). More
precisely, for each fixed location s ∈ S, we deseasonalize the time series
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Table 4: Number of spatio-temporal points at distance (0, h) for a set
of spatio-temporal data measured in the time moments t1, . . . , tT , on a
regular n× n spatial grid.

Distance (h, 0) Number of spatio-temporal pairs of points
(1, 0) 2n(n− 1)× tT(√

2, 0
)

2(n− 1)2 × tT
(2, 0) 2n(n− 2)× tT(√

5, 0
)

4(n− 1)(n− 2)× tT(√
8, 0
)

2(n− 2)2 × tT
(3, 0) 2n(n− 3)× tT(√
10, 0

)
4(n− 1)(n− 3)× tT(√

13, 0
)

4(n− 2)(n− 3)× tT
(4, 0) 2n(n− 4)× tT(√
17, 0

)
4(n− 1)(n− 4)× tT

{X(s, t), t ∈ {t1, . . . , t732}} by computing for i = 1, . . . , 122

X̃(s, ti+122(j−1)) = X(s, ti+122(j−1))−
1

6

6∑
j=1

X(s, ti+122(j−1)), (5.1)

(ii) For each fixed location s ∈ S, the deseasonalized observations are fitted
to the generalized extreme value distribution,

GEVµ(s),σ(s),ξ(s)(x) = exp

{
−
[
1 + ξ(s)

(
x− µ(s)

σ(s)

)]−1/ξ(s)}
, (5.2)

for some location µ(s) ∈ R, scale σ(s) > 0, and shape ξ(s) ∈ R. Let us
remark that the estimated shape parameters ξ(s) are sufficiently close to
zero with confidence interval containing zero, see Figure 18. This suggests
a Gumbel distribution (GEV with ξ = 0) as appropriate model. Therefore,
we fit directly a Gumbel distribution

GEVµ(s),σ(s),0(x) =

{
exp

[
− exp

(
−x− µ(s)

σ(s)

)]}
.

For each spatial location, we assess the goodness of the marginal fits by
QQ-plots of deseasonalized rain series versus the fitted Gumbel distribu-
tion. The results at four spatial locations (1, 1), (6, 5), (7, 10) and (11, 8)
are summarized in Figure 19. All plots provide a reasonable fit.

(iii) The deseasonalized observations may be transformed either to standard
Gumbel or standard Fréchet margins. More precisely, let µ̂(s), σ̂(s) are
the parameter estimates obtained from (ii), then we may use:

(a) ˜̃X(s, t) = X̃(s,t)−µ̂(s)
σ̂(s) , t ∈ {1, . . . , 732} to transform the deseasonal-

ized observations to standard Gumbel margins;
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(b) ˜̃X(s, t) = − 1

log{GEVµ̂(s),σ̂(s),0(X̃(s,t))} , t ∈ {1, . . . , 732} to transform

the deseasonalized observations to standard Fréchet margins. This
transformation is called the probability integral transformation. In
this study, we adopt this case.
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Figure 18: Estimated GEV shape parameter ξ̂(s) at all grid locations
with 95% confidence intervals.
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Figure 19: QQ-plots of deseasonalized rain series versus the fitted Gum-
bel distribution (GEV with µ̂(s), σ̂(s) and 0) on the basis of the time
series corresponding to the four grid locations shown in Figure 17.
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In [7, 14], the authors assume that the observations ˜̃X(s, t) are realizations
from the space-time max-stable BR process. The contribution of the present
section is to broaden the dependence structure by considering the spectrally sep-
arable space-time max-stable processes, that allow interactions between spatial
and temporal components.

In the sequel, we estimate the extremal dependence structure for the daily
maxima of rainfall measurements. Based on our findings in the simulation stud-
ies, we notice that Scheme 1 outperforms Scheme 2 generally. So, one may first
estimate the extremal dependence parameters using Scheme 2. Afterward, re-
estimating the parameters using Scheme 1, where the estimates resulting from
Scheme 2 serve as starting values for the optimization routine used in Scheme 1.
To that aim, we consider the following five spatio-temporal max-stable models:

(i) Class A: consists of two non-spectrally separable models A1 and A2.

• A1: a space-time max-stable BR model (2.8), with dependence func-
tion γ(h, l) = 2φs‖h‖κs + 2φtl

′κt , where l′ = |l|, recall Example 3.1.

• A2: a space-time max-stable Schlather model. The space-time cor-
relation function is chosen to be separable such that

ρ(h, l) = exp
{
−
[
(‖h‖/φs)κs + (l′/φt)

κt
]}
,

where the range parameters φt, φs > 0 and the smoothing parameters
0 < κt, κs < 2.

(ii) Class B: consists of spectrally separable models B1, B2 and B3.

• B1: a spectrally separable space-time max-stable model (2.11), where
the innovation process H is derived from independent replications
of a spatial BR process with semivariogram γ(h) = (‖h‖/φ)

κ, for
some range parameter φ > 0 and smoothness parameter κ ∈ (0, 2].
Obviously, models A1 and B1 are equivalent when the time lag l′ = 0.

• B2: a spectrally separable space-time max-stable model (2.11), where
the innovation process H is derived from independent replications of

a spatial Smith process with covariance matrix Σ =

(
σ11 σ12
σ12 σ22

)
,

recall Example 3.2.

• B3: a spectrally separable space-time max-stable model (2.11), where
the innovation process H is derived from independent replications of
a spatial extremal-t process with degrees of freedom ν ≥ 1 and corre-
lation function of type powered exponential defined, for all ‖h‖ ≥ 0,
by ρ(h) = exp[−(‖h‖/φ)κ], φ > 0 and 0 < κ < 2, where φ and κ
denote, respectively, the range and the smoothing parameters.

To select the best-fitting model, we use the Akaike Information Criterion
(AIC) which was first developed by [2] under the framework of maximum likeli-
hood estimation. The AIC is one of the most widely used methods for selecting a
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best-fitting model from several competing models given a particular dataset. A
concise formulation of the AIC under the framework of least squares estimation
has been derived by [3]. The AIC under Scheme 1 is defined as

AICNLS = |H| log

L(ψ̂
(s)

)

|H|

+2(ks+1)+|K| log

L(ψ̂
(t)

)

|K|

+2(kt+1), (5.3)

where L(ψ̂
(s)

) and L(ψ̂
(t)

) are the estimated objective functions in space and
time with ωh = ωl

′
= 1, i.e.,

L(ψ̂
(s)

) =
∑

‖h‖=h∈H

(
ν̂F (h)− ν(s)F (h, ψ̂

(s)
)

)2

, h ∈ H,

L(ψ̂
(t)

) =
∑
l′∈K

(
ν̂F (l′)− ν(t)F (l′, ψ̂

(t)
)

)2

, l′ ∈ K.

|A| denotes the cardinality of the set A, and ks and kt are respectively the total
number of purely spatial and purely temporal parameters in the underlying
model. If |H|/ks+1 < 40 and |K|/kt+1 < 40, it is suggested to use an adjusted
corrected version of AICNLS (5.3), see [3], i.e.,

AICNLSc = AICNLS +
2(ks + 1)(ks + 2)

|H| − ks
+

2(kt + 1)(kt + 2)

|K| − kt
. (5.4)

Our results are summarized in Table 5. Model A1 has the lowest AICNLS
value and therefore would be considered as the best candidate for this dataset,
closely followed by model B3. Obviously, the temporal estimates (φ̂t and κ̂t)
in the best-fitting model A1 indicate that there is a weak temporal extremal
dependence. Recall that the purely temporal F -madogram for this model is
given by

ν
(t)
F (l′) = 0.5−

{
2Φ
(√

φtl′κt
)

+ 1
}−1

, l′ > 0.

Accordingly, ν(t)F (l′) is close to zero for large values of φt, indicating asymptotic
independence. On the other hand, ν(t)F (l′) is approximately constant when κt is
small, indicating that the extremal dependence is the same for all l′. So, both
large φt and small κt lead to temporal asymptotic independence.

For comparison, we present the semiparametric estimates obtained by [7];
φ̂s = 0.3611, κ̂s = 0.9876, φ̂t = 2.3650 and κ̂t = 0.0818. On the other hand, the
pairwise likelihood estimates obtained by [14] are φ̂s = 0.3485, κ̂s = 0.8858, φ̂t =
2.4190 and κ̂t = 0.1973. Obviously, these estimates are close to our estimates,
except the temporal smoothness estimate κ̂t which is relatively large.

Figure 20 shows the empirical values of νF (h), h ∈ H and νF (l′), l′ ∈ K, and
their model-based counterparts from the three best-fitting models according to
the AICNLS. It seems that the three models give a quite reasonable fit with a
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Table 5: Summary of the fitted models based on the block maxima
design from the radar rainfall measurements in a region in the State of
Florida.

Model Purely spatial parameters Purely temporal parameters AICNLSc

A1 φ̂s = 0.4109, κ̂s = 0.9527 φ̂t = 2.1686, κ̂t = 0.5410 −64.3921

A2 φ̂s = 2.6023, κ̂s = 1.2600 φ̂t = 2.1902, κ̂t = 0.3464 −43.0257
B1 φ̂ = 1.2289, κ̂ = 0.9527 τ̂ = (−0.2990, 0.1661)t, −58.7364

δ̂ = 0.5821
B2 σ̂11 = 3.7253, σ̂12 = −0.4181, τ̂ = (0.5379,−0.1452)t, −21.4420

σ̂22 = 4.2100 δ̂ = 0.1830

B3 φ̂ = 5.9293, κ̂ = 1.2491, τ̂ = (1.4074, 0.8505)t, −59.7906

ν̂ = 6.0820 δ̂ = 0.5317
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Figure 20: Red star symbols show the empirical values of νF (h) and
νF (l′) used for estimation. The curves show the fitted νF (h) and νF (l′)
from the three best-fitting models (A1, B1 and B3).

little outperformance for model A1. So, considering these plots and the AICNLS
values there is overall evidence in favor of model A1.

Lastly, permutation tests can be useful to determine the range of clear de-
pendence. So, in order to examine whether the extremal dependence in space
and time is significant, we perform a permutation test. We randomly permute
the space-time data and compute the empirical spatial/temporal F -madograms.
More precisely, to check how the extremal dependence lasts in space, for each
fixed time point t ∈ {t1, . . . , t732} we permute the spatial locations. Afterward,
the spatial F -madogram is computed and the procedure is repeated 1000 times.
From the obtained spatial F -madogram sample, we compute 97.5% and 2.5%
empirical quantiles which form a 95% confidence region for spatial extremal
independence. On the other hand, to test the presence of temporal extremal
independence, the analog procedure is done for the temporal F -madogram. In
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particular, for each fixed location s ∈ S = {(x, y) : x, y ∈ {1, . . . , 14}} we sam-
ple without replacement from the corresponding time series and compute the
empirical temporal F -madogram. Our findings are shown in Figure 21 together
with the fitted values of spatial/temporal F -madograms derived from the best-
fitting models A1. Inspecting these plots, it appears that the spatial extremal
dependence vanishes for spatial lags larger than four (the fitted values for the
spatial F -madogram lies within the obtained independence confidence region),
whereas the temporal extremal dependence vanishes for time lags larger than
three. Let remark that the same conclusions are obtained in [7], where the
permutation tests have been carried out based on the extremogram.
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Figure 21: Permutation test for extremal independence in space (left
panel) and time (right panel). Upper/lower blue lines show 97.5% and
2.5% quantiles of empirical F -madograms for 1000 spatial (right) and
temporal (left) permuations of the space-time observations. Red star
symbols show the fitted values of νF (h), h ∈ H and νF (l′), l′ ∈ K
derived from the best-fitting model A1.

6 Concluding remarks
In summary, motivated by shortcomings in existing inferential methods, we
proposed two novel and flexible semiparametric estimation schemes for space-
time max-stable processes based on the spatio-temporal F -madogram, νF (h, l).
Working with the madogram has a few advantages. In addition to its simple
definition and the computational facility, it has a clear link with extreme value
theory throughout the extremal dependence function. The new estimation pro-
cedure may be considered as an alternative or a prerequisite to the widely used
pairwise likelihood; the semiparametric estimates could serve as starting val-
ues for the optimization routine used to maximize the pairwise log-likelihood
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function to decrease the computational time and also improve the statistical
efficiency, see [9].

A simulation study has shown that the inference procedure performs well.
Moreover, our estimation methodology outperforms the semiparametric estima-
tion procedure suggested by [7] which was based on the dependence measure
extremogram. The introduced method is applied to radar rainfall measurements
in a region in the State of Florida (Section 5) in order to quantify the extremal
properties of the space-time observations.

Our attention is concentrated on fitting space-time max-stable processes
based on gridded datasets. In the future, we plan to generalize our method
in order to fit space-time max-stable processes with extensions to irregularly
spaced locations that may have a fundamental interest in practice. In addition,
equally weighted inference approaches have been widely implemented. However,
using non-constant weights seems appealing for at least two reasons. First from
a computational point of view, for example discarding distant pairs, the CPU
load for the evaluation might be smaller and the fitting procedure would be less
time-consuming. On the other hand, as neighboring pairs are expected to be
strongly dependent, thus providing valuable information for the estimation of
dependence parameters, this may improve the statistical efficiency. Therefore, it
could be interesting to investigate the gain in statistical efficiency of estimators
as well as computational efficiency by adopting different weighting strategies.
Since the number of spatial and temporal lags are limited, we could consider
weights such that locations and time points which are further apart from each
other have less influence on the estimation, i.e.,

ωh = exp {−c1‖h‖} or exp
{
−c1‖h‖2

}
or ‖h‖−c1 ,

ωl
′

= exp {−c2l′} or exp
{
−c2l′

2
}

or l′−c2 ,

ωh,l
′

= exp {−c (‖h‖+ l′)} or exp
{
−c
(
‖h‖2 + l′

2
)}

or (‖h‖+ l′)
−c
,

where c1, c2, c > 0, ‖h‖ ∈ H and l′ ∈ K.
Finally, it could be interesting to extend the spatial λ-madogram approach

proposed by [28] to estimate the spatio-temporal extremal dependence function
Vh,l. For example, in the case of (2.11), it is easy to verify that for h ∈ R2 and
l ∈ R, the spatio-temporal λ-madogram for any λ ∈ (0, 1) is given by

νλ(h, l) =
(1− λ){V0,h−lτ

(
λ, (1− λ)δ−l

)
}+ 1− δl

(1− λ){1 + V0,h−lτ (λ, (1− λ)δ−l)}+ 1− δl
− c(λ), (6.1)

where c(λ) = 3
2(1+λ)(2−λ) .
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