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Abstract. The recent success to synthesize an ordered array of pores in graphene by

a bottom-up approach [C. Moreno et al. 2018 Science 360, 199] yields a semiconducting

nanoporous graphene with a bandgap of 0.6 eV. In this paper, we present calculations

of the intrinsic carrier mobility in this new type of two-dimensional material. Using

a fully atomistic approach, we show that carriers are mostly scattered by acoustic

phonons, approximately like in semiconducting carbon nanotubes. The carrier mobility

shows strong anisotropy and is as high as 800 cm2/(Vs) at low carrier density. Such

a high mobility, together with symmetric properties of electrons and holes, suggests

that porous graphene is a promising candidate for next generations of complementary

field-effect transistor technology.
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1. Introduction

As scaling of Complementary Metal Oxide Semiconductor (CMOS) technologies reaches

its limits, two-dimensional (2D) materials cleaved from layered solids (hereafter, 2D

materials) represent interesting alternatives to thin silicon layers for beyond-CMOS

technologies [1, 2, 3, 4, 5, 6]. Among many reasons, 2D materials are very attractive

for their absence of surface dangling bonds, for their ultimate thickness which favors

the electrostatic control of field-effect transistor channels, and for their possible

hybridization with other 2D materials or more conventional semiconductors enabling
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the fabrication of original devices based on horizontal or vertical transport. Graphene

was the first prototype of 2D materials [7]. In spite of its remarkable physical properties,

it is not suitable for beyond-CMOS digital technologies due to its gap-less electronic

structure. A lateral quantum confinement can be used to open a bandgap in Graphene

Nano-Ribbons (GNRs) but a ribbon width below ∼ 6 nm is required to have a significant

bandgap (> 0.2 eV) [8, 9, 10, 11, 12]. Moreover, the electronic properties of GNRs

depend on their edge geometry which is challenging to control.

Beyond graphene, a wide variety of 2D materials have recently received considerable

attention such as Transition Metal Dichalcogenides (TMDs) [1, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22] or black phosphorus [23, 24, 25, 26, 27, 28]. Interestingly, record values

above 100 cm2/(Vs) have been reported for the room-temperature carrier mobility in

monolayers of these materials, [14, 16, 28, 20] and larger ones are found in multilayers.

These values can be compared to the mobility of 250 cm2/(Vs) found in 2-nm-thick

silicon films [29]. However, by comparison with calculated phonon-limited mobilities

[30, 31, 32, 33, 34, 35], even accounting for their significant dispersion, one can conclude

that the electrical properties of these ultra-thin 2D materials are still limited by extrinsic

factors, i.e., the interaction with the environment, surface adsorption and point defects.

The family of 2D materials encompasses many other compounds [36], giving us

the possibility to determine the best candidates for the development of Complementary

Field-Effect Transistor (CFET) technologies. In the following, we consider a new family

of 2D materials, nanoporous graphene (NPG) in which a periodic array of nanosize

pores turns the semimetallic graphene into a semiconductor [37, 38]. Remarkably, NPG

was recently synthesized using a bottom-up approach [39, 40, 41]. The self-assembling

of molecular precursors allows to define 2D carbon materials at atomic precision, with

geometrical patterns as small as 1 nanometer in size [42, 39, 40, 41].

CFET technologies based on NPG could present several advantages. First, NPG has

a finite bandgap, semiconducting properties, and an intrinsic electron-hole symmetry.

Second, NPG could be encapsulated between two insulating BN layers. This approach

applied to graphene allows to obtain room-temperature carrier mobilities near the

theoretical phonon-limited one [43]. Third, technological processes developed for

semiconducting carbon nanotubes to make perfectly-symmetric CFETs [44, 45] could be

easily transferred to NPG. Perfect ohmic contacts could be made either to the valence

band using Pd [46] or to the conductance band using Sc [47]. In addition to these

important features, we predict in this paper that NPG samples synthesized in Ref. [39]

should be characterized by a high intrinsic (phonon-limited) carrier mobility, up to 800

cm2/(Vs). This prediction is made using atomistic calculations in which we consider all

numerous phonon scattering channels which are allowed due to the large number (240)

of carbon atoms per unit cell. We present calculations of the carrier mobility not only

in NPG but also in specific GNRs which are intermediate building blocks that appear

during the synthesis [39].
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Figure 1. (a) The unit cell of the NPG. The Y axis is along the 7-13-AGNRs, the

X axis is perpendicular. (b1) Position of the Fermi level with respect to the center of

the bandgap, and (b2) the intrinsic electron mobility along the two principle axes (X

axis: red line with squares; Y axis: blue line with dots), versus electron density. (b3)

The electronic structure along high symmetry lines. The upper part of (b3) is aligned

with the energy in (b1), in order to relate positions of the Fermi level in the electronic

structure with the electron densities and the mobilities in (b2). The bands close to the

energy gap are shown with different colours for clarity. (c) The anisotropic effective

mass in the lowest conduction band as a function of the angle with respect to the X

axis.

2. Method

The intrinsic mobility of electrons (symmetrically, holes) is computed using a fully

atomistic approach, which is formally the same as in our previous studies on GNRs [48],

carbon nanotubes, graphene [49] and other semiconducting structures [50]. In short,

atomistic tight-binding is employed to compute the electronic structure, an atomistic

force-constant model is used for phonon dispersion. The tight-binding parameters and

the parameters in the force constant model are the same as in Ref. [49]. The low-

field carrier mobility is determined by solving the Boltzmann transport equation, in

which the scattering terms include all possible electron-phonon couplings. For graphene,

this approach gives mobilities versus carrier density and temperature [49] in excellent

agreement with first-principles calculations [51, 52] and with experiments [53, 54].

The unit cell of the NPG sample that we have investigated is presented in figure 1(a).

As described in Ref. [39], three reaction steps are necessary to form the 2D material.



4

(a)

1010 1012 1014

n (cm−2)

0

200

400

600

800

1000
µ
 (
cm

2
/V
/s
)

(b2)

1010 1012 1014
n (cm−2)

0.0

0.5

1.0

1.5

2.0

2.5

E
f
 (
eV

)

(b1)

0.0 0.1 0.2 0.3 0.4 0.5

k (2π/l)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

E
n
er
gy

 (
eV

)

(b3)

Figure 2. (a) The unit cell of the 7-13-AGNRs. (b1) Position of the Fermi level with

respect to the center of the bandgap, and (b2) the intrinsic electron mobility, versus

electron density. (b3) The electronic structure. The upper part of (b3) is aligned with

the energy in (b1), in order to relate positions of the Fermi level in the electronic

structure with the electron densities and the mobilities in (b2).

The first two steps are used to synthesize 7-13-Armchair GNRs (7-13-AGNRs), shown

in figure 2(a), which are GNRs characterized by particular armchair edge structures

forming consecutive pairs of 7 and 13 carbon atoms. The final reaction step interconnects

7-13-AGNRs laterally by means of a highly selective cross-coupling (figure 1(a)).

A main challenge in these calculations came from the large unit cell of NPG

(3×2.4 nm2) containing 240 carbon atoms. All possible scattering events are considered

and linearized Boltzmann transport equation is solved exactly [49]. Brillouin zone

integrations are performed on a non-homogeneous 1D grid for 7-13-AGNRs and on

an triangular mesh for NPG (e.g., 1218 k-points in 1D and 3394 triangles in 2D for

a surface carrier density of 2.5 × 1012 cm−2 and T = 300 K). It was also important

to validate the numerical method. In the case of pristine graphene, we checked that

identical mobilities are obtained using the unit cell (2 atoms) and the large 3× 2.4 nm2

supercell (312 atoms).

3. Results

The band structures calculated for NPG and for the 7-13-AGNR are presented in

figure 1(b3) and figure 2(b3), respectively. The 7-13-AGNR is characterized by a
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bandgap of 0.71 eV, which is 0.13 eV larger than the 0.58 eV bandgap of NPG.

Such findings are fully consistent with the DFT study of Ref. [39], which gives gap

values of 0.74 eV for the 7-13-AGNR, and 0.62 eV for NPG. The small (≈ 0.1 eV)

difference between 7-13-AGNR and NPG bandgaps is consistent with the weak band

dispersion of the NPG band structure along the X-axis corresponding to the direction

perpendicular to the 7-13-AGNR. This also explains the large effective mass in the X

direction (figure 1(c)). Interestingly, due to this strong anisotropy in the band structure,

it was recently predicted that electron waves injected from the tip of a scanning tunneling

microscope should behave similarly to photons in coupled waveguides [55].

Figure 1(b2) presents the room-temperature intrinsic electron mobility as a function

of the electron density n along the two principle axes indicated in figure 1(a). At low

electron densities (n < 1012 cm−2), the mobility along the Y-axis is about 800 cm2/(V·s),
and merely 200 cm2/(V·s) along the X-axis. Such a strong direction-dependent mobility

is consistent with the electronic structure presented by figure 1(b3). The curvature of

the lowest conduction band along Γ-Y is obviously much larger than that along Γ-X,

indicating a lighter effective mass along the Y-axis. Indeed, the effective mass along Y

is about 0.09 me only (figure 1(c)), comparable to 0.085 me the effective mass of the 7-

13-AGNR, whereas it is roughly 0.59 me along X, about 6 times larger. The anisotropy

in the effective mass explains primarily the factor 4 on the mobility between the two

directions.

The mobility decreases dramatically when the electron density is increased above

a certain threshold. This happens when the Fermi level lies above the conduction band

minimum and the contribution from the second subband becomes important. It is

noticeable that the mobility starts to drop at lower density along X (n ∼ 1012 cm−2)

than along Y (n ∼ 1013 cm−2). The second subband has opposite curvature along Γ-X

and Γ-Y direction, resulting in different contributions to the electron mobility. It is also

worth pointing out the local minimum of electron mobility along Y at about n = 1013

cm−2, where the Fermi level lies between the two lowest subbands, and electron suffers

from phonon scatterings to both subbands.

To further reveal the transport properties of NPG, a comparative investigation with

its building block, the 7-13-AGNR, was carried out. Figure 2(b2) shows that the electron

mobility in the 7-13-AGNR at low carrier density is about 500 cm2/(Vs), which is smaller

but comparable to the mobility of NPG along the Y direction [800 cm2/(Vs)]. The

reduction of 300 cm2/(Vs) indicates that electron-phonon coupling is enhanced by the

lateral confinement, an effect which is commonly found in semiconductor nanostructures

[56]. At high electron density, the electron mobility first increases and then decreases.

The increase of the mobility is explained by the suppression of phonon scattering to

the bottom of the lowest subband as a consequence of the shift of the transport energy

window. This phenomenon holds until the second subband falls inside the transport

energy window, which enables inter-subband phonon scattering.

Figure 3(a) shows that, in NPG, the electrons are mostly scattered by acoustic

phonons, as already found in semiconducting carbon nanotubes [49] which are also
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Figure 3. (a) Ratio between the mobility calculated by considering phonons with

energy up to h̄ωq and the mobility calculated with all phonons, at 300 K, for NPG and

the 7-13-AGNR.(b) Electron mobility versus temperature in NPG (red disks: along X;

blue squares: along Y) and in the 7-13-AGNR (green triangles). Calculations in both

(a) and (b) are at low carrier density (n = 1.8 × 109 cm−2).

characterized by electronic bands with parabolic energy dispersion. However, the energy

of the phonons involved in the scattering processes extends up to ∼ 60 meV, instead of

∼ 25 meV for semiconducting carbon nanotubes. This is due to the nanoscale patterning

in NPG which tends to break the selection rules for electron-phonon scattering processes.

In the 7-13-AGNR, phonon scattering is also dominated by acoustic phonons but there

is a small but visible contribution from higher-energy phonons (> 60 meV) which is

therefore induced by the presence of the edges.

Figure 3(b) shows that the electron mobility in NPG along the Y direction and

in the 7-13-AGNR varies with temperature approximately as T−η with an exponent η

close to unity, as found in semiconducting carbon nanotubes [49]. Such a 1/T behavior

is characteristic of a 1D transport in a parabolic band, as shown using a simple analytic

model (see Supplementary Material). On the contrary, the exponent close to 1.5 for

the mobility in NPG along the transverse direction X may be interpreted by a 2D-like

transport. This confirms the anisotropic character of the transport in NPG.

4. Conclusion

In conclusion, we have shown that NPG could be a good candidate for CFET

applications, for beyond-CMOS technologies. NPG is characterized by a substantial

energy gap, semiconducting properties, and electron-hole symmetry. The room-

temperature intrinsic carrier mobility calculated using a fully-atomistic approach is

found to be strongly anisotropic and could reach high values at low carrier density,

up to 800 cm2/(Vs) along the main transport direction. Due to the large unit cell of

the 2D material, many phonon modes are involved in the scattering processes but the
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transport is mainly limited by the coupling to acoustic phonons, approximately like in

semiconducting carbon nanotubes.
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[36] Pere Miró, Martha Audiffred, and Thomas Heine. An atlas of two-dimensional materials. Chem.

Soc. Rev., 43:6537–6554, 2014.

[37] Jingwei Bai, Xing Zhong, Shan Jiang, Yu Huang, and Xiangfeng Duan. Graphene nanomesh.

Nature Nanotech., 5:190, Feb 2010.

[38] Xiaogan Liang, Yeon-Sik Jung, Shiwei Wu, Ariel Ismach, Deirdre L. Olynick, Stefano Cabrini, and

Jeffrey Bokor. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm

ribbon width fabricated via nanoimprint lithography. Nano Lett., 10(7):2454–2460, 2010.

[39] César Moreno, Manuel Vilas-Varela, Bernhard Kretz, Aran Garcia-Lekue, Marius V. Costache,

Markos Paradinas, Mirko Panighel, Gustavo Ceballos, Sergio O. Valenzuela, Diego Peña,

and Aitor Mugarza. Bottom-up synthesis of multifunctional nanoporous graphene. Science,

360(6385):199–203, 2018.

[40] Cesar Moreno, Markos Paradinas, Manuel Vilas-Varela, Mirko Panighel, Gustavo Ceballos, Diego

Peña, and Aitor Mugarza. On-surface synthesis of superlattice arrays of ultra-long graphene

nanoribbons. Chem. Commun., 54:9402–9405, 2018.

[41] César Moreno, Mirko Panighel, Manuel Vilas-Varela, Guillaume Sauthier, Maria Tenorio, Gustavo

Ceballos, Diego Peña, and Aitor Mugarza. Critical role of phenyl substitution and catalytic

substrate in the surface-assisted polymerization of dibromobianthracene derivatives. Chem.

Mater., 31(2):331–341, 2019.

[42] Xiaolin Li, Xinran Wang, Li Zhang, Sangwon Lee, and Hongjie Dai. Chemically derived,

ultrasmooth graphene nanoribbon semiconductors. Science, 319(5867):1229–1232, 2008.

[43] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M.

Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean. One-

dimensional electrical contact to a two-dimensional material. Science, 342(6158):614–617, 2013.

[44] Lian-Mao Peng, Zhiyong Zhang, and Sheng Wang. Carbon nanotube electronics: recent advances.

Mater. Today, 17(9):433 – 442, 2014.

[45] Zhiyong Zhang, Sheng Wang, Zhenxing Wang, Li Ding, Tian Pei, Zhudong Hu, Xuelei Liang, Qing

Chen, Yan Li, and Lian-Mao Peng. Almost perfectly symmetric swcnt-based cmos devices and

scaling. ACS Nano, 3(11):3781–3787, 2009.

[46] Ali Javey, Jing Guo, Damon B. Farmer, Qian Wang, Erhan Yenilmez, Roy G. Gordon, Mark

Lundstrom, and Hongjie Dai. Self-aligned ballistic molecular transistors and electrically parallel

nanotube arrays. Nano Lett., 4(7):1319–1322, 2004.

[47] Zhiyong Zhang, Xuelei Liang, Sheng Wang, Kun Yao, Youfan Hu, Yuzhen Zhu, Qing Chen, Weiwei

Zhou, Yan Li, Yagang Yao, Jin Zhang, and Lian-Mao Peng. Doping-free fabrication of carbon

nanotube based ballistic cmos devices and circuits. Nano Lett., 7(12):3603–3607, 2007.

[48] Jing Li, Y.-M. Niquet, and C. Delerue. Magnetic-phase dependence of the spin carrier mean free

path in graphene nanoribbons. Phys. Rev. Lett., 116(23), 2016.

[49] Jing Li, H.P.C. Miranda, Y.-M. Niquet, L. Genovese, I. Duchemin, L. Wirtz, and C. Delerue.

Phonon-limited carrier mobility and resistivity from carbon nanotubes to graphene. Phys. Rev.

B, 92(7), 2015.

[50] Wenxing Zhang, Christophe Delerue, Yann-Michel Niquet, Guy Allan, and Enge Wang. Atomistic

modeling of electron-phonon coupling and transport properties in n-type [110] silicon nanowires.

Phys. Rev. B, 82:115319, Sep 2010.

[51] Cheol-Hwan Park, Nicola Bonini, Thibault Sohier, Georgy Samsonidze, Boris Kozinsky, Matteo

Calandra, Francesco Mauri, and Nicola Marzari. Electron-phonon interactions and the intrinsic

electrical resistivity of graphene. Nano Lett., 14(3):1113–1119, 2014.

[52] Thibault Sohier, Matteo Calandra, Cheol-Hwan Park, Nicola Bonini, Nicola Marzari, and

Francesco Mauri. Phonon-limited resistivity of graphene by first-principles calculations:

Electron-phonon interactions, strain-induced gauge field, and boltzmann equation. Phys. Rev.

B, 90:125414, Sep 2014.

[53] Dmitri K. Efetov and Philip Kim. Controlling electron-phonon interactions in graphene at

ultrahigh carrier densities. Phys. Rev. Lett., 105:256805, Dec 2010.



10

[54] K. Zou, X. Hong, D. Keefer, and J. Zhu. Deposition of high-quality hfo2 on graphene and the

effect of remote oxide phonon scattering. Phys. Rev. Lett., 105:126601, Sep 2010.

[55] Gaetano Calogero, Nick R. Papior, Bernhard Kretz, Aran Garcia-Lekue, Thomas Frederiksen, and

Mads Brandbyge. Electron transport in nanoporous graphene: Probing the talbot effect. Nano

Lett., 19(1):576, 2019.

[56] Jing Li, E. Lampin, C. Delerue, and Y.-M. Niquet. Theoretical investigation of the phonon-limited

carrier mobility in (001) si films. J. Appl. Phys., 120(17), 2016.



Supplementary Material for: Intrinsic transport properties of

nanoporous graphene highly suitable for complementary

field-effect transistors

Jing Li1, ∗ and Christophe Delerue2, †

1Univ. Grenoble Alpes, CNRS, Institut NÉEL, F-38042, Grenoble, France
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I. ELECTRON SCATTERING BY ACOUSTIC PHONON

The acoustic phonon field is

Û(~q) = ~u

√√√√ h̄

2ρV ωq
(âqe

i~q·~r + âq
†e−i~q·~r), (1)

where ~q is the phonon wavevector, ωq the phonon frequency, âq and âq
† the creation and

annihilation operators, ρ the material density, V the volume of the unit cell, and ~u the

polarization unit vector of phonon.

The phonon field creates a strain field, which is

∇ · Û(~q) = i[~q · ~u]

√√√√ h̄

2ρV ωq
(âqe

i~q·~r − âq†e−i~q·~r). (2)

For simplicity, we consider a single band in electronic structure, the strain field perturbs the

electron Hamiltonian through the deformation potential D. In this case, only the longitu-

dinal acoustic phonon contributes, ~q · ~uLA = q. The transverse phonon has no contribution

~q · ~uTA = 0. So the perturbation is

∆H = D∇ · Û(~q) = iqD

√√√√ h̄

2ρV ωq
(âqe

iqr − âq†e−iqr). (3)

Consider the initial and final electronic states, |ψi〉 and |ψf〉. The scattering rate is given

by Fermi’s golden rule:

Wi,f =
2π

h̄
|〈ψi|∆H|ψf〉|2ρ(~q), (4)

where the matrix element is

|〈ψi|∆H|ψf〉|2 =
h̄D2q2

2ρV ωq
(âqâq

† + âq
†âq)|〈ψi|ei~q·~r|ψf〉|2

=
h̄D2q2

2ρV ωq
coth(

h̄ωq
2kBT

)|〈ψi|ei~q·~r|ψf〉|2, (5)

The scattering density ρ(~q) depends on the dimensionality of the system

ρ1D(q) =
L

2πh̄vph
; ρ2D(q) =

S

(2π)2h̄vph
; ρ3D(q) =

V

(2π)3h̄vph
, (6)

where vph is the phonon velocity, L the length of the 1D unit cell, and S the area of the 2D

unit cell.

2



Consider linear phonon dispersion ωq = vphq, at high temperature limit kBT >> h̄ωq, (so

coth( h̄ωq

2kBT
) ≈ 2kBT

h̄ωq
,) therefore

Wi,f = W̃ |〈ψi|ei~q·~r|ψf〉|2, (7)

where W̃ is the electronic wave-function independent scattering rate,

W̃1D =
LD2kBT

h̄2ρV v3
ph

; W̃2D =
SD2kBT

2πh̄2ρV v3
ph

; W̃3D =
D2kBT

4π2h̄2ρv3
ph

. (8)

A. The mobility in 1D system

Assume the scattering by acoustic phonon is elastic, for the initial state with the electron

wavevector k, the final state is k′. The Boltzmann transport equation for the initial state is

written as:

∑
k′
{f(k)Wk,k′ [1− f(k′)]− [1− f(k)]Wk′,kf(k′)} = eF · v(k)(

∂f 0

∂E
)|E(k), (9)

where v(k) is the electron group velocity, F is the external electric field, f(k) the occupation

factor at state k, under the first order approximation,

f(k) = f 0(k) + eFg(k). (10)

The term f 0(k) is the equilibrium distribution function f 0(k) = (1+e
Ek−Ef
kBT )−1, Ef the Fermi-

level, and T the temperature. Because E(k) = E(k′), f 0(k) = f 0(k′). With Wk,k′ = Wk′,k,

the Eq.9 is simplified to

∑
k′

[g(k)− g(k′)]Wk,k′ = v(k)(
∂f 0

∂E
)|Ek

, (11)

by keeping only the first order term in distribution function to the external electric field.

For the reason of the charge conservation,
∑
k g(k) = 0. So, we have

g(k) =
1

Wk,−k
v(k)(

∂f 0

∂E
)|Ek

(12)

The mobility is given by

µ = −e
∫
g(k)v(k)dk∫
f 0(k)dk

(13)

Consider a parabolic band structure: E(k) = h̄2k2

2m∗
, where m∗ is the effective mass, the group

velocity v(k) = h̄k
m∗

. At non-degenerate limit Ek − Ef >> kBT , f 0(k) ≈ e
−

Ek−Ef
kBT . So

g(k) = − 1

Wk,k′

h̄k

m∗kBT
e
−

Ek−Ef
kBT , (14)
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and the mobility is

µ1D =
eh̄2

(m∗)2kBT

∫∞
0

k2

Wk,k′
e
−

Ek−Ef
kBT dk∫∞

0 e
−

Ek−Ef
kBT dk

. (15)

Assume |〈ψi|eiqr|ψf〉|2 = I is a constant for all scattering events, Wk,k′ = W̃1DI is energy

independent.

µ1D =
eh̄2

(m∗)2W̃1DIkBT

∫∞
0 k2e

−
Ek−Ef
kBT dk∫∞

0 e
−

Ek−Ef
kBT dk

, (16)

After the integrals,

∫ ∞
0

k2e
−

Ek−Ef
kBT dk =

√
π

2

(m∗kBT )
3
2

h̄3 e
Ef
kBT ; (17)∫ ∞

0
e
−

Ek−Ef
kBT dk =

√
πm∗kBT√

2h̄
e

Ef
kBT , (18)

the mobility is then

µ1D =
e

m∗W̃1DI
=

eh̄2ρV v3
ph

LD2IkBTm∗
, (19)

which is ∝ T−1.

B. The mobility in 2D system

Assume the scattering by acoustic phonon is elastic, for the initial state with the electron

wavevector k, the final states k′ are on the equal energy circle or ellipse, E ′k = Ek. The

Boltzmann transport equation for the initial state is written as:

∫
f(k)Wk,k′ [1− f(k′)]− [1− f(k)]Wk′,kf(k′)dk′ = eF · v(k)(

∂f 0

∂E
)|E(k). (20)

Similar to the 1D case, with Wk,k′ = Wk′,k, the equation is is simplified to

∫
[g(k)− g(k′)]Wk,k′dk

′ = F̂ · v(k)(
∂f 0

∂E
)|Ek

, (21)

by keeping only the first order term in distribution function to the external electric field,

whose unit vector is F̂ . Assume |〈ψi|eiqr|ψf〉|2 = I is a constant for all scattering events,

Wk,−k = W̃2DI is independent of k and k′. With the conservation of charge
∫
g(k)dk = 0,

the equation is further simplified to

Ckg(k)W̃2DI = F̂ · v(k)(
∂f 0

∂E
)|Ek

, (22)
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where Ck is the circumference of the equal energy circle or ellipse. Hence,

g(k) =
1

CkW̃2DI
F̂ · v(k)(

∂f 0

∂E
)|Ek

. (23)

Consider the electronic structure, E(k) = h̄k2x
2mx

+
h̄k2y
2my

, where mx and my are the effective

mass in x̂ and ŷ. For the convenient of integral, let’s introduce k̃x = kx√
mx

and k̃y = ky√
my

,

so E(k) = h̄
2
k̃2, with k̃2 = k̃2

x + k̃2
y. The group velocity is ~v(k̃) = h̄k̃x√

mx
x̂ + h̄k̃y√

my
ŷ. The

circumference Ck is approximated to

Ck ≈ 2π

√
a2 + b2

2
= 2πk̃

√
mx +my

2
, (24)

where a =
√
mxk̃ and b =

√
myk̃ are the principle axis of the equal energy ellipse. At

non-degenerate limit Ek − Ef >> kBT , f 0(k) ≈ e
−

Ek−Ef
kBT , the mobility (Eq.13) is

µ2D =
e

W̃2DIkBT

∫∞
0

∫ 2π
0

[F̂ ·v(k)]v(k)
Ck

e
−

Ek−Ef
kBT k̃dθdk̃∫∞

0

∫ 2π
0 e

−
Ek−Ef
kBT k̃dθdk̃

. (25)

The integral in the denominator is

∫ ∞
0

∫ 2π

0
e
−

Ek−Ef
kBT k̃dθdk̃ =

2πkBT

h̄2 e
Ef
kBT . (26)

The integral at the numerator contains the velocity, which is a vector, we can evaluate their

component separately. For external field in x̂, consider velocity in x̂, we have:

∫ ∞
0

∫ 2π

0

v(k)2
x

Ck
e
−

Ek−Ef
kBT k̃dθdk̃ =

√
π(kBT )3/2

2h̄mx
√
mx +my

e
Ef
kBT . (27)

For external field in ŷ and velocity in ŷ, the integral is

∫ ∞
0

∫ 2π

0

v(k)2
y

Ck
e
−

Ek−Ef
kBT k̃dθdk̃ =

√
π(kBT )3/2

2h̄my
√
mx +my

e
Ef
kBT . (28)

The integral is zero if the velocity component is perpendicular to the external field. The

mobility is then

µ2D
xx =

eπ1/2h̄3ρV v3
ph

2SD2I(kBT )3/2(mx +my)1/2mx

;

µ2D
yy =

eπ1/2h̄3ρV v3
ph

2SD2I(kBT )3/2(mx +my)1/2my

; (29)

which are ∝ T−1.5, and µxx/µyy = my/mx.
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C. The mobility in 3D system

Assume the scattering by acoustic phonon is elastic, for the initial state with the electron

wavevector k, the final states k′ are on the equal energy spheroid, E ′k = Ek. The Boltzmann

transport equation for the initial state is written as:∫
f(k)Wk,k′ [1− f(k′)]− [1− f(k)]Wk′,kf(k′)dk′ = eF · v(k)(

∂f 0

∂E
)|E(k). (30)

Analogy to the 2D case, with Wk,k′ = Wk′,k, the equation is is simplified to∫
[g(k)− g(k′)]Wk,k′dk

′ = F̂ · v(k)(
∂f 0

∂E
)|Ek

, (31)

by keeping only the first order term in distribution function to the external electric field,

whose unit vector is F̂ . Assume |〈ψi|eiqr|ψf〉|2 = I is a constant for all scattering events,

Wk,−k = W̃3DI is independent of k and k′. With the conservation of charge
∫
g(k)dk = 0,

the equation is further simplified to

Skg(k)W̃3DI = F̂ · v(k)(
∂f 0

∂E
)|Ek

, (32)

where Sk is the surface of the equal energy spheroid. Hence,

g(k) =
1

SkW̃3DI
F̂ · v(k)(

∂f 0

∂E
)|Ek

. (33)

Consider the electronic structure, E(k) = h̄k2x
2mx

+
h̄k2y
2my

+ h̄k2z
2mz

, where mx, my, and mz are

the effective mass in x̂, ŷ, and ẑ. For the convenient of integral, let’s introduce k̃x = kx√
mx

,

k̃y = ky√
my

, and k̃z = kz√
mz

, so E(k) = h̄
2
k̃2, with k̃2 = k̃2

x + k̃2
y + k̃2

z . The group velocity is

~v(k̃) = h̄k̃x√
mx
x̂+ h̄k̃y√

my
ŷ + h̄k̃z√

mz
ẑ. The surface of the spheroid Sk is approximated to

Sk ≈ 2π
√
a2b2 + a2c2 + b2c2 = 2πk̃2

√
mxmy +mxmz +mymz, (34)

where a =
√
mxk̃, b =

√
myk̃, and c =

√
mzk̃ are the principle axis of the equal energy

spheroid. At non-degenerate limit Ek−Ef >> kBT , f 0(k) ≈ e
−

Ek−Ef
kBT , the mobility (Eq.13)

is

µ3D =
e

W̃3DIkBT

∫∞
0

∫ π
0

∫ 2π
0

[F̂ ·v(k)]v(k)
Sk

e
−

Ek−Ef
kBT k̃2sinθdφdθdk̃∫∞

0

∫ π
0

∫ 2π
0 e

−
Ek−Ef
kBT k̃2sinθdφdθdk̃

. (35)

The integral in the denominator is∫ ∞
0

∫ π

0

∫ 2π

0
e
−

Ek−Ef
kBT k̃2sinθdφdθdk̃ =

(2πkBT )3/2

h̄3 e
Ef
kBT . (36)
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The integral at the numerator contains the velocity, which is a vector, we can evaluate their

component separately. For external field in x̂, consider velocity in x̂, we have:

∫ ∞
0

∫ π

0

∫ 2π

0

v(k)2
x

Sk
e
−

Ek−Ef
kBT k̃2sinθdφdθdk̃ =

√
2π(kBT )3/2

3h̄mx
√
mxmy +mxmz +mymz

e
Ef
kBT . (37)

For external field in ŷ and velocity in ŷ, the integral is

∫ ∞
0

∫ π

0

∫ 2π

0

v(k)2
y

Sk
e
−

Ek−Ef
kBT k̃2sinθdφdθdk̃ =

√
2π(kBT )3/2

3h̄my
√
mxmy +mxmz +mymz

e
Ef
kBT . (38)

, and for external field in ẑ and velocity in ẑ, the integral is

∫ ∞
0

∫ π

0

∫ 2π

0

v(k)2
z

Sk
e
−

Ek−Ef
kBT k̃2sinθdφdθdk̃ =

√
2π(kBT )3/2

3h̄mz
√
mxmy +mxmz +mymz

e
Ef
kBT . (39)

The integral is zero if the velocity component is perpendicular to the external field. The

mobility is then

µ3D
xx =

2eπ3/2h̄4ρv3
ph

3D2I(kBT )2(mxmy +mxmz +mymz)1/2mx

;

µ3D
yy =

2eπ3/2h̄4ρv3
ph

3D2I(kBT )2(mxmy +mxmz +mymz)1/2my

;

µ3D
zz =

2eπ3/2h̄4ρv3
ph

3D2I(kBT )2(mxmy +mxmz +mymz)1/2mz

, (40)

which are ∝ T−2, and the ratio of mobility between two principle axis: µii/µjj = mj/mi,

i, j ∈ [x, y, z].
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