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Koszul calculus of preprojective algebras

Roland Berger and Rachel Taillefer

Abstract

We show that the Koszul calculus of a preprojective algebra, whose graph is distinct from A1 and
A2, vanishes in any (co)homological degree p > 2. Moreover, its (higher) cohomological calculus
is isomorphic as a bimodule to its (higher) homological calculus, by exchanging degrees p and
2− p, and we prove a generalised version of the 2-Calabi-Yau property. For the ADE Dynkin
graphs, the preprojective algebras are not Koszul and they are not Calabi-Yau in the sense of
Ginzburg’s definition, but they satisfy our generalised Calabi-Yau property and we say that they
are Koszul complex Calabi-Yau (Kc-Calabi-Yau) of dimension 2. For Kc-Calabi-Yau (quadratic)
algebras of any dimension, defined in terms of derived categories, we prove a Poincaré Van den
Bergh duality theorem. We compute explicitly the Koszul calculus of preprojective algebras for
the ADE Dynkin graphs.

1. Introduction

Preprojective algebras are quiver algebras with quadratic relations, that play an important
role in the representation theory of quiver algebras [27, 17, 1, 10], with various applications [15,
16] and many developments [14, 26, 8, 29]. In [29], the reader will find an introduction to
the various aspects of the preprojective algebras in representation theory, with an extended
bibliography. In our paper, we are interested in some homological properties linked to
Hochschild cohomology.
In the last two decades, the Hochschild cohomology of preprojective algebras, as well as some

extra algebraic structures, have been computed in several steps, as follows.
1) Erdmann and Snashall [18, 19] determined the Hochschild cohomology and its cup-

product in type A.
2) Crawley-Boevey, Etingof and Ginzburg [14] determined the Hochschild cohomology for

all preprojective algebras of non-Dynkin type (which are Koszul in this case [33, 30, 10]).
3) In type DE and characteristic zero, Etingof and Eu [21] determined the Hochschild

cohomology and Eu [22] the cup product. The cyclic homology was computed in type ADE
in [21].
4) Assembling and completing the previous results in characteristic zero, Eu gave an explicit

description of the Tamarkin-Tsygan calculus [39] of the preprojective algebras in type ADE,
that is, the homology and the cohomology, the cup product, the contraction map and the Lie
derivative, the Connes differential and the Gerstenhaber bracket [23].
5) Eu and Schedler extended the ADE results to the case where the base ring is Z, and

obtained the corresponding ADE results in any characteristic [24].
In [7], a Koszul calculus was associated with any quadratic algebra over a field, in order to

produce new homological invariants for non-Koszul quadratic algebras. We begin this paper
by extending the Koszul calculus to quadratic quiver algebras. We shall compute the Koszul
calculus of the preprojective algebras whose graphs are Dynkin of type ADE (the preprojective
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algebras are then finite dimensional). Except for types A1 and A2, these quadratic quiver
algebras are not Koszul [33, 30, 10], so that the Koszul calculus and the Hochschild calculus
provide different information.
Before presenting our computations, we state and develop a Poincaré Van den Bergh duality

theorem [41] for the Koszul homology/cohomology of any preprojective algebra whose graph
is different from A1 and A2. This theorem is formulated as follows and constitutes the first
main result of the present paper. The duality is precisely part (ii) in this theorem.

Theorem 1.1. Let A be the preprojective algebra of a (non-labelled) connected graph ∆
distinct from A1 and A2, over a field F. Let M be an A-bimodule.
(i) The Koszul bimodule complex K(A) of A has length 2. In particular, HKp(A,M) =

HKp(A,M) = 0 for any p > 2.
(ii) The HK•(A)-bimodules HK•(A,M) and HK2−•(A,M) are isomorphic.
(iii) The HK•

hi(A)-bimodules HK•
hi(A,M) and HKhi

2−•(A,M) are isomorphic.

In this statement, following [7], HKp(A,M) and HKp(A,M) denote the Koszul homology
and cohomology spaces with coefficients in M , while HKhi

p (A,M) and HKp
hi(A,M) denote the

higher Koszul homology and cohomology spaces. When M = A, these notations are simplified
into HKp(A), HK

p(A), HKhi
p (A) and HKp

hi(A).
In the general setting [7], the Koszul calculus of a quadratic algebra A consists of the graded

associative algebra HK•(A) endowed with the Koszul cup product and, for all A-bimodules
M , of the graded HK•(A)-bimodules HK•(A,M) and HK•(A,M), with actions respectively
defined by the Koszul cup and cap products. The higher Koszul calculus of A is given by the
analogous data, adding the subscript and superscript hi. Sometimes (as will be the case with
our computations in ADE types), these calculi are restricted, meaning that the data is limited
to M = A, so that the restricted Koszul calculus consists of the graded associative algebra
HK•(A) and of the graded HK•(A)-bimodule HK•(A) – similarly for the higher version.
Using Theorem 1.1 for ∆ Dynkin of type ADE, we shall deduce the (higher) homological

restricted Koszul calculus from the computation of the (higher) cohomological restricted Koszul
calculus.
Part (ii) in Theorem 1.1 comes from an explicit isomorphism from the complex C1 of Koszul

cochains with coefficients in M , whose pth cohomology is HKp(A,M), to the complex C2

of Koszul chains with coefficients in M , whose pth homology is HK2−p(A,M), described as
follows.

Proposition 1.2. Let A be the preprojective algebra of a connected graph ∆ distinct
from A1 and A2. Let M be an A-bimodule. The Koszul cup and cap products are denoted by
⌣
K

and ⌢
K
. Define ω0 =

∑
i ei ⊗ σi, where the sum runs over the vertices i of ∆ and, for each

vertex i, ei is the idempotent and σi is the quadratic relation in A associated with i.
For each Koszul p-cochain f with coefficients inM , we define the Koszul (2 − p)-chain θM (f)

with coefficients in M by

θM (f) = ω0 ⌢
K
f.

Then θM : C1 → C2 is an isomorphism of complexes. Moreover, the equalities

θM⊗AN (f ⌣
K
g) = θM (f)⌢

K
g = f ⌢

K
θN (g)

hold for any Koszul cochains f and g with coefficients in bimodules M and N respectively.
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The proof of Proposition 1.2 relies on some manipulations of the defining formula of θM
with fundamental formulas of Koszul calculus [7], using actions involving ⌣

K
and ⌢

K
. The

fundamental formulas of Koszul calculus express the differential bK of C1 and the differential
bK of C2 respectively as a cup bracket and a cap bracket, namely

bK = −[eA,−]⌣
K

, bK = −[eA,−]⌢
K

,

where eA : V → A is a fundamental Koszul 1-cocycle defined on the arrow space V by eA(x) = x
for all x ∈ V .
In order to extract a generalised version of the 2-Calabi-Yau property from our Poincaré

Van den Bergh duality (Theorem 1.1) for quadratic algebras, we apply this theorem to the left
Ae-moduleM = Ae := A⊗Aop viewed as an A-bimodule. We show that the complex of Koszul
chains with coefficients in the left Ae-module Ae is naturally isomorphic, as a right Ae-module,
to the Koszul bimodule complex K(A). Using the fact that the homology of K(A) is isomorphic
to A in degree 0, and to 0 in degree 1, we obtain a generalisation of the 2-Calabi-Yau property,
formulated as follows.

Theorem 1.3. Let A be the preprojective algebra of a connected graph ∆ distinct from
A1 and A2, over a field F. Let us denote by K(A) the Koszul bimodule complex of A. Then
the A-bimodule HKp(A,Ae) is isomorphic to the A-bimodule H2−p(K(A)) for 0 6 p 6 2. In
particular, we have the following.
(i) The A-bimodule HK2(A,Ae) is isomorphic to the A-bimodule A.
(ii) HK1(A,Ae) = 0.
(iii) The A-bimodule HK0(A,Ae) is isomorphic to the A-bimodule H2(K(A)), which is always

non-zero when ∆ is Dynkin of type ADE.

We then say that the preprojective algebra A is a Koszul complex Calabi-Yau algebra of
dimension 2. We generalise this definition to any quadratic algebra and any dimension n in
Definition 1.4 below, better formulated in terms of derived categories. Since there is an F-linear
isomorphism

H(θM ) = ω0 ⌢
K
− : HK•(A,M)→ HK2−•(A,M),

we say that the class ω0 ∈ HK2(A) is the fundamental class of the Koszul complex Calabi-
Yau algebra A, by analogy with Poincaré’s duality in singular homology/cohomology [31].
In Definition 1.7, we give a stronger version of Definition 1.4 in order to obtain a Poincaré-
like duality, that is, a duality isomorphism expressed as a cap action by a suitably defined
fundamental class.
Let us remark that the A-bimodule structures in Theorem 1.3 are compatible with the

Koszul cup and cap actions of HK•(A) on HK•(A,Ae) and H(K(A)). These actions can be
viewed as graded actions of left HK•(A)e-modules, while the A-bimodules can be viewed as
compatible right Ae-modules. So the isomorphism HK•(A,Ae) ∼= H2−•(K(A)) in Theorem
1.3 is an isomorphism of graded HK•(A)e-Ae-bimodules. This enriched isomorphism is the
expression of the stronger version of the Koszul complex Calabi-Yau property, as we shall see
in Definition 1.7.
Note that if ∆ is not Dynkin ADE, then A is Koszul, so Theorem 1.3 enables us to recover

the well-known result that A is 2-Calabi-Yau in the sense of Ginzburg [14, 9]. However, if ∆
is Dynkin ADE, then A is not homologically smooth since its minimal projective resolution
has infinite length, so that Ginzburg’s definition of Calabi-Yau algebras cannot be applied in
this case [28]. Moreover, the restricted Hochschild calculus is drastically different from the
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restricted Koszul calculus, because by [20] there is a cohomological Hochschild periodicity

HHp+6(A) ∼= HHp(A), p > 0

and, consequently, there are non-zero spaces HHp(A) for infinitely many values of p. Even
taking into account this 6-periodicity, the list of cohomological Koszul invariants consists only
of HK0(A), HK1(A) and HK2(A) and is therefore shorter than the list of Hochschild invariants.
In [24], Eu and Schedler define periodic Calabi-Yau Frobenius algebras, for finite dimensional

algebras only. Their main example is given by the preprojective algebras of Dynkin ADE
graphs [24, Example 2.3.10]. Then the above cohomological Hochschild periodicity is a part
of remarkable isomorphims in Hochschild calculus for any periodic Calabi-Yau Frobenius
algebra [24, Theorem 2.3.27 and Theorem 2.3.47].
From Theorem 1.3, we are led to introduce a general definition.

Definition 1.4. Let Q = (Q0,Q1) be a finite quiver, and let F be a field. Let A be an
F-algebra defined on the path algebra FQ of Q by homogeneous quadratic relations. Define the
ring k = FQ0, so that A is regarded as a quadratic k-algebra. We say that A is Koszul complex
Calabi-Yau (Kc-Calabi-Yau) of dimension n, for an integer n > 0, if
(i) the bimodule Koszul complex K(A) of A has length n, and
(ii) RHomAe(K(A), Ae) ∼= K(A)[−n] in the bounded derived category of A-bimodules.

In our context (that of quadratic algebras), Definition 1.4 is a definition of a new Calabi-Yau
property, valid whether A is finite dimensional or not. In this definition, we do not impose that
K(A) be a resolution of A, that is, A is not necessarily Koszul, meaning that the bimodules
HKp(A,Ae) for 0 6 p 6 n− 2 may be non-zero. Under the assumptions of Definition 1.4, we
verify that, if A is Koszul, Definition 1.4 is equivalent to Ginzburg’s definition of n-Calabi-Yau
algebras [28, 43]. We then prove a new Poincaré Van den Bergh duality for Kc-Calabi-Yau
algebras, adapted to Koszul (co)homologies.

Theorem 1.5. Let A be a Kc-Calabi-Yau algebra of dimension n. Then for any A-bimodule
M , the F-vector spaces HKp(A,M) and HKn−p(A,M) are isomorphic.

Definition 1.6. Let A be a Kc-Calabi-Yau algebra of dimension n. The image c ∈ HKn(A)
of the unit 1 of the algebra A under the isomorphism HK0(A) ∼= HKn(A) in Theorem 1.5 is
called the fundamental class of the Kc-Calabi-Yau algebra A.

In order to describe the duality isomorphism of Theorem 1.5 explicitly as a cap-product by
the fundamental class for strong Kc-Calabi-Yau algebras, we shall use derived categories in the
general context of DG algebras, as presented and detailed in the preprint book by Yekutieli [45].
Let us present briefly what we need in this general context.
We introduce the DG algebra Ã = HomAe(K(A), A). The complexes K(A) and

HomAe(K(A), Ae) of A-bimodules have an enriched structure since they can be viewed as
DG Ã-bimodules in the abelian category A-Bimod of A-bimodules, in the sense of [45].
Denote by C(Ã, A-Bimod) the category of DG Ã-bimodules in A-Bimod [45]. Let M be an

A-bimodule. For any chain DG Ã-bimodule C in A-Bimod, HomAe(C,M) is a cochain DG Ã-
bimodule in the abelian category VectF of F-vector spaces (in A-Bimod whenM = Ae). For any
cochain DG Ã-bimodule C′ in A-Bimod, M ⊗Ae C′ is a cochain DG Ã-bimodule in VectF. The
bounded derived categories Db(Ã, A-Bimod) and Db(Ã,VectF) are defined in [45]. However we
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do not know if the functors HomAe(−,M) and M ⊗Ae − from Cb(Ã, A-Bimod) to Cb(Ã,VectF)
are derivable.

Definition 1.7. Let A be a Kc-Calabi-Yau algebra of dimension n. Then A is said
to be strong Kc-Calabi-Yau if the derived functor of the endofunctor HomAe(−, Ae) of
Cb(Ã, A-Bimod) exists and if RHomAe(K(A), Ae) ∼= K(A)[−n] in the bounded derived category
Db(Ã, A-Bimod).

Theorem 1.8. Let A be a Kc-Calabi-Yau algebra of dimension n and let c be its
fundamental class. We assume that A is strong Kc-Calabi-Yau and that the derived functors
of the functors HomAe(−, A) and A⊗Ae − from Cb(Ã, A-Bimod) to Cb(Ã,VectF) exist. Then

c ⌢
K
− : HK•(A)→ HKn−•(A)

is an isomorphism of HK•(A)-bimodules, inducing an isomorphism of HK•
hi(A)-bimodules from

HK•
hi(A) to HKhi

n−•(A). For all α ∈ HKp(A), we have c ⌢
K
α = (−1)npα ⌢

K
c.

Let us describe the contents of the paper. In Section 2, we extend the general formalism
– including some results – of Koszul calculus [7] to quadratic quiver algebras. In Section 3,
we introduce a right action which is an important tool in order to adapt the definition of
Calabi-Yau algebras to quadratic quiver algebras endowed with the Koszul calculus instead
of the Hochschild calculus. The Poincaré Van den Bergh duality for preprojective algebras is
presented in Section 4, where Theorem 1.1, Proposition 1.2 and Theorem 1.3 of our introduction
are proved. In Section 5, we define our generalisations of Calabi-Yau algebras and we thoroughly
explain the new objects and remaining results outlined in the introduction. Section 6 is devoted
to the computations of the Koszul calculus in ADE Dynkin types. As an application of the
computations, we prove that the spaces HK0

hi(A), HK1
hi(A) and HK2

hi(A) form a minimal
complete list of cohomological invariants for the ADE preprojective algebras.

Acknowledgement. The authors are grateful to the anonymous referee, whose useful and
detailed comments helped to improve this manuscript.

2. Koszul calculus for quiver algebras with quadratic relations

2.1. Setup

Let Q be a finite quiver, meaning that the vertex set Q0 and the arrow set Q1 are finite.
Let F be a field. The vertex space k = FQ0 becomes a commutative ring by associating with
Q0 a complete set of orthogonal idempotents {ei ; i ∈ Q0}. The ring k is isomorphic to F|Q0|,
where |Q0| is the cardinal of Q0. Throughout the paper, the case |Q0| = 1 will be called the
one vertex case, which is equivalent to saying that k is a field. Koszul calculus over a field k is
treated in [7].
For each arrow α ∈ Q1, denote its source vertex by s(α) and its target vertex by t(α). The

arrow space V = FQ1 is a k-bimodule for the following actions: ejαei is equal to zero if i 6= s(α)
or j 6= t(α), and is equal to α if i = s(α) and j = t(α).
Via the ring morphism F→ k that maps 1 to

∑
i∈Q0

ei, the tensor k-algebra Tk(V ) of the
k-bimodule V is an F-algebra isomorphic to the path algebra FQ, so that V ⊗km is identified
with FQm, where Qm is the set of paths of length m. For two arrows α and β, note that
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α⊗k β is zero if t(β) 6= s(α), and otherwise α⊗k β is identified with the composition αβ of
paths (where paths are written from right to left, as in [4]).
Let R be a sub-k-bimodule of V ⊗k V ∼= FQ2. The unital associative k-algebra A =

Tk(V )/(R), where (R) denotes the two-sided ideal of Tk(V ) generated by R, is called a quadratic
k-algebra over the finite quiver Q. The degree induced on A by the path length is called the
weight, so that A is a graded algebra for the weight grading. The component of weight m of A
is denoted by Am. Clearly, A0

∼= k and A1
∼= V . The algebra A is F-central, meaning that the

left action of λ ∈ F on A is the same as its right action. However if there is an arrow α joining
two distinct vertices i and j, A is not k-central since the left and right actions of ei on α are
different. The A-bimodules considered in this paper are not necessarily k-symmetric, meaning
that the left and right actions of an element of k are not necessarily equal, but they are always
assumed to be F-symmetric. Setting Ae = A⊗F A

op, any A-bimodule can be viewed as a left
(or right) Ae-module, as usual.
For brevity, the notation ⊗F is replaced by the unadorned tensor product ⊗. Similarly for

the notations HomF and dimF abbreviated to Hom and dim. If unspecified, a vector space is
an F-vector space and a linear map is F-linear.
The tensor product ⊗k is different from the unadorned tensor product ⊗. However, if M

is a right A-module and N is a left A-module, then the natural linear map Mei ⊗ eiN →
Mei ⊗k eiN is an isomorphism, so that for a ∈Mei and b ∈ eiN , we can identify a⊗k b = a⊗ b.
Similarly, ifM and N are A-bimodules, ejMei and eiNej are k-bimodules, that may be viewed
as left and right ke-modules, where ke = k ⊗ k. The natural linear map ejMei ⊗ eiNej →
ejMei ⊗ke eiNej is an isomorphism, so for a ∈ ejMei and b ∈ eiNej, we can identify a⊗ke b =
a⊗ b. We shall freely use these identifications, without explicitly mentioning them.
Although the algebra A is not k-central, we define its bar resolution B(A) following the

standard text [44] by (A⊗k A
⊗k• ⊗k A, d) with

d(a⊗k a1 . . . ap ⊗k a
′) = aa1 ⊗k a2 . . . ap ⊗k a

′ +
∑

16i6p−1

(−1)ia⊗k a1 . . . (aiai+1) . . . ap ⊗k a
′

+ (−1)pa⊗k a1 . . . ap−1 ⊗k apa
′,

for a, a′ and a1, . . . , ap in A. When A is not k-central, the extra degeneracy is defined and is
still a contracting homotopy, hence B(A) is a resolution of A by projective A-bimodules. See
Lemma 2.1 below for the fact that the A-bimodules A⊗k A

⊗kp ⊗k A are projective.
For any A-bimodule M , Hochschild homology and cohomology are defined by

HH•(A,M) = TorA
e

• (M,A) = H•(M ⊗Ae B(A),M ⊗Ae d),

HH•(A,M) = Ext•Ae(A,M) = H•(HomAe(B(A),M),HomAe(d,M)).

Given any k-bimodule E, there are well known vector space isomorphisms

M ⊗Ae (A⊗k E ⊗k A) → M ⊗ke E
m⊗Ae (a⊗k x⊗k a

′) 7→ a′ma⊗ke x

and Homke(E,M) → HomAe(A⊗k E ⊗k A,M)
f 7→ (a⊗k x⊗k a

′ 7→ af(x)a′)

(2.1)

Taking E = A⊗kp and transporting M ⊗Ae d and HomAe(d,M) via these isomorphisms, we
obtain the Hochschild differentials bH and bH , so that

HH•(A,M) ∼= H•(M ⊗ke A⊗k•, bH),

HH•(A,M) ∼= H•(Homke(A⊗k•,M), bH).
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The Hochschild homology differential is then defined, for m ∈M and a1, . . . , ap in A, by

bHp (m⊗ke (a1 . . . ap)) = ma1 ⊗ke (a2 . . . ap) +
∑

16i6p−1

(−1)im⊗ke (a1 . . . (aiai+1) . . . ap)

+ (−1)papm⊗ke (a1 . . . ap−1).

The Hochschild cohomology differential (including a Koszul sign in HomAe(d,M)) is defined,
for f ∈ Homke(A⊗kp,M) and a1, . . . , ap+1 in A, by

bp+1
H (f)(a1 . . . ap+1) = f(a1 . . . ap)ap+1 −

∑

16i6p

(−1)p+if(a1 . . . (aiai+1) . . . ap+1)

− (−1)pa1f(a2 . . . ap+1).

2.2. Koszul homology and cohomology

Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Following [36, 40, 2, 7], the Koszul
complex K(A) is the subcomplex of the bar resolution B(A) defined by the sub-A-bimodules
A⊗k Wp ⊗k A of A⊗k A

⊗kp ⊗k A, where W0 = k, W1 = V and, for p > 2,

Wp =
⋂

i+2+j=p

V ⊗ki ⊗k R⊗k V
⊗kj . (2.2)

HereWp is considered as a sub-k-bimodule of V ⊗kp ⊆ A⊗kp. It is immediate that the differential
d of K(A) is defined on A⊗k Wp ⊗k A by

d(a⊗k x1 . . . xp ⊗k a
′) = ax1 ⊗k x2 . . . xp ⊗k a

′ + (−1)pa⊗k x1 . . . xp−1 ⊗k xpa
′, (2.3)

for a, a′ in A and x1 . . . xp in Wp.
In this paper, we systematically follow [7] for the notation of elements ofWp. Let us recall this

notation. As in (2.3), an arbitrary element of Wp is denoted by a product x1 . . . xp thought of
as a sum of such products, where x1, . . . , xp are in V . Moreover, regardingWp as a subspace of
V ⊗kq ⊗k Wr ⊗k V

⊗ks with q + r + s = p, the element x1 . . . xp viewed in V ⊗kq ⊗k Wr ⊗k V
⊗ks

will be denoted by the same notation, meaning that the product xq+1 . . . xq+r represents an
element of Wr and the other xi are arbitrary in V .
We pursue along the same lines as [7]. We present the different objects with their fundamental

results more quickly. We keep the same notations as in [7] and we leave the details to the reader
when they are the same as in the one vertex case.
The homology of K(A) is equal to A in degree 0, and to 0 in degree 1. The quadratic

algebra A is said to be Koszul if the homology of K(A) is 0 in any degree > 1. Denote by
µ : A⊗k A→ A the multiplication of A. Then A is Koszul if and only if µ : K(A)→ A is a
resolution of A. If R = 0 and if R = V ⊗k V , then A is Koszul. Besides these extreme examples,
many Koszul algebras occur in the literature, see for instance [35, 34] among many others,
and it is well-known that preprojective algebras are Koszul when the graph is not Dynkin of
type ADE (see Proposition 4.1 and the references in its proof).
The A-bimodules A⊗k Wp ⊗k A forming K(A) are projective and finitely generated. Indeed,

Wp is a sub-k-bimodule of V ⊗kp, so that this fact is an immediate consequence of the following
well known lemma (see for instance [12, Proof of Lemma 2.1]). We give an elementary proof
here.

Lemma 2.1. Let E be a k-bimodule.
(i) The A-bimodule A⊗k E ⊗k A is projective.
(ii) If E is finite dimensional, then the A-bimodule A⊗k E ⊗k A is finitely generated.
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Proof. Clearly E =
⊕

i,j∈Q0
ejEei. From A =

⊕
i∈Q0

Aei =
⊕

j∈Q0
ejA, we deduce that

the A-bimodule A⊗k E ⊗k A is isomorphic to the A-bimodule

F1 =
⊕

i,j∈Q0

Aej ⊗ ejEei ⊗ eiA.

Considering F1 as a sub-A-bimodule of F = A⊗ E ⊗A, we see that F = F1 ⊕ F2, where

F2 =
⊕

i1,i2,i3,i4∈Q0

Aei1 ⊗ ei2Eei3 ⊗ ei4A

in which the sum is taken over the set of indices with i1 6= i2 and i3 6= i4. As the A-bimodule
F is free, we conclude that F1 is projective. Part (ii) follows from the fact that E is finite
dimensional if and only if all the (ejEei) are finite dimensional and is left to the reader.

Definition 2.2. For any A-bimodule M , Koszul homology and cohomology are defined
by

HK•(A,M) = H•(M ⊗Ae K(A)) and HK•(A,M) = H•(HomAe(K(A),M)).

We set HK•(A) = HK•(A,A) and HK•(A) = HK•(A,A).

Since K(A) is a complex of projective A-bimodules,M 7→ HK•(A,M) andM 7→ HK•(A,M)
define δ-functors from the category of A-bimodules to the category of vector spaces, that is,
a short exact sequence of A-bimodules naturally gives rise to a long exact sequence in Koszul
homology and in Koszul cohomology [44, Chapter 2]. As in [7], HKp(A,M) (respectively
HKp(A,M)) is isomorphic to a Hochschild hyperhomology (respectively hypercohomology)
space.
The inclusion χ : K(A)→ B(A) is a morphism of complexes that induces the following

morphisms of complexes

χ̃ =M ⊗Aeχ :M ⊗Ae K(A)→M ⊗Ae B(A),

χ∗ = HomAe(χ,M) : HomAe(B(A),M)→ HomAe(K(A),M).

The linear maps H(χ̃) : HKp(A,M)→ HHp(A,M) and H(χ∗) : HHp(A,M)→ HKp(A,M) are
always isomorphisms for p = 0 and p = 1, and if A is Koszul they are isomorphisms for any p.
Taking E =Wp in the isomorphisms (2.1), we get isomorphisms

HK•(A,M) ∼= H•(M ⊗ke W•, b
K),

HK•(A,M) ∼= H•(Homke(W•,M), bK)

with differentials bK :M ⊗ke Wp →M ⊗ke Wp−1 and bK : Homke(Wp,M)→ Homke(Wp+1,M)
given by

bKp (m⊗ke x1 . . . xp) = m.x1 ⊗ke x2 . . . xp + (−1)pxp.m⊗ke x1 . . . xp−1, (2.4)

bp+1
K (f)(x1 . . . xp+1) = f(x1 . . . xp).xp+1 − (−1)px1.f(x2 . . . xp+1), (2.5)

where m ∈M and x1 . . . xp ∈Wp, respectively f ∈ Homke(Wp,M) and x1 . . . xp+1 ∈Wp+1.
Note that the k-algebra A is augmented by the natural projection ǫA : A→ A0

∼= k. Let us
examine now the particular case M = k, where k is the A-bimodule defined by ǫA. The action
on k of an element of Ap with p > 0 is zero, so that the Koszul differentials vanish whenM = k.
Consequently, we have the linear isomorphisms

HKp(A, k) ∼= k ⊗ke Wp
∼=

⊕

i∈Q0

eiWpei,



KOSZUL CALCULUS OF PREPROJECTIVE ALGEBRAS Page 9 of 51

HKp(A, k) ∼= Homke(Wp, k) ∼=
⊕

i∈Q0

Hom(eiWpei,F).

In particular HKp(A, k) ∼= Hom(HKp(A, k),F), generalising [7, Proposition 2.8].

2.3. Koszul cup and cap products

Let A = Tk(V )/(R) be a quadratic k-algebra overQ. As in [7], the usual cup and cap products
⌣ and⌢ in Hochschild cohomology and homology provide, by restriction from B(A) to K(A),
the Koszul cup and cap products ⌣

K
and ⌢

K
in Koszul cohomology and homology. Let us give

these products, expressed on Koszul cochains and chains. Let P , Q andM be A-bimodules. For
f ∈ Homke(Wp, P ), g ∈ Homke(Wq , Q) and z = m⊗ke x1 . . . xq ∈M ⊗ke Wq, we define f ⌣

K

g ∈ Homke(Wp+q , P ⊗A Q), f ⌢
K
z ∈ (P ⊗A M)⊗ke Wq−p and z ⌢

K
f ∈ (M ⊗A P )⊗ke Wq−p

by

(f ⌣
K
g)(x1 . . . xp+q) = (−1)pqf(x1 . . . xp)⊗A g(xp+1 . . . xp+q), (2.6)

f ⌢
K
z = (−1)(q−p)p(f(xq−p+1 . . . xq)⊗A m)⊗ke x1 . . . xq−p, (2.7)

z ⌢
K
f = (−1)pq(m⊗A f(x1 . . . xp))⊗ke xp+1 . . . xq. (2.8)

For any Koszul cochains f , g h and any Koszul chain z, we have the associativity relations

(f ⌣
K
g)⌣

K
h = f ⌣

K
(g ⌣

K
h),

f ⌢
K

(g ⌢
K
z) = (f ⌣

K
g)⌢

K
z,

(z ⌢
K
g)⌢

K
f = z ⌢

K
(g ⌣

K
f),

f ⌢
K

(z ⌢
K
g) = (f ⌢

K
z)⌢

K
g,

inducing the same relations on Koszul classes.
As in [7, Subsection 3.1], for any Koszul cochains f ∈ Homke(Wp, P ) and g ∈ Homke (Wq, Q),

we have the identity

bK(f ⌣
K
g) = bk(f)⌣

K
g + (−1)pf ⌣

K
bK(g), (2.9)

so that (Homke(W•, A), bK ,⌣
K
) is a DG algebra. This DG algebra will play an essential role

in Section 3 and will be denoted by Ã. Note that H(Ã) = HK•(A) is a graded algebra for ⌣
K
.

Moreover, formula (2.9) and analogous formulas for bK(f ⌢
K
z) and bK(z ⌢

K
f) show that for

any A-bimodule M , Homke(W•,M) and M ⊗ke W• are DG bimodules over Ã for the actions
of ⌣

K
and ⌢

K
respectively, so that HK•(A,M) and HK•(A,M) are graded HK•(A)-bimodules.

Definition 2.3. Let A = Tk(V )/(R) be a quadratic k-algebra over a finite quiver Q.
(i) The general Koszul calculus of A is the datum of all the spaces HK•(A,P ) and HK•(A,M)

endowed with ⌣
K

and ⌢
K
, when the A-bimodules P and M vary.

(ii) The Koszul calculus of A consists of the graded associative algebra HK•(A) and of all the
graded HK•(A)-bimodules HK•(A,M) and HK•(A,M), when the A bimodule M vary.

(iii) The restricted Koszul calculus of A consists of the graded associative algebra HK•(A) and
of the graded HK•(A)-bimodule HK•(A).

(iv) The scalar Koszul calculus of A consists of the graded associative algebra HK•(A, k) and
of the graded HK•(A, k)-bimodule HK•(A, k).
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Since HK0(A) = Z(A) is the centre of the algebra A, the spaces HKp(A,M) and HKp(A,M)
are symmetric Z(A)-bimodules (left and right actions coincide). However HKp(A,M) and
HKp(A,M) are not k-bimodules in general. Indeed, HK0(A) = Z(A) itself is not a k-bimodule
whenever there is an arrow joining two different vertices i and j, since in this case ei1 = ei is
not in Z(A).

Example 2.4. If Q1 = ∅, then V = 0 and A is reduced to k. The (general) Koszul calculus
of k coincides with the (tensor) category of k-bimodules.

Example 2.5. In order to illustrate the notation and the forthcoming results in the paper,
we present the case of the preprojective algebra of type A3. This algebra is not Koszul and its
Koszul calculus differs from its Hochschild calculus (see Subsection 6.6). This is a special case
of the more general examples detailed in Section 6.
Let A be the preprojective algebra of type A3 over F = C, that is, the C-algebra defined by

the quiver

Q 0

a0

((
1

a1

((

a∗

0

hh 2
a∗

1

hh

subject to the relations

σ0 = −a∗0a0, σ1 = a0a
∗
0 − a

∗
1a1, σ2 = a1a

∗
1.

The algebraA has dimension 10 and a basis of A over C is given by the elements ei for 0 6 i 6 2,
ai and a∗i for 0 6 i 6 1, a∗1a1, a1a0 and a∗0a

∗
1. We then have W0 = CQ0 = C〈e1, e1, e2〉 = k,

W1 = CQ1 = C〈a1, a1, a∗0, a
∗
1〉 = V and W2 = C〈σ0, σ1, σ2〉 = R.

Now consider W3 = (V ⊗k R) ∩ (R⊗k V ), viewed inside CQ3. An element u in W3 can
therefore be written as a path in CQ3 in two ways:

u =

1∑

i=0

(λiaiσi + λ∗i a
∗
i σi+1) =

1∑

i=0

(µiσi+1ai + µ∗
i σia

∗
i )

with λi, λ
∗
i , µi, µ

∗
i in C. Then, in CQ3, we have

(−λ0 − µ0)a0a
∗
0a0 + (−λ1 − µ1)a1a

∗
1a1 + (λ∗0 + µ∗

0)a
∗
0a0a

∗
0 + (λ∗1 + µ∗

1)a
∗
1a1a

∗
1

+ λ1a1a0a
∗
0 − λ

∗
0a

∗
0a

∗
1a1 + µ0a

∗
1a1a0 − µ

∗
1a0a

∗
0a

∗
1 = 0

so that all the coefficients λi, λ
∗
i , µi and µ

∗
i must be zero, hence u = 0 and W3 = 0.

Since Wp = (Wp−1 ⊗k V ) ∩ (V ⊗k Wp−1) for all p > 3, it follows that Wp = 0 for all p > 3.
This is true for any preprojective algebra of type ∆ with ∆ different from A1 and A2, see
Theorem 4.2.
The Koszul complex K(A) is therefore

· · · → 0 −→ A⊗k R⊗k A
d2−→ A⊗k V ⊗k A

d1−→ A⊗k A→ 0

with

d1(a⊗k x⊗k a
′) = ax⊗k a

′ − a⊗k xa
′

d2(a⊗k

n∑

i=1

λixiyi ⊗k a
′) =

n∑

i=1

λi (axi ⊗k yi ⊗k a
′
a ⊗k xi ⊗k yia

′) .

Applying HomAe(−, A) and using the natural isomorphism HomAe(A⊗k E ⊗k A,A) ∼=
Homke(E,A) for any k-bimodule E (2.1), we get the complex

0→ Homke(k,A)
b1K−−→ Homke(V,A)

b2K−−→ Homke (R,A)→ 0→ · · ·
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Before we describe the maps, let us note that Homke(k,A) ∼=
⊕2

i=0 eiAei has basis
{e0, e1, e2, a∗1a1}, that a general element f in Homke (V,A) is defined by f(ai) = λiai and
f(a∗i ) = λ∗i a

∗
i for i = 0, 1 with λi, λ

∗
i in C, and that a general element g in Homke(R,A) is

defined by g(σi) = αiei for i = 0, 2 and g(σ2) = α2e1 + βa∗1a1 for some scalars αi and β. Then

b1K(

2∑

i=0

uiei + va∗1a1) is defined by ai 7→ (ui+1 − ui)ai and a
∗
i 7→ (ui − ui+1)a

∗
i for i = 0, 1

b2K(f) is defined by σ0 7→ 0, σ1 7→ (λ0 + λ∗0 − λ1 − λ
∗
1)a

∗
1a1 and σ2 7→ 0.

It is then easy to see that HK0(A) = C〈z0 = 1, z1 = a∗1a1〉, that HK
1(A) = C〈ζ0〉 with ζ0 ∈

Homke(V,A) defined by ζ0(ai) = ai and ζ0(a
∗
i ) = 0, and that HK2(A) = C〈h0, h1, h2〉 with

hi ∈ Homke(R,A) defined by hi(σj) = δijei.
Moreover, the fundamental 1-cocycle eA is equal to 2ζ0 + b1K(2e0 + e1).
The Koszul cup products can easily be found using the formula (2.6). It follows that ⌣

K
is

graded commutative, that 1⌣
K
x = x for any x ∈ HK•(A) and that all other cup products are

0 in HK•(A). For instance, z1 ⌣
K
h1 is the coboundary b2K(f) where f sends a0 to a0 and all

other arrows to 0. In particular, eA ⌣
K

eA = 0.

In order to determine the Koszul homology of A, we could also apply the functor A⊗Ae − to
the complex K(A) and compute the homology of the complex obtained. However, we can also
use our duality result, Theorem 4.4. Set ω0 =

∑2
i=0 ei ⊗ σi ∈ A⊗ke R. There is an isomorphism

θA : HK•(A)→ HK2−•(A) given by f 7→ ω0 ⌢
K
f . Explicitly in our example,

θA(z0) = ω0 and θA(z1) = z1 ⊗ σ1 form a basis of HK2(A);
θA(ζ0) = a0 ⊗ a∗0 + a1 ⊗ a∗1 forms a basis of HK1(A);
θA(hi) = ei ⊗ ei for 0 6 i 6 2 form a basis of HK0(A).

The Koszul cap products can also be obtained using duality and they all vanish except the cap
products z0 ⌢

K
x = x = x ⌢

K
z0 for all x ∈ HK•(A).

2.4. Fundamental formulas of Koszul calculus

Let A = Tk(V )/(R) be a quadratic k-algebra over Q. We continue to follow the one vertex
case [7]. First, we define the Koszul cup and cap brackets. Let P , Q and M be A-bimodules,
and take f ∈ Homke(Wp, P ), g ∈ Homke(Wq, Q), z ∈M ⊗ke Wq. When P or Q is equal to A,
we set

[f, g]⌣
K

= f ⌣
K
g − (−1)pqg ⌣

K
f. (2.10)

When P or M is equal to A, we set

[f, z]⌢
K

= f ⌢
K
z − (−1)pqz ⌢

K
f. (2.11)

These brackets induce brackets on the Koszul classes.
The Koszul 1-cocycles f : V →M are called Koszul derivations with coefficients in M . Such

an f extends to a unique derivation from the k-algebra A to the A-bimodule M , realising
an isomorphism from the space of Koszul derivations with coefficients in M to the space of
derivations from A to M . In particular, the Koszul 1-cocycle from V to A coinciding with the
identity map on V , is sent to the Euler derivation DA of the graded algebra A. This Koszul
1-cocycle is denoted by eA and is called the fundamental 1-cocycle. Its Koszul class is denoted
by eA and is called the fundamental 1-class. In the one vertex case, eA is not a coboundary if
V 6= 0 [7], but this property does not hold in general.
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Lemma 2.6. Let A = Tk(V )/(R) be a quadratic k-algebra over Q with Q1 6= ∅. If the
underlying graph of Q is simple, that is, it contains neither loops nor multiple edges, then eA

is a coboundary.

Proof. The 1-cocycle eA is a coboundary if and only if there exists a ke-linear map c : k → k
such that eA = bK(c). Such a map is of the form c(ei) = λiei with λi ∈ F, for all i ∈ Q0. Then
eA = bK(c) if and only if λt(α) − λs(α) = 1 for any α ∈ Q1. The assumption on the graph means
that Q has no loop and that given two distinct vertices, there is at most one arrow joining
them. Then we can choose λt(α) = 1 and λs(α) = 0.

This proof shows that if the quiverQ has a loop, eA is not a coboundary. The same conclusion
holds if charF 6= 2 and Q contains an oriented 2-cycle.
The following propositions are proved as [7, Theorem 3.7, Theorem 4.4, Corollary 3.10,

Corollary 4.6] of the one vertex case. Formulas (2.12) and (2.13) are the fundamental formulas
of Koszul calculus.

Proposition 2.7. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. For any Koszul
cochain f and any Koszul chain z with coefficients in an A-bimodule M , we have

bK(f) = −[eA, f ]⌣
K

, (2.12)

bK(z) = −[eA, z]⌢
K

. (2.13)

Proposition 2.8. Let A = Tk(V )/(R) be a quadratic k-algebra over Q and let M be an
A-bimodule. For any α ∈ HKp(A,M) with p = 0 or p = 1, β ∈ HKq(A) and γ ∈ HKq(A), we
have the identities

[α, β]⌣
K

= 0, (2.14)

[α, γ]⌢
K

= 0. (2.15)

Identity (2.15) also holds if p = q 6∈ {0, 1}.

2.5. Higher Koszul calculus

Higher Koszul homology is the homology of the Koszul homology, and similarly for
cohomology. Precisely, let A = Tk(V )/(R) be a quadratic k-algebra over Q. Formula (2.6)
shows that the map eA ⌣

K
eA : W2 = R→ A is zero. Therefore, eA ⌣

K
− is a cochain differential

on Homke(W•,M), and eA ⌣
K
− is a cochain differential on HK•(A,M). Similarly, eA ⌢

K
− is

a chain differential on M ⊗ke W•, and eA ⌢
K
− is a chain differential on HK•(A,M). For a

p-cocycle f :Wp →M and x1 . . . xp+1 in Wp+1, we have

(eA ⌣
K
f)(x1 . . . xp+1) = f(x1 . . . xp).xp+1.

For a p-cycle z = m⊗ke x1 . . . xp in M ⊗ke Wp, we have

eA ⌢
K
z = mx1 ⊗ke x2 . . . xp.

Definition 2.9. Let A = Tk(V )/(R) be a quadratic k-algebra over a finite quiver Q and
let M be an A-bimodule. The differentials eA ⌣

K
− and eA ⌢

K
− are denoted by ∂⌣ and ∂⌢.
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The homologies of the complexes (HK•(A,M), ∂⌣) and (HK•(A,M), ∂⌢) are called the higher
Koszul cohomology and homology of A with coefficients in M and are denoted by HK•

hi(A,M)
and HKhi

• (A,M). We set HK•
hi(A) = HK•

hi(A,A) and HKhi
• (A) = HKhi

• (A,A).

The higher classes of Koszul classes will be denoted between square brackets. For example,
the unit 1 of A is still the unit of HK•(A), and ∂⌣(1) = eA implies that [eA] = 0. If eA 6= 0,
the unit of HK•(A) does not survive in higher Koszul cohomology.
As in the one vertex case, the actions of the Koszul cup and cap products of HK•(A)

on HK•(A,M) and HK•(A,M) induce actions on higher cohomology and homology. Thus
HK•

hi(A) is a graded algebra, and HK•
hi(A,M), HKhi

• (A,M) are graded HK•
hi(A)-bimodules,

constituting the higher Koszul calculus of A. If eA = 0, the higher Koszul calculus coincides
with the Koszul calculus. It is the case when A = k as in Example 2.4.
For M = k, eA ⌣

K
− and eA ⌢

K
− vanish, so that the higher scalar Koszul calculus coincides

with the scalar Koszul calculus. Proposition 3.12 in [7] generalises immediately as follows.

Proposition 2.10. Let A = Tk(V )/(R) be a quadratic k-algebra over Q and let M be
an A-bimodule. Then HK0

hi(A,M) is the space of elements u in Z(M) such that there exists
v ∈M satisfying u.a = v.a− a.v for any a in Q1.

2.6. Grading the restricted Koszul calculus by the weight

A Koszul p-cochain f :Wp → Am is said to be homogeneous of weight m. Since Q1 is finite,
the spaces Wp are finite dimensional, thus the space of Koszul cochains Homke(W•, A) is
N× N-graded by the biweight (p,m), where p is called the homological weight and m is called
the coefficient weight. If f :Wp → Am and g :Wq → An are homogeneous of biweights (p,m)
and (q, n) respectively, then f ⌣

K
g :Wp+q → Am+n is homogeneous of biweight (p+ q,m+ n).

Moreover bK is homogeneous of biweight (1, 1) and the algebra HK•(A) is N× N-graded by the
biweight. The homogeneous component of biweight (p,m) of HK•(A) is denoted by HKp(A)m.
Since

∂⌣ : HKp(A)m → HKp+1(A)m+1,

the algebra HK•
hi(A) is N× N-graded by the biweight, and its (p,m)-component is denoted by

HKp
hi(A)m. From Proposition 2.10, we deduce the following.

Proposition 2.11. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Assume that
A is finite dimensional. Let max be the highest m such that Am 6= 0. Then HK0

hi(A)max is
isomorphic to the space spanned by the cycles of Q of length max.

Similarly, a Koszul q-chain z in An ⊗ke Wq is said to be homogeneous of weight n. The
space of Koszul chains A⊗ke W• is N× N-graded by the biweight (q, n), where q is called
the homological weight and n is called the coefficient weight. Moreover bK is homogeneous of
biweight (−1, 1) and the space HK•(A) is N× N-graded by the biweight. The homogeneous
component of biweight (q, n) of HK•(A) is denoted by HKq(A)n. Since

∂⌢ : HKq(A)n → HKq−1(A)n+1,

the space HKhi
• (A) is N× N-graded by the biweight, and its (q, n)-component is denoted by

HKhi
q (A)n.
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If f :Wp → Am and z ∈ An ⊗ke Wq are homogeneous of biweights (p,m) and (q, n)
respectively, then f ⌢

K
z and z ⌢

K
f are homogeneous of biweight (q − p,m+ n) where

f ⌢
K
z = (−1)(q−p)pf(xq−p+1 . . . xq)a⊗ke x1 . . . xq−p, (2.16)

z ⌢
K
f = (−1)pqa f(x1 . . . xp)⊗ke xp+1 . . . xq, (2.17)

and z = a⊗ke x1 . . . xq. The Homke(W•, A)-bimodule A⊗ke W•, the HK•(A)-bimodule
HK•(A) and the HK•

hi(A)-bimodule HKhi
• (A) are thus N× N-graded by the biweight. The

proof of the following is left to the reader.

Proposition 2.12. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. We have

HKhi
0 (A)0 ∼= HK0(A)0 ∼= k.

Moreover HK0(A)1 ∼= HK1(A)0 is isomorphic to the space spanned by the loops of Q, and
∂⌢ : HK1(A)0 → HK0(A)1 identifies with the identity map on this space. As a consequence,

HKhi
0 (A)1 ∼= HKhi

1 (A)0 = 0.

2.7. Invariance of Koszul calculus

In [6], the first author proved that the Koszul calculus of an N -homogeneous algebra A
over a field k only depends on the structure of associative algebra of A, independently of any
presentation A = Tk(V )/(R) of A as an N -homogeneous algebra. This result was based on an
isomorphism lemma due to Bell and Zhang [3]. In the quadratic case N = 2, we are going to
extend this Koszul calculus invariance to any quadratic quiver algebra. For that, we shall use
an extension of the isomorphism lemma to quiver algebras with homogeneous relations, due to
Gaddis [25].
Let Q and Q′ be finite quivers, and F be a field. We introduce the commutative rings

k = FQ0 and k
′ = FQ′

0, the k-bimodule V = FQ1 and the k′-bimodule V ′ = FQ′
1. As explained

in Subsection 2.1, we make the identifications of graded algebras Tk(V ) ∼= FQ and Tk′(V ′) ∼=
FQ′. We are interested in the graded F-algebra isomorphisms u : Tk(V )→ Tk′(V ′) given by
a ring isomorphim u0 : k → k′ and by a k-bimodule isomorphism u1 : V → V ′, where V ′ is a
k-bimodule via u0. By [25, Lemma 4], this implies that u0 maps Q0 to Q′

0, and the bijection
Q0 → Q′

0 induced by u0 transforms the adjacency matrix of Q into the adjacency matrix of
Q′.
Let us fix a sub-k-bimodule R of V ⊗k V and a sub-k′-bimodule R′ of V ′ ⊗k′ V ′. We

define the graded k-algebra A = Tk(V )/(R) and the graded k′-algebra A′ = Tk′(V ′)/(R′).
Following the terminology of the one vertex case, a graded F-algebra isomorphism u : A→ A′

is called a Manin isomorphism if u is defined by a ring isomorphism u0 : k → k′ (so V ′ is a
k-bimodule via u0), and by a k-bimodule isomorphism u1 : V → V ′, such that the k-bimodule
isomorphism u⊗k2

1 : V ⊗k2 → V ′⊗k′2 satisfies u⊗k2
1 (R) = R′. In particular, u is an isomorphism

of the augmented k-algebra A to the augmented k′-algebra A′, the augmentations being the
projections A→ A0

∼= k and A′ → A′
0
∼= k′.

As in [6], for any A-bimoduleM , the Manin isomorphism u naturally defines an isomorphism
of complexes from (M ⊗ke W•, b

K) to (M ⊗k′e W ′
•, b

K), where M is an A′-bimodule via
u, inducing natural isomorphisms HK•(A,M) ∼= HK•(A

′,M). Similarly, u induces natural
isomorphisms HK•(A′,M) ∼= HK•(A,M). It is clear from the definitions in Subsection 2.3
that these isomorphisms respect the Koszul cup and cap products. To summarise all these
properties, we say that a Manin isomorphism induces isomorphic (general) Koszul calculi.
Since u1(eA) = eA′ by functoriality, it also induces isomorphic higher Koszul calculi.
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Using Gaddis’s theorem [25, Theorem 5], we can now prove ungraded invariance. Let C be
a commutative ring. Let A be an augmented associative C-algebra (not necessarily C-central)
having a quadratic quiver algebra presentation B, meaning that the augmented C-algebra
A is isomorphic to a quadratic k-algebra B = Tk(V )/(R) over a finite quiver Q, naturally
augmented over k by the projection B → B0

∼= k. This implies that the ring C is isomorphic to
k ∼= FQ0. Then we can define the (general) Koszul calculus of A as being the (general) Koszul
calculus of B. Indeed, if B′ = Tk′(V ′)/(R′) over a finite quiver Q′ is another quadratic quiver
algebra presentation of A, the ungraded augmented k-algebra B is isomorphic to the ungraded
augmented k′-algebra B′. By Gaddis’s theorem, there exists a Manin isomorphism from B to
B′, thus the (general) Koszul calculi of B and B′ are isomorphic by Manin invariance. The
higher Koszul calculus of A is also defined as being the higher Koszul calculus of B.

2.8. Comparing Koszul (co)homology with Hochschild (co)homology in degree 2

Let A = Tk(V )/(R) be a quadratic k-algebra overQ. Recall that, for p = 0 and p = 1, we have
linear isomorphisms HKp(A,M) ∼= HHp(A,M) and HHp(A,M) ∼= HKp(A,M) (Subsection
2.2). It is no longer true if p > 2 and if A is an arbitrary non-Koszul algebra. Preprojective
algebras of Dynkin type will give infinitely many counterexamples when p = 2. However,
in general, we can compare the Koszul and Hochschild spaces when p = 2, by providing a
surjection HK2(A,M)→ HH2(A,M) and an injection HH2(A,M)→ HK2(A,M). To prove
that, we use a minimal projective resolution of the graded k-algebra A, described as follows.
As in the one vertex case [7], we know that, in the category of graded A-bimodules,

A has a minimal projective resolution P (A) whose component of homological degree p
can be written as A⊗k Ep ⊗k A, where Ep is a weight-graded k-bimodule. Then Pl(A) =
P (A)⊗A k (respectively Pr(A) = k ⊗A P (A)) is a minimal projective resolution of the graded
left (respectively right) A-module k (see for instance [5]) and the differential δ of P (A) is the
graded sum of the differentials δ ⊗A idk and idk⊗Aδ naturally extended to P (A).
Define the left (respectively right) Koszul complex Kl(A) = K(A)⊗A k (respectively

Kr(A) = k ⊗A K(A)). Now using [2, Subsections 2.7 and 2.8], [35, Chapter 1, Proposition 3.1]
adapted to the case where k is a semisimple ring (rather than a field), and the construction
of ExtA(k, k) from the resolutions Pl(A) and Pr(A), we can show that Kl(A) (respectively
Kr(A)) is isomorphic as a left (respectively right) A-module to the diagonal part of the graded
resolution Pl(A) (respectively Pr(A)). We know (see for instance [40, Section 3]) that the
differential d of K(A) is the graded sum of the differentials d⊗A idk and idk ⊗Ad naturally
extended to K(A). Thus the inclusions A⊗k Wp ⊗k A →֒ A⊗k Ep ⊗k A constitute an inclusion
map ι : K(A) →֒ P (A) of weight-graded A-bimodule complexes. So we can view the complex
K(A) as the diagonal part of the weight-graded resolution P (A), and A is Koszul if and only if
P (A) = K(A). The beginning of P (A) coincides with K(A), that is, E0 = k, E1 = V , E2 = R,
and the differential δ of P (A) coincides with the differential d of K(A) in degrees 1 and 2.
For any A-bimodule M , ι induces ι̃ =M ⊗Ae ι and ι∗ = HomAe(ι,M) decomposed in ι̃p :

M ⊗ke Wp →M ⊗ke Ep and ι∗p : Homke(Ep,M)→ Homke(Wp,M). The linear maps

H(ι̃)p : HKp(A,M)→ HHp(A,M) and H(ι∗)p : HHp(A,M)→ HKp(A,M) (2.18)

are isomorphisms for p = 0 and p = 1, and for any p if A is Koszul. Since ιp is an identity map
for p = 0, 1, 2, ι̃p and ι∗p are also identity maps for the same p’s. Therefore, setting δ̃ =M ⊗Ae δ
and δ∗ = HomAe(δ,M), we have the commutative diagrams

M ⊗ke W3
bK
3−→M ⊗ke R

bK
2−→M ⊗ke V

ι̃3 ↓ id ↓ id ↓ (2.19)

M ⊗ke E3
δ̃3−→M ⊗ke R

δ̃2−→M ⊗ke V
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Homke(V,M)
δ∗
2−→ Homke(R,M)

δ∗
3−→ Homke (E3,M)

id ↓ id ↓ ι∗3 ↓ (2.20)

Homke(V,M)
b2K−→ Homke(R,M)

b3K−→ Homke (W3,M)

where ι̃3 is injective and ι∗3 is surjective (the ring ke ∼= F|Q0|
2

is semisimple), so that we obtain
the following.

Proposition 2.13. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. For any M ,
(i) H(ι̃)2 : HK2(A,M)→ HH2(A,M) is surjective with kernel isomorphic to Im(δ̃3)/ Im(bK3 ),
(ii) H(ι∗)2 : HH2(A,M)→ HK2(A,M) is injective with image isomorphic to Ker(δ∗3)/ Im(b2K).

We can be more specific when M = A, by using the weight grading (Subsection 2.6). Unlike
the Koszul differentials bK and bK , the Hochschild differentials bH and bH are not homogeneous
for the coefficient weight, but only for the total weight. The grading of HHp(A) and HHp(A) for
the total weight t is denoted by HHp(A)t and HHp(A)t. Denote the weight of a homogeneous
element a ofA by |a|. Recall that the total weight of a homogeneous p-chain z = a⊗ke (a1 . . . ap)
is equal to t = |a|+ |a1|+ . . .+ |ap|, and the total weight of a homogeneous p-cochain f
mapping a1 . . . ap to an element of Am is equal to t = m− |a1| − . . .− |ap|. Then H(ι̃)2
is homogeneous from the coefficient weight r to the total weight r + 2, while H(ι∗)2 is
homogeneous from the total weight r − 2 to the coefficient weight r.

Corollary 2.14. Let A = Tk(V )/(R) be a quadratic k-algebra over Q.
(i) H(ι̃)2 is an isomorphism from HK2(A)r to HH2(A)r+2 if r = 0 and r = 1.
(ii) Assume that A is finite dimensional. Let max be the highest m such that Am 6= 0. Then

H(ι∗)2 is an isomorphism from HH2(A)r−2 to HK2(A)r if r = max and r = max−1.

Proof. Denote by Ep,m the homogeneous component of weightm of Ep. Since E3,2 = 0 and
E3,3 =W3, both maps δ̃3 and bK3 vanish on the component of total weight 2 of A⊗ke E3, while
on that of total weight 3, they coincide with the inclusion map of W3 into V ⊗ke R. Then we
deduce (i) from (i) of the proposition.
Under the assumptions of (ii), if f : R→ Amax, then b3K(f) = 0. Moreover, any other

component of δ∗3(f) mapping E3,m to Amax+m−2 = 0 vanishes as well. Thus δ∗3(f) = 0, and
we conclude by (ii) of the proposition. The same proof works if f : R→ Amax−1 since δ∗3(f) is
then reduced to a map W3 → Amax coinciding with b3K(f).

3. A right action on the Koszul calculus

This section presents an important tool which we use in Section 5 to adapt the known
definition of Calabi-Yau algebras due to Ginzburg to the context of quadratic quiver algebras
endowed with the Koszul calculus. The idea is to put together two compatible bimodule actions
on Koszul chains and cochains : the action of the quadratic quiver algebra A and the action of
the associated DG algebra Ã defined just before Definition 2.3.
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3.1. Compatibility

Lemma 3.1. Let A and B be unital associative F-algebras. LetM be an A-bimodule (hence
the induced F-bimodule is symmetric). Assume that M is a right B-module such that the
actions of F induced on M by A and by B are the same. Let Ae = A⊗F A

op be the enveloping
algebra. The following are equivalent.
(i) Viewing M as a left Ae-module, M is an Ae-B-bimodule.
(ii) Viewing M as a right Ae-module, the right actions of Ae and B on M commute.
(iii) M is an A-B-bimodule and the right actions of A and B on M commute.

The proof is straightforward. Under the assumptions of the lemma and if the equivalent
assertions hold, we say that the right action of B on M is compatible with the A-bimodule M .

Example 3.2. With B =M = Ae, Ae is a natural Ae-Ae-bimodule for the multiplication

of the F-algebra Ae. Recall that the left Ae-module Ae is isomorphic to the A-bimodule A
o
⊗ A

for the outer action (a⊗ b).(α⊗ β) = (aα)⊗ (βb), while the right Ae-module Ae is isomorphic

to the A-bimodule A
i
⊗ A for the inner action (α⊗ β).(a ⊗ b) = (αa)⊗ (bβ).

3.2. DG bimodules over the DG algebra Ã

Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Fix a unital associative F-algebra
B and an A-bimodule M . We assume that M is a right B-module compatible with the A-
bimodule structure. Then the space M ⊗ke Wq is a right B-module for the action of b ∈ B on
z = m⊗ke x1 . . . xq ∈M ⊗ke Wq defined by

z.b = (m.b)⊗ke x1 . . . xq.

It is well-defined since (λmµ).b = λ(m.b)µ for any λ and µ in k. From (2.4) and (2.7), we
check that bK and eA ⌢

K
− are B-linear. Thus HK•(A,M) and HKhi

• (A,M) are graded right

B-modules.
Just before Definition 2.3, we have associated to A the F-central DG algebra

Ã = HomAe(K(A), A) ∼= Homke(W•, A)

whose grading is given by the cohomological degree of cochains, whose differential is bK and
whose multiplication is⌣

K
. We have also mentioned that Homke(W•,M) andM ⊗ke W• are DG

bimodules over Ã for the actions of⌣
K

and⌢
K

respectively, so that HK•(A,M) and HK•(A,M)

are graded HK•(A)-bimodules.
For any k-bimodule morphism f :Wp → A, we verify that

f ⌢
K

(z.b) = (f ⌢
K
z).b and (z.b)⌢

K
f = (z ⌢

K
f).b,

so that the right action of B on M ⊗ke W• is compatible with the Ã-bimodule structure.
Therefore the right action of B on HK•(A,M) and on HKhi

• (A,M) is compatible with the
structure of HK•(A)-bimodule and of HK•

hi(A)-bimodule respectively. Let us sum up what we
have obtained at the level of complexes.

Proposition 3.3. Let A = Tk(V )/(R) be a quadratic k-algebra over Q, let B be a unital
associative F-algebra and let M be an A-bimodule. We assume that M is a right B-module
and that this structure is compatible with the A-bimodule structure. Denote by Mod-B the
category of right B-modules. Then
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(i) the complex (M ⊗ke W•, b
K) is a complex in Mod-B,

(ii) the complex (M ⊗ke W•, b
K) is a DG-bimodule over the F-central DG-algebra Ã,

(iii) the right action of B and the bimodule action of Ã on M ⊗ke W• are compatible.
In this situation, following Yekutieli [45, Definition 3.8.1], we say that M ⊗ke W• is a DG
Ã-bimodule in the abelian category Mod-B.

In order to reflect the fact that the right action of B and the bimodule actions of HK•(A)
and HK•

hi(A) on HK•(A,M) and HKhi
• (A,M) respectively are compatible, we shall also say

that HK•(A,M) is a graded HK•(A)-bimodule in Mod-B, and that HKhi
• (A,M) is a graded

HK•
hi(A)-bimodule in Mod-B. By Lemma 3.1, it is equivalent to saying that HK•(A,M) is a

graded HK•(A)e-B-bimodule, similarly for HKhi
• (A,M).

Similarly, Homke(W•,M) is a right B-module for the action of b on f :Wp →M defined by

(f.b)(x1 . . . xp) = f(x1 . . . xp).b.

Then bK and eA ⌣
K
− are B-linear, so that HK•(A,M) and HK•

hi(A,M) are graded right

B-modules. For g :Wq → A, we have

g ⌣
K

(f.b) = (g ⌣
K
f).b and (f.b)⌣

K
g = (f ⌣

K
g).b.

We obtain an analogue of Proposition 3.3, that is, Homke(W•,M) is a DG Ã-bimodule in
Mod-B.

Proposition 3.4. We keep the notation and assumptions of the previous proposition.
Then
(i) the complex Homke(W•,M) is a complex in Mod-B,
(ii) the complex Homke(W•,M) is a DG Ã-bimodule,
(iii) the right action of B and the bimodule action of Ã are compatible on Homke(W•,M).

Therefore HK•(A,M) is a graded HK•(A)-bimodule in Mod-B, and HK•
hi(A,M) is a graded

HK•
hi(A)-bimodule in Mod-B.

3.3. Application to the Koszul complex K(A)

Let us specialise to B =M = Ae as in Example 3.2. Then M = A
o
⊗ A is a left Ae-module

for the outer structure, and a right Ae-module for the inner structure. Our aim is to identify

the A-bimodule complex K(A) with the complex ((A
o
⊗ A)⊗ke W•, b

K) endowed with the right
action of Ae. The statement is the following.

Proposition 3.5. Let A = Tk(V )/(R) be a quadratic k-algebra over Q.

(i) For any q > 0, the bilinear map ϕq : (A
o
⊗ A)×Wq → A⊗k Wq ⊗k A defined by

ϕq(α⊗ β, x1 . . . xq) = β ⊗k (x1 . . . xq)⊗k α

induces an isomorphism ϕ̃q : (A
o
⊗ A)⊗ke Wq → A⊗k Wq ⊗k A.

(ii) The direct sum ϕ̃ of the maps ϕ̃q is an isomorphism from the complex ((A
o
⊗ A)⊗ke W•, b

K)
to the Koszul complex (K(A), d).

(iii) The isomorphism ϕ̃ is right Ae-linear.
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Proof. The A-bimodule A
o
⊗ A is a k-bimodule for the actions λ(α ⊗ β)µ = λα⊗ βµ, with

α and β in A, λ and µ in k, thus it is a right ke-module for (α⊗ β)(λ ⊗ µ) = µα⊗ βλ. Then
it is easy to check that

ϕq(µα⊗ βλ, x1 . . . xq) = ϕq(α⊗ β, λx1 . . . xqµ),

proving the existence of ϕ̃q. We define similarly an inverse linear map, therefore ϕ̃q is an
isomorphism, which gives (i).
Let us show that ϕ̃ is a morphism of complexes. From

bK((α⊗ β)⊗ke x1 . . . xq) = (α⊗ (βx1))⊗ke x2 . . . xq + (−1)q((xqα)⊗ β)⊗ke x1 . . . xq−1,

we get

ϕ̃ ◦ bK((α ⊗ β)⊗ke x1 . . . xq) = βx1 ⊗k x2 . . . xq ⊗k α+ (−1)qβ ⊗k x1 . . . xq−1 ⊗k xqα

whose right-hand side is equal to d(β ⊗k x1 . . . xp ⊗k α), as expected.
Let us prove (iii). Here the A-bimodule A⊗k Wq ⊗k A is seen as a right Ae-module. For

z = (α⊗ β)⊗ke x1 . . . xq and a, b in A, we have

ϕ̃q(z.(a⊗ b)) = ϕ̃q((αa⊗ bβ)⊗ke x1 . . . xq)

= bβ ⊗k (x1 . . . xq)⊗k αa

= ϕ̃q(z).(a⊗ b),

therefore ϕ̃q is Ae-linear.

So ϕ̃ is an isomorphism from the A-bimodule complex ((A
o
⊗ A)⊗ke W•, b

K) whose A-
bimodule structure is the inner one, to the A-bimodule complex K(A). Denote by A-Bimod the

category of A-bimodules. According to Proposition 3.3, (A
o
⊗ A)⊗ke W• is a DG Ã-bimodule

in A-Bimod. We transport this structure via ϕ̃ and we obtain.

Proposition 3.6. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Then the Koszul
complex K(A) is a DG Ã-bimodule in A-Bimod.

This DG bimodule will play an essential role in the generalisations of Calabi-Yau algebras
(Sections 4 and 5). Moreover, H(K(A)) is a graded HK•(A)-bimodule in A-Bimod, so

that H(ϕ̃) : HK•(A,A
o
⊗ A)→ H(K(A)) is an isomorphism of graded HK•(A)-bimodules in

A-Bimod.
Let us give explicitly the underlying Ã-bimodule structure of the DG Ã-bimodule K(A).

Consider z = (α⊗ β)⊗ke x1 . . . xq in (A
o
⊗ A)⊗ke Wq and f in Homke(Wp, A), we easily derive

from (2.7) that the left action of f on K(A) is defined by

f ⌢
K

(β ⊗k x1 . . . xq ⊗k α) = (−1)(q−p)pβ ⊗k x1 . . . xq−p ⊗k f(xq−p+1 . . . xq)α. (3.1)

Analogously, using (2.8), we define the right action of f on K(A) by

(β ⊗k x1 . . . xq ⊗k α)⌢
K
f = (−1)pqβf(x1 . . . xp)⊗k xp+1 . . . xq ⊗k α. (3.2)

The fundamental formula (2.13) reduces to

d(z′) = −eA ⌢
K
z′ + (−1)qz′ ⌢

K
eA (3.3)

on K(A), where z′ = β ⊗k x1 . . . xq ⊗k α, and

eA ⌢
K
z′ = (−1)q−1β ⊗k x1 . . . xq−1 ⊗k xqα, (3.4)
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z′ ⌢
K

eA = (−1)qβx1 ⊗k x2 . . . xq ⊗k α. (3.5)

The differential eA ⌢
K
− induces a differential, still denoted by ∂⌢, on H(K(A)). The homology

of (H(K(A)), ∂⌢) is denoted by Hhi(K(A)) and is called the higher homology of K(A). Then

Hhi(K(A)) is a graded HK•
hi(A)-bimodule in A-Bimod and H(H(ϕ̃)) : HKhi

• (A,A
o
⊗ A)→

Hhi(K(A)) is an isomorphism of graded HK•
hi(A)-bimodules in A-Bimod.

4. Poincaré Van den Bergh duality of preprojective algebras

4.1. Preprojective algebras

Throughout this section, ∆ is a connected graph whose vertex set and edge set are
finite. Following a usual presupposition in the papers devoted to Hochschild (co)homology
of preprojective algebras, we assume that the graph ∆ is not labelled, that is, the labels of the
edges are all equal to (1, 1) [4, Definition 4.1.9]. In particular, the Dynkin graphs are limited
to types ADE, and the Euclidean (or extended) Dynkin graphs are limited to types ÃD̃Ẽ [4,
Definition 4.5.1].
Let Q be a quiver whose underlying graph is ∆. Define a quiver Q∗ whose vertex set is Q0

and whose arrow set is Q∗
1 = {a∗; a ∈ Q1} where s(a∗) = t(a) and t(a∗) = s(a). Let Q be the

double quiver of Q, that is, the quiver whose vertex set is Q0 = Q0 and whose arrow set is the
disjoint union Q1 = Q1 ∪Q∗

1. We shall view (−)∗ as an involution of Q1.
Let F be a field. As before, we denote the ring FQ0 by k and the k-bimodule FQ1 by V and

we identify the graded k-algebras Tk(V ) ∼= FQ (see Subsection 2.1).
The preprojective algebra associated with the graph ∆ over the field F is the quadratic

k-algebra A(∆) over Q defined by A(∆) = FQ/(R), where the sub-k-bimodule R of FQ2 is
generated by

σi :=
∑

a∈Q1

t(a)=i

aa∗ −
∑

a∈Q1

s(a)=i

a∗a =
∑

a∈Q1

t(a)=i

ε(a)aa∗ for all i ∈ Q0,

where ε(a) = 1 if a ∈ Q1, ε(a) = −1 if a ∈ Q∗
1.

If Q′ is another quiver whose underlying graph is ∆, and R′ is the sub-k-bimodule of FQ′
2

generated by the relations σ′
i =

∑
a∈Q′

1

t(a)=i

ε(a)aa∗ for all i ∈ Q′
0 = Q0, then the preprojective

algebras FQ/(R) and FQ′/(R′) are isomorphic, the isomorphism being given by exchanging
pairs of arrows a and a∗ and changing the sign of one arrow in each pair (see [13, Remark 2.2(3)],
or [38, Lemma 1.3.7] for a complete proof in the case of generalised preprojective algebras).
Therefore, according to Subsection 2.7, the quadratic k-algebra A(∆) and the (general, higher)
Koszul calculus of A(∆) depend only on the graph ∆ and not on Q, justifying the notation
A(∆). If ∆ is a tree, A(∆) is isomorphic to the preprojective algebra defined without signs
(that is, ε(a) = 1 for all a ∈ Q1, as in [18, 19, 20]).
If ∆ = A1, then A(∆) = k. If ∆ = A2, then R = FQ2 and A(∆) = FQ0 ⊕ FQ1. These

quadratic k-algebras are Koszul, but they are the only exceptions among the Dynkin graphs.
More precisely, the following standard result holds, for which we just give proof references (see
also [10, Corollary 4.3]).

Proposition 4.1. Assume that the graph ∆ is distinct from A1 and A2. The following are
equivalent.
(i) ∆ is Dynkin of type ADE.
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(ii) A(∆) is not Koszul.
(iii) A(∆) is finite dimensional.

Proof. The equivalence (i)⇔(ii) is treated in [33] if ∆ is a tree, in [30] otherwise. The
equivalence (i)⇔(iii) for any Dynkin graph is cited in [34] as a result by Gelfand and Ponomarev
[27].

Sections 2 and 3 can be applied to preprojective algebras. For example, according to the
remark following Lemma 2.6, the fundamental 1-cocycle eA(∆) is not a coboundary if ∆ has a
loop or if charF 6= 2 and ∆ 6= A1. In the remainder of this section, we often abbreviate A(∆)
to A and we freely use notations and results from Sections 2 and 3.

4.2. The Koszul complex K(A) has length 2

If ∆ = A1, thenK(A) has length 0. If ∆ = A2, thenK(A) has infinite length. However, when
∆ is not Dynkin ADE, the algebra A = A(∆) has global dimension 2 (this is a consequence of
[10, Proposition 4.2], inspired by manuscript notes of Crawley-Boevey), and since k ∼= F|Q0| is
separable, it follows that the minimal projective A-bimodule resolution of A, which is K(A)
because A is Koszul, has length 2 (see for instance [37, Proposition 3.18]).
Actually, the fact that the length of K(A) is 2 is true for all graphs ∆ other than A1 and

A2, and we now give a unified proof of this.

Theorem 4.2. Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6= A2.
Then the Koszul complexK(A) ofA has length 2. Consequently,HKp(A,M) ∼= HKp(A,M) = 0
for all A-bimodules M and all p > 3.

Proof. From the defining equality (2.2) of Wp, we have Wp = (Wp−1 ⊗k V ) ∩ (V ⊗k Wp−1)
for all p > 3. Moreover R 6= 0, therefore it is enough to prove that W3 = 0, that is, (R⊗k V ) ∩
(V ⊗k R) = 0. For that, we only assume that ∆ 6= A1. Our goal is to prove thatW3 6= 0 implies
∆ = A2.
Let u be a non-zero element in W3, viewed as an element in FQ3. There exist vertices e, f

in Q0 such that euf 6= 0, therefore we may assume that u is in eW3f. Then u can be written
uniquely as

u =
∑

a∈eQ1

α∈eQ1f

λαε(a)aa
∗α =

∑

b∈fQ1

β∈fQ1e

µβε(b)βbb
∗.

We now use the fact that Q1 is the disjoint union of Q1 and Q∗
1 and the definition of ε to write

u =
∑

α∈eQ1f
a∈eQ1

λαaa
∗α−

∑

α∈eQ1f
a∈Q1e

λαa
∗aα+

∑

α∈fQ1e
a∈eQ1

λα∗aa∗α∗ −
∑

α∈fQ1e
a∈Q1e

λα∗a∗aα∗

=
∑

β∈eQ1f
b∈fQ1

µββbb
∗ −

∑

β∈eQ1f
b∈Q1f

µββb
∗b+

∑

β∈fQ1e
b∈fQ1

µβ∗β∗bb∗ −
∑

β∈fQ1e
b∈Q1f

µβ∗β∗b∗b.

From these expressions, we obtain the following identities in the path algebra FQ:
∑

α∈fQ1e
a∈eQ1

λα∗aa∗α∗ = 0 (4.1)



Page 22 of 51 ROLAND BERGER AND RACHEL TAILLEFER

∑

α∈eQ1f
a∈Q1e

λαa
∗aα = 0 (4.2)

∑

β∈eQ1f
b∈fQ1

µββbb
∗ = 0 (4.3)

∑

β∈fQ1e
b∈Q1f

µβ∗β∗b∗b = 0 (4.4)

∑

α∈eQ1f
a∈eQ1

λαaa
∗α = −

∑

β∈eQ1f
b∈Q1f

µββb
∗b (4.5)

∑

α∈fQ1e
a∈Q1e

λα∗a∗aα∗ = −
∑

β∈fQ1e
b∈fQ1

µβ∗β∗bb∗ (4.6)

Indeed, identity (4.1) follows from the fact that no other path that occurs in the expressions
of u ends with two arrows in Q∗, and the other identities are obtained from similar arguments.
In the path algebra FQ, where there are no relations between paths, the identities (4.1) to

(4.4) above are equivalent to

∀α ∈ fQ1e, ∀a ∈ eQ1, λα∗ = 0 (4.7)

∀α ∈ eQ1f, ∀a ∈ Q1e, λα = 0 (4.8)

∀β ∈ eQ1f, ∀a ∈ fQ1, λβ = 0 (4.9)

∀β ∈ fQ1e, ∀a ∈ Q1f, λβ∗ = 0. (4.10)

We have assumed that u 6= 0, so that either there exists α ∈ eQ1f such that λα 6= 0 or there
exists α ∈ fQ1e such that λα∗ 6= 0, using the first expression of u. We separate the two cases.
Assume that there exists α ∈ eQ1f such that λα 6= 0. Then it follows from identity (4.8)

that Q1e is empty. From (4.5), for all a ∈ eQ1, there exist β ∈ eQ1f and b ∈ Q1f such that
λαaa

∗α = −µββb
∗b. Hence β = a = b = α and therefore eQ1 = {α} = eQ1f and µβ = −λα 6=

0. From (4.9), it follows that fQ1 is empty. Finally, (4.5) becomes

λααα
∗α = λααα

∗α+ λα
∑

b∈Q1f
b6=α

αb∗b

so that
∑

b∈Q1f
b6=α

αb∗b = 0 and hence Q1f = {α} .

We have proved that Q1e = ∅ = fQ1 so that in particular e 6= f , and that Q1f = {α} =
eQ1 = eQ1f . Finally, Q = e

α
← f and ∆ = A2.

In the case where there exists α ∈ fQ1e such that λα∗ 6= 0, a similar proof using (4.7), (4.10)
and (4.6) shows that Q = f

α
← e and ∆ = A2.

As an immediate consequence of Proposition 2.8 and Theorem 4.2, we obtain that in the
Koszul calculus of A(∆), the Koszul cup product is graded commutative and the Koszul cap
product is graded symmetric. The precise statement is the following.

Corollary 4.3. Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6=
A2. We consider an A-bimodule M . For any α ∈ HK•(A,M), β ∈ HK•(A) and γ ∈ HK•(A),
we have the identities

[α, β]⌣
K

= 0, (4.11)

[α, γ]⌢
K

= 0. (4.12)
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The same conclusion holds if ∆ = A1 (obvious) and if ∆ = A2 (because A is Koszul).

4.3. Duality in Koszul (co)homology of preprojective algebras

There is a remarkable duality between Koszul homology and cohomology for preprojective
algebras. This duality is realised as a cap action by a Koszul 2-chain ω0 ∈ A⊗ke R defined for
any graph ∆ by

ω0 =
∑

i∈Q0

ei ⊗ke σi =
∑

i∈Q0

ei ⊗ σi.

From σi =
∑

a∈Q1, t(a)=i ε(a)aa
∗, we get

ω0 =
∑

a∈Q1

1⊗ke ε(a)aa∗ = −
∑

a∈Q1

1⊗ke ε(a)a∗a. (4.13)

Then it is easy to check that ω0 is a Koszul 2-cycle. Being homogeneous of weight 0, ω0 is not
a 2-boundary whenever ∆ 6= A1.
In the following statement, we need the DG algebra Ã and the DG Ã-bimodules

Homke(W•,M) and M ⊗ke W•, introduced just before Definition 2.3.

Theorem 4.4. Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6= A2.
Consider the Koszul 2-cycle ω0 =

∑
i∈Q0

ei ⊗ σi ∈ A⊗ke R. For each Koszul p-cochain f with
coefficients in an A-bimodule M , we define the Koszul (2− p)-chain θM (f) with coefficients in
M by

θM (f) = ω0 ⌢
K
f. (4.14)

Then the equalities

θM⊗AN (f ⌣
K
g) = θM (f)⌢

K
g = f ⌢

K
θN (g) (4.15)

hold for any Koszul cochains f and g with coefficients in A-bimodules M and N respectively.
Moreover the linear map θM : Homke(W•,M)→M ⊗ke W2−• is an isomorphism of DG Ã-

bimodules.
It follows that H(θM ) : HK•(A,M)→ HK2−•(A,M) is an isomorphism of graded HK•(A)-

bimodules and that H(H(θM )) : HK•
hi(A,M)→ HKhi

2−•(A,M) is an isomorphism of graded
HK•

hi(A)-bimodules.

Proof. First we show that f ⌢
K
ω0 = ω0 ⌢

K
f for all f ∈ Homke (Wp,M). Using the definition

of ω0 and the equalities (4.13), (2.7) and (2.8), we obtain for p = 0, 1, 2,

f ⌢
K
ω0 =

∑

i∈Q0

(f(1)ei)⊗ke σi =
∑

i∈Q0

(eif(1))⊗ke σi = ω0 ⌢
K
f,

f ⌢
K
ω0 = −

∑

a∈Q1

ε(a)(f(a∗)1)⊗ke a =
∑

a∈Q1

ε(a)(1f(a))⊗ke a∗ = ω0 ⌢
K
f,

f ⌢
K
ω0 =

∑

i∈Q0

(eif(σi))⊗ke 1 =
∑

i∈Q0

(f(σi)ei)⊗ke 1 = ω0 ⌢
K
f.

Next, for f ∈ Homke(Wp,M) and g ∈ Homke(Wq ,M), we have

θM⊗AN(f ⌣
K
g) = ω0 ⌢

K
(f ⌣

K
g) = (ω0 ⌢

K
f)⌢

K
g = (f ⌢

K
ω0)⌢

K
g = f ⌢

K
(ω0 ⌢

K
g),

providing equalities (4.15). Therefore θM : Homke(W•,M)→M ⊗ke W2−• is a morphism of
graded Ã-bimodules, where Ã is just considered as a graded algebra. It remains to examine
what happens for the Koszul differentials.
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Assuming M = A in the equalities (4.15), we derive

θN ([f, g]⌣
K

) = [θA(f), g]⌢
K

= [f, θN (g)]⌢
K

.

Combining θN ([eA, g]⌣
K

) = [eA, θN (g)]⌢
K

with bK = −[eA,−]⌣
K

and bK = −[eA,−]⌢
K

, we deduce

that θM is a morphism of complexes, thus a morphism of DG Ã-bimodules.
We prove that θM is an isomorphism by giving an inverse map η :M ⊗ke W2−• →

Homke(W•,M). We define ηp :M ⊗ke W2−p → Homke(Wp,M) for p = 0, 1, 2, by

η0(m⊗ke σi)(ej) = δij ejmei

η1(m⊗ke a)(b) = δba∗ ε(b) t(b)m s(b) for any arrows a and b of Q

η2(m⊗ke ei)(σj) = δij ejmei

where δ is the Kronecker symbol. It is routine to verify that these linear maps are well-defined
and form an inverse map for θM .
Finally the isomorphism H(θM ) of graded HK•(A)-bimodules satisfies

H(θM )(eA ⌣
K
α) = eA ⌢

K
H(θM )(α)

for all α ∈ HK•(A,M). ThereforeH(θM ) is a morphism of complexes for higher (co)homologies.
Taking higher (co)homologies, we get a HK•

hi(A)-bimodule isomorphism

H(H(θM )) : HK•
hi(A,M)→ HKhi

2−•(A,M).

By analogy with the Poincaré duality in singular (co)homology [31] and with the Van den
Bergh duality in Hochschild (co)homology [41, 32], we say that the isomorphism

H(θM ) = ω0 ⌢
K
− : HK•(A,M)→ HK2−•(A,M)

is a Poincaré Van den Bergh duality for Koszul (co)homology, of fundamental class ω0, where
ω0 ∈ HK2(A)0. In the next subsection, we extract from this duality a generalisation of the
2-Calabi-Yau property.
Unless ∆ has no loop and charF = 2, the class eA ∈ HK1(A)1 is non-zero, hence

H(θA)(eA) = ω0 ⌢
K

eA = ∂⌢(ω0)

is non-zero in HK1(A)1. Consequently, the fundamental class ω0 of the Poincaré Van den Bergh
duality is not a cycle for the higher Koszul homology, so that the isomorphism H(H(θM ))
cannot be naturally expressed as a cap action.
The class H(θA)(eA) is the class of the Koszul 1-cycle ω0 ⌢

K
eA where

ω0 ⌢
K

eA =
∑

a∈Q1

ε(a)a⊗ke a∗ =
∑

a∈Q1

(a⊗ke a∗ − a∗ ⊗ke a).

It is interesting to view the last element as the image by the canonical linear map can :
V ⊗k V → V ⊗ke V of the element

w =
∑

a∈Q1

(a⊗k a
∗ − a∗ ⊗k a) =

∑

a∈Q1

ε(a)aa∗ ∈ R ⊆ V ⊗k V.

In the identification V ⊗k V ∼= FQ2, V ⊗ke V is identified with the subspace of cycles of length 2
and the map can is identified with the projection whose kernel is the space spanned by the non-
cyclic paths. Since R is generated by the cycles σi, we can make the identification ω0 ⌢

K
eA = w.

The element w was defined in [14, Proposition 8.1.1] as a representative of a bi-symplectic 2-
form ω. Bi-symplectic 2-forms were introduced by Crawley-Boevey, Etingof and Ginzburg as
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an essential ingredient of the Hamiltonian reduction in noncommutative geometry [14]; they
are related to the double Poisson algebras defined by Van den Bergh [42].

Remark 4.5. Assume that ∆ = A2, so that A is defined by the quiver

Q 0
a

((
1

a∗

hh

subject to the relations σ0 = −a∗a, σ1 = aa∗. Then the statement of Theorem 4.4 is valid in a
weaker form, namely the isomorphisms involved are only morphisms. Moreover, θM is bijective
only in degree q, 0 ≤ q ≤ 2, with the same inverse ηq. More generally, for any p ≥ 1, the Koszul
(2p)-cycle

ωp−1 = e1 ⊗ (aa∗)p − e0 ⊗ (a∗a)p

provides a morphism ωp−1 ⌢
K
− which is bijective only in degree q, 0 ≤ q ≤ 2p. From that, we

deduce an isomorphism ωp−1 ⌢
K
− from HKq(A,M) to HK2p−q(A,M) for 0 < q < 2p. Varying

p, we obtain the following duality and 2-periodicity

HKq(A,M) ∼= HKq(A,M) ∼= HK1(A,M), q odd ≥ 1

HKq(A,M) ∼= HKq(A,M) ∼= HK2(A,M), q even ≥ 2.

Using this forM = A, it is straightforward to compute explicitly the restricted Koszul calculus
of A. We leave the details to the reader. Notice that, since A is Koszul, we have the same duality
and 2-periodicity for Hochschild (co)homology, recovering a known result as a consequence of
remarkable isomorphisms due to Eu and Schedler [24, Theorem 2.3.27, Theorem 2.3.47], here
applied to [24, Example 2.3.10, Corollary 2.1.13].

4.4. Deriving an adapted 2-Calabi-Yau property

Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6= A2. Let M be an
A-bimodule. Assume that B is a unital associative algebra such that M is a right B-module
compatible with the A-bimodule structure (see Subsection 3.1). Denote by Mod-B the category
of right B-modules. Recall that Ã denotes the DG algebra (Homke(W•, A), bK ,⌣

K
).

According to Subsection 3.2,M ⊗ke W• and Homke(W•,M) are DG Ã-bimodules in Mod-B.
Moreover, HK•(A,M) and HK•(A,M) are graded HK•(A)-bimodules in Mod-B. Finally,
HKhi

• (A,M) and HK•
hi(A,M) are graded HK•

hi(A)-bimodules in Mod-B.

Lemma 4.6. The map θM : Homke(W•,M)→M ⊗ke W2−• is an isomorphism of DG Ã-
bimodules in Mod-B. Moreover, H(θM ) : HK•(A,M)→ HK2−•(A,M) is an isomorphism of
graded HK•(A)-bimodules in Mod-B, and H(H(θM )) : HK•

hi(A,M)→ HKhi
2−•(A,M) is an

isomorphism of graded HK•
hi(A)-bimodules in Mod-B.

Proof. It is enough to prove that θM : f 7→ ω0 ⌢
K
f is B-linear. For a k-bimodule morphism

f :Wp →M , z = a⊗ke x1 . . . xq ∈ A⊗ke Wq and b ∈ B, we verify the identities

(f.b)⌢
K
z = (f ⌢

K
z).b and z ⌢

K
(f.b) = (z ⌢

K
f).b.

The first one uses the fact that the right actions of A and B on M commute, while the second
one uses the fact that M is an A-B-bimodule (see (iii) in Lemma 3.1). Applying the second
one to z = ω0, we obtain that θM is B-linear.
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We specialise this lemma to M = B = Ae and, using the isomorphism ϕ̃ in Subsection 3.3,
we identify Ae ⊗ke W• with K(A) to get the next proposition.

Proposition 4.7. Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and
∆ 6= A2. The map

θAe : Homke(W•, A
e)→ K(A)2−•

is an isomorphism of DG Ã-bimodules in A-Bimod. Moreover,

H(θAe) : HK•(A,Ae)→ H2−•(K(A))

is an isomorphism of graded HK•(A)-bimodules in A-Bimod.

The homology of K(A) is isomorphic to A in degree 0, and to 0 in degree 1, hence we obtain
a generalisation of the 2-Calabi-Yau property, formulated as follows.

Theorem 4.8. Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6= A2.
Then the HK•(A)e-Ae-bimodules HK•(A,Ae) and H2−•(K(A)) are isomorphic. In particular,
we have the following.
(i) The A-bimodule HK2(A,Ae) is isomorphic to the A-bimodule A.
(ii) HK1(A,Ae) = 0.
(iii) The A-bimodule HK0(A,Ae) is isomorphic to the A-bimodule H2(K(A)).

Since H1(K(A)) ∼= HK1(A,Ae) = 0, the higher Koszul differentials vanish. Therefore
Hhi

p (K(A)) ∼= Hp(K(A)), HKp
hi(A,A

e) ∼= HKp(A,Ae) and H(H(θAe)) ∼= H(θAe).
From the generator 1⊗k 1 of the A-bimodule H0(K(A)), we draw from (i) a generator of

the free A-bimodule HK2(A,Ae) defined as the class of f : R→ A
o
⊗ A with f(σi) = ei ⊗ ei for

any i.
In (iii), the A-bimodules are never 0 when ∆ is Dynkin of types ADE since A is not Koszul

in this case. This situation is drastically different from the 2-Calabi-Yau property defined by
Ginzburg in terms of the Hochschild cohomology spaces HHp(A,Ae) [28, §3.2]. In Ginzburg’s
definition, HHp(A,Ae) = 0 for all p < 2.

5. Generalisations of Calabi-Yau algebras

5.1. Duality for Koszul complex Calabi-Yau algebras

From Theorem 4.8, we are led to introduce a general definition in the framework of quiver
algebras with homogeneous quadratic relations (see Section 2). The notation introduced in
Section 2 stands throughout. We are interested in quadratic k-algebras A = Tk(V )/(R) over a
finite quiver Q as defined in Subsection 2.1, and in the Koszul calculus of A as presented in the
remainder of Section 2. Note that Q1 = Q1 if we want to specialise to preprojective algebras.
For the definition of the bounded derived category Db(C) of an abelian category C, we refer

to [44, Chapter 10]. Recall that A-Bimod denotes the category of A-bimodules.

Definition 5.1. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Let n > 0 be an
integer. We say that A is Koszul complex Calabi-Yau (Kc-Calabi-Yau) of dimension n, or
n-Kc-Calabi-Yau, if
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(i) the Koszul bimodule complex K(A) of A has length n, and
(ii) RHomAe(K(A), Ae) ∼= K(A)[−n] in Db(A-Bimod).

Property (ii) is equivalent to saying that there is an A-bimodule quasi-isomorphism from
Homke(W•, A

e) to K(A[−n]. According to Theorem 4.2 and Proposition 4.7, a preprojective
algebra A(∆) over F with ∆ 6= A1 and ∆ 6= A2 is Kc-Calabi-Yau of dimension 2. In fact, the
isomorphism θAe induces an isomorphism RHomAe(K(A), Ae)→ K(A)[−2] in Db(A-Bimod).
Let us recall Ginzburg’s definition of Calabi-Yau algebras [28, Definition 3.2.3] as reformu-

tated by Van den Bergh [43, Definition 8.2]. We shall apply this definition to quadratic quiver
algebras by considering it as F-algebras.

Definition 5.2. An associative F-algebra A is said to be Calabi-Yau of dimension n if
(i) A is homologically smooth, that is, A has a bounded resolution by finitely generated

projective A-bimodules,
(ii) RHomAe(A,Ae) ∼= A[−n] in Db(A-Bimod).

Definition 5.1 is a true generalisation of Definition 5.2 for quadratic quiver algebras. If ∆
is Dynkin of type ADE, A(∆) is not Calabi-Yau in Ginzburg’s definition since A(∆) is not
homologically smooth in this case (the minimal projective resolution of A(∆) has infinite
length). However, the two definitions coincide if A is Koszul.

Proposition 5.3. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Assume that A is
Koszul. Then A is n-Kc-Calabi-Yau if and only if A is n-Calabi-Yau.

Proof. Assume that A is n-Kc-Calabi-Yau. Property (i) and the fact that A is Koszul
show that A is homologically smooth. Furthermore, K(A) ∼= A in Db(A-Bimod). Thus
RHomAe(A,Ae) ∼= A[−n] in Db(A-Bimod), and we recover Definition 5.2.
Assume that A is n-Calabi-Yau. We know that n is equal to the projective dimension of the

A-bimodule A [41] which in turn is equal to the length of a minimal projective resolution of A
(see for instance [5]). Hence K(A) has length n and K(A) ∼= A in Db(A-Bimod), which allows
us to conclude that A is n-Kc-Calabi-Yau.

If the graph ∆ is not Dynkin ADE, we know that A(∆) is Koszul (Proposition 4.1), thus we
recover the fact that A(∆) is 2-Calabi-Yau [14, 9].
In Subsection 2.8, we have seen that K(A) and the minimal projective resolution P (A)

coincide up to the homological degree 2. Therefore, if n ∈ {0, 1} and if A is n-Calabi Yau or n-
Kc-Calabi-Yau, then P (A) = K(A) so that A is Koszul, and it follows that the two definitions
are equivalent when n ∈ {0, 1}.

Proposition 5.4. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Then A is Calabi-
Yau of dimension 0 if and only if Q1 = ∅.

We leave the proof as an exercise. If A is Calabi-Yau of dimension 1, then R = 0, that is,
A = Tk(V ) ∼= FQ with Q1 6= ∅. It is indeed 1-Calabi-Yau if Q has only one vertex and one loop,
but we have not yet found other examples when Q is connected.
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If A is n-Calabi-Yau, the Van den Bergh duality theorem states that the vector spaces
HHp(A,M) and HHn−p(A,M) are isomorphic [41]. From Definition 5.1, we draw an analogous
duality theorem for Koszul homology/cohomology.

Theorem 5.5. Let A be a Koszul complex Calabi-Yau algebra of dimension n over Q.
Then for any A-bimodule M , the vector spaces HKp(A,M) and HKn−p(A,M) are isomorphic.

Proof. Denote by VectF the category of F-vector spaces. For any A-bimodule M , the left

derived functor M
L
⊗Ae − and the right derived functor RHomAe(−,M) are defined from

Db(A-Bimod) to Db(VectF) [44, Chapter 10].
Our proof is based on a natural transformation depending on an A-bimodule M . Let F :

A-Bimod→ VectF be the functor F : N 7→ HomAe(N,M) whereM and N are seen as right Ae-
modules. Specialising to M = Ae in F , we define a functor G : A-Bimod→ A-Bimod. Let H :
A-Bimod→ VectF be the functor H : N ′ 7→M ⊗Ae N ′ where N ′ is viewed as a left Ae-module.
Then we define a linear map

φM :M ⊗Ae HomAe(N,Ae)→ HomAe(N,M)

by φM (m⊗Ae g)(x) = m.g(x) form ∈M , g ∈ HomAe(N,Ae) and x ∈ N . This map is functorial
in N , defining a natural transformation φM : H ◦G⇒ F .
If the A-bimodule P is projective and finitely generated,

φM :M ⊗Ae HomAe(P,Ae)→ HomAe(P,M)

is an isomorphism. It is standard, see e.g. [11, Proposition (8.3) (c)]. Then for any bounded
chain complex C of finitely generated projective A-bimodules, φM induces in Db(VectF) an
isomorphism

M
L
⊗Ae RHomAe(C,Ae) ∼= RHomAe(C,M). (5.1)

Applying it to C = K(A) and using (ii) in Definition 5.1, we get an isomorphism

RHomAe(K(A),M) ∼=M
L
⊗Ae K(A)[−n]

in Db(VectF). Taking homology, we deduce that HKp(A,M) ∼= HKn−p(A,M) as vector spaces.

5.2. Koszul complex Calabi-Yau algebras versus Calabi-Yau algebras

Recall that if ∆ 6= A1 and ∆ 6= A2, then A(∆) is 2-Kc-Calabi-Yau. But observe that if A(∆)
is moreover 2-Calabi-Yau, then A(∆) is Koszul. We are led to the following conjecture.

Conjecture 5.6. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. If A is n-Calabi-
Yau and n-Kc-Calabi-Yau, then A is Koszul. In other words, if A is not Koszul, the properties
n-Calabi-Yau and n-Kc-Calabi-Yau are not simultaneously true.

Proposition 5.7. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Conjecture 5.6
holds if n 6 3.

Proof. Assume that A is n-Calabi-Yau and n-Kc-Calabi-Yau. We can assume that
n > 2. Since HKp(A,Ae) ∼= HHp(A,Ae) = 0 when p = 0 and p = 1, we have Hn(K(A)) ∼=
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Hn−1(K(A)) = 0, hence A is Koszul if n = 2. When n = 3, we also haveH1(K(A)) = 0 because
the complex K(A) is always exact in degree 1, therefore A is also Koszul in this case.

5.3. Strong Kc-Calabi-Yau algebras

Definition 5.8. Let A be an n-Kc-Calabi-Yau algebra over Q. The image c ∈ HKn(A) of
the unit 1 of the algebra A by the isomorphism HK0(A) ∼= HKn(A) in Theorem 5.5 is called
the fundamental class of the n-Kc-Calabi-Yau algebra A.

We shall now define strong Kc-Calabi-Yau algebras. For this, we need the DG algebra Ã =
HomAe(K(A), A)) and we work with DG Ã-bimodules in A-Bimod, as defined in Section 3 and
recalled below. The point is that K(A) is such a DG Ã-bimodule in A-Bimod (Proposition 3.6).
Denote by C(Ã, A-Bimod) and C(Ã,VectF) the category of DG Ã-bimodules in A-Bimod and
VectF respectively [45]. Remark that a DG Ã-bimodule in VectF is just a DG Ã-bimodule.

Definition 5.9. A DG Ã-bimodule C in A-Bimod is a chain complex in A-Bimod (as usual,
C can be viewed as a cochain complex) endowed with a DG Ã-bimodule structure such that
the bimodule actions of A and Ã are compatible.

For any A-bimodule M , HomAe(C,M) is a (cochain) DG Ã-bimodule in VectF (in A-Bimod

when M = Ae) for the following actions

(f.u)(x) = (−1)pu(x.f), (u.f)(x) = u(f.x)

where f : A⊗k Wp ⊗k A→ A, u : Cq →M and x ∈ Cp+q. Note that x.f and f.x are in Cq by
the graded actions of Ã on C. If C = K(A), we recover the cup actions, that is, f.u = f ⌣

K
u

and u.f = u ⌣
K
f . In particular, HomAe(K(A), Ae) is a DG Ã-bimodule in A-Bimod.

Similarly, for any cochain DG Ã-bimodule C′ in A-Bimod, M ⊗Ae C′ is a cochain DG Ã-
bimodule in VectF for the following actions

f.(m⊗Ae u) = m⊗Ae (f.u), (m⊗Ae u).f = m⊗Ae (u.f)

where f ∈ Ã, m ∈M and u ∈ C′.
The bounded derived categories Db(Ã, A-Bimod) and Db(Ã,VectF) are defined in [45,

Definition 7.2.7, Definition 7.3.3]. Unfortunately, it is not clear to us if the
functors HomAe(−,M) : Cb(Ã, A-Bimod)→ Cb(Ã,VectF) and M ⊗Ae − : Cb(Ã, A-Bimod)→
Cb(Ã,VectF) can be derived. Note that the first one takes values in Cb(Ã, A-Bimod) when
M = Ae.

Definition 5.10. Let A be a Kc-Calabi-Yau algebra of dimension n. Then A is said
to be strong n-Kc-Calabi-Yau if the derived functor of the endofunctor HomAe(−, Ae) of
Cb(Ã, A-Bimod) exists and if RHomAe(K(A), Ae) ∼= K(A)[−n] in Db(Ã, A-Bimod).

The preprojective algebras of connected graphs distinct from A1 and A2 are strong 2-Kc-
Calabi-Yau algebras if they satisfy the first property in this definition. In fact, using Proposition
4.7, θAe provides then an isomorphism RHomAe(K(A), Ae)→ K(A)[−2] in Db(Ã, A-Bimod).

Theorem 5.11. Let A be a Kc-Calabi-Yau algebra of dimension n over Q, with funda-
mental class c. We assume that A is strong Kc-Calabi-Yau and that the derived functors of
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the functors HomAe(−, A) and A⊗Ae − from Cb(Ã, A-Bimod) to Cb(Ã,VectF) exist. Then

c ⌢
K
− : HK•(A)→ HKn−•(A)

is an isomorphism of HK•(A)-bimodules, inducing an isomorphism of HK•
hi(A)-bimodules from

HK•
hi(A) to HKhi

n−•(A). For all α ∈ HKp(A), we have c ⌢
K
α = (−1)npα ⌢

K
c.

Proof. Following the proof of Theorem 5.5, we are interested in the morphism of cochain
complexes

φM :M ⊗Ae HomAe(C,Ae)→ HomAe(C,M),

when the bounded chain complex C of A-bimodules is moreover a DG Ã-bimodule in A-Bimod.
We prove now that φM is a morphism of DG Ã-bimodules in VectF, that is, a morphism in the
category Cb(Ã,VectF) whose objects are viewed as cochain complexes. For this, we need only
prove that φM is a morphism of Ã-bimodules. Let us prove that φM is left Ã-linear, the right
linearity being similar. For f : A⊗k Wp ⊗k A→ A, u : Cq → Ae and x ∈ Cp+q, we have

φM (f.(m⊗Ae u))(x) = φM (m⊗Ae (f.u))(x) = m.((f.u)(x)) = (−1)pm.(u(x.f)),

while f.(φM (m⊗Ae u))(x) = (−1)pφM (m⊗Ae u)(x.f) = (−1)pm.(u(x.f)), which is what we
want.
Continuing as in the proof of Theorem 5.5, the functors F , G and H induce functors on the

complexes with enriched structures. Precisely, F and G are now functors from Cb(Ã, A-Bimod)
to Cb(Ã,VectF), and H is now an endofunctor of Cb(Ã, A-Bimod). Under these notations, φM
defines a natural transformation φM : H ◦G⇒ F .
We specialise to M = A. The assumptions in the theorem show that the derived functors

of F , G and H exist, so that we can derive the natural transformation φA [45]. Then for any
bounded chain complex DG Ã-bimodule C in A-Bimod formed by finitely generated projective
A-bimodules, we obtain an isomorphism

φA : A
L
⊗Ae RHomAe(C,Ae) ∼= RHomAe(C,A) (5.2)

in Db(Ã,VectF). Applying this to C = K(A) and using Definition 5.10, we get

RHomAe(K(A), A) ∼= A
L
⊗Ae K(A)[−n]

in Db(Ã,VectF). Taking homology, we deduce an isomorphism HK•(A) ∼= HKn−•(A) of graded
bimodules over the graded algebra H(Ã) = HK•(A). Denote this isomorphism by ψ.
The fact that ψ is a morphism of graded HK•(A)-bimodules translates as

ψ(α ⌣
K
β) = ψ(α)⌢

K
β = (−1)npα ⌢

K
ψ(β) (5.3)

for any α ∈ HKp(A) and β ∈ HK•(A). In accordance with Definition 5.8, define c ∈ HKn(A) by
c = ψ(1) where 1 ∈ HK0(A) is the unit of A. Applying identities (5.3) to the trivial equalities
α = 1⌣

K
α = α ⌣

K
1, we obtain

ψ(α) = c ⌢
K
α = (−1)npα ⌢

K
c. (5.4)

Finally ψ is a morphism of complexes for higher (co)homologies since we have

ψ(eA ⌣
K
α) = (−1)n eA ⌢

K
ψ(α).

Then H(ψ) : HK•
hi(A)→ HKhi

n−•(A) is an isomorphism of HK•
hi(A)-bimodules.
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Except in some particular cases, eA ∈ HK1(A) is non-zero, so that

ψ(eA) = (−1)n eA ⌢
K
c = (−1)n∂⌢(c)

is non-zero in HKn−1(A). Therefore c ∈ HKn(A) is not a cycle for higher Koszul homology
and the isomorphism H(ψ) cannot be naturally expressed as a cap action. As suggested by
the preprojective algebras (Subsection 4.3), the class ψ(eA) should be of interest for further
investigations.
It is also interesting to remark that the identities (5.3) involving the isomorphism ψ imply

that the graded algebra HK•(A) is commutative if and only if the graded HK•(A)-bimodule
HK•(A) is symmetric. As seen in Corollary 4.3, we have a stronger result for the preprojective
algebras.

6. Koszul calculus of the preprojective algebras of Dynkin ADE type

We shall determine in this section the Koszul calculus and the higher Koszul calculus of
any non-Koszul preprojective algebra A, that is, an algebra of type A, D or E with at least 3
vertices.
We first give some general facts and notation.

(N1) We shall use the dimensions of the Hochschild cohomology and homology spaces
of A which can be obtained in all characteristics as a consequence of the work of
Etingof, Eu and Schedler in [24, Theorem 3.2.7] and [21]. In particular, by [24,
Lemma 3.2.17] the centre of A is independent of the characteristic of F. Bases of
the Hochschild (co)homology spaces in characteristic zero induce free subsets of the
Hochschild (co)homology spaces in positive characteristic, but there may be some extra
basis elements in some cases.

(N2) We know from Corollary 4.3 that the cup product on the Koszul cohomology of
a preprojective algebra is graded commutative and that the cap product is graded
symmetric. Moreover, it follows from Theorem 4.4 that the cap product can be obtained
from the cup product. Indeed, if f ∈ HKp(A) and x ∈ HKq(A), we have

f ⌢
K
x = θA(f ⌣

K
θ−1
A (x)) = θA((−1)

pqθ−1
A (x)⌣

K
f) = (−1)pqx ⌢

K
f. (6.1)

(N3) Let X and Y be N-graded spaces and let f : X → Y be a homogeneous map of degree 1.
Let y1, . . . , yp be elements of pairwise different degrees. Then if

∑p
i=1 yi ∈ Im f , at least

one of the yi is in Im f . We shall use this in the following context. The differentials b1K
and b2K are homogeneous of weight 1. If we have a set of cocycles of pairwise different
coefficient weights, that are not coboundaries, then they are linearly independent up to
coboundaries, that is, they represent linearly independent cohomology classes. This also
applies if some of the elements have the same weight but we already know that these
elements are linearly independent up to coboundaries.

(N4) We shall use the map κ : A→ A constructed as follows. Let A be a preprojective algebra
over a graph ∆; let Q be its quiver. Consider the map Q1 → Q1 that sends a to a∗. It
induces an anti-automorphism κ of A such that κ(ei) = ei for all i ∈ Q0 (since κ sends
the relation σi =

∑
a∈Q1

t(a)=i

ε(a)aa∗ to itself).

(N5) We shall be using the Nakayama automorphism ν of A defined by Brenner, Butler and
King for all preprojective algebras of Dynkin ADE type [10, Section 4].
In order to describe it, we need the Nakayama permutation ν on the set of vertices of ∆.
It is known that ν = id if ∆ is Dn with n even or if ∆ is E7 or E8, and that otherwise ν
is induced by the unique graph automorphism of order 2.
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If α is an arrow in Q1, let β be the unique arrow from ν(s(α)) to ν(t(α)). The Nakayama
automorphism of [10] is described as follows:

ν(α) =

{
β if α ∈ Q∗

1 or β ∈ Q∗
1

−β if α ∈ Q1 and β ∈ Q1.

Given a basis of a selfinjective quiver algebra A = FQ/I consisting of paths and
containing a basis {πi ; i ∈ Q0} of the socle of A, an explicit construction of an
associative non-degenerate bilinear form on A was given in [46, Proposition 3.15] (see
also Subsection 6.6). We have chosen in each case such a basis so that ν is the Nakayama
automorphism corresponding to this bilinear form (characterised on the arrows α in Q1

by yα = πs(α) ⇔ ν(α)y = πt(α) for all the basis elements y).
(N6) When we define a cochain f ∈ Homke(X,A) with X ∈ {k, V,A}, it will be implicit that

if f(x) is not defined for some x ∈ X then f(x) = 0.
(N7) For any cochain f ∈ Homke(Wp, A), we shall set f̌ = θA(f) ∈ A⊗ke W2−p.
(N8) Finally, given a Dynkin graph ∆ and a ring L, we shall denote by ΛL the preprojective

algebra of ∆ over L, so that A = ΛF.

6.1. Koszul calculus for preprojective algebras of type A

The preprojective algebra A of type An is defined by the quiver

Q 0

a0

((
1

a1

((

a∗

0

hh 2

a2 **

a∗

1

hh · · ·
a∗

2

hh

an−3 ,,
n− 2

a∗

n−3

jj

an−2 ,,
n− 1

a∗

n−2

ll

subject to the relations




σ0 = −a∗0a0

σi = ai−1a
∗
i−1 − a

∗
i ai 1 6 i 6 n− 2

σn−1 = an−2a
∗
n−2

The Nakayama automorphism ν of A described in (N5) is given by ν(ei) = en−1−i, ν(ai) =
a∗n−2−i and ν(a

∗
i ) = an−2−i.

Erdmann and Snashall have given in [18] a basis B of A. We shall only need the sets eiBei,
eiBei+1 and ei+1Bei, which can be rewritten as follows: set mA =

⌊
n−1
2

⌋
; then

eiBei =
{
(a∗i ai)

ℓ; 0 6 ℓ 6 min(i, n− 1− i)
}

for 0 6 i 6 n− 1, with (a∗i ai)
0 = ei for all i,

ei+1Bei =
{
ai(a

∗
i ai)

ℓ; 0 6 ℓ 6 min(i, n− 2− i)
}

and eiBei+1 = κ(ei+1Bei).

For each i, Aei contains precisely one basis element of maximal length n− 1, which is

πi =





an−2 · · · ai(a∗i ai)
i if i < mA

amA
(a∗mA

amA
)mA if i = mA and n is even

(a∗mA
amA

)mA if i = mA and n is odd

a∗n−i−1 · · · a
∗
i−1(ai−1a

∗
i−1)

n−1−i if i > mA.

They form a basis of the socle of A.

6.1.1. The Koszul cohomology and homology spaces in type A The spaces HK0(A) =
HH0(A) = Z(A) and HK1(A) = HH1(A) are known from [18]. Therefore we only need to
compute HK2(A). Recall our assumption that n > 3; then by Theorem 4.2 all the elements
in Homke(R,A) are cocycles. Moreover, using Theorem 4.4 and [24, Theorem 3.2.7], we have
dimHK2(A) = dimHK0(A) = dimHH0(A) = n. Since every element in Im b2K has coefficient
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weight at least 1, the n cocycles hi defined by hi(σj) = δijei for all j are linearly independent
modulo Im b2K . It follows that they form a basis of HK2(A).
Combining with the results from [18], we have the following result.

Proposition 6.1. Let A be a preprojective algebra of type An.
A basis of HK0(A) is given by the set {zℓ; 0 6 ℓ 6 mA} with z0 = 1 and zℓ =

∑n−2
i=1 (a

∗
i ai)

ℓ =∑n−1−ℓ

i=ℓ (a∗i ai)
ℓ = zℓ1 for 1 6 ℓ 6 mA.

A basis of HK1(A) is given by the set
{
ζℓ; 0 6 ℓ 6 n− 2−mA

}
, where ζℓ ∈ Homke(V,A) is

defined by ζℓ(ai) = ai(a
∗
i ai)

ℓ for all i (or for ℓ 6 i 6 n− 2− ℓ).
A basis of HK2(A) is given by the set

{
hi; 0 6 i 6 n− 1

}
where hi ∈ Homke(R,A) defined

by hi(σj) = δijei for all j.

As a consequence of Theorem 4.4, we obtain bases of the Koszul homology spaces.

Corollary 6.2. A basis of HK0(A) is given by the set
{
ȟi; 0 6 i 6 n− 1

}
where ȟi =

ei ⊗ ei.

A basis ofHK1(A) is given by the set
{
ζ̌ℓ; 0 6 ℓ 6 n−mA − 2

}
where ζ̌ℓ =

∑n−2
i=0 ai(a

∗
i ai)

ℓ ⊗

a∗i =
∑n−2−ℓ

i=ℓ ai(a
∗
i ai)

ℓ ⊗ a∗i . A basis of HK2(A) is given by the set {žℓ; 0 6 ℓ 6 mA} where

žℓ =
∑n−1

i=0 (a
∗
i ai)

ℓ ⊗ σi.

Note that ž0 = ω0 is the fundamental class.

6.1.2. Cup and cap products We know from Corollary 4.3 that the cup product on HK•(A)
is graded-commutative. The following result gives all the non zero cup products of elements in
HK•(A).

Proposition 6.3. Let A be a preprojective algebra of type An. Up to graded commuta-
tivity, the non zero cup products in HK•(A) are given by

z0 ⌣
K
f = f for all f ∈ HK•(A)

zℓ1 ⌣
K
zℓ2 = zℓ1+ℓ2 if ℓ1 + ℓ2 6 mA

zℓ1 ⌣
K
ζℓ2 = ζℓ1+ℓ2 if ℓ1 + ℓ2 6 n−mA − 2

Proof. The first cup product is clear and the other cup products in the statement only
involve in HH0(A) and HH1(A), therefore they are known from [18].
The basis elements of HK2(A) have coefficient weight 0, and b2K is homogeneous of weight

1, therefore any element that has positive coefficient weight must be a coboundary. The other
cup products (that all vanish) follow from this.

We now deduce the cap products from (6.1).

Corollary 6.4. Up to graded symmetry, the non zero cap products are the following.

z0 ⌢
K
x = x for all x ∈ HK•(A)

zℓ1 ⌢
K
žℓ2 = žℓ1+ℓ2 if ℓ1 + ℓ2 6 mA
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zℓ1 ⌢
K
ζ̌ℓ2 = ζ̌ℓ1+ℓ2 if ℓ1 + ℓ2 6 n−mA − 2

6.1.3. Higher Koszul cohomology and homology We start with a lemma giving the
cohomology class of the fundamental 1-cocycle.

Lemma 6.5. The cohomology class of eA is equal to the cohomology class of 2ζ0.

Proof. Let ζ∗0 ∈ Homke(V,A) be the cocycle defined by ζ∗0 (a
∗
i ) = a∗i for all i ∈ Q0. Since

eA = ζ0 + ζ∗0 , we must prove that ζ∗0 − ζ0 is a coboundary.
Consider v =

∑n−2
i=0

∑n−2
j=i ei ∈

⊕
i∈Q0

eiAei ∼= Homke(k,A). Then b1K(v) = ζ∗0 − ζ0, as
required.

As a consequence, the complex defining the higher Koszul cohomology is

0→ HK0(A)
∂1

⌣−−→ HK1(A)
∂2

⌣−−→ HK2(A)→ 0 · · ·

with ∂1⌣(zℓ) = 2ζℓ for 0 6 ℓ 6 n−mA − 2 and ∂2⌣ = 0. We then have the following higher
Koszul cohomology.

Proposition 6.6. Let A be a preprojective algebra of type An. If char(F) = 2, then
HK•

hi(A) = HK•(A).
If char(F) 6= 2 and n is even, then

HK2
hi(A) = HK2(A)

HKp
hi(A) = 0 if p 6= 2.

Finally, if char(F) 6= 2 and n is odd, then

HK0
hi(A) = HK0(A)2mA

has dimension 1 and is spanned by zmA

HK2
hi(A) = HK2(A)

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

Higher Koszul homology can then be deduced using duality (Theorem 4.4).

Corollary 6.7. If char(F) = 2, then HKhi
• (A) = HK•(A).

If char(F) 6= 2 and n is even, then

HKhi
0 (A) = HK0(A)

HKhi
p (A) = 0 if p 6= 0.

Finally, if char(F) 6= 2 and n is odd, then

HKhi
0 (A) = HK0(A)

HKhi
2 (A) = HK2(A)2mA

has dimension 1 and is spanned by žmA

HKhi
p (A) = 0 if p 6= 0 and p 6= 2.
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6.2. Koszul calculus for preprojective algebras of type D

The preprojective algebra A of type Dn is defined by the quiver

0
a0

��
Q 2a∗

0

XX

a2

((

a∗

1tt

3

a3

((

a∗

2

hh 4

a4 **

a∗

3

hh · · ·
a∗

4

hh

an−3 ,,
n− 2

a∗

n−3

jj

an−2 ,,
n− 1

a∗

n−2

ll

1

a1

44

subject to the relations

σ0 = −a∗0a0 σi = ai−1a
∗
i−1 − a

∗
i ai 3 6 i 6 n− 2

σ1 = −a∗1a1 σn−1 = an−2a
∗
n−2

σ2 = a0a
∗
0 + a1a

∗
1 − a

∗
2a2

The Nakayama automorphism ν of A described in (N5) is given by ν(ei) = ei, ν(ai) = −a
∗
i

and ν(a∗i ) = ai if n is even of if n is odd and i > 2, and it exchangess e0 and e1, a0 and −a1,
and a∗0 and a∗1 if n is odd.
Eu has given in [22] a basis B of A. Set mD =

⌊
n−2
2

⌋
and u = n−mD − 2. We shall only

need bases of the ejAei when i and j are equal or adjacent vertices, which can be rewritten as
follows:

e0Be0 =
{
(a∗0a1a

∗
1a0)

ℓ; 0 6 ℓ 6 mD

}

e1Be1 =
{
(a∗1a0a

∗
0a1)

ℓ; 0 6 ℓ 6 mD

}

eiBei =
{
(a∗i ai)

ℓ; 0 6 ℓ 6 n− i− 1
}

∪
{
(a∗i ai)

ℓai−1 · · · a2a1a
∗
1a

∗
2 · · ·a

∗
i−1; 0 6 ℓ 6 n− i− 1

}
if i > 2

e2Bei =
{
(a∗2a2)

ℓai; 0 6 ℓ 6 n− 3
}

for i ∈ {0, 1}

ei+1Bei =
{
(a∗i+1ai+1)

ℓai; 0 6 ℓ 6 n− i− 2
}

∪
{
(a∗i+1ai+1)

ℓai · · · a2a1a
∗
1a

∗
2 · · · a

∗
i−1; 0 6 ℓ 6 n− i− 2

}
if i > 2

eiBei+1 = κ(ei+1Bei), eiBe2 = κ(e2Be0) for i ∈ {0, 1} .

For each i, Aei contains precisely one basis element of maximal length 2(n− 2), which is

π0 = −a∗0a
∗
2a

∗
3 · · · a

∗
n−2an−2 · · · a3a2a0 =

{
−(a∗0a1a

∗
1a0)

mD if n is even

−a∗1a0(a
∗
0a1a

∗
1a0)

mD if n is odd

π1 = a∗1a
∗
2a

∗
3 · · · a

∗
n−2an−2 · · · a3a2a1 =

{
(a∗1a0a

∗
0a1)

mD if n is even

a∗0a1(a
∗
1a0a

∗
0a1)

mD if n is odd

πi = (a∗i ai)
n−i−1ai−1 · · · a2a1a

∗
1a

∗
2 · · · a

∗
i−1 if 2 6 i 6 n− 2

πn−1 = an−2an−3 · · ·a1a
∗
1a

∗
2 · · ·a

∗
n−2.

They form a basis of the socle of A.

6.2.1. The Koszul cohomology and homology spaces in type D The centre of A does not
depend on the characteristic of F by fact (N1) and was computed in [22] in characteristic 0.
A basis of HH1(ΛC) was determined in [22]. Moreover, dimHK1(A) = dimHH1(A), which is
equal to dimHH1(ΛC) = n if char(F) 6= 2 and to dimHH1(ΛC) +m if char(F) = 2 by [24].
It also follows from Theorem 4.4 and [24] that dimHK2(A) = dimHK0(A) = dimHH0(A),

which is equal to n−mD − 2 if char(F) 6= 2 and to n− 2 if char(F) = 2.
In order to give bases of the HKp(A) for p = 0, 1, 2, we define the following cochains:
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– the elements z0 = 1 and zℓ = (a∗0a1a
∗
1a0)

ℓ + (a∗1a0a
∗
0a1)

ℓ +
∑n−2

i=2 (a
∗
i ai)

2ℓ = zℓ1 for ℓ > 0
in A. Note that if n is even, then zu1 = zmD

1 = −π0 + π1, but if n is odd then zu1 = 0;
– the elements ζℓ ∈ Homke(V,A) with 0 6 ℓ 6 u− 1 defined by ζℓ(ai) = aizℓ for all i;
– the elements ρℓ ∈ Homke (V,A) with 0 6 ℓ 6 mD − 1 where ρℓ(ai) = (a∗2a2)

2ℓ+1ai for
i = 0, 1 and ρℓ(a

∗
i ) = a∗i (a

∗
2a2)

2ℓ+1 for i = 0, 1;
– the elements hj ∈ Homke(R,A) for 0 6 j 6 n− 1, where hj(σi) = δijej;
– the elements γℓ ∈ Homke (R,A) for 1 6 ℓ 6 mD where γℓ(σ0) = (a∗0a1a

∗
1a0)

ℓ.

Proposition 6.8. Let A be a preprojective algebra of type Dn.
(i) The elements in {πi; 0 6 i 6 n− 1 and ν(ei) = ei} ∪ {zℓ; 0 6 ℓ 6 u− 1} form a basis of

HK0(A).
(ii) If char(F) 6= 2, the ζℓ, for 0 6 ℓ 6 u− 1, form a basis of HK1(A).

If char(F) = 2, the ζℓ for 0 6 ℓ 6 u− 1 and the ρℓ for 0 6 ℓ 6 mD − 1 form a basis of
HK1(A).

(iii) If char(F) 6= 2, the hj for 0 6 j 6 n− 1 form a basis of HK2(A).
If char(F) = 2, the hj for 0 6 j 6 n− 1 and the γℓ for 1 6 ℓ 6 mD form a basis of HK2(A).

Proof. The results for HK0(A) and, when char(F) 6= 2, for HK1(A) follow from the
comments before the proposition.
Assume that char(F) = 2. In order to prove the result for HK1(A), we must prove that the

elements we have considered in Homke (V,A) are cocycles that are linearly independent modulo
coboundaries. It is in fact enough to prove that the ρℓ are cocycles that are not coboundaries
by fact (N3).
First note that, at the level of cochains, ρℓ = ρ0 ⌣

K
zℓ. Therefore, to prove that ρℓ is a cocycle,

it is enough to prove that ρ0 is a cocycle, and this is easy to check.
Since ρℓ ⌣

K
zmD−1−ℓ = ρmD−1, in order to prove that ρℓ is not a coboundary for all ℓ, it

is enough to prove that ρmD−1 is not a coboundary. The map ρmD−1 has coefficient weight
4mD − 1. If ρmD−1 is a coboundary, then it is the image of a morphism in Homke(k,A) ∼=⊕

i∈Q0
eiAei whose coefficients are linear combinations of cycles in A of weight 4mD − 2,

which are known. It is then straightforward to show that the image of any such morphism
under b1K is not equal to ρmD−1.
For (iii), we first observe that every cochain in Homke(R,A) is a cocycle. Moreover, the hj

are n cocycles that are clearly linearly independent modulo coboundaries (all coboundaries
have coefficient weight at least equal to 1). Therefore if char(F) 6= 2, the result follows.
If char(F) = 2, it is enough to prove that the γℓ are not coboundaries by fact (N3). At

the level of cochains, γℓ ⌣
K
zmD−ℓ = γmD

for 1 6 ℓ 6 mD, therefore it is enough to prove that

γmD
is not a coboundary. The map γmD

has coefficient weight 4mD, therefore if γmD
is a

coboundary, then it is the image of a morphism in Homke(V,A) whose coefficients are linear
combinations of elements of weight 4mD − 2 in A between two adjacent vertices in Q0, which
are known. Here again, checking that that the image of any such morphism under b2K is not
equal to γmD

is straightforward.

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.

6.2.2. Cup and cap products We now determine the cup products of the elements in the
bases of the Koszul cohomology spaces given above.

Lemma 6.9. For 1 6 i 6 n− 2, consider the cochains ui, vi and wi in Homke(R,A) defined
by ui(σj) = δijeiz1, vi(σj) = δijπi and wi(σj) = δija

∗
i aiz1 for all j ∈ Q0.
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If char(F) 6= 2, the ui, vi and wi are all coboundaries.
If char(F) = 2, then the ui for i > 2 are coboundaries, and u0 = u1 = γ1. Moreover, if n is

odd, all the vi are coboundaries and if n is even, then vi = γmD
for all i. Finally, the wi are

all coboundaries.

Proof. Every element in Homke(R,A) is a cocycle. Moreover, the differential b2K is
homogeneous of degree 1 with respect to the coefficient weight, and the coefficient weight
of all the basis elements in HK2(A) is a multiple of 4, and is 0 if char(F) 6= 2.
It follows that if char(F) 6= 2, all the ui, vi and wi must be coboundaries, and if char(F) = 2,

the wi are coboundaries and so are the vi if n is odd.
Assume that char(F) = 2. We must now study the ui, as well as the vi when n is even.
Note that un−2 = 0 and u0 = γ1. For 0 6 i 6 n− 3, define pi ∈ Homke(V,A) by pi(a0) =

a1a
∗
1a0, pi(a1) = a0a

∗
0a1 and pi(ai) = aia

∗
i ai if i > 2. Then, for 2 6 i 6 n− 3, we have ui =

b2K

(∑n−3
j=i pj

)
. Moreover, b2K

(∑n−3
j=0 pj

)
= u0 + u1. It follows that the cohomology classes of

u0 and u1 are both equal to that of γ1.
We now turn to the vi. Note that since n is even and char(F) = 2, the map v0 is the map

γmD
, which is not a coboundary.

Define qi ∈ Homke(V,A) by qi(ai) = (a∗i+1ai+1)
n−i−2ai · · · a2a1a∗1a

∗
2 · · · a

∗
i−1 for 1 6 i 6 n− 2

and q0(a0) = (a∗2a2)
n−3. Then, for 2 6 i 6 n− 2, we have vi − v1 = b2K

(∑i−1
j=1 qj

)
, and v1 −

v0 = b2K(q0 − q1). Therefore vi = v0 = γmD
for all i.

We now give all the non zero cup products.

Proposition 6.10. Let A be a preprojective algebra of type Dn. Up to graded
commutativity, the non zero cup products of elements in HK•(A) are:

z0 ⌣
K
f = f for all f ∈ HK•(A); zℓ1 ⌣

K
zℓ2 =

{
zℓ1+ℓ2 if ℓ1 + ℓ2 6 u− 1;

−π0 + π1 if n is even and ℓ1 + ℓ2 = mD;

zℓ1 ⌣
K
ζℓ2 = ζℓ1+ℓ2 if ℓ1 + ℓ2 6 u− 1;

zℓ1 ⌣
K
ρℓ2 = ρℓ1+ℓ2 if ℓ1 + ℓ2 6 u− 1; zℓ ⌣

K
hi =

{
γℓ if ℓ > 1, char(F) = 2 and i ∈ {0, 1}

hi if ℓ = 0;

zℓ1 ⌣
K
γℓ2 = γℓ1+ℓ2 if ℓ1 + ℓ2 6 mD; πi ⌣

K
hj = γmD

if i = j, n is even and char(F) = 2.

Proof. We use the notation in Lemma 6.9.
For ℓ > 1, we have zℓ ⌣

K
hi = zℓ−1 ⌣

K
z1 ⌣

K
hi = zℓ−1 ⌣

K
ui and the result follows from

Lemma 6.9.
Next, πi ⌣

K
hj = δijvj and again the result is a consequence of Lemma 6.9.

Now assume that char(F) = 2, so that the ρℓ occur in the basis of HK1(A). At the level of
cochains, we have ρℓ1 ⌣

K
ρℓ2 = w2 ⌣

K
zℓ1+ℓ2 , which is a coboundary.

The map ρℓ1 ⌣
K
ζℓ2 = u2 ⌣

K
zℓ1+ℓ2+1 is also a coboundary, as required.

The remaining cup products are easy to compute. Note that the cup product in HK0(A) ∼=
Z(A) is the ordinary product, and that the elements πi are in the socle of A, hence are
annihilated by the radical of A.

The cap products follow using duality, as in Corollary 6.4.
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6.2.3. Higher Koszul (co)homology As in the case of a preprojective algebra of type A,
the cohomology class of the fundamental 1-cocycle is equal to 2ζ0 so that ∂1⌣(zℓ) = 2ζℓ for
0 6 ℓ 6 u− 1, ∂1⌣(πi) = 0 and ∂2⌣ = 0. We then have the following higher Koszul cohomology.

Proposition 6.11. Let A be a preprojective algebra of type Dn.
(i) If char(F) = 2, then HK•

hi(A) = HK•(A).
(ii) If char(F) 6= 2, then

HK0
hi(A) = HK0(A)>0 has basis the πi that are in Z(A)

HK2
hi(A) = HK2(A)

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

Higher Koszul homology follows from Theorem 4.4 as in Corollary 6.7.

6.3. Koszul calculus for preprojective algebras of type E6

The preprojective algebra A of type E6 is defined by the quiver

0

a0

		
1

a1

((
2

a2

((

a∗

1

hh 3
a3

((

a∗

2

hh

a∗

0

HH

4
a4

((

a∗

3

hh 5
a∗

4

hh

subject to the relations

σ0 = −a∗0a0 σ3 = a0a
∗
0 + a2a

∗
2 − a

∗
3a3

σ1 = −a∗1a1 σ4 = a3a
∗
3 − a

∗
4a4

σ2 = a1a
∗
1 − a

∗
2a2 σ5 = a4a

∗
4

The Nakayama automorphism of (N5) is given by

ν(ei) = ei if i ∈ {0, 3} ν(a0) = −a0 ν(ai) = a∗5−i if i > 1

ν(ei) = e6−i if i ∈ {1, 2, 4, 5} ν(a∗0) = a∗0 ν(a∗i ) = a5−i if i > 1.

To simplify notation, we shall denote by c0 = a0a
∗
0, c2 = a2a

∗
2 and c3 = a∗3a3 the three 2-cycles

at the vertex 3.
The socle is the part of weight 10 of A, and the set {πi; i ∈ Q0} where π0 = a∗0c

2
3c0c3a0,

π1 = a4a3c0c3c0a2a1, π2 = a∗2(c3c0)
2a∗3, π3 = c3(c0c3)

2, π4 = κ(π2) and π5 = κ(π1).

6.3.1. The Koszul cohomology and homology spaces in type E6 We shall follow the same
method as in types A and D, using the results from [24] and Theorem 4.4 to determine the
dimensions of the spaces, and using results from [22] for the parts that are the same as in
characteristic 0.
We define the following elements
– in A: z0 = 1, z6 = a∗1a

∗
2a

∗
3a3a2a1 + a∗2c

2
3a2 − c0c3c0 + a3c

2
2a

∗
3 + a4a3a2a

∗
2a

∗
3a

∗
4 and z8 =

a∗2c0c3c0a2 + c0c
2
3c0 + a3c0c3c0a

∗
3;

– in Homke (V,A): the maps ζℓ defined by ζℓ(ai) = aizℓ for ℓ ∈ {0, 6, 8}, the map ρ3
defined by ρ3(a2) = c0a2, ρ3(a3) = a3c3 and ρ3(a

∗
2) = a∗2c3, and the map ρ5 defined by

ρ5(a0) = c2c3a0, ρ5(a1) = a∗2c0a2a1, ρ5(a2) = c22a2, ρ5(a
∗
0) = −a

∗
0c

2
3, ρ5(a

∗
1) = −a

∗
1a

∗
2c0a2

and ρ5(a
∗
2) = a∗2c

2
3;

– in Homke(R,A): the maps hj defined for 0 6 j 6 5 by hj(σi) = δijej for all i, the map
γ4 defined by γ4(σ0) = a∗0c3a0 and the map γ6 defined by γ6(σ0) = a∗0c

2
3a0.
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We shall use the following lemma.

Lemma 6.12. Assume that char(F) = 3. Let γ ∈ Homke(R,A) be an element of coefficient
weight 6, so that

γ(σ0) = λ0a
∗
0c

2
3a0 γ(σ3) = λ3c

2
3c0 + λ′3c3c0c3 + λ′′3c0c

2
3

γ(σ1) = λ1a
∗
1a

∗
2c0a2a1 γ(σ4) = λ4a3c0c3a

∗
3 + λ′4a3c3c0a

∗
3

γ(σ2) = λ2a
∗
2c0c3a2 + λ′2a

∗
2c3c0a2 γ(σ5) = λ5a4a3c0a

∗
3a

∗
4.

Then γ is a coboundary if, and only if,
∑5

i=0 λi +
∑4

i=2 λ
′
i + λ′′3 = 0.

Proof. The proof is straightforward, once we know that a cochain of weight 5 takes its values
in A5 = E ⊕ κ(E), where E is the space spanned by c23a0, c0c3a0, a

∗
2c0a2a1, c

2
3a2, c0c3a2, a3c0c3,

a3c3c0, a4a3c0a
∗
3.

Proposition 6.13. Let A be a preprojective algebra of type E6.
(i) The elements in {z0, z6, z8, π0, π3} form a basis of HK0(A).
(ii) If char(F) 6∈ {2, 3}, the elements in

{
ζℓ; ℓ = 0, 6, 8

}
form a basis of HK1(A).

If char(F) = 2, the elements in
{
ζℓ; ℓ = 0, 6, 8

}
∪ {ρ3} form a basis of HK1(A).

If char(F) = 3, the elements in
{
ζℓ; ℓ = 0, 6, 8

}
∪ {ρ5} form a basis of HK1(A).

(iii) If char(F) 6∈ {2, 3}, the elements in
{
hj ; j ∈ Q0

}
form a basis of HK2(A).

If char(F) = 2, the elements in
{
hj ; j ∈ Q0

}
∪ {γ4} form a basis of HK2(A).

If char(F) = 3, the elements in
{
hj ; j ∈ Q0

}
∪ {γ6} form a basis of HK2(A).

Proof. The centre was given in [22], so we have (i).
For HK1(A) and HK2(A), the number of elements in the statement is equal to the dimension

of the corresponding cohomology space. Moreover, all the elements in the statement are indeed
cocycles.
If char(F) is not 2 or 3, a basis of HK1(A) = HH1(A) was given in [22]. It consists of the

classes of the ζ′ℓ with ℓ ∈ {0, 6, 8} where ζ′ℓ(ai) = aizℓ for 0 6 i 6 2 and ζ′ℓ(a
∗
i ) = a∗i zℓ for 3 6

i 6 4. Since ζ0 − ζ
′
0 is equal to b1K(e3 + 2e5), and ζℓ − ζ

′
ℓ = (ζ0 − ζ

′
0)⌣

K
zℓ is also a coboundary,

ζℓ and ζ′ℓ represent the same cohomology class for ℓ ∈ {0, 6, 8}. Moreover, as in types A and
D, the elements hj form a basis of HK2(A).
If char(F) ∈ {2, 3}, we need only prove that the extra elements are not coboundaries by fact

(N3).
If char(F) = 2, we have z6 ⌣

K
ρ3 − ζ8 = b1k(g) where g is defined by g(e2) = a∗2c3c0c3a2, and ζ8

is not a coboundary, therefore ρ3 cannot be a coboundary. Moreover, assume that γ4 = b1K(g′)
is a coboundary. Then g′ would be of coefficient weight 3, and we would necessarily take
values in A3 = E ⊕ κ(E) where E is spanned by c3a0, c0a2, c3a2, a3c0, a3c3. This leads to a
contradiction.
If char(F) = 3, assume that ρ5 is a coboundary b1k(h), then h is of weight 4, and necessarily

h(e0) = λ0a
∗
0c3a0, h(e2) = λ2a

∗
2c3a2 and h(e3) = λ3c3c0 + λ′3c

2
3 + λ′′3c0c

3, and by considering
b1K(h)(a0), b

1
K(h)(a∗0), b

1
K(h)(a2) and b1K(h)(a∗2) we get a contradiction. Finally, the fact that

γ6 is not a coboundary follows from Lemma 6.12.

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.

6.3.2. Cup and cap products We now determine the cup products of the elements in the
bases of the Koszul cohomology spaces given above.
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Proposition 6.14. Let A be a preprojective algebra of type E6. Up to graded commuta-
tivity, the non zero cup products of elements in HK•(A) are:

z0 ⌣
K
f = f for all f ∈ HK•(A) zℓ ⌣

K
ζ0 = ζℓ for ℓ ∈ {0, 6, 8}

z6 ⌣
K
hi = γ6 if i ∈ {1, 4} z6 ⌣

K
hi = −γ6 if i ∈ {2, 5}

z6 ⌣
K
ρ3 = ζ8 ζ0 ⌣

K
ρ3 = γ4.

Proof. The first two cup products are clear.
For the cup products of z6 with the hi and for ζ0 ⌣

K
ρ5, we use Lemma 6.12.

The last cup product follows from the fact that we have ζ0 ⌣
K
ρ3 − γ4 = b1K(g′) where

g′(a∗0) = a∗0c3 and g′(a3) = a3c3. The cup product z6 ⌣
K
ρ3 was already in the proof of

Proposition 6.13.
Consideration of the coefficient weights yields the vanishing of the other cup products.

The cap products follow using duality, as in Corollary 6.4.

6.3.3. Higher Koszul cohomology and homology As in type A, the differential ∂1⌣ sends
zℓ to 2ζℓ for ℓ ∈ {0, 6, 8} and the differential ∂2⌣ is zero.
We then have the following higher Koszul cohomology.

Proposition 6.15. Let A be a preprojective algebra of type E6.
If char(F) = 2, then HK•

hi(A) = HK•(A).
If char(F) = 3, then

HK0
hi(A) = HK0(A)10 has dimension 2 and is spanned by π0 and π3

HK2
hi(A) = HK2(A)

HK1
hi(A) = span {[ρ5]}

HKp
hi(A) = 0 if p > 2.

If char(F) 6∈ {2, 3}, then

HK0
hi(A) = HK0(A)10 has dimension 2 and is spanned by π0 and π3

HK2
hi(A) = HK2(A)

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

Higher Koszul homology follows from Theorem 4.4.

6.4. Koszul calculus for preprojective algebras of type E7

The preprojective algebra A of type E7 is defined by the quiver

0

a0

		
1

a1

((
2

a2

((

a∗

1

hh 3
a3

((

a∗

2

hh

a∗

0

HH

4
a4

((

a∗

3

hh 5
a∗

4

hh
a5

((
6

a∗

5

hh

subject to the relations

σ0 = −a∗0a0 σ4 = a3a
∗
3 − a

∗
4a4
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σ1 = −a∗1a1 σ5 = a4a
∗
4 − a

∗
5a5

σ2 = a1a
∗
1 − a

∗
2a2 σ6 = a5a

∗
5

σ3 = a0a
∗
0 + a2a

∗
2 − a

∗
3a3

The Nakayama automorphism is given by ν(ai) = −ai and ν(a∗i ) = a∗i for i ∈ Q0.
To simplify notation, we shall denote by c0 = a0a

∗
0, c2 = a2a

∗
2 and c3 = a∗3a3 the three 2-cycles

at the vertex 3.
The socle of A is the part of weight 16 of A. A basis of the socle is given by π0 =

(a∗0c3a0)
4, π1 = −a∗1a

∗
2c0c3(c3c0)

2a2a1, π2 = −(a∗2c0a2)
4, π3 = (c3c0)

3c23, π4 = −(a3c0a
∗
3)

4,
π5 = −a4a3(c3c0)3a∗3a

∗
4 and π6 = −a5a4(a3c0a∗3)

3a∗4a
∗
5.

6.4.1. The Koszul cohomology and homology spaces in type E7 We define the following
elements

– in A: z0 = 1, z8 = a∗0c2c0c2a0 − a
∗
2c2c0c2a2 − c2c

2
3c2 + a3c0c2c0a

∗
3 − a4a3c

2
2a

∗
3a

∗
4 + a5a4a3c0a

∗
3a

∗
4a

∗
5

and z12 = a∗0(c2c0)
2c2a

∗
0 + a∗2(c0c2)

2c0a2 − (c3c0c3)
2 + a3c3(c0c3)

2a∗3;
– in Homke(V,A): the maps ζℓ defined by ζℓ(ai) = aizℓ for ℓ ∈ {0, 8, 12}, the map ρ3 defined
by ρ3(a2) = c0a2, ρ3(a3) = a3c3, ρ3(a4) = a4a3a

∗
3 and ρ3(a

∗
2) = a∗2c3, the map ρ7 defined

by ρ7(a0) = c33a0 + c3c0c3a0, ρ7(a3) = a3c3c0c3 and ρ7(a
∗
3) = c3c0c3a

∗
3, the map ρ15

defined by ρ15(a0) = (c2c0)
3c2a0 and ρ15(a

∗
0) = a∗0c2(c0c2)

3 and the map ρ5 defined by
ρ5(a0) = −c2c3a0, ρ5(a2) = c3c0a2, ρ5(a3) = a3c

2
3, ρ5(a

∗
0) = a∗0c

2
3 and ρ5(a

∗
2) = −a

∗
2c2c0;

– in Homke(R,A): the maps hj defined for 0 6 j 6 6 by hj(σi) = δijej for all i, the map γ4
defined by γ4(σ0) = a∗0c3a0, the map γ8 defined by γ8(σ0) = a∗0c

3
3a0, the map γ16 defined

by γ16(σ0) = π0 and the map and γ6 defined by γ6(σ0) = a∗0c
2
3a0.

Lemma 6.16. First assume that char(F) = 2.
(i) Let u16 ∈ Homke(R,A) be an element of weight 16 so that u16(σi) = λiπi for i ∈ Q0. Then

u16 is a coboundary if, and only if,
∑6

i=0 λi = 0.
(ii) Let u8 ∈ Homke(R,A) be an element of weight 8 so that u8(σ0) = λ0a

∗
0c

3
3a0, u8(σ2) =

λ2a
∗
2c3c0c3a2 + λ′2a

∗
2c

2
3c0a2, u8(σ3) = λ3c

3
3c0 + λ′3ccc

3
3 + λ′′3c0c

2
3c0 + λ′′′3 c

2
3c0c3, u8(σ4) =

λ4a3c
2
3c0a

∗
3 + λ′4a3c3c0c3a

∗
3 + λ′′4a3c0c

2
3a

∗
3, u8(σ5) = λ5a4a3c3c0a

∗
3a

∗
4 + λ′5a4a3c0c3a

∗
3a

∗
4 and

u8(σ6) = a5a4a3a0a
∗
0a

∗
3a

∗
4a

∗
5. Then u8 is a coboundary if, and only if, λ0 + λ2 + λ′2 + λ3 +

λ′3 + λ′′′3 + λ4 + λ′4 + λ′′4 + λ5 + λ′5 + λ6 = 0.
Now assume that char(F) = 3.
(iii) Let u6 ∈ Homke(R,A) be an element of weight 6 so that u6(σ0) = λ0a

∗
0c

2
3a0, u6(σ1) =

λ1a
∗
1a

∗
2c0a

∗
2a

∗
1, u6(σ2) = λ2a

∗
2c3c0a2 + λ′2a

∗
2c

2
3a2, u6(σ3) = λ3c3c0c3 + λ′3c

2
3c0 + λ′′3c0c3c0 +

λ′′′3 c
3
3+, u6(σ4) = λ4a3c0c3a

∗
3 + λ′4a3c3c0a

∗
3 and u6(σ5) = λ5a4a3c0a

∗
3a

∗
4. Then u6 is a

coboundary if, and only if,
∑5

i=0 λi − λ
′
2 + λ′3 − λ

′
4 = 0.

Proof. For each ℓ ∈ {16, 6}, if the map uℓ were a coboundary, it would be the image of a
map gℓ ∈ Homke(V,A) whose coefficients would be in the space generated by the paths between
adjacent vertices with weight ℓ− 1. The proof is then straightforward once we know bases of
these spaces. Note that once we have a basis of

⊕
α∈Q1

et(α)Awes(α), applying κ gives a basis
of es(α)Awet(α) for a given weight w.
In weight 15, a basis of

⊕
α∈Q1

et(α)A15es(α) is given by a0 = (a∗0c3a0)
3a∗0c3,

a1 = −a∗1a
∗
2c0c3(c3c0)

2a2, a2 = −a∗2c0(c2c0)
3, a3 = (c3c0)

3c3a
∗
3, a4 = −a3(c3c0)3a∗3a

∗
4, a5 =

a4(a3c0a
∗
3)

3a∗4a
∗
5.

In weight 7, a basis of
⊕

α∈Q1
et(α)A7es(α) is given by c33a0, c3c0c3a0, a

∗
2c

2
3a2a1, c

2
3c0a2,

c0c
2
3a2, c3c0c3a2, a3c3c0c3, a3c0c

2
3, a3c

2
3c0. a4a3c3c0a

∗
3, a4a3c0c3a

∗
3, a5a4a3c0a

∗
3a

∗
4.

In weight 5, a basis of
⊕

α∈Q1
et(α)A5es(α) is given by c23a0, c0c3a0, a

∗
2c0a2a1, c3c0a2, c0c3a2,

a3c3c0, a3c0c3, a3c
2
3, a4a3c0a

∗
3.
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Proposition 6.17. Let A be a preprojective algebra of type E7.
(i) The elements in {z0, z8, z12} ∪ {πi; i ∈ Q0} form a basis of HK0(A).
(ii) If char(F) 6∈ {2, 3}, the elements in

{
ζℓ; ℓ = 0, 8, 12

}
form a basis of HK1(A).

If char(F) = 2, the elements in
{
ζℓ; ℓ = 0, 8, 12

}
∪ {ρ3, ρ7, ρ15} form a basis of HK1(A).

If char(F) = 3, the elements in
{
ζℓ; ℓ = 0, 8, 12

}
∪ {ρ5} form a basis of HK1(A).

(iii) If char(F) 6∈ {2, 3}, the elements in
{
hj ; j ∈ Q0

}
form a basis of HK2(A).

If char(F) = 2, the elements in
{
hj ; j ∈ Q0

}
∪ {γ4, γ8, γ16} form a basis of HK2(A).

If char(F) = 3, the elements in
{
hj ; j ∈ Q0

}
∪ {γ6} form a basis of HK2(A).

Proof. The centre was given in [22], so we have (i).
For HK1(A) and HK2(A), the number of elements in the statement is equal to the dimension

of the corresponding cohomology space. Moreover, all the elements in the statement are indeed
cocycles.
If char(F) is not 2 or 3, a basis of HK1(A) = HH1(A) was given in [22]. It consists of the

classes of the ζ′ℓ with ℓ ∈ {0, 8, 12} where ζ′ℓ(ai) = aizℓ for 0 6 i 6 2 and ζ′ℓ(a
∗
i ) = a∗i zℓ for

3 6 i 6 5. Since ζ0 − ζ
′
0 is equal to b1K(e3 + 2e5 + 3e6), and ζℓ − ζ

′
ℓ = (ζ0 − ζ

′
0)⌣

K
zℓ is also a

coboundary, ζℓ and ζ′ℓ represent the same cohomology class for ℓ ∈ {0, 8, 12}. Moreover, as in
types A, D and E6, the elements hj form a basis of HK2(A).
If char(F) ∈ {2, 3}, we need only prove that the extra elements are not coboundaries by fact

(N3).
If char(F) = 2, it follows from Lemma 6.16 that ζ0 ⌣

K
ρ15 − γ16, ζ8 ⌣

K
ρ7 − γ16, ζ12 ⌣

K
ρ3 −

γ16, z8 ⌣
K
γ8 − γ16 and z12 ⌣

K
γ4 − γ16 are coboundaries. Therefore it is enough to check that

γ16 is not a coboundary, and this also follows from Lemma 6.16.
If char(F) = 3, again using Lemma 6.16, ζ0 ⌣

K
ρ5 − γ6 is a coboundary and γ6 is not a

coboundary, therefore ρ5 is not a coboundary either.

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.

6.4.2. Cup and cap products We now determine the cup products of the elements in the
bases of the Koszul cohomology spaces given above.

Proposition 6.18. Let A be a preprojective algebra of type E7. Up to graded commuta-
tivity, the non zero cup products of elements in HK•(A) are:

z0 ⌣
K
f = f for all f ∈ HK•(A) z28 = π0 + π4 − π6

zℓ ⌣
K
ζ0 = ζℓ for ℓ ∈ {0, 8, 12} z8 ⌣

K
ρ7 = ρ15

z12 ⌣
K
ρ3 = ρ15 πi ⌣

K
hi = γ16 for i ∈ Q0

z8 ⌣
K
hi = γ8 if i ∈ {0, 4, 6} z8 ⌣

K
γ8 = γ16

z12 ⌣
K
γ4 = γ16 ζ0 ⌣

K
ρℓ = −γℓ+1 for ℓ ∈ {3, 7, 15, 6}

ζ8 ⌣
K
ρ7 = γ16 ζ12 ⌣

K
ρ3 = γ16

Proof. Most of the cup-products are easy to compute, follow from Lemma 6.16 or vanish
for weight reasons. The remaining ones are obtained as follows (at the level of cochains):

z8 ⌣
K
ρ7 = ρ15 + b1K([e3 7→ (c3c0)

3c3])
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z12 ⌣
K
ρ3 = ρ15 + b1K([e3 7→ (c3c0)

3c2])

ζ0 ⌣
K
ρ3 = γ4 + b1K(h)

where h ∈ Homke(V,A3) is defined by h(a0) = c3a0 and h(a2) = c2a2.

The cap products follow using duality, as in Corollary 6.4.

6.4.3. Higher Koszul cohomology and homology As in types A, D and E6, the differential
∂1⌣ sends zℓ to 2ζℓ for ℓ ∈ {0, 8, 12} and the differential ∂2⌣ is zero except when char(F) = 3
where ∂2⌣(ρ5) = γ6.
We then have the following higher Koszul cohomology.

Proposition 6.19. Let A be a preprojective algebra of type E7.
If char(F) = 2, then HK•

hi(A) = HK•(A).
If char(F) 6= 2, then

HK0
hi(A) = HK0(A)16 has dimension 7 and is spanned by the πi for i ∈ Q0

HK2
hi(A) = HK2(A)0 has dimension 7 and is spanned by the [hi] for i ∈ Q0

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

Higher Koszul homology follows from Theorem 4.4.

6.5. Koszul calculus for preprojective algebras of type E8

The preprojective algebra A of type E8 is defined by the quiver

0

a0

		
1

a1

((
2

a2

((

a∗

1

hh 3
a3

((

a∗

2

hh

a∗

0

HH

4
a4

((

a∗

3

hh 5
a∗

4

hh
a5

((
6

a∗

5

hh
a6

((
7

a∗

6

hh

subject to the relations

σ0 = −a∗0a0 σ4 = a3a
∗
3 − a

∗
4a4

σ1 = −a∗1a1 σ5 = a4a
∗
4 − a

∗
5a5

σ2 = a1a
∗
1 − a

∗
2a2 σ6 = a5a

∗
5 − a

∗
6a6

σ3 = a0a
∗
0 + a2a

∗
2 − a

∗
3a3 σ7 = a6a

∗
6

The Nakayama automorphism is given by ν(ai) = −ai and ν(a∗i ) = a∗i for i ∈ Q0.
To simplify notation, we shall denote by c0 = a0a

∗
0, c2 = a2a

∗
2 and c3 = a∗3a3 the three 2-cycles

at the vertex 3.
The socle of A is the part of weight 28 of A. A basis of the socle is given by π0 =

(a∗0c2a0)
7, π1 = a∗1a

∗
2(c0c2)

5c2c0a2a1, π2 = −(a∗2c0a2)
7, π3 = (c2c0)

7, π4 = −a3(c2c0)6c2a∗3,
π5 = a4a3(c2c0)

6a∗3a
∗
4, π6 = a5a4a3(c0c2)

5c0a
∗
3a

∗
4a

∗
5 and π7 = −a6a5a4a3(c0c2)3(c2c0)2a∗3a

∗
4a

∗
5a

∗
6.

6.5.1. The Koszul cohomology and homology spaces in type E8 We define the following
elements
• in A:

✦ z0 = 1,
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✦ z12 = a5a4a3c0c2c0a
∗
3a

∗
4a

∗
5 + a4a3(c2c0)

2a∗3a
∗
4 + a3(c2c0)

2c2a
∗
3 − (c3c2c3)

2 +
a∗2(c0c2)

2c0a2 − a∗1a
∗
2c0c

2
2c0a2a1 + a∗0(c2c0)

2c2a0,
✦ z20 = a5a4a3(c0c2)

3c0a
∗
3a

∗
4a

∗
5 + a4a3(c0c2)

2(c2c0)
2a∗3a

∗
4 + a3c0(c2c0)

4a∗3 + (c2c0)
5 −

(c0c
2
2)

3c0 + (c0c2)
5 + a∗2(c2c0c2)

3a2 + a∗0(c2c0)
4c2a0 and

✦ z24 = z212;
• in Homke(V,A):

✦ the maps ζℓ defined by ζℓ(ai) = aizℓ for ℓ ∈ {0, 12, 20, 24},
✦ the map ρ3 defined by ρ3(a2) = c0a2, ρ3(a3) = a3c3, ρ3(a4) = a4a3a

∗
3, ρ3(a5) = a5a4a

∗
4 and

ρ3(a
∗
2) = a∗2c3,

✦ the map ρ7 defined by ρ7(a0) = c0c
2
3a0, ρ7(a3) = a3c0c

2
3 + a3c

2
3c0 + a3c0c3c0 and ρ7(a

∗
3) =

c3c0c3a
∗
3,

✦ the map ρ15 defined by ρ15(a3) = a3c2(c2c0)
2, ρ15(a4) = a4a3(c0c3)

2a∗3 + a4a3(c0c
2
3)

2a∗3 +
a4a3(c3c0)

3a∗3, ρ15(a5) = a5a4a3c0(c3c0)
2a∗3a

∗
4, ρ15(a

∗
0) = a∗0c3(c3c0)

3 and ρ15(a
∗
5) =

a4a3(c0c3)
2c0a

∗
3a

∗
4a

∗
5,

✦ the map ρ27 defined by ρ27(a3) = a3c0(c3c0)
6 and ρ27(a

∗
3) = (c3c0)

6c3a
∗
3,

✦ the map ρ5 defined by ρ5(a0) = −c0c3a0 − c23a0, ρ5(a3) = a3c3c0 + a3c
2
3, ρ5(a4) = a4a3c3a

∗
3,

ρ5(a
∗
0) = a∗0c

2
3 and ρ5(a

∗
3) = −c3c0a

∗
3,

✦ the map ρ17 defined by defined by ρ17(a0) = −c23(c0c3)
3a0 − (c0c3)

4a0, ρ17(a3) =
a3(c3c0)

4 + a3(c0c3)
4 + a3(c3c0)

3c23, ρ17(a
∗
0) = a∗0(c2c0)

3c23 and ρ17(a
∗
3) = −(c3c0)

4a∗3, and
✦ the map ρ9 defined by ρ9(a0) = −2c23c0c3a0 + 2c3c0c

2
3a0 + (c0c3)

2a0, ρ9(a2) =
c22c0c2a2 + (c2c0)

2a2, ρ9(a3) = −a3(c0c3)2, ρ9(a
∗
0) = 2a∗0c

2
3c0c3 − 2a∗0c3c0c

2
3 + a∗0(c3c0)

2,
ρ9(a

∗
2) = a∗2c2c0c

2
2 − a

∗
2(c2c0)

2 and ρ9(a
∗
3) = (c0c3)

2a∗3;
• in Homke(R,A): the maps hj defined for 0 6 j 6 7 by hj(σi) = δijej for all i, and

γ4 : σ0 7→ a∗0c3a0 γ8 : σ0 7→ a∗0c
3
3a0

γ16 : σ0 7→ a∗0(c2c0)
3c2a0 γ28 : σ0 7→ π0

γ6 : σ0 7→ a∗0c
2
3a0 γ18 : σ0 7→ a∗0c

2
3(c0c3)

3a0

γ10 : σ0 7→ a∗0c
2
3c0c3a0

Lemma 6.20. First assume that char(F) = 2.
(i) Let u28 ∈ Homke (R,A) be an element of weight 28, so that u28(σi) = λiπi for all i ∈ Q0.

Then u28 is a coboundary if, and only if,
∑

i∈Q0
λi = 0.

Now assume that char(F) = 3.
(ii) Let u18 ∈ Homke(R,A) be an element of weight 18, so that u18(σ0) =

λ0a
∗
0c

2
3(c0c3)

3a0 + λ′0a
∗
0c3c0(c3c0c3)

2a0, u18(σ1) = λ1a
∗
1a

∗
2c0(c2c0)

3a2a1, u18(σ2) =
λ2a

∗
2(c2c0c2)

2c0c2a2 + λ′2a
∗
2(c0c2)

4a2 + λ′′2a
∗
2(c2c0)

4a2, u18(σ3) = λ3c0(c3c0)
4 +

λ′3(c3c0)
4c3 + λ′′3(c3c0)

2c3(c3c0)
2 + λ

(3)
3 (c0c3)

2c3(c0c3)
2 + λ

(4)
3 (c3c0)

3c23c0 +

λ
(5)
3 c0c

2
3(c0c3)

3, u18(σ4) = λ4a3(c3c0)
4a∗3 + λ′4a3(c0c3)

4a∗3 + λ′′4a3c
2
3(c3c0)

3a∗3 +

λ
(3)
4 a3(c0c3)

3c23a
∗
3, u18(σ5) = λ5a4a3(c3c0)

3c3a
∗
3a

∗
4 + λ′5a4a3c3(c3c0)

3a∗3a
∗
4 +

λ′′5a4a3(c0c3)
3c3a

∗
3a

∗
4, u18(σ6) = λ6a5a4a3(c3c0)

3a∗3a
∗
4a

∗
5 + λ′6a5a4a3(c0c3)

3a∗3a
∗
4a

∗
5,

u18(σ7) = λ7a6a5a4a3(c0c3)
2c0a

∗
3a

∗
4a

∗
5a

∗
6. Then u18 is a coboundary if, and only if,

λ0 + λ′0 + λ1 + λ′2 + λ′′2 + λ′3 + λ′′3 + λ
(3)
3 + λ

(4)
3 + λ

(5)
3 + λ4 + λ′4 − λ

′′
4 − λ

(3)
4 − λ5 − λ

′
5 −

λ′′5 − λ6 − λ
′
6 − λ7 = 0.

(iii) The map ρ17 ∈ Homke(V,A) is not a coboundary.
Now assume that char(F) = 5.
(iv) Let u10 ∈ Homke(R,A) be an element of weight 10, so that u10(σ0) = λ0a

∗
0c

2
3c0c3a0 +

λ′0a
∗
0c3c0c

2
3a0, u10(σ1) = λ1a

∗
1a

∗
2c0c2c0a2a1, u10(σ2) = λ2a

∗
2(c0c2)

2a2 + λ′2a
∗
2(c2c0)

2a2 +

λ′′2a
∗
2c0c

2
2c0a2, u10(σ3) = λ3c0(c3c0)

2 + λ′3c3(c0c3)
2 + λ′′3c3(c3c0)

2 + λ
(3)
3 (c0c3)

2c3 +

λ3(4)c3c0c
2
3c0 + λ

(5)
3 c0c

2
3c0c3, u10(σ4) = λ4a3(c0c3)

2a∗3 + λ′4a3(c3c0)
2a∗3 + λ′′4a3c3c0c

2
3a

∗
3 +
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λ
(3)
4 a3c

2
3c0c3a

∗
3, u10(σ5) = λ5a4a3c0c3c0a

∗
3a

∗
4 + λ′5a4a3c

2
3c0a

∗
3a

∗
4 + λ′′5a4a3c0c

2
3a

∗
3a

∗
4,

u10(σ6) = λ6a5a4a3c3c0a
∗
3a

∗
4a

∗
5 + λ′6a5a4a3c0c3a

∗
3a

∗
4a

∗
5, u10(σ7) = λ7a6a5a4a3c0a

∗
3a

∗
4a

∗
5a

∗
6.

Then u10 is a coboundary if, and only if, λ0 + λ′0 + λ1 + λ2 + λ′2 + λ′′2 + λ′3 + λ′′3 + λ
(3)
3 +

λ
(4)
3 + λ

(5)
3 + λ4 − λ′4 + 2λ′′4 + 2λ

(3)
4 + λ5 + 2λ′5 + 2λ′′5 + 2λ6 + 2λ′6 + 2λ7 = 0.

Proof. For each ℓ ∈ {28, 18, 10}, if the map uℓ were a coboundary, it would be the image of a
map gℓ ∈ Homke(V,A) whose coefficients would be in the space generated by the paths between
adjacent vertices with weight ℓ− 1. The proof of (i), (ii) and (iv) is then straightforward once
we know bases of these spaces.
In weight 27, a basis is given by a0 = a∗0c2(c0c2)

6, a1 = a∗1a
∗
2(c0c2)

5c23a2, a2 =
−a∗2c0(c2c0)

6, a3 = (c2c0)
6c2a

∗
3, a4 = −a3(c2c0)6a∗3a

∗
4, a5 = −a4a3c0(c2c0)5a∗3a

∗
4a

∗
5, a6 =

a5a4a3(c0c2)
3(c2c0)

2a∗3a
∗
4a

∗
5a

∗
6, and the κ(ai) for all i ∈ Q0.

In weight 17, the space
⊕

α∈Q1
et(α)A18es(α) has basis (c0c3)

4a0, c23(c0c3)
3a0,

c3c0(c3c0c3)
2a0, a∗2c2c0c2(c2c0)

2a2a1, a∗2(c0c2)
3c0a2a1, (c3c0)

4a2, (c0c3)
4a2, (c0c3)

3c3c0a2,
c3c0(c3c0c3)

2a2, a3(c3c0)
4, a3(c0c3)

4, a3(c0c3)
3c3c0, a3c0c3(c3c0)

3, a3(c3c0)
3c23,

a4a3(c0c3)
3c0a

∗
3, a4a3(c0c3)

3c3a
∗
3, a4a3c3(c3c0)

3a∗3, a5a4a3(c3c0)
3a∗3a

∗
4, a5a4a3(c0c3)

3a∗3a
∗
4,

a6a5a4a3(c0c3)
2c0a

∗
3a

∗
4a

∗
5 and

⊕
α∈Q1

es(α)A18et(α) = κ
(⊕

α∈Q1
et(α)A18es(α)

)
.

In weight 9, the space
⊕

α∈Q1
et(α)A9es(α) has basis c23c0c3a0, c3c0c

2
3a0, (c0c3)

2a0,

a∗2c0c2c0a2a1, c
2
2c0c2a2, (c2c0)

2a2, (c0c2)
2a2, c0c

2
2c0a2, a3c3c0c

2
3, a3(c0c3)

2, a3(c3c0)
2, a3c0c

2
3c0,

a4a3c
2
3c0a

∗
3, a4a3c0c

2
3a

∗
3, a4a3c0c3c0a

∗
3, a5a4a3c3c0a

∗
3a

∗
4, a5a4a3c0c3a

∗
3a

∗
4, a6a5a4a3c0a

∗
3a

∗
4a

∗
5 and⊕

α∈Q1
es(α)A9et(α) = κ

(⊕
α∈Q1

et(α)A9es(α)

)
.

Finally, if ρ17 were a coboundary, it would be equal to b1k(g) for some g ∈
Homke(k,A16). Such a map g would necessarily satisfy g(e0) ∈ span

{
a∗0(c3c0)

3c3a0
}
,

g(e3) ∈ span
{
(c3c0)

4, (c0c3)
4, c0c3(c3c0)

3, (c0c3)
3c3c0, c

2
3(c0c3)

3, c3c0(c3c0c3)
2
}
, and

g(e4) ∈ span
{
a3c0(c3c0)

3a∗3, a3c3(c0c3)
3a∗3, a3c3(c3c0)

3a∗3, a3(c0c3)
3c3a

∗
3

}
. Then, by considering

b1k(g)(a0), b
1
k(g)(a

∗
0) and b

1
k(g)(a3) we get a contradiction.

Proposition 6.21. Let A be a preprojective algebra of type E8.
(i) The elements in {z0, z12, z20, z24} ∪ {πi; i ∈ Q0} form a basis of HK0(A).
(ii) If char(F) 6∈ {2, 3, 5}, the elements in

{
ζℓ; ℓ = 0, 12, 20, 24

}
form a basis of HK1(A).

If char(F) = 2, the elements in
{
ζℓ; ℓ = 0, 12, 20, 24

}
∪ {ρ3, ρ7, ρ15, ρ27} form a basis of

HK1(A).
If char(F) = 3, the elements in

{
ζℓ; ℓ = 0, 12, 20, 24

}
∪ {ρ5, ρ17} form a basis of HK1(A).

If char(F) = 5, the elements in
{
ζℓ; ℓ = 0, 12, 20, 24

}
∪ {ρ9} form a basis of HK1(A).

(iii) If char(F) 6∈ {2, 3, 5}, the elements in
{
hj ; j ∈ Q0

}
form a basis of HK2(A).

If char(F) = 2, the elements in
{
hj ; j ∈ Q0

}
∪ {γ4, γ8, γ16, γ28} form a basis of HK2(A).

If char(F) = 3, the elements in
{
hj ; j ∈ Q0

}
∪ {γ6, γ18} form a basis of HK2(A).

If char(F) = 5, the elements in
{
hj ; j ∈ Q0

}
∪ {γ10} form a basis of HK2(A).

Proof. The centre was given in [22], so we have (i).
For HK1(A) and HK2(A), the number of elements in the statement is equal to the dimension

of the corresponding cohomology space. Moreover, all the elements in the statement are indeed
cocycles.
If char(F) is not 2, 3 or 5, a basis of HK1(A) = HH1(A) was given in [22]. It consists of

the classes of the ζ′ℓ with ℓ ∈ {0, 12, 20, 24} where ζ
′
ℓ(ai) = aizℓ for 0 6 i 6 2 and ζ′ℓ(a

∗
i ) = a∗i zℓ

for 3 6 i 6 6. Since ζ0 − ζ′0 is equal to b1K(e3 + 2e5 + 3e6 + 4e7), and ζℓ − ζ′ℓ = (ζ0 − ζ′0)⌣
K
zℓ
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is also a coboundary, ζℓ and ζ′ℓ represent the same cohomology class for ℓ ∈ {0, 12, 20, 24}.
Moreover, as in types A, D, E6 and E7, the elements hj form a basis of HK2(A).
The rest of the proof is the same as that of Proposition 6.17, based on Lemma 6.20 and the

fact that the following cup products at the level of cochains are all coboundaries: ζ0 ⌣
K
ρ27 −

γ28, ζ12 ⌣
K
ρ15 − γ28, ζ24 ⌣

K
ρ3 − γ28, ζ20 ⌣

K
ρ7 − γ28, z24 ⌣

K
γ4 − γ28, z12 ⌣

K
γ16 − γ28, z20 ⌣

K
γ8 − γ28, z12 ⌣

K
ρ5 − ρ17, z12 ⌣

K
γ6 − γ18, ζ0 ⌣

K
ρ9 − γ10, whereas γ28, γ18, γ10 and ρ17 are not.

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.

6.5.2. Cup and cap products We now determine the cup products of the elements in the
bases of the Koszul cohomology spaces given above.

Proposition 6.22. Let A be a preprojective algebra of type E8. Up to graded commuta-
tivity, the non zero cup products of elements in HK•(A) are:

z0 ⌣
K
f = f for all f ∈ HK•(A) z212 = z24

zℓ ⌣
K
ζ0 = ζℓ for ℓ ∈ {0, 12, 20, 24} z12 ⌣

K
ρ3 = ρ15

z24 ⌣
K
ρ3 = ρ27 z12 ⌣

K
ρ15 = ρ27

z20 ⌣
K
ρ7 = ρ27 z12 ⌣

K
ρ5 = ρ17

z12 ⌣
K
ρ9 = −ζ20 z12 ⌣

K
ζ12 = ζ24

πi ⌣
K
hi = γ28 for i ∈ Q0 z12 ⌣

K
γ4 = γ16

z12 ⌣
K
γ16 = γ28 z24 ⌣

K
γ4 = γ28

z20 ⌣
K
γ8 = γ28 z12 ⌣

K
γ6 = γ18

ζ0 ⌣
K
ρℓ = −γℓ+1 for ℓ ∈ {3, 7, 15, 27, 9} ζ12 ⌣

K
ρ3 = γ16

ζ12 ⌣
K
ρ15 = γ28 ζ20 ⌣

K
ρ7 = γ28

ζ24 ⌣
K
ρ3 = γ28.

Proof. Most of the cup-products are easy to compute, follow from Lemma 6.20 or vanish
for weight reasons. The remaining ones are obtained as follows (at the level of cochains):
z24 ⌣

K
ρ3 = ρ27 + b1K([e3 7→ c0(c3c0)

6]), we have z12 ⌣
K
ρ3 = ρ15 + b1K(h) where h is defined

by h(a2) = (c0c2)
3c0a2, h(a3) = a3c0(c3c0)

3 + a3c3(c0c3)
3, h(a4) = a4a3(c0c

2
3)

2a∗3 and h(a∗2) =
a∗2c0(c2c0)

3 + a∗2c2(c0c2)
3, and finally z12 ⌣

K
ρ9 + ζ20 = bK(h′) where h′ is defined by h′(e0) =

a∗0(c3c0)
4c3a0, h

′(e2) = 2a∗2(c2c0)
4c2a2, h

′(e3) = −2(c0c3)5 + 2c23(c0c3)
4 + (c3c0)

4c23, h
′(e4) =

−a3(c0c3)4c0a∗3 + a3c3(c3c0)
4a∗3 − a3(c0c3)

4c3a
∗
3 and h′(e5) = −a4a3(c0c3)4a∗3a

∗
4.

The cap products follow using duality, as in Corollary 6.4.

6.5.3. Higher Koszul cohomology and homology As in types A, D, E6 and E7, the
differential ∂1⌣ sends zℓ to 2ζℓ for ℓ ∈ {0, 8, 12} and the differential ∂2⌣ is zero except when
char(F) = 5 where ∂2⌣(ρ9) = 2γ10.
We then have the following higher Koszul cohomology.
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Proposition 6.23. Let A be a preprojective algebra of type E8.
If char(F) = 2, then HK•

hi(A) = HK•(A).
If char(F) = 3, then

HK0
hi(A) = HK0(A)28 and the πi for i ∈ Q0 form a basis

HK1
hi(A) = span {[ρ5], [ρ17]}

HK2
hi(A) = HK2(A)0 and the [hi] for i ∈ Q0 form a basis

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

If char(F) 6∈ {2, 3}, then

HK0
hi(A) = HK0(A)28 has dimension 8 and is spanned by the πi for i ∈ Q0

HK2
hi(A) = HK2(A)0 has dimension 8 and is spanned by the [hi] for i ∈ Q0

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

Higher Koszul homology follows from Theorem 4.4.

6.6. Comparison of Koszul and Hochschild (co)homology for preprojective algebras of type
ADE

Let A be a preprojective algebra over a Dynkin graph of type ADE. Schofield constructed
a minimal projective resolution (P •, ∂•) of A as a bimodule over itself, that is periodic (of
period at most 6), which was described in [20, 22]. Following Proposition 2.13, the embedding
H(ι∗)2 sends the Hochschild cohomology class of an element in Ker(∂3 ◦ −) to its Koszul
cohomology class, and the surjection H(ι̃)2 induces an isomorphism between HH2(A) and
HK2(A)/ Im(idA⊗∂3).
We first transport the maps ∂3 ◦ − and idA⊗∂

3 via the natural isomorphisms A⊗Ae (Aej ⊗
eiA)→ eiAej that sends λ⊗ (a⊗ b) to bλa and HomAe(Aei ⊗ ejA,A) ∼= eiAej that sends f
to f(ei ⊗ ej).
The associative non degenerate bilinear form on the selfinjective preprojective A can be

defined as follows, see [20] and [46, Proposition 3.15]: let B be a basis of A consisting of
homogeneous elements, that contains the idempotents ei, i ∈ Q0 and a basis {πi ; i ∈ Q0} of
the socle of A, and such that each v ∈ B belongs to ejAei for some i, j in Q0. Then if x ∈ Aei,
(y, x) is the coefficient of πi in the expression of yx as a linear combination of elements in B.
The Nakayama automorphism ν of A satisfies (y, x) = (ν(x), y) for all x, y in A, and induces
a permutation of the indices, the Nakayama permutation ν, that is, a permutation of Q0 such
that top(Aei) ∼= soc(Aeν(i)), characterised by ν(ei) = eν(i).

Let B̂ be the dual basis of B with respect to the non degenerate form (−,−), so that
(ŵ, v) = δvw for all v, w in B. In particular, if v ∈ Bei, the coefficient of πi in v̂v is 1. Note
that v ∈ ejBei if and only if v̂ ∈ eν(i)B̂ej .
Then the maps ∂3 ◦ − and idA⊗Ae∂3 become respectively

δ3 :
⊕

i∈Q0

eiAei →
⊕

i∈Q0

eiAeν(i) defined by y 7→
∑

x∈B

x̂yx

and δ3 :
⊕

i∈Q0

eiAeν(i) →
⊕

i∈Q0

eiAei defined by y 7→
∑

x∈B

xyx̂.

It then follows as in [24, Proposition 3.2.25] that Im δ3 is the span of the δ3(ei) such that
ν(i) = i, and that for such an i we have δ3(ei) =

∑
j∈Q0ν(j)=j tr(ν|ejAei)πj . Moreover, the

matrix whose coefficients are the tr(ν|ejAei) is either easy to compute or given in [22] for types
D and E7. It is also known from [24] that the set of elements of weight 0 in Ker δ3 identifies
with the kernel of the Cartan matrix of A. Moreover, for any element of positive weight a ∈ A,
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we have δ3(a) = 0. Therefore HH2(A) is obtained by taking all the elements of positive weight
in HK2(A) and adding the kernel of the Cartan matrix.
We shall use this as well as the dimensions of the Hochschild and Koszul (co)homology spaces

to compare HH2(A) with HK2(A) and HH2(A) with HK2(A) in each case. In particular, the
injection HH2(A)→ HK2(A) is not surjective except in type E8 with char(F) = 2.

6.6.1. Comparison of the second Koszul and Hochschild cohomology groups In type A, the
space HH2(A) was completely described by Erdmann and Snashall in [18], and they proved

that dimHH2(A) = n−mA − 1 and gave a basis
{
h̃i; 0 6 i 6 n−mA − 2

}
with h̃i = hi +

hn−1−i. The morphism of complexes ι∗2 sends h̃i to hi + hn−1−i, and this describes the injection
HH2(A)→ HK2(A).
In type D, if char(F) 6= 2 and n is even, there is nothing to do since HH2(A) = 0. If char(F) 6=

2 and n is odd, then dimHH2(A) = 1, the basis given in [22] for HH2(ΛC) also gives a basis of
HH2(A), and it is the cohomology class of the map ψ0 defined by ψ0(σ0) = e0 and ψ0(σ1) = −e1.
The embedding HH2(A)→ HK2(A) is therefore given by ψ0 7→ h0 − h1.
Now assume that char(F) = 2. Then dimHH2(A) = n+mD − 2. As we explained above, a

basis of HH2(A) may be obtained from a basis of the set of elements of positive coefficient
weight in HK2(A) to which we add elements obtained by determining a basis of the kernel of
the Cartan matrix of A. It follows that a basis of HH2(A) is given by

{γℓ; 1 6 ℓ 6 m} ∪ {ϕi; 2 6 i 6 n− 1} if n is even

{γℓ; 1 6 ℓ 6 m} ∪
{
ψ0

}
∪ {ψi; 3 6 i 6 n− 1} if n is odd

where ψ2p+1(σ2p+1) = e2p+1, ψ2p+2(σ2p+2) = e2p+2 and ψ2p+2(σ2) = e2, ϕ2p(σ2p) = e2p,
ϕ2p+1(σ2p+3) = e2p+3 and ϕ2p+1(σ3) = e3, for p > 1. Therefore, the embedding HH2(A)→
HK2(A) fixes the γℓ and sends ϕ2p to h2p and ϕ2p+3 to h3 + h2p+3 when n is even, and ψ0 to
h0 + h1, ψ2p+1 to h2p+1 and ψ2p+2 to h2 + h2p+2 when n is odd.

In type E6, the Cartan matrix is equivalent, through row operations, to
(

2 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 2 0 0

)

Let ϕ0, ϕ1, ϕ2 and ϕ3 be the maps in Homke (R,A) defined by ϕ0(σ0) = e0, ϕ1(σ1) = e1,
ϕ1(σ5) = −e5, ϕ2(σ2) = e2, ϕ2(σ4) = −e4 and ϕ3(σ3) = e3. Then HH2(A) is the subspace of
HK2(A) spanned by

ϕ1, ϕ2 if char(F) 6∈ {2, 3}

ϕ0, ϕ1, ϕ2, ϕ3, γ4 if char(F) = 2

ϕ1, ϕ2, γ6 if char(F) = 3.

In type E7, if char(F) 6= 2, we have dimHH2(A) = dimHK2(A)>0, so that HH
2(A) is precisely

the subspace of HK2(A) of elements of positive weight (which is zero unless char(F) ∈ {2, 3}). If
char(F) = 2, then the Cartan matrix of A is equivalent, through row operations, to the matrix
( 1 0 0 0 1 0 1 ) so that HH2(A) is the subspace of HK2(A) spanned by γ4, γ8, γ16, h1, h2, h3,
h5, h0 + h4 and h0 + h6.

In type E8, we only need to look at dimensions. Indeed, if char(F) = 2, then dimHH2(A) =
dimHK2(A) so that HH2(A) ∼= HK2(A), and if char(F) 6= 2 then dimHH2(A) = dimHK2(A)>0

so that HH2(A) is precisely the subspace of HK2(A) of elements of positive weight (which is
zero unless char(F) ∈ {2, 3, 5}).

6.6.2. Comparison of the second Koszul and Hochschild homology groups In type A, if
n is even or if n is odd and char(F) divides (mA + 1), we have seen that dimHK2(A) =
dimHH2(A) and therefore HK2(A) ∼= HH2(A). Now assume that n is odd and char(F) ∤ (mA +
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1). Then dimHK2(A) = dimHH2(A) + 1. We must determine the image of the map δ3 given
in Subsection 6.6.
The Nakayama permutation ν has precisely one fixed point, which is mA. The matrix of ν

restricted to emA
AemA

is the identity matrix ImA+1. Consequently, δ3(emA
) = (mA + 1)πmA

spans the image of δ3. Via the isomorphism
⊕

i∈Q0
eiAei ∼= A⊗ke R, πmA

corresponds to žmA

so that we have HH2(A) ∼= HK2(A)/ span {žmA
}.

In type D, if n is odd and char(F) = 2, then we know that dimHK2(A) = dimHH2(A) and
therefore HK2(A) ∼= HH2(A). In the other cases, we need to determine the image of the map
δ3. We should note that the Nakayama automorphism in [22] differs from ν by composition
with the inner automorphism given by the invertible element u = −e0 +

∑n−1
i=1 (−1)

iei (after
changing the labelling of vertices and arrows so that they are the same as ours).
If n is odd and char(F) 6= 2, the fixed points of the Nakayama permutation are the integers

i with 2 6 i 6 n− 1. The matrix (n− 2)× (n− 2) matrix Hν whose (i, j)-coefficient is the
trace of ν restricted to ejAei was given in [22, paragraph 11.2.3]; we need only change the
signs of coefficients (i, j) with i or j (but not both) equal to 0 or odd, so that tr

(
ν|ejAei

)
=

2 if i and j are even and is equal to 0 otherwise. Therefore for all i fixed by ν, we have
δ3(ei) =

∑mD+1
p=1 2π2p. Using the isomorphism

⊕
i∈Q0

eiAei ∼= A⊗ke R, we obtain HH2(A) ∼=

HK2(A)/ span
{∑mD+1

p=1 π̌2p

}
.

If n is even, all the integers i with 0 6 i 6 n− 1 are fixed points of ν. The matrix Hν was
given in [22, paragraph 11.2.2] and the same adaptations as in the case n odd gives the n× n
symmetric matrix

Hν =




m+1 −m 0 1 0 1 ··· 0 1
−m m+1 0 1 0 1 ··· 0 1
0 0 0 0 0 0 ··· 0 0
1 1 0 2 0 2 ··· 0 2
0 0 0 0 0 0 ··· 0 0
1 1 0 2 0 2 ··· 0 2
...

...
...
...
...
...
. . .

...
...

0 0 0 0 0 0 ··· 0 0
1 1 0 2 0 2 ··· 0 2




which is column equivalent to




mD+1 1−n
−mD n−1

0 0
1 0
0 0
...

...
0 0
1 0



.

It follows that, if n is even,

HH2(A) ∼=




HK2(A)/ span

{
(mD + 1)π̌0 −mDπ̌1 +

∑mD

p=1 π̌2p+1

}
if char(F)|(n− 1)

HK2(A)/ span
{
π̌0 − π̌1; π̌0 +

∑mD

p=1 π̌2p+1

}
if char(F) ∤ (n− 1)

In types E6 and E8, since they have the same dimensions, the homology spaces HH2(A) and
HK2(A) are isomorphic.
Finally, in type E7, if char(F) = 3, then HH2(A) ∼= HK2(A). Now assume that char(F) 6= 3.

The matrix Hν was given in [22]; here again, the Nakayama automorphism in [22] differs from
ν by composing with the inner automorphism associated with the element −e0 + e1 − e2 +
e3 + e4 + e5 + e6 (after change of labelling) and therefore the non zero rows of the matrix Hν

are those corresponding to vertices 0, 4 and 6 and are all equal to ( 3 0 0 0 3 0 3 ) . It follows that
HH2(A) ∼= HK2(A)/ span {π̌0 + π̌4 + π̌6}.

6.7. A minimal complete list of cohomological invariants

Theorem 6.24. Let A be the preprojective algebra of a Dynkin graph ∆ over F. Assume
that A has type either An with n > 3, or Dn with n > 4, or En with n = 6, 7, 8. Let A′ be
a preprojective algebra of type ADE, where the integer n′ concerning A′ is subjected to the
same assumptions. Denote by (dp) the equality dimHKp

hi(A) = dimHKp
hi(A

′). If (dp) holds
for p = 0, 1 and 2, then n = n′, and A and A′ have the same type. The conclusion of this
implication does not hold if (d2) is removed from the assumption.
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Proof. We apply the results contained in Propositions 6.6, 6.11, 6.15, 6.19 and 6.23. The
implication is a consequence of the following items.
(1) Assume that A and A′ have types A or D. If charF 6= 2, then n = n′ by (d2), and A and A′

have the same type by (d0). If charF = 2 and A and if A′ both have type A, then n = n′

by (d2). If charF = 2, A is of type An and A′ is of type Dn′ , then the sum of (d0) and (d1)
shows that n = 2n′ +m′

D − 2 or −3 which contradicts (d2): n = n′ +m′
D. If charF = 2

and if A and A′ both have type D, then n = n′ by (d1).
(2) If A and A′ have type E, then n = n′ by (d0).
(3) If A is of type An and A′ of type E6, then (d2) implies either that n = 6 if charF 6= 2, 3 or

that n = 7 if charF = 2, 3, but each case is excluded by (d0). Similarly when A′ is of type
E7 and E8.

(4) If A is of type Dn and A′ is of type E6, then (d2) implies one of the three following cases:
n = 6 if charF 6= 2, 3, n = 7 if charF = 3 or n+mD = 7 if charF = 2, but each case is
excluded by (d0). Similarly when A′ is of type E7 and E8 (we also use (d1) for E8).

Let us show that we cannot remove assumption (d2). It is clear if charF 6= 2 because when
A is of type A3 and A′ is of type A5, both (d0) and (d1) hold. If charF = 2, we check that
when A is of type A9 and A′ is of type E6 then (d0) and (d1) hold.

It is obvious that HK•
hi(A)

∼= F if A is of type A1 and it is easy to check that HK•
hi(A) = 0

when A is of type A2, therefore we have obtained a minimal complete list of cohomological
invariants for all the ADE preprojective algebras.
Another direct application of our computations is the following. If A is as in Theorem

6.24 and if charF 6= 2, the product of the algebra HK•
hi(A) is identically zero. If charF = 2,

HK•
hi(A) = HK•(A) is a unital algebra whose product is fully described in our results.

Remark 6.25. In the one vertex case, the higher Koszul homology and cohomology play
an essential role in a specific formulation of a Koszul Poincaré Lemma (a Koszul Poincaré
duality), see Conjectures 6.5 and 7.2 in [7]. For this reason, we have formulated Theorem 6.24
in terms of the higher Koszul cohomology. An analogous statement with Koszul cohomology is
also true and follows in the same way from our results, but in this case the minimality depends
on the characteristic.
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