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Summary: Autonomous electronic devices and increasing use of wireless sensors, which are more 
and more performant, are facing the problem of energy autonomy. This autonomy can be managed 
either with a preliminary storage and/or energy harvesting. Hence, since 20 years, the energy 
harvesting research field is intensive focusing on the development of new materials and their 
integration in micro/nanogenerators. In this research area, Micro-Electromechanical System (MEMS) 
energy harvesters (EH) using piezoelectric materials is one of the most promising option because of 
the availability of mechanical vibrations and of the simply electromechanical conversion. Piezoelectric 
ceramics, commonly used in various applications, are attractive for EH, and among them, Pb(Zr1-

xTix)O3 (PZT), despite its lead content, remains mostly studied because of its outstanding properties. 
For its ceramic process, the main objectives are improved densification, a cost and energy effective 
processing and integration in microgenerators. In this context, SPS sintering of electroded printed PZT 
piezoelectric layers supported on stainless steel substrate (SS) is highly challenging.  In this chapter, 
after a section devoted to piezoelectric EH, the device made of screen-printed PZT layers on SS 
substrate is presented. Then, the authors focus on the strategy to achieve in one step a cantilever 
transducer where the electroded printed PZT and the SS substrate are co-sintered by SPS. As a first 
part of this ambitious objective, microstructural, dielectric and piezoelectric properties of the PZT 
pellet densified by SPS are presented and compared to PZT printed layers conventionally sintered. 

I. Introduction  

Piezoelectric vibration energy harvesters (EH) based on Pb(Zr1-xTix)O3 (PZT) have received significant 

attention during these last years because of the simplicity of the piezoelectric electro-mechanical 

conversion and of the outstanding electromechanical properties of the PZT (S. Tadigadapa et al. 

2009). PZT thin films (<1 µm) are often deposited onto silicon or metallic supports but are not suitable 

when large power is required due to their weak electromechanical coupling. PZT thick-films can 

bridge the 1-100 µm gap between thin films and bulk components (Hinrichsen et al., 2010). They can 

be formed by the low cost screen-printing technology through a mask using mass-production methods 

and do not need to be assembled manually, unlike machined ceramics. It is therefore possible to create 

quite complex structures with a series of relatively simple fabrication steps. Printed-piezoelectric 

thick-films implemented on metallic substrates instead of silicon substrates already confirmed their 

excellent performances such as flexibility, toughness, and high-efficiency of power generation (Zhu et 

al., 2011). Here, the objective is to develop a printed low cost vibration piezoelectric energy harvester 
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based on densified PZT with microstructure and electromechanical properties approaching those of 

commercial PZT ceramics. The energy harvesting microsystem consists in a three-dimensional thick-

film structure made of a thick PZT layer sandwiched between two gold electrodes deposited on a 

stainless steel substrate (SS). Because of the residual porosity observed in the fired PZT printed film 

due to the removal of the organic binder before the firing, improved densification can be obtained by 

adding an additional isostatic step before the firing (Debéda et al, 2005). Also, as shown in previous 

work, a better compacity of the PZT thick films fired at 900°C can be observed when the PZT powder 

is mixed with the eutectic phase LBCu instead of the borosilicate glasses (Debéda et al., 2015). 

Sintering without additives are nevertheless preferred to achieve the best electromechanical properties. 

The co-sintering of the printed multilayer Au/PZT/Au by Spark Plasma Sintering (SPS) represents a 

great challenge and possible ways to achieve this are explored. Original routes are proposed that 

would have significant advantages over classical densification routes: increased compacity while 

reducing the firing temperature, no use of mineral binder to not affect the electromechanical properties 

and no need of a pressure step before the firing.  

In this chapter, the first section is devoted to basics on piezoelectric effects, before a focus on the 

energy harvesting application where piezoelectric transduction allows capture of vibrations. The 

requirements of both the electromechanical properties of the piezoelectric material and the design of 

the piezoelectric energy harvester are then described.  Some examples of successful piezoelectric 

vibration EH, based on various piezoelectric materials and using different processes are shown. In the 

third section, the fabrication steps of the screen-printed energy harvester fabricated with the 

conventional screen –printing thick film technology are detailed. Then, in the last section, referring to 

literature, we will first discuss about the sintering of PZT by SPS underlying also the drawbacks and 

limitations. Then our approach is illustrated aiming one step sintering of PZT by SPS, avoiding both 

the use of sintering aids and post-annealing treatment. The key role of the processing conditions is 

pointed out with emphasis on the correlation between microstructural features and dielectric and 

piezoelectric performances of the ceramics. Finally, the most challenging part of the work is presented 

with the first attempts of the EH multilayer sintering by SPS.  

II. Basics on piezoelectric vibration energy harvester 
 
II.1.Piezoelectric effect 

II.1.1. Historic and applications 

The root of the word piezo means pressure; hence, the original meaning of the word piezoelectricity is 

“pressure electricity”, the generation of electric field from applied pressure.  This definition ignores 

the fact that the piezoelectric effect is reversible, allowing the generation of mechanical motion by 

applying a field. Piezoelectricity was discovered by Pierre and Jacques Curie in 1880 in single crystals 

such as Rochelle salt and quartz. It is only in 1946 that scientists discovered that the barium titanate 

BaTiO3 is piezoelectric (Jaffe et al., 1971). With its increased sensitivity and higher operating 

temperature, PbZrTiO3 (PZT) soon replaced BaTiO3 in many existing devices and is still the most 

widely used piezoceramic today.   With the apparition of Internet Of Thing (IOT) and because of the 
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brittleness of the piezoceramics, piezoelectric composites and polymers are nowadays more and more 

studied for instance for wearables because of their flexibility and conformability (Zeng et al. 2014 ). 

However, their properties remain lower than those of the piezoceramics (Tadigadapa and Mateti, 

2009). The piezoceramics can be found in a broad range of applications using either the direct or 

inverse piezoelectric effect.  They are present in every day, for example in cleaning application for 

jewelry, glasses or teeth using generators of ultrasonic applications, but also in high-end technology 

markets such as medical technology, semiconductor technology or mechanical and automotive 

engineering .  Examples of applications are listed below:  

‐ Transducers for sound and ultrasound in air (microphones, intruder alarm system, 

loudspeakers, etc),  

‐ Sensors (pressure, accelerometers, chemical, ultrasonic sensors for medical applications, etc),  

Structural Health Monitoring (SHM), 

‐ Actuators, motors, transformers, 

‐ Resonators and filters, push buttons and keyboard, inkjet printers, flowmeters, 

micropositionned devices (optics, microscopes), etc. 

Energy harvesting applications are also more and more needed with the growing of this intelligent 

world surrounding us. This new field of research is looking for alternative autonomous power supplies 

for all the wireless connected devices currently powered by batteries. Vibration piezoelectric energy 

harvesters where the direct piezoelectric effect is involved can be a solution to avoid recharging or 

replacing the batteries. Basics on piezoelectric energy harvesters are given in the next paragraph. 

  II.1.2.Description and origin of the piezoelectric effect 

Illustration of the piezoelectric effect is shown figure 1a. In the direct piezoelectric effect, also called 

generator or sensor effect, pressure generates charges on the surface of the piezoelectric materials.  

The field produced by the applied stress can be detected as an electric voltage if the piezoelectric body 

has electrodes. The sign of the voltage depends on the stress, compressive or tensile. With this direct 

effect, mechanical energy is converted into electrical energy. Conversely, if an electric field acts on a 

piezoelectric body, a distorsion happens in it. This inverse effect also called actuator effect converts 

electrical energy into mechanical effect. Of course, the expansion produced in one direction may be 

compensated by a contraction in the two other directions, resulting in no change in volume. However, 

in some materials, a volume change can occur. In all cases, when amplifications by mechanical 

resonance is not involved, the deformations are very small. 

The occurrence of piezoelectricity is due to the lack of a center of symmetry in the unit cell of the 

crystal. Consequently, as a result of the stress, a net movement of the positive and negative ions with 

respect to each other produces an electric dipole (polarization). This piezoelectric effect is linear and 

reversible, and the sign of the produced charge is dependent on the direction of the stress (tensile or 

compressive). Figure 1b illustrates the origin of the piezoelectric effect in the quartz. Among the 32 

crystallographic classes, 21 do not possess a center of symmetry and 20 of these are piezoelectric. 

Some piezoelectric crystals, like the quartz only develop the polarization when the force is applied, 

while others are already polarized without pressure applied. The well-known materials barium titanate 

(BaTiO3), lead titanate (PbTiO3) or lead zirconate titanate (PbZrTiO3) belong to the piezoelectric 
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between the mechanical and electrical characteristics is done using d piezoelectric coefficients. It is 

worth noting that these equations can be applied only to small electrical and mechanical amplitudes.  

S=sET + dE (converse piezoelectric effect) (Eq.1) 

D= dT + T E (direct piezoelectric effect) (Eq.2) 

Where S, T, D and E are respectively the strain, stress, electric displacement and electric field vectors,  
and  , s and d are respectively the dielectric constant, compliance and piezoelectric strain coefficients 
matrix. The subscripts denote the constant quantity. 

High d piezoelectric strain coefficient, relating the strain developed to the applied field,  will be hence 

preferred for sensors. Note that the matrices representing the piezoelectric coefficient is not full and it 

is more convenient to specify subscript notation (Fig. 3b).  In general, the “3 direction” is determined 

as the polarization direction. The matrix of the piezoelectric coefficients will be hence revealing the 

ceramic symmetry: 

ሾ݀ሿ ൌ 	 ൥
	0						0					0				0				݀ଵହ	0
0						0							0				݀ଵହ			0				0
݀ଷଵ			݀ଷଵ		݀ଷଷ		0					0				0

൩ 

In this matrix, for MEMS based for instance on films of AlN, ZnO and PZT, d33 and d31 are for 

instance the most common piezoelectric coefficients. The first 3 subscript refers to the displacement or 

electric field 3 direction, whereas the second subscript relate to a stress or strain either in the same (3) 

direction or in an orthogonal direction (1 or 2).  

Finally, another electromechanical data, the piezoelectric coupling factor k (referred also as 

electromechanical coupling factor), is a convenient and direct measurement of the ability of the 

piezoelectric material to convert one form of energy to another. It is defined in equation 3 as follow:  

݇ ൌ ට
௠௘௖௛௔௡௜௖௔௟	௘௡௘௥௚௬	௦௧௢௥௘ௗ

௘௟௘௖௧௥௜௖௔௟	௘௡௘௥௚௬	௔௣௣௟௜௘ௗ
ൌ 	ට

௘௟௘௖௧௥௜௖௔௟	௘௡௘௥௚௬	௦௧௢௥௘ௗ

௠௘௖௛௔௡௜௖௔௟	௘௡௘௥௚௬	௔௣௣௟௜௘ௗ
 <1  (Eq. 3) 

Ways to calculate this electromechanical coupling coefficient in different piezoelectric resonators will 
be shown later.   

In general, any material of a given size and shape has a natural resonant frequency at which it will 

vibrate, when a mechanical force put it at its resonant frequency. Then, because of damping forces, 

this vibration movement will stop. This of course happens for piezoelectric materials but, due to 

electromechanical coupling, these materials can be also electrically stimulated to produce vibrations at 

many frequencies. If the selected operating frequency is adjusted to mechanical resonance, large 

resonating strain is generated. Most devices are operated below resonance but the resonant operation 

can be used to make vibratory devices such as clocks or ultrasonic motors.  When the piezoelectric 

body is stimulated by alternating fields or stresses at frequency close to the mechanical resonance, the 

piezoelectric resonator can be replaced by a equivalent electric circuit showing a mechanical (acoustic) 

component  and an electric component connected in parallel (Fig.  4a). In this circuit, the motional 

branch RMLMCM models the mechanical resonance, whereas the capacitance C0 in parallel to the 

resistor R0 represents the dielectric with losses. The parallel combination of RM, LM, CM, C0 and R0 



6 
 

dictates the impedance or admittance of the resonator showing maximum and minimum frequencies 

often merged with the resonance fr and anti-resonance frequencies fa (Fig. 4b). Thanks to these 

frequency measurements, the effective electromechanical coefficient keff, is frequently used to 

characterize an arbitrary resonator at any resonance frequency (fundamental or harmonic) and is 

expressed as follow: 

݇௘௙௙ ൌ 	ට
ሺ௙ೌ మି	௙ೝ

మሻ

௙ೝ
మ  (Eq.4) 

 

Also, by using suitably shaped and oriented piezoelectric, thanks to the electrical measurements (ie. 

impedance Z or admittance Y completed with dielectric measurements), the material constants can be 

calculated according to IEEE criteria (IEEE standard). For these measurements, the usually vibration 

modes studied are length –extensional modes of bar, radial and thickness modes of disks.  For instance 

in rectangular plates or cylinder rods, through fa and fr resonant measurements, the piezoelectric 

coupling factor which is a direct measurement of the overall strength of the electromechanical effect 

can be calculated from equations 5 and 6: 

   

݇ଷଷ ൌ ට
஠

ଶ

୤౨
୤౗
tan	ሺ

஠

ଶ

୤౗ି୤౨
୤౗
ሻ	 (longitudinal length mode of cylindar rods) (Eq. 5) 

݇ଷଵ ൌ ඨ
ഏ
మ
೑ೌ
೑ೝ
୲ୟ୬	ሺ

ഏ
మ
೑ೌష೑ೝ
೑ೌ

ሻ

ଵା	
ഏ
మ
೑ೌ
೑ೝ
୲ୟ୬	ሺ

ഏ
మ
೑ೌష೑ೝ
೑ೌ

ሻ
 (transverse length mode rectangular plates) (Eq. 6) 

Also, Young’s modulus ܻ can be obtained by the relation:  

ܻ ൌ
ଵ

ସఘ௅మ௙ೝ
మ	(transverse length mode rectangular plates of length L and density ) ሺEq. 7) 

 

 

 
Figure 3: a) Four pole theory for electromechanical coupling b) Notations of axes 
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a) b) 

Figure 4: Piezoelectric resonator a) equivalent circuit at resonance b) Example of conductance G and 

susceptance B as a function of the frequency f measured for a PZT ceramic (insert with the B(G) 

circle). 

More details on the theory on piezoelectric theory can be found in Cady, 1946.   

II.2. Vibration energy harvester structure 

 

The electrical energy required to provide unlimited energy for electronic devices can be obtained by 

capturing sunlight, mechanical energy, thermal energy, and RF energy. Even if harvesting solar energy 

is nowadays the most efficient technology (typically tens of mW/cm3), it cannot be used in the absence 

of light. We are here interested in harvesting mechanical energy of ambient or biomechanical 

vibrations because it can provide reasonable amount of energy (typically hundreds of µW/cm3), 

sufficient to power wireless sensors (Roundy et al. 2003). Vibration is moreover a form of kinetic 

energy that can be easily found in many applications such as power tools, machinery, vehicles, etc. 

Human motion can also be used in portable electronic devices (Beeby et al, 2006).  

A mechanical energy harvesting system aimed to capture vibration environmental energy traditionally 

comprises three elements as shown in the block diagram of figure 5a: 

- the mechanical-mechanical converter that captures the energy.  This best suited capture device is a 

mechanical oscillator with a proof (or seismic) mass (Beeby 2015).  

- the energy converting transducer; the energy is usually transferred to the transducer with the proof 

mass. Note that the mechanical-mechanical converter and the transducer can be in some systems a 

single element. 

- the electronic circuit to power the electronic load . 

Electromagnetic, electrostatic or piezoelectric are the three main employed transduction methods. The 

piezoelectric approach is the most attractive among these three methods because it exhibits high 

energy density, its configuration is simple and there no need of a separate voltage source (Gilbert and 

Balouchi, 2008, Kausar et al. 2014). In this case, the piezoelectric transducer material is usually part of 

the spring of the mechanical oscillator.   

For piezoelectric generators, the basic method consists in applying the strain in the same direction as 

the electric field (3 direction), it is the so called longitudinal configuration, using the d33 mode 
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II.3 Piezoelectric materials requirements for energy harvesting  

 

In addition to the optimized design of the micro-energy haverster transferring the energy, the selection 

of the piezoelectric material needs also to be considered. Even if the electromechanical coupling 

coefficient indicating the energy conversion ability is a good criteria to choose the piezoelectric 

material, the figure of merit (FOM) (Roundy et al. 2003, Elfrink et al. 2009) should be taken into 

account to compare different materials for energy harvesting applications. This FOM applicable for 

materials, but not for devices, is defined as the electrical energy density divided by the mechanical 

deformations: 

 

ܯܱܨ ൌ	
ௗమ௒మ

ఌ
ൌ 	

௘మ

ఌ
 (Eq.8) 

 

Where d is the piezoelectric strain coefficient, Y is the elastic modulus,  the permittivity and e is the 

piezoelectric stress coefficient.  

 

Some properties of common piezoelectric materials used in energy harvesting (ceramics or films) and 

the corresponding calculated FOM are given Table 1. In this table, we can notice that AlN thin film 

appears to be more interesting than PZT thin film for energy harvesting MEMS, because of its good 

compatibility with microelectronic process. In addition, its reduced permittivity helps to increase its 

FOM despite its lower piezoelectric properties. It can be hence a good choice for MEMS piezoelectric 

energy harvester. To get a high FOM, a compromise can be found considering both permittivity values 

and piezoelectric performances. As an illustration, the FOM of PZT ceramics can be tuned according 

to the composition and thus the properties. Undoped PZT is rarely used for applications. A range of 

properties can be obtained by acceptor or donor doping on A and/or B sites of the perovskite ABO3. 

Acceptor-doped PZT (K+, Fe3+,..) are called “hard” PZT due to compensating defects (oxygen 

vacancies) that stabilize the domain structure which in turn becomes difficult to be reoriented (difficult 

poling). Donor doped PZT (La3+, Nb5+, ..), on the contrary are compensated by electrons or lead 

vacancies and are easy to pole. They are called “soft”, exhibiting high piezoelectric coefficients, high 

permittivity and dielectric losses (Damjanovic D., 1998). According to the targeted applications 

(sensors, actuators, etc…), hard or soft PZT may be selected. In table 1, the lower permittivity of hard 

piezoelectric PZT (PZ26) compared to the one of soft piezoelectric PZT (PZT-5H), compensates its 

lower piezoelectric coefficient d allowing thus an increase of the FOM.  
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  d33 

(pC.N-1) 
-d31 

(pCN.-1) 
k33 

 
k31 Y 

(GPa) 
 FOM Refe-

rences 

Ceramics PZT 5H 
soft  

PZT 26 
hard 

650 

 

 

290 

320  

 

 

130 

0.75 

 

 

0.68 

0.44 

 

 

0.33 

50 

 

 

20 

3400-3800 

 

1300 

0.075 

 

 

0.052 

Beeby et 
al. 2015, 
(*1) and  
(*2)  

BaTiO3 86/170 35  0.21  1700 0.009 Beeby 
2015 

Defay 2015 

KNN 80/160     235-605  Quignon  

2013/  

Gao, 2016 

 

Thin 
films 

PZT 60– 130/ 
300 

/ 120    300-1300/ 
1620 
/1000 

0.06-
0.14 

Ledermann 
2003 
Calame 
2007/ 
Beeby 
2015 

KNN 42     258-930  Quignon  
2013/ 
Kanno 
2018 

AlN 5 1.5/2.5 -/0.07 0.065
/-  

- /300 10 0.20 Beeby et al. 
2015/ 
Defay et al. 
2015  

ZnO 5.9   0.074 209 10.9 0,14 Carlotti 
1987 

Thick 
films 

PZT  

(aerosol) 

 17      Lin 2013  

PZT 
(screen-
printed) 

- 89 - - - 829  Xu 2012 

PVDF -33 23  0.15  12 0.000
5 

Beeby 
2015 

 
Table 1: Comparison of FOM of typical piezoelectric material used for energy harvesting application  

(*1) https://support.piezo.com/article/62-material-properties#msds (*2) https:// 
https://www.meggittferroperm.com/wp-content/uploads/2017/10/MSSDK_PZ26_Datasheet-

201809.pdf and https://fr.scribd.com/document/72129499/Ferroperm-Catalogue 
 

Typical energy harvesters are Silicon based MEMS fabricated by micromachining where the 

piezoelectric material is deposited by thin film processes. With this technology, EHs present reduced 

size and are promising. The proof mass is in silicon, and PZT, ZnO or AlN thin films are common 

materials (Elfrink et al. 2009, Jeon et al. 2005, Shen el al. 2008, Wang et al. 2015).   
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The choice of the materials (active piezoelectric material or passive substrate), the design of the EH 

and the process nevertheless depend on the required performances for a given application (frequency, 

acceleration, required power) and of the costs. Alternative processes can be thus proposed. In 

particular thicker piezoelectric layers combined with flexible substrates (for instance metallic 

substrates) may be nowadays preferred to achieve higher power. In the next paragraph, because our 

proposed multilayer EH is based on a metallic substrate with PZT thick film, examples of EH using 

metallic substrates and PZT thick films are shown.  

 

II.4 Examples of piezoelectric vibration EH 

 

A typical piezoelectric mechanical energy harvester is a straight beam with a seismic mass at the end. 

More complicated structures can also be used in order to decrease the resonant frequency such as 

spiral, zig-zag or meandering (Paprotny et al. 2010, Fernandes et al 2018, Monin et al, 2016, Berdy et 

al. 2012).  

Common piezoelectric EH are millimeter size cantilevers, unimorph or bimorph with two pieces of 

bulk piezoelectric material sandwiching a metallic stainless substrate (Roundy and Wright, 2004). 

Thinning of the bulk bonded ceramic are moreover proposed to bridge the 1 to 100 µm gap which lies 

between bulk and thin film components Once thinned, these bulk ceramics can be micro-structured on 

metallic supports (Colin et al. 2013), but also on silicon substrates as reported by Aktakka et al.2011. 

With a bimorph harvester with a 50µm PZT layer of thinned bulk ceramic reported on a stainless 

substrate (Fig. 6a), Colin et al measured 3µW a very low frequency (15Hz) and under 10mg, 

demonstrating the efficiency of such piezoelectric energy scavengers.   

But these processes require additional micromachining, grinding and/or polishing of the bulk ceramics 

which needs finally to be manually assembled. An interesting alternative is the use of thick film 

processes to fabricate the PZT transducer (screen-printing, sol-gel process, electrophoretic deposition, 

tape-casting or aerosol deposition). For instance, screen-printed piezoelectric thick-films implemented 

on stainless steel platforms have been shown to deliver power of  ~240µW harvested at 66.2Hz with 

an acceleration of g=2.8m.s-2 (0.3g) (Zhu et al. 2011). With the same acceleration, free-standing 

piezoelectric thick-films (bimorph structure) fabricated on a silicon sacrificial substrate (Xu et al. 

2012) provide ~3 µW at 250Hz though power of ~50µW is measured at 242Hz for g=13.7m.s-2 (1.4g). 

Figure 6b shows the different harvested powers under acceleration varying from 0.2g to 1.4g. Here, 

even with an additional high pressure step (100-200MPa) before the sintering 1 hour at 850°C, the 

screen-printed PZT layers show average apparent porosity of 20%. Stainless steel substrate is so far 

the most popular metallic substrate because for its relatively low Young’s modulus. But other metallic 

substrates are also studied as brass, copper, nickel or aluminum (Bai et al. 2015, Yeo et al. 2018, 

Monin et al. 2016).  

Performances of some selected vibration piezoelectric EH can be compared in table 2. The authors 

attempt herein to give different kind of technologies that can be used, from the materials and their 

processing (piezoelectric layer, substrate, proof mass), the dimensions of the EH to their performances 

under vibration. Here, it is worth noting the comparison is complex because of many parameters 

influencing the total harvester powers. The normalized power in W.m-3.g-2 (Tang et al. 2018) is often 

proposed for a fair comparison of the intrinsic properties of the EH.  
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Multilayer  / proof mass Deposition piezoelectric 

layer technology 

EH volume Frequency/ 

acceleration 

(1g= 9.8m/s2) 

Power References 

Bimorph PZT/100µm 

brass/PZT// Tungsten proof mass 

9.15g  

PZT-5H Bulk – 280µm 1cm3 120Hz / 0.25g 375µW Roundy 2004 

PZTAuIn/10µmSi  // Tungsten 

proof mass 328mg 

Thinned bulk PZT 20µm  7x7x0,55mm3  154Hz/1.5g 205µW Aktakka 2011 

Bimorph 

Ag/PZT/Au/dielectric/110µmSS/

dielectric/Au/PZT/Ag // Tungsten 

proof mass 3.1g 

Screen-printed PZT-5H / 

70µm 

491mm3 67Hz/ 0,4g 240µW Zhu 2011 

Bimorph/TiPt/PZT/TiPt/PZT/Au 

// Tungsten proof mass Si  

Screen-printed PZT (PZ26) 

20µm 

0.64mm3 242Hz /1g 33.2µW Xu 2012 

SUS304/Pt/Ti/PZT/Al//  not 

reported 

Sol gel PZT thin film 4µm  167.6mm3 89Hz/1g 15µW Wang 2012 

Bimorph PZT/ Stainless steel 

15µm/PZT // Tungsten proof 

mass 1.5 g  

Thinned bulk PZT  50µm 5 x 40 mm2 x 

115µm 

16Hz/10mg 3µW Colin 2013 

Pt/Ti/PZT/SS30µm// Tungsten 

proof mass 6x4x0,45mm3 (0.2g) 

Aerosol deposition 15µm 8 x 6mm2 

x45µm 

112.4Hz / 1.5g 200µW Lin  2013 

SS300µm/Pt/Ti/KNN/Pt// SS 

proof mass  25mg 

KNN  RF Sputtering 2.2µm 

PZT RF Sputtering -  

7.5  x  5mm2  

x 2.2µm 

393Hz/1g 

367Hz/ 1g 

1.6µW 

6.7µW 

Tsujiura 2013 

Bimorph PtTi/PZT/PtTi 

SS60µm/PtTi/PZT/PtTi// 

Tungsten proof mass 0.46g 

Aerosol deposition 10µm 6x8mm2x 

80µm 

120Hz/0,5g 304µW Tang 2018 

Ni 25µm/ LaNiO3/HfO2/Ni//PZT 

/Pt // Brass proof mass 0.4g  

PZT RF Sputtering 3µm 0.1155mm3 72Hz/ 0,5g 60µW Yeo 2018 

 

Table 2: Examples of performances of resonant piezoelectric energy harvester cantilever types using 
different technologies  
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IV. New densification route by SPS of metallic supported printed multilayer for PZT 
piezoelectric energy harvesting  

PZT based energy harvester is a complex multimaterial whose fabrication raises multiple issues 

related to (i) the control of the chemistry and microstructure (non-stoichiometry and volatility of 

elements, grain size) and (ii) the control of interfaces (interdiffusion, thermal expansion mismatch 

between ceramic and metals leading to delamination and bending). These features strongly impact 

properties such as electrical breakdown strength, electrical conductivity, piezoelectric strain as well as 

charge and ferroelectric switching. Thanks to various sintering aids such as LBCu (Debéda et al.2005 

), LiBiO2 + CuO (Wang et al. 2001) or  Li2CO3 + PbO (Donnelly et al. 2009) the sintering temperature 

of thick film and PZT based ceramics was efficiently lowered (~900°C) compared to conventionally 

sintered commercial PZT (T>1200°C). However the chemistry at the grain boundaries remains hardly 

controlled and the densification not always optimized.  

The trend towards lower energy consumption while keeping optimum reliability requires an 

optimization of the sintering stage decreasing the sintering temperature, limiting the number of 

thermal treatments and controlling the chemistry according to the sintering environment. Such an 

optimization is mandatory when processing complex devices such as printed PZT thick films 

integrated in MEMS, for which the co-sintering with metals remains challenging. In this context, the 

use of advanced sintering process such as Spark Plasma Sintering appears as a relevant approach given 

its specificities: fast kinetics, lower temperatures and short sintering times.  

 

IV1.2. PZT ceramics sintered by SPS  
 
IV1.2.1 State of the art 

A review of literature shows that sintering of PZT and related solid solutions by SPS is performed 

under low oxygen partial pressure at temperatures that usually remain higher than 900°C (Table 3). A 

post-annealing treatment under air is generally mandatory to eliminate oxygen vacancies and recover 

insulating properties.  It is required to control the oxygen vacancies as they may play an important role 

in the fatigue process under electric field (Damjanovic, 1998). This post thermal treatment performed 

in the range 700 – 1100 °C, is a key step to control charged defects and, more generally defect 

chemistry at the grain boundaries (Legallais et al. 2018). In particular, space charge accumulation at 

the grain boundaries can significantly alter the poling process (reorientation of domains) and 

contribute to the conductivity and dielectric losses.  The defect concentration and their spatial 

distribution depends on both the sintering temperature and the sintering technique, and can be 

modified during post annealing.  

The efficiency of SPS with regards to conventional sintering can hardly be properly evaluated as the 

dielectric and piezoelectric properties are not systematically reported and when provided they concern 

different initial compositions and various microstructures in terms of grain size. However it is worth 

noting that most of the studies use SPS at temperatures lower or similar than the ones used for 
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conventional sintering of screen-printed thick films. The dwell time (~5’) is also drastically reduced 

compared to conventional approaches for which several hours are required to achieve high density. An 

additional significant advantage lies in the absence of sintering aids. The main drawback rests on the 

post SPS annealing step at temperatures similar or even higher than the sintering temperature. Such 

post -treatment weighs on the global thermal budget limiting thus the gain of energy efficiency 

provided by fast sintering at low temperature.  In this context, our approach, described in the next 

section, includes the use of the same commercial PZT powder as for conventional process (section III) 

and focuses on the investigation of SPS with as a main goal to avoid the post sintering annealing step. 

Our strategy is built on the use of a protective layer powder deposited directly on the top of the PZT 

bed powder. The use of insulating disks or thermal buffers during SPS was reported in literature. 

These thermal and electrical barriers allow to reduce the heat conduction and to control current 

distribution across punch/die/powder assembly (limited current leakage). They can be located either 

directly at the contact of the powder or between the rams and punches (S. Grasso et al. 2009). 

Alumina powders were also used to prevent ferroelectric ceramics from chemical reduction during 

SPS sintering (Elissalde et al, 2018) and to prevent the pistons of deforming copper spiral extremities 

in SPS co-sintering of transformers for power electronics (Mercier et al. 2016).  

In order to optimize the SPS sintering not only for PZT ceramics but also in the perspective of the 

sintering of the multilayer (Au/PZT/Au/stainless steel), our specifications for the protective layer must 

meet multiple criteria: to protect PZT from the chemical reduction without hindering a good 

densification, to be inert at the selected sintering temperature in order not to interact chemically with 

PZT but also with gold in the case of the multilayer, to be removed easily by polishing or etching 

without altering the material in contact. We have selected SrCO3 which meets all expectations, and has 

also proved to be very effective as a sacrificial layer in the fabrication of the released screen-printed 

thick films (Debéda et al. 2015, Rua-Taborda et al. submitted in J. Eur. Ceram. Soc.). The 

microstructure and electrical properties of PZT ceramics performed by SPS with and without SrCO3 

are here investigated and compared. Their performances are also confronted to conventionally sintered 

commercial ceramics and screen-printed thick films.  
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Material 

Sintering 

Temperature 

(heating rate) 

Holding 

Time 

(min) 

Pressure 

(MPa) 

Post thermal 

treatment 

Density 

(g/cm3 ) 

Electrical 

Properties 

Refe-

rences 

PbZrO3-PbTiO3 -

Pb(Zn1/3Nb2/3)O3 

900°C 

(100°C/min-  

800°C and  

33 °C/min -

900°C) 

10  29 

1h at 900°C 

In a PbO-rich 

atmosphere 

7.95  Not reported 

Wu 

2002a 

 

Pb(Zr0.53Ti0.47)O3 -

1%Nb 

1000°C 

(100°C/min) 

0, 1, 2, 

and 4  
50 3h at 1000 °C 7.95  Not reported 

Chinen 

2011 

 

Pb(Zr0.3Ti0.7)O3 

900°C 

(100°C/min-  

800°C and  

33 °C/min -

900°C) 

5  29  1h at 1100°C 7.80  
 <500 

(25°C) 

Wu 

2002b 

Pb(Zr0.52Ti0.42Sn0.02

Nb0.04)O3 

Grain size    < 

500nm 

1050 °C 

(100°C/min) 
5 50 

4h at 700°C 

under air + 

6h at 1000°C 

7.64  

d33 ∼330 

pm/V 

(25°C) 

Han  

2017 

 

Pb(Zr0.53Ti0.47)O3 - 

1%Nb2O5 

Grain size 330nm 

1000°C 

(120°C/min) 
1  50 Not reported 

Not 

reported 

 920 

(25°C) 

d33∼180 

pC/N 

Ochoa 

2018 

 

PMN-PZT 

Grain size 1m 

980°C 

(100°C/min) 
5 50 850°C 12h 

Not 

reported 

6000 

(25°C) 

d33∼400 

pm/V 

Chen  

2018  

Reference: PZ26 

conventional 

sintering 

1200°C 
Not 

reported 
  

7.7  

(relative 

density 

99%) 

6000 

d33∼290 

pC/N

Ferro-

perm 

Table 3: Some properties and process conditions of PZT based ceramics densified by SPS 

 

IV1.2.2 Protective layer based approach  

Spark plasma sintering is performed using an SPS apparatus Syntex Inc., SPS-515S. PZT powder 

without sintering aid is loaded in a cylindrical graphite die with an inner diameter of 10mm and heated 

under low oxygen partial pressure. The temperature is raised at 50 ◦C/min and kept at a constant value 

in between 800 and 875°C for 5 min. A constant pressure of 50MPa is applied along the Z-axis of the 

graphite die during the whole sintering process. The SPS samples performed without SrCO3 protective 

layer are annealed in air at 800 ◦C for 10 h in order to remove surface carbon contamination and to 
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Figure 9: Impedance amplitude and phase measured for ceramics sintered by SPS at different 

temperatures (no SrCO3 coating) 
 
The optimal sintering temperature of 875°C is thus selected for SPS experiments using the protective 
SrCO3 layer. SEM image of the ceramic after removal of SrCO3 reveals highly densified ceramic 

(98%) with an average grain size similar to the one of PZT without SrCO3 meaning that the 
protective layer does not affect the densification (Fig. 10). The ceramic exhibits a perovskite type 
structure with predominantly tetragonal phase at room temperature in agreement with the initial 
composition and without signature of secondary phase (XRD not shown) (Rua-Taborda et al. 
submitted in J. Eur. Ceram. Soc. 2019). 
                                        

 
Figure 10: SEM image of PZT sintered by SPS using a SrCO3 protective layer 

 

 
In order to prove the efficiency of the protective layer against reduction, electrical measurements were 
led directly after sintering and etching of SrCO3. Dielectric characterizations performed as a function 
of temperature and in the frequency range 100Hz – 100kHz are shown on Figure 11.  The Curie 
temperature (Tc) corresponding to the maximum of permittivity is located at 330°C as expected for the 
PZ26 composition (www.meggittferroperm.com). The room temperature permittivity reaches 1500, a 

value higher than the one reported for this commercial powder ( 1300 – sintering at 1200°C) and 

much more higher than the one reported by Wu et al. 2002b ( <500 sintering at 900°C + annealing 1h 
at 1100°C). A slight frequency dispersion of the permittivity can be observed in the vicinity of the 
Curie temperature but there is no signature of conductivity (increase in permittivity) at high 
temperature (T>400°C). The permittivity at Tc and at 1kHz reaches a value as high as 19800 reflecting 

the high quality of the ceramic.  The room temperature dielectric loss (tan) is lower than 1% and 

remains stable as a function of temperature up to 350°C (insert Fig. 11). The observed increase of tan 

2,00E+01

2,00E+02

2,00E+03

2,00E+04

2,00E+05

2,00E+05 2,20E+05 2,40E+05

Im
p

ed
an

ce
 A

m
p

li
tu

d
e 

(Ω
)

Frequency (Hz)

850°C

875°C

‐100

‐60

‐20

20

60

100

2,00E+05 2,20E+05 2,40E+05

Im
p

ed
an

ce
 P

h
as

e 
an

gl
e 

(°
)

Frequency (Hz)

850°C

875°C



20 
 

from 380°C at the lowest frequencies (<1kHz) netherveless reflects the existence of residual space 
charges. However, the obtained dielectric characteristics, comparable or even better than those of 
commercial ceramics, attest to the quality of the grain boundaries and confirm the efficient role of the 
protective layer. In such conditions, SPS without subsequent annealing allows to obtain in one step 
high quality piezoelectric ceramics exhibiting performant properties.  
 

 
Figure 11: Thermal variation of the permittivity at different frequencies for PZT/SrCO3 sintered by 

SPS (no reoxidation) – Insert: Dielectric losses as a function of T at 1kHz.  
 
An additional proof that the annealing is not here essential is the effective polarization of the ceramic 
directly after SPS. The poling process failed when PZT is densified without a protective layer due to 
the charges and associated leakage current, making the annealing prior poling process mandatory in 
this case. When using the protective layer, Au electroded PZT ceramics can be directly poled before 
their electromechanical characterization. The measured admittance B(G) circle (B susceptance, G 
conductance) of diameter 1/R (R the resistance of the motional branch, see Fig. 4b ) is clearly a proof 
of the piezoelectric effect (Fig.12a). Higher diameter of B(G) circles reveal a better electromechanical 
coupling ie. lower mechanical energy losses by viscous damping effect. The disk sintered at 875°C 
with the SrCO3 protective gives clearly the best properties, larger diameter of B(G) disk and highest 
keff reaching 36.4% instead of 30% without SrCO3 (Fig. 12). These results clearly highlight the 
efficiency of the SPS sintering associated with the use of SrCO3. 
 

b) Comparison with conventional commercial ceramics and screen-printed thick films 
 

The microstructural and electromechanical properties of the screen-printed thick film, the commercial 
PZ26 ceramic and the SPS ceramics are summed up in table 4. These results show that, despite a 
reduced sintering temperature, 875°C instead of 900°C (screen-printed thick films ) or 1200°C 
(commercial ceramics),  and the absence of additives, the electromechanical coupling factor is 
reaching a good value of 36%. Nevertheless, it is still lower than for the commercial ceramic (50%) 
probably because of not optimized polarization conditions.  The comparison clearly highlights and 
demonstrates the potential of the SPS process for an efficient densification in one step thanks to the 
use of the SrCO3 protective layer.  
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IV.2.2 SPS densification of the multilayer Au/PZT/Au/stainless steel  
 

a) Metal/ceramic interfaces  

SPS is widely used for the assembly of materials and is recognized as an efficient sintering process for 
co-sintering or bonding. The control of chemistry and defects at interfaces is a key issue.  If 
temperature and pressure contribute to mass transport enhancement, the influence of current through 
electromigration or defects concentration and mobility has also to be considered (Munir Z.A. et al. 
2006). The current and/or temperature effects on the formation of interphases was mainly studied for 
multilayers intermetallic systems (Garay J.E et al 2003, Anselmi-Tamburini U. et al. 2005). The 
studies reported in literature dealing with ceramic/metal or metal/polymer multilayers assemblies 
concern to a large extent Functionnaly Graded Materials (FGM). (Tokita, 1999). Composites made of 
biocompatible ceramic and metal (Al2O3/Ti) were investigated by SPS in order to optimize the 
mechanical properties (Fujii T. et al 2016). It was shown through bending tests that fracture occurs 
within a reaction layer formed at the interface. Hardness and bending strength of the alumina–titanium 
composites were compared to those of FGM samples (Bahraminasab M et al. 2017). The reactivity of 
titatium with alumina and the presence of micro-cracks for SPS sintered Al2O3/Ti functionally graded 
materials was also reported by Madec C. et al 2018. Focusing on materials designed by SPS for 
electronic devices applied to energy harvesting, only few studies were reported. Issindou et al (2018) 
worked on simple SPS magnetostrictive ceramics optimized by SPS, but no multilayers were studied. 
Cu/PZT functionally graded materials were fabricated by SPS targeting actuators applications (Fang 
M. et al, 2003). The impact of copper particles addition into PZT matrix on the dielectric properties 
and the electrical conductivity was investigated. Piezoelectric properties were not reported.  In the case 
of multilayers stacking, monolithic transformers for power applications were co-sintered by Spark 
Plasma Sintering (Mercier et al. 2016). The reported transformer is made of two spiral copper coils, a 
dielectric layer and a spinel ferrite magnetic circuit. The advantages of SPS lies here on the reduced 
sintering temperature that allows to co-sinter copper with the ferrite powder and on the possibility to 
obtain a monolithic structure that eases the heat transfer from the coils. Deformation and leakage 
inductance issues were identified and were solved by adapting dimensions and sintering conditions 
(sintering aid). However the argon atmosphere during SPS was revealed as detrimental regarding to 
the ferrite resistivity. This study illustrates well several issues that must be tackled when using SPS to 
co-sinter complex structures. The SPS densification of the multilayer Au/PZT/Au/stainless steel 
remains challenging, we report in next section our approach to face some of the problems encountered 
and some perspectives of improvement.     

b) Our approach  

Same screen printing pastes as for the conventional process (section III) are used to deposit PZT on 
the SS substrate, the Au bottom and top electrodes. However the active PZT layer in sandwich 
between the two electrodes does not contain LBCu.  The protective layer SrCO3 is printed on the top 
Au electrode.  After drying at 120°C, the multilayer is thus directly sintered by SPS without any 
preliminary firing, debinding or pressure steps.   The SPS sintering conditions optimized for PZT 
ceramics and discussed in the previous section have been transposed to some extent to sinter the 
multilayer. Heating ramp of 50°C/min and a holding time of 5 minutes are maintained. Considering 
the multiple interfaces within the multilayer (top Au/PZT, PZT/bottom Au/SS), the sintering 
temperature is slightly decreased to 850°C in order to prevent interdiffusion (in particular from the 
glass frit contained in the gold paste) but is maintained sufficiently high to guarantee satisfactory 
densification. Experiments are performed by turn-off the temperature at the end of the plateau and 
letting the system cool naturally. Transient thermal gradients can induce stress gradients through the 
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multilayer with as a result delamination issues. The most challenging aspect is here to avoid the 
delamination between the active PZT layer and the bottom gold electrode. Rapid cooling can affect the 
driving force for delamination. However controlling the cooling rate does not allow in this case to 
efficiently reduce the constraints. The pressure is another critical parameter in the case of multilayer. 
For the screen-printed film, a pressure of 40MPa (5 min at 65°C) applied prior sintering favors PZT 
densification and allows to reach a relative density of 82%. The pressure of 50MPa applied during 
SPS of PZT ceramic enhances densification but obviously cannot be applied on the stack.  Specific 
mold and carbon elements have been designed to ensure a uniform pressure applied on the stack 
(Fig.14).  

 

 
 

Fig. 14 Schematic drawn of the SPS mold designed for multilayer sintering 
 

Figure 15 a) illustrates the printed Au/PZT/Au/SS multilayer before sintering and before deposition of 
the SrCO3 layer. Because the top gold electrode does not recover entirely the active layer, the SrCO3 is 
then in contact with both PZT and Au. The selected low sintering temperature guarantees the absence 
of reaction at interfaces (SrCO3/PZT and SrCO3/Au) and is compatible with the formulation of the 
gold paste containing glass frit to ensure good adhesion with substrate.  A zoom of the Au/PZT/Au is 
shown after SPS and removal of the protective layer (Fig.15b). The removal of the SrCO3 layer is 
another critical step because the integrity and good adhesion of all the layers are mandatory to be able 
to pole the sample prior electromechanical characterization.  The bottom Au electrode and PZT are not 
damaged after etching process but the full removal of SrCO3 remains more challenging than for SPS 
ceramic. During the various tests aiming at improving the design of the mold, the weakest part of the 
assembly is the interface between the PZT and the bottom electrode leading to delamination (Fig.15c).  
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Work is actually in progress to reach further improvement on densification and to tackle the problem 
of delamination.  In conclusion of this chapter, some lines of thoughts are proposed as a guidance to 
overcome this last critical issue.  

 

IV. Conclusion /perspectives 
 
Whatever the applications, current trends in the field of electronic components are moving towards 
lower costs and lower production energy. Miniaturization enabling the implementation of devices 
can’t be overlooked and requires new technologies as well as the development of improved materials. 
These expectations concern in particular mechanical piezoelectric energy harvesting applications 
which are in development for replacing electrochemical batteries, and which are the topic of interest.  
In this chapter, after basics on mechanical Energy Harvesters using piezoelectric conversion, a state of 
the art on MEMS energy harvesters with the simple cantilever shape was led. We focused on 
cantilevers based on PZT ceramics or films supported on metallic substrates to highlight the 
advantages of thick films and metallic passive substrates for this application. We pointed out the 
advantages offered by screen printing thick film technology to fabricate components integrating active 
layers, electrodes and substrate at temperatures much lower than those used for conventional ceramic 
processes. The successful fabrication of piezoelectric energy harvesters, based on screen-printed PZT 
in sandwich between two gold electrodes and supported on a stainless steel substrate was then 
described. For this conventional process, the densification temperature of the PZT layer could be 
lowered to 900°C thanks to the use of the LBCu eutectic aid. Nevertheless the control of interfaces 
(metal/ceramic, metal/metal), chemistry (volatility of element, sintering aid) and densification are 
issues that still have to be improved. In order to avoid the use of sintering additives and to improve 
densification in both PZT and Au/PZT/Au/SS multilayer assembly, we aimed a strategy based on 
Spark Plasma Sintering.  The efficiency of Spark Plasma Sintering to rapidly sinter and co-sinter 
materials at low temperature is no longer to be demonstrated. However, sintering oxides by SPS in 
vacuum (low oxygen partial pressure) can generate carbon contamination and oxygen vacancies 
formation that must be removed by a post annealing treatment. Our first goal in this work was to 
efficiently use SPS avoiding additional thermal treatment. Thanks to the use of a SrCO3 protective 
layer, we were able to obtain in one step highly densified PZT ceramics at 875°C in 5 minutes (dwell 
time) without sintering aid. The efficiency of the protective layer was proved through the comparison 
of the microstructural features and properties with PZT sintered by SPS and annealed at 800°C. In 
addition, the ceramics exhibited dielectric and piezoelectric performances comparable and even better 
than commercial ceramics sintered at high temperature and screen-printed thick films. Our ambition 
was also to use SPS in one step and without sintering aid to co-sinter complex EH structure such as 
Au/PZT/Au/stainless steel. Sintering conditions were optimized and specific mold was designed to 
limit interdiffusion at interfaces and ensure the uniform pressure application on the multilayer. The 
feasibility of the approach was demonstrated. The microstructure of the active PZT layer is similar to 
the one of screen-printed thick film sintered by conventional process. The SrCO3 protective layer was 
removed while keeping the integrity of the multilayer. The main challenging aspect remains the 
control of interfaces in terms of thermal constraints. Delamination between the active layer and the 
bottom gold electrode is the first issue to be solved, not only to be able to polarize the multilayer but 
also to guarantee the reproducibility of the process. The substrate thickness significantly affects the 
driving force for delamination and could be adapted to limit the constraints. The sintering temperature 
could be reduced in order to limit the thermal gradients but the targeted temperature window remains 
narrow considering both the densification of PZT and the gold paste. In this way, the transition 
towards Ag/Pd electrodes could be a promising option to relax the electrode related constraint. 
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Improving the PZT layer densification is also a major goal. The porosity can affect the fatigue 
resistance and lead to a degradation of the electromechanical properties due to the generation of cracks 
during cycling (Chen et al, 2018).  There is some degree of freedom to improve the PZT layer 
densification. The use of a sintering aid such as LBCu would help but at this stage, this is not the 
preferred option since a strict control of the chemistry remains one of our priorities. Decreasing PZT 
grain size can be another way to enhance densification thanks to higher reactivity. In addition, it would 
allow to tune the properties. The domain structure depends on the grain size and the increase of grain 
boundaries density in fine grained ceramics will impact the domain wall motion. Hardening or 
softening of the piezoceramics can thus be expected. The dielectric permittivity will be also modified 
by changing the grain size (Randall et al, 1998). Controlling grain size would allow to find a 
compromise between permittivity values and electromechanical performances in order to fit with the 
expectations of Energy Harvesting applications.   
Finally, if PZT was used here as a benchmark material, our perspectives include the transition towards 
lead-free piezoelectric active layer (Shrout et al, 2007). The control of chemistry during sintering will 
remain a critical point in particular in the case of KNN (volatility of alkali element), one of the most 
promising lead-free piezoelectric material (Rödel et al, 2015), but SPS investigations are already 
reported (Bah et al. 2014). The use of Spark Plasma Sintering to fabricate complex structures applied 
to 
energy harvesting is still in its infancy and remains very challenging. Its successful exploitation would 
undoubtedly open an innovative way of designing Energy Harvesters in line with the requirements of 
reduction of energy consumption and sustainability. 
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