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Abstract
We introduce a way of reasoning about prefer-
ences represented as pairwise comparative state-
ments, based on a very simple yet appealing prin-
ciple: cancelling out common values across state-
ments. We formalize and streamline this procedure
with argument schemes. As a result, any conclu-
sion drawn by means of this approach comes along
with a justification. It turns out that the statements
which can be inferred through this process form a
proper preference relation. More precisely, it corre-
sponds to a necessary preference relation under the
assumption of additive utilities. We show the infer-
ence task can be performed in polynomial time in
this setting, but that finding a minimal length expla-
nation is NP-complete.

1 Introduction
In his famous letter to his friend Joseph Priestley, Benjamin
Franklin suggested a procedure to decide upon difficult de-
cision cases: draw two columns, list pros and cons, and
delete (sets of) arguments from both sides when they are of
“equal weight”. It is remarkable that Franklin’s “Moral Al-
gebra” is sometimes seen as a pioneer technique to both ar-
gumentative approaches [Toulmin, 1958] which aims at for-
malizing, visualizing (and eventually criticizing) reasoning
steps; as well as techniques to elicitate and reason about
preferences based on trade-offs (even swaps, [Hammond et
al., 1998]). The bipolar nature of his algebra also proved
to be influential in KR in general [Dubois et al., 2008;
Bouyssou et al., 2009]. In this paper we build on the legacy of
this approach, by relying on its core principle of cancellation,
but without considering the weighting of different attributes
– that is, only similar values can be crossed. We consider
comparative preference statements whereby a user expresses
unambiguously holistic judgments over alternatives described
according to several points of view. From a set of such com-
parative statements, we wish to maintain the set of all valid
consequences in order to make new inferences (under the
form of further holistic comparative statements), and at the
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same time keep track of the reasoning steps involved. Thus,
our objective is to know, for any preference query, whether it
can be derived, but also how it can be derived.

We begin by introducing informally, through an exam-
ple, a way of reasoning about preferences under the form of
pairwise preference statements, then we propose a research
agenda concerning this reasoning engine, and we outline the
remainder the paper.

Example 1. Hotels are compared according to the points
of view of comfort, offer of a restaurant, commute time and
cost. We are given monotonicity conditions according to each
point of view (shared by all stakeholders), e.g. the larger
the comfort the better; it is better to have a restaurant; the
smaller the commute time the better; and the smaller the price
the better. We are also given the following preference infor-
mation:

• π1 : a hotel with features (4*, no, 15 min, 180 $) is
preferred to a hotel with features (2*, yes, 45 min, 50 $).

• π2 : a hotel with features (4*, no, 45 min, 50 $) is pre-
ferred to a hotel with features (4*, yes, 15 min, 100 $).

Monotonicity along each point of view allows for inferring
comparative statements outside of the knowledge base.

Example 2. (Ex. 1 continued) From π1, thanks
to the monotonicity w.r.t to cost, we can de-
duce that (4*, no, 15 min, 180 $) is preferred to
(2*, yes, 45 min, 80 $).

Reasoning ceteris paribus offers another venue to extend
our knowledge about valid preferences.

Example 3. (Ex. 2 continued) In π2, both hotels share
the same comfort rating 4∗, and we propose to inter-
pret this statement as: comfort being equal, we prefer
(no, 45 min, 50 $) to (yes, 15 min, 100 $). Taking value 2∗,
we obtain for instance that (2*, no, 45 min, 50 $) is preferred
to (2*, yes, 15 min, 100 $).

These two principles are too weak to deduce many entail-
ments from the preference information, and therefore will not
allow comparing many alternatives. We therefore propose a
way to combine several preference information statements.
The notion of ceteris paribus reasoning can be generalized



throughout statements by cancelling a similar value appear-
ing in the left hand side (LHS) of a statement and in the right
hand side (RHS) of another statement.

Example 4. (Ex. 3 continued) For instance, the cost value
50 $ appears both in the LHS of π2 and the RHS of π1. This
extended principle can be used to infer new statements, as il-
lustrated in the following table. The first three lines of the ta-
ble introduce the premises: the preference information state-
ments π1 and π2, as well as the ceteris paribus monontonicity
statement d� according to which, everything else being equal,
a hotel with a restaurant is at least as good as a hotel without
one. In each column representing a feature, we strike out in-
dividual values appearing simultaneously on the LHS and the
RHS—when a value is repeated, we are careful to strike out
as many values from the LHS as from the RHS. At the end, we
notice that there is only one value left in each column, that we
report on the last line of the table—the conclusion—forming
what we consider a valid preference statement inferred from
the premises.

As: 4* no 15 min 180 $ π1 2* yes 45 min 50 $
no 45 min 50 $ π2 yes 15 min 100 $
yes d� no

So, 4* no 45 min 180 $ 2* yes 45 min 100 $

We are now in a position to set out several research ques-
tions concerning the procedure we just informally described,
that we shall address in this paper:

• Modeling (see Section 2). To what extent this procedure
can be formalized into a reasoning model?

• Templating (see Section 2). Can the template for present-
ing the arguments supporting a claim be streamlined?
How can these bundles be efficiently validated?

• Properties (see Section 3). The set of statements that can
be inferred from a given preference information form a
binary relation between alternatives. What are the prop-
erties of this relation? Importantly, is it a proper prefer-
ence relation?

• Inference (see Section 3). Is there an efficient way to
assess if a given pairwise preference statement can be
inferred from a given preference information?

• Explanations (see Section 4). Given a pairwise prefer-
ence statement, is it possible to find a cognitively simple
certificate supporting or informing its validity?

• Critique (see Section 5). This reasoning engine is built
upon several fundamental assumptions, that need to be
discussed.

2 The Reasoning Model
We address in this section the first research question, namely:
can the intuition presented in the introduction be formalized?

2.1 Features and Alternatives
We consider a set N of points of view, each one i ∈ N ex-
pressed by a feature taken in the set Xi. Alternatives are

described as tuples of features, and belong to the Cartesian
product X =

∏
i∈N Xi.

For an alternative x ∈ X and a point of view i ∈ N , we de-
note by xi the evaluation of x according to i. For any nontriv-
ial subset of points of view A ⊂ N and any two alternatives
a, b ∈ X, we denote a−AbA the (fictitious) alternative which
is equivalent to a according to each point of view not in A,
and equivalent to b according to the points of view in A.

2.2 Preference Information
We are interested in providing a principled way of reason-
ing that allows us to infer preference and answer preference
queries of the type ‘is alternative a preferred to alternative
b?’. The reasoning shall be based on preference information,
coming in two distinct flavors:
• explicit pairwise statements P ⊂ X2, where (x, y) ∈ P

means that x is at least as good as y for the decision
maker;
• implicit dominance—we assume that each feature set

corresponding to a point of view i ∈ N is totally or-
dered by a relation %i⊂ X2

i , and we denote D :=∏
i∈N %i, the Pareto dominance relation between alter-

natives stemming from the ordering of each feature set,
i.e. ∀x, y ∈ X, xDy ⇐⇒ ∀i ∈ N, xi %i yi.

2.3 Cancellation Axioms
The inductive principle based on ceteris paribus sketched in
Ex. 3 can be formalized thanks to the concept of cancellation.
The cancellative axioms are well-known in the preference lit-
erature [Krantz et al., 1971; Wakker, 1989], and we briefly
recall their definition.
Definition 1 (First-order cancellation). For all A ⊂ N ,
with A 6= ∅ and all x, y, z, z′ ∈ X,x−AzA % y−AzA ⇒
x−Az

′
A % y−Az

′
A.

In Ex. 3, according to the first-order cancella-
tion, π2 implies that (2*, no, 45 min, 50 $) is preferred to
(2*, yes, 15 min, 100 $).

We also have seen in the introduction cancellation across
preference statements. It can be formalized in the following
definition.
Definition 2 (High-order cancellation). Consider m + 1 al-
ternatives x(0), . . . , x(m) in X. Let y(0), . . . , y(m) be m + 1
alternatives in X such that, for every point of view i ∈
N , (y

(0)
i , . . . , y

(m)
i ) is a permutation of (x

(0)
i , . . . , x

(m)
i ).

Then,[x(k) % y(k),∀k ∈ {1, . . . ,m}]⇒ y(0) % x(0).
In order to conveniently represent concatenations of

premises, maybe with repetition, modulo permutation, we
represent the tuples of alternatives or values as multisets.
The multiset containing the elements z1, repeated m1 times,
. . . , zk repeatedmk times has support {z1, . . . , zk}, cardinal-
ity
∑
mj and is denoted 〈z1 : m1, ..., zk : mk〉.

2.4 The Syntactic Cancellative Argument Scheme
We formalize the way of reasoning about preference state-
ments illustrated in the introduction through an argument
scheme [Walton, 1996], an operator tying premises satisfy-
ing some conditions, to a conclusion. This scheme is closely



related to the high-order cancellation axiom described previ-
ously. We slightly alter it in order to allow for a repetition
of the conclusion (we defer an example and the discussion of
the importance of this alteration to Section 3.5).

Definition 3 (Syntactic cancellative argument scheme).
Given two positive integers m ≥ n, and a pair of alternatives
(x, y) ∈ X × X, we say the multiset of pairs of alternatives
〈(a(1), b(1)) : r1, . . . , (a

(k), b(k)) : rk〉 ∈ (X × X)N of cardi-
nality m =

∑k
i=1 ri is a syntactic cancellative explanation of

lengthm with n repetitions of the pair (x, y) if, for each point
of view i ∈ N , the multisets 〈a(1)

i : r1, . . . , a
(k)
i : rk, yi : n〉

and 〈b(1)
i : r1, . . . , b

(k)
i : rk, xi : n〉 are equal.

This definition is illustrated in Ex. 4.
Validation. Checking if a given tuple of pairs of alternatives
is an argument of a given pair of alternatives with a given
number of repetitions can be performed in O(|N | · k ln k),
where k is the cardinality of the support set of the explanation.

2.5 The Elliptic Cancellative Argument Scheme
In this section, we propose to streamline the syntactic can-
cellative argument scheme by omitting the dominance state-
ments. As the resulting scheme is based on an omission (an
ellipsis), we dub it the elliptic cancellative scheme.

Definition 4 (Elliptic cancellative explanation scheme).
Given a dominance relationD, we say the multiset of pairs of
alternatives 〈(a(1), b(1)) : r1, . . . , (a

(k), b(k)) : rk〉 ∈ (X ×
X)N of cardinality m =

∑k
i=1 ri is a syntactic cancellative

explanation of length m with n repetitions of the pair (x, y)
if there exists a multiset of cardinality m′ of dominance state-
ments 〈(c(1), d(1)) : r′1, . . . , (c

(k′), d(k′)) : r′k′〉 ∈ DN such
that 〈(a(1), b(1)) : r1, . . . , (a

(k), b(k)) : rk〉 ∪ 〈(c(1), d(1)) :

r′1, . . . , (c
(k′), d(k′)) : r′k′〉 is a syntactic cancellative expla-

nation of length m+m′ with n repetitions of the pair (x, y).

Example 5. (Ex. 4 continued) The syntactic cancellative ex-
planation of Ex. 4 can be simplified by removing the last
statement d, yielding:

As: 4* no 15 min 180 $ π1 2* yes 45 min 50 $
no 45 min 50 $ π2 yes 15 min 100 $

So, 4* no 45 min 180 $ 2* yes 45 min 100 $

Validation. It is a little more subtle to check the validity
of an elliptic cancellative argument scheme than of a syntac-
tic one. Indeed, when considering the point of view i ∈ N

and comparing the two multisets Li := 〈a(1)
i : r1, . . . , a

(k)
i :

rk, yi : n〉 and Ri := 〈b(1)
i : r1, . . . , b

(k)
i : rk, xi : n〉

there are missing elements corresponding to the implicit dom-
inance relations that are not mentioned. Adding these miss-
ing dominance relations would have added “good” elements
in Li and “bad” elements in Ri - yielding two lexicographi-
cally equivalent vectors. As this is not the case, Ri contains
better elements than Li in the lexicographic sense. In Ex. 5,
we obtain L� = 〈yes : 1, no : 2〉 and R� = 〈yes : 2, no : 1〉,
so that the previous dominance is verified (as R� contains

more “yes” values than L�). Hence the validation of an ellip-
tic cancellative argument scheme simply consists in ordering
each Li and Ri, and checking that, for every j, the jth best
elements in Ri is not lesser than the jth best elements in Li
w.r.t. to the order relation %i. Thus, the validation can also
be performed in O(|N | · k ln k).

3 The Inferred Preference Structure
In this section, we are interested in the description and the
computation of the binary relation over alternatives poten-
tially obtained by applying the reasoning engine to the facts
of the preference information.
Definition 5. Given preference information P and a domi-
nance relationD, we denoteNP,D the set of pairs of alterna-
tives for which there is a syntactic cancellative explanation of
any length with pairs of alternatives in P ∪ D.

3.1 Inference as Closure
We note thatN• is a closure operator: if new preference state-
ments NP,D can be inferred from P and D, adding them to
the knowledge base would not yield additional inference.

Lemma 1.
NP,D = NNP,D,D

Sketch of proof. The inclusionNP,D ⊂ NNP,D,D is a conse-
quence of the fact that 〈s : 1〉 is an explanation of s for any
statement in P . As for NP,D ⊃ NNP,D,D, let (X,Y ) ∈
NNP,D,D. There is an syntactic explanation of length m

with n repetitions of the pair (X,Y ), say 〈(x(1), y(1)) :
r1, . . . , (x

(K), y(K)) : rK〉 ∈ (X × X)N where each pair
(x(k), y(k)) is in NP,D, and is therefore supported by an ex-
planation Ek of length mk with nk repetitions, with state-
ments in P ∪ D. We claim the tuple obtained by concate-
nating each explanation Ek repeated

∏
k′∈[m],k′ 6=k nk′ is an

explanation with
∏
k∈[m] nk repetitions of the pair (X,Y ),

with statements in P ∪ D.

3.2 A Detour via Model-Based Inference
In order to state the main result of this paper, we need to recall
the basic principles of model-based inference. The goal of
inference is extend some (limited) preference information to
a richer preference relation R, with ‘good’ properties, such
as R being a reflexive and, transitive binary relation over X,
and maybe complete.

When preference information is given as P ∪ D, where
P is the explicit part, given in so-called holistic form, i.e.
P ⊂ X2 is a set of reference pairwise statements, and D is
the dominance relation stemming from the ordering of the
features, the relationR is said to be consistent when P∪D ⊂
R.

In order to describeR, which is potentially a very compli-
cated combinatorial object, in a simple language, it is custom-
ary to rely on some kind of parameterization of the target set.
For instance, numeric models [Jacquet-Lagrèze and Siskos,
1982] in the field of multiple criteria decision making, or
graphical languages [Wilson, 2009; Amor et al., 2016] from
KR. A popular paradigm consists in considering value-based



preferences, where the target preference relation is parame-
terized by a numeric scoring function u : X → R, so that
xRuy ⇐⇒ u(x) ≥ u(y). (this assumption is made with-
out loss of generality as soon asR is assumed to be transitive
and complete). The target set is still very large and complex,
and a common additional assumption is to restrict the scor-
ing function to be additive w.r.t. the features, i.e. there is a
decomposition such that ∀x ∈ X, u(x) =

∑
i∈N ωi(xi).

Definition 6 (preferences based on additive value). The pa-
rameter set of the additive value model is ΩΣ :=

∏
i∈N RXi ,

and for a given value ω := 〈ωi〉i∈N of the parameter, the
corresponding preference relationR∑

ω ⊂ X2 is defined by:

∀x, y ∈ X, xR∑
ωy ⇐⇒

∑
i∈N

ωi(xi) ≥
∑
i∈N

ωi(yi).

For such an additive value, that we denote R∑
ω , the con-

dition D ⊂ R∑
ω translates to the following monotonicity

conditions: for all features i, the function ωi : (Xi,%i) →
(R,≥) is nondecreasing.

The most prevalent approach in model-based inference
consists in determining the most adequate value of the param-
eter in the sense of some loss function L: ω? = argminΩΣ

L,
and returning the corresponding preference relation R∑

ω? .
Meanwhile, the robust approach consists in considering the
intersection of all the consistent preference relations, assum-
ing it is not empty:

R?ΩΣ
:=

⋂
ω∈ΩΣ:(P∪D)⊂R∑

ω

R∑
ω.

The robust approach yields the version space [Mitchell,
1982] of the model. Equivalently, it can be understood as
assuming that the preference information P is incomplete (as
there might be several value of the parameter that are consis-
tent with it), and drawing skeptical conclusions with respect
to all the possible completions.

3.3 Cancellative-Powered Deductions are Robust
Inferences under Additive Values

We are now able to state an important result concerning the
preference structure NP,D.

Theorem 1.
NP,D = R?ΩΣ

The inferred preference structure is exactly the necessary
preference relation under the assumption of an additive value
model. This result has an important corollary concerning the
inferred relation:

Corollary 1 (Properties of the inferred structure). NP,D is a
transitive and reflexive binary relation.

The proof of Th. 1 relies on the fact that, under the as-
sumption of an additive value model, a preference statement
can be represented by a linear form operating over the vector
space ΩΣ.

Definition 7. Given some preference information P ⊂ X2,
alternatives x, y ∈ X, and a point of view i ∈ N , for any
value xi ∈ Xi, let εi,xi

: RXi → R, ωi 7→ ωi(xi), and

φ(x,y) =
∑
i∈N εi,xi − εi,yi a linear form over RX. Also, let

X̂i := {t ∈ Xi : ∃(a, b) ∈ P, t = ai or t = bi}∪{xi}∪{yi}
and X̂ :=

∏
i∈N X̂i.

Lemma 2.

(x, y) ∈ R∑
ω ⇐⇒ φ(x,y)(ω) ≥ 0

Proof of NP,D ⊂ R?ΩΣ
.

Let (x, y) ∈ NP,D. By definition, there is a syntactic
cancellative explanation of length m with n repetitions
of the pair (x, y), say 〈(a(1), b(1)), . . . , (a(m), b(m))〉 ∈
(P ∪ D)m. Therefore, for each point of view
i ∈ N , (yi, . . . , yi, a

(1)
i , . . . , a

(m)
i ) is a permutation of

(xi, . . . , xi, b
(1)
i , . . . , b

(m)
i ). In particular, for any param-

eter ω ∈ ΩΣ, nωi(yi) + ωi(a
(1)
i ) + · · · + ωi(a

(1)
i ) =

nωi(xi) + ωi(b
(1)
i ) + · · · + ωi(b

(1)
i ), so nφ(x,y)(ω) =∑m

j=1 φ(a(j),b(j))(ω). Now, if ω is consistent, (P ∪D) ⊂ Rω
and φ(a(j),b(j))(ω) ≥ 0. Thus nφ(x,y)(ω) is nonegative as the
sum of m nonnegative terms, and x is necessarily preferred
to y under the assumption of an additive value model.

Proof of NP,D ⊃ R?ΩΣ
.

Let (x, y) ∈ R?ΩΣ
. For any parameter ω ∈ ΩΣ such that

∀s ∈ (P ∪ D), φs(ω) ≥ 0, φ(x,y)(ω) ≥ 0. This prop-
erty concerns linear forms in RX, which is a vector space
of infinite dimension, but also holds in RX̂.Indeed, X̂ ⊂ X,
is of finite dimension, and any additive parameter function
ω̂ : X̂ → R such that (P ∪ D) ∩ X̂2 ⊂ Rω̂ can be extended
into an additive function ω : X → R describing a consistent
relation R∑

ω . By Farkas’ lemma, the linear form φ(x,y) is
a conical combination of the 〈φs〉s∈(P∪D)∩X̂2 . As the coef-
ficients of all these linear forms are integers—they are, in-
deed, in {−1, 0, 1}—the coefficients of the conical combina-
tions can be chosen rational, and by multiplying by the lesser
common multiple of their denominators, yield an identity:
n φ(x,y) =

∑
s∈(P∪D)∩X̂2 ms φs, with a positive integer n

and nonnegative integer coefficients 〈ms〉s∈(P∪D)∩X̂2 . We
claim the tuple 〈s : ms〉s∈(P∪D)∩X̂2 is a syntactic cancella-
tive explanation of length n of the pair (x, y), with statements
in P ∪ D, thus (x, y) ∈ NP∪D.

3.4 Efficient Inference Procedures
The necessary relation assuming an additive value model
R?ΩΣ

is defined and studied by [Greco et al., 2008]. In partic-
ular, Greco et al. propose a linear program permitting to solve
the decision problem corresponding to our research question
concerning inference: given a pair of alternative, decide if it
is in the inferred preference relation. This linear program is
expressed in the primal space RX̂ of the values ωi(xi) given
to each relevant value of the attributes. These values are of
little interest concerning our cancellative argument schemes,
so we propose to formulate the dual problem.

Corollary 2 (Polytime inference via conical decomposition).
For all pairs of alternatives (x, y) ∈ X2, (x, y) ∈ NP,D if,



and only if, the following linear program is feasible:
find nonnegative real numbers 〈λs〉s∈(P∪D)∩X̂2 such that
φ(x,y) =

∑
s∈(P∪D)∩X̂2 λsφs.

Would the decision variables λ be integers, they could di-
rectly be interpreted as a multiset 〈s : λs〉 serving as a syntac-
tic cancellative explanation for (x, y). As the elliptic scheme
tells us that the coefficients corresponding to the dominance
statements are eventually irrelevant, this formulation ought to
be further streamlined. Unfortunately, the conical span of the
dominance statements is not easy to characterize in the dual
base (εi,xi). This obstacle can be lifted by representing the
preference statements in an alternative decomposition, that
focuses on differences of values, rather than values.
Definition 8. Given a finite binary relation A ⊂ X2, for
all points of view i ∈ N we denote {x̂i,1 - x̂i,2 - · · · -
x̂i,|X̂i|} = X̂i . For any integer k, 1 ≤ k < |X̂i|, let
δX̂,i,k := εi,x̂i,k+1

− εi,x̂i,k
.

Lemma 3. For any statement (x, y) ∈ A and any point of
view i ∈ N ,

εi,xi − εi,yi =


0 if xi ∼i yi∑
k:xi≤x̂i,k<yi

(−1) · δX̂,i,k, if xi ≺i yi∑
k:yi≤x̂i,k<xi

(+1) · δX̂,i,k, if xi �i yi
This lemma has two important consequences:

i) Corollary 2 can be expressed in terms of 〈δX̂2〉 rather
than 〈ε〉; and

ii) dominance statements in A are exactly the conical span
of the 〈δA〉.

This leads to a leaner reformulation of the inference problem.
Definition 9. For all x, y ∈ X, i ∈ N and k ∈ N : 1 ≤ k <

|X̂i|, let

ϕ
(i,k)
(x,y) :=


−1, if xi -i x̂i,k ≺i yi;
0, if xi ∼i yi; or
+1, if yi -i x̂i,k ≺i xi.

Theorem 2 (Inference via LP). For all pairs of alternatives
(x, y) ∈ X2, (x, y) ∈ NP,D if, and only if, the following lin-
ear program is feasible:
find nonnegative real numbers 〈λs〉s∈P such that the inequal-
ity ϕ(i,k)

(x,y) ≥
∑
s∈P λsϕ

(i,k)
s holds for every indices i ∈ N

and 1 ≤ k < |X̂i|.

3.5 Repetition of the Conclusion
The presence of repetition of the conclusion makes the expla-
nation scheme cumbersome. One may wonder whether it is
possible to get rid of the repetition of the conclusion.
Theorem 3. It is not possible to cover all possible inferences
obtained by the robust additive model by restricting the can-
cellation explanation schema with n = 1 repetition.

Proof. We provide a counter-example with |N | = 6 features,
X = {0, 1}6 and 1 %i 0 (statement di) for all i ∈ N . The
preference information is:

π1 :
(

(0, 0, 1, ·, ·, ·), (1, 1, 0, ·, ·, ·)
)

π2 :
(

(0, ·, ·, 0, 1, ·), (1, ·, ·, 1, 0, ·)
)

π3 :
(

(·, 0, ·, ·, 1, 0), (·, 1, ·, ·, 0, 1)
)

π4 :
(

(·, ·, 1, 0, ·, 0), (·, ·, 0, 1, ·, 1)
)

We can infer from the preference information that
(0, 0, 1, 0, 1, 0) is preferred to (1, 1, 0, 1, 0, 1) (statement πC).
One can readily see that π1 + π2 + π3 + π4 = 2 πC.

Assuming by contradiction that there exist Farkas coeffi-
cients with coefficient 1 associated to πC: πC =

∑6
i=1 λiπi+∑6

i=1 µi di, where λi, µi ∈ N leads to an infeasible linear
system.

One could also want to trim down the potential complex-
ity of the explanations by limiting the number of premises.
Unfortunately, this might lead to loss of transitivity for the
inferred relation.

4 Explanations for Valid Preference
Statements

It seems reasonable to believe that an explanation is easier
to process by a cognitive agent—‘simpler’—when it is short.
In the case of cancellative explanations, the actual cognitive
burden mainly comes from three factors: the number of points
of view |N |, that we consider as mostly exogenous; the length
m of the premises; and the number n of repetitions of the
conclusion. Without any experimental evidence, we consider
the problem of finding an explanation for a given pair (x, y) ∈
NP which is as simple as possible as a bi-objective integer
linear minimization problem:

min
n,m∈N?

(n,m) such that


n ϕ(x,y) ≥

∑
π∈P

`πϕπ; and

m ≥
∑
π∈P

`π.

(1)
Integer linear programs offer a powerful language permit-

ting to describe difficult combinatorial problems. These for-
mulations can be given wholesale to dedicated solvers, that
eschews the need for developing a dedicated piece of software
and benefits from state-of-the-art refinements in the solving
of such problems. Nevertheless, it would be unwise to dele-
gate the search for a short explanation of a given pair of alter-
natives to such a solver, if this search were not, intrinsically,
a difficult combinatorial problem. The following theorem ad-
dresses this issue.
Theorem 4. The problem of deciding, for a given input
(x, y, n,m) ∈ X × X × N? × N? if there is an elliptic can-
cellative explanation of the pair (x, y) of length at most m
with at most n repetitions is NP-complete. This remains true
even if the number n of repetitions is set to one.

Proof. Membership to NP is ensured, as checking the validity
of an elliptic scheme is polyomial in the number of distinct
premises, which is upper bounded by the cardinality of P .



Hardness can be established e.g. by reduction from VER-
TEX COVER [Karp, 1972]. Formally, a vertex cover V ′ of
an undirected graph G = (V,E) is a subset of V such that
uv ∈ E ⇒ u ∈ V ′ ∨ v ∈ V ′, that is to say it is a set of ver-
tices V ′ where every edge has at least one endpoint in the
vertex cover V ′. The VERTEX COVER problem consists in,
given an instance (G, k) where G = (V,E) is a graph and k
a positive integer, to decide whether G has a vertex cover of
size at most k, or not. Given an instance of VERTEX COVER,
we map it to a gadget instance of our problem:
• the set of points of view is N = V ∪ E;
• an alternative is a subset of N ;
• each point of view is evaluated on a binary scale, with

presence preferred to absence;
• the preference information contains all statements of the

form ({(u, v)}, {u, v})—any edge is preferred to the set
of its endpoints—for all edges (u, v) ∈ E.

Any elliptic cancellative explanation without repetition of
the pair (E, V )—the pros are the edges, the cons are the
vertices—of length k is a subset of E that forms a vertex
cover of size k of of the graph G, and reciprocally.

5 Discussion and Perspectives
In the current quest for “explainable A.I.”, the additive value
(i.e. linear) model might be seen as occupying the very end
of the spectrum –an obviously interpretable model [Ribeiro
et al., 2016]. Even though recent advances have been made
towards providing “simpler” models, e.g. [Ustun and Rudin,
2016], most of these approaches ignore the perspective of the
decision maker [Miller, 2019], and the need to provide her
with a way of challenging the decision [Kroll et al., 2017].

Several works have explored the interplay between argu-
mentation and decision aiding. In [Amgoud and Prade, 2009],
argumentation is used as a mean make a decision and justify
it, while in [Zhong et al., 2019], it is shown that the outcomes
of a simple decision model are similar to the extension of the
corresponding argumentation framework.

Here, the preference information is considered exogenous.
It might have been obtained through dialog, by considering
domain knowledge—reference cases, jurisprudence, or in-
ferred by some means—learning from similar situations, or
previous interactions with the user.

5.1 Contributions
We introduced the notion of cancellative explanations, based
on the accrual of premises to obtain a conclusion. We studied
this explanative framework in the light of the principles stated
in introduction. This contrasts with approaches in decision
theory [Fishburn, 1970; Gonzales, 2000], where cancellation
is seen as a property of the preference relation, not a mean to
infer new preference statements and justify them. Our main
contributions are as follows:
Completeness. Every preference statement that can be
skeptically inferred from the preference information and the
way of reasoning corresponding to the additive value model
is supported by a cancellative explanation.

Soundness. Every preference statement that is supported
by a cancellative explanation can be skeptically inferred from
the preference information and the way of reasoning corre-
sponding to the additive value model;
Simplicity. We provided several ways of presenting can-
cellative explanations, in the form of tables, diagrams, or ar-
gument schemes, and proposed to ground them on a syntactic
check, or alternatively to keep implicit the information tied
to dominance, which can easily be restored by the recipient,
in the spirit of enthymemes. We provided formalizations that
lend themselves to an efficient implementation. We proposed
an intuitive partial ordering of explanations according to their
alleged complexity, and formulated the problem of finding
explanations as simple as possible.
Computation. Remarkably, while adjudicating necessary
preference is a polynomial problem, explaining it concisely
is NP-complete.

5.2 Perspectives
Providing an argument scheme along with the result of a com-
parative statement opens the possibility to discuss or chal-
lenge this result. This is made possible through what is called
critical questions [Walton, 1996], a tool associated with ar-
gument schemes representing attacks or criticisms that, if not
answered adequately, falsify the argument fitting the scheme.

In our setting, the criticism may point out (implicitly or
explicitly) elements perceived as missing or wrong in the
reasoning steps. Indeed, for instance, the decision maker
(DM) may challenge the fact that a preference between two
alternatives is not the right one. The consequence is that
either it is possible to derive a new conclusion with this
new information, or the DM’s statements express conflict-
ing preferences. Thus, the challenge of finding a principled
way to deal with inconsistency in an accountable manner,
needs to be addressed. Several promising approaches have
been proposed: considering maximally consistent subsets of
statements [Mousseau et al., 2003]; relaxing the aggrega-
tion model until a model sufficiently expressive to accommo-
date for the preference information is found [Ouerdane, 2011;
Greco et al., 2014]; or using a numerical estimation of incon-
sistency such as a belief function [Destercke, 2018].

Another situation is that the DM’s reasoning is incompat-
ible with the principles and properties underlying the pref-
erence model. For instance, expressing a preference depen-
dency may defeat the fundamental feature (ceteris paribus)
of an additive model [Fisher, 1892]. In this situation, re-
laxing the preference model could be a solution [Ouerdane,
2011]. Many models account for interactions between the in-
fluence of the points of view, such as Generalized additive
models (GAI) [Fishburn, 1967]. An underlying question that
has been less investigated (for notable exceptions, see e.g.
[Labreuche, 2011] and [Cailloux and Endriss, 2014]), and re-
mains difficult [Procaccia, 2019], is the question of the ac-
countability of recommendations based on an induced model.
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