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Koszul calculus of preprojective algebras

Roland Berger and Rachel Taillefer

Abstract

We show that the Koszul calculus of a preprojective algebra, whose graph is distinct
from A; and Ag, vanishes in any (co)homological degree p > 2. Moreover, the (higher)
cohomological calculus is isomorphic as a bimodule to the (higher) homological calculus,
by exchanging degrees p and 2 — p, and we prove a generalised version of the 2-Calabi-Yau
property. For the ADE Dynkin graphs, the preprojective algebras are not Koszul and they
are not Calabi-Yau in the sense of Ginzburg’s definition, but they satisfy our generalised
Calabi-Yau property and we say that they are generalised Calabi-Yau. For generalised
Calabi-Yau algebras of any dimension, defined in terms of derived categories, we prove a
Poincaré Van den Bergh duality theorem. We compute explicitly the Koszul calculus of
preprojective algebras for the ADE Dynkin graphs.

1 Introduction

Preprojective algebras are quiver algebras with quadratic relations, that play an important role
in the representation theory of quiver algebras [23, 13, 1], with various applications [11, 12] and
many developments [10, 22, 7, 25]. In [25], the reader will find an introduction to the various
aspects of the preprojective algebras in representation theory, with an extended bibliography.
In our paper, we are interested in some homological properties linked to Hochschild cohomology.

In the two last decades, the Hochschild cohomology of preprojective algebras, as well as
some extra algebraic structures, have been computed in several steps, as follows.

1) Erdmann and Snashall [14, 15] determined the Hochschild cohomology and its cup-
product in type A.

2) Crawley-Boevey, Etingof and Ginzburg [10] determined the Hochschild cohomology for
all preprojective algebras of non-Dynkin type (which are Koszul in this case [29, 20]).

3) In type DE and characteristic zero, Etingof and Eu [17] determined the Hochschild
cohomology and Eu [18] the cup product. The cyclic homology was computed in type ADE
in [17].

4) Assembling and completing the previous results in characteristic zero, Eu gave an explicit
description of the Tamarkin-Tsygan calculus [32] of the preprojective algebras in type ADE,
that is, the homology and the cohomology, the cup product, the contraction map and the Lie
derivative, the Connes differential and the Gerstenhaber bracket [19].

5) Eu and Schedler extended the ADE results to the case where the base ring is Z, and
obtained the corresponding ADE results in any characteristic [20].

In [6], a Koszul calculus was associated with any quadratic algebra over a field, in order to
produce new homological invariants for non-Koszul quadratic algebras. We begin this paper
by extending the Koszul calculus to quadratic quiver algebras. We shall compute the Koszul
calculus of the preprojective algebras whose graph is Dynkin of type ADE (the preprojective
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algebras are then finite dimensional). Except for types A; and As, these quadratic quiver
algebras are not Koszul [29, 26], so that the Koszul calculus and the Hochschild calculus provide
different information.

Before presenting our computations, we state and develop a Poincaré Van den Bergh duality
theorem [33] for the Koszul homology/cohomology of any preprojective algebra whose graph is
different from A; and As. This theorem is formulated as follows and constitutes the first main
result of the present paper. The duality is precisely part (i7) in this theorem.

Theorem 1.1. Let A be the preprojective algebra of a (non-labelled) connected graph A distinct
from A1 and As, over a field F. Let M be an A-bimodule.

(i) The Koszul bimodule complex K(A) of A has length 2. In particular, HKP(A, M) =
HK, (A, M) =0 for any p > 2.

(i) The HK®(A)-bimodules HK®*(A, M) and HKy_o(A, M) are isomorphic.

(iii) The HKS,(A)-bimodules HKS, (A, M) and HKS ((A, M) are isomorphic.

In this statement, following [6], HK,(A, M) and HKP(A, M) denote the Koszul homology
and cohomology spaces with coefficients in M, while HK;,”A(A7 M) and HK} (A, M) denote the
higher Koszul homology and cohomology spaces. When M = A, these notations are simplified
into HK,(A), HKP(A), HK}*(A) and HK},(A).

In the general setting [6], the Koszul calculus of a quadratic algebra A consists of the graded
associative algebra HK®(A) endowed with the Koszul cup product and, for all A-bimodules
M, of the graded HK®(A)-bimodules HK®*(A, M) and HK,(A, M), with actions respectively
defined by the Koszul cup and cap products. The higher Koszul calculus of A is given by the
analogous data, adding the subscript and superscript hi. Sometimes (as will be the case with
our computations in ADE types), these calculi are restricted, meaning that the data is limited
to M = A, so that the restricted Koszul calculus consists of the graded associative algebra
HK®(A) and of the graded HK®(A)-bimodule HK4(A) — similarly for the higher version.

Using Theorem 1.1 for A Dynkin of type ADE, we shall deduce the (higher) homological
restricted Koszul calculus from the computation of the (higher) cohomological restricted Koszul
calculus.

Part (ii) in Theorem 1.1 comes from an explicit isomorphism from the complex defining
HKP(A, M) to the complex defining HKy_,,(A, M), described as follows.

Proposition 1.2. Let A be the preprojective algebra of a connected graph A distinct from Aq
and As. Let M be an A-bimodule. The Koszul cup and cap products are denoted by = and >

Define wy = ), e; ® 0;, where the sum runs over the vertices i of A and, for each vertez i, e;
is the idempotent and o; is the quadratic relation in A associated with i.

For each Koszul p-cochain f with coefficients in M, we define the Koszul (2—p)-chain 05/(f)
with coefficients in M by

HM(f)ZWO}‘(\f-

Then Oy; is an isomorphism of complexes. Moreover, the equalities

Orwan (f < g) = 0u(f) 29= f = On(g)

hold for any Koszul cochains f and g with coefficients in bimodules M and N respectively.

The proof of Proposition 1.2 relies on some manipulations of the defining formula of 8;; with
fundamental formulas of Koszul calculus [6], using actions involving = and o The fundamental



formulas of Koszul calculus express the Koszul differential bx in cohomology and the Koszul
differential % in homology respectively as a cup bracket and a cap bracket, namely

bK — _[eAa _]}/’ bK

= —[2,4, _]A’

K
where ¢4 is a fundamental Koszul 1-cocycle defined by restricting the Euler derivation of the
preprojective algebra A to its arrow space.

In order to extract a generalised version of the 2-Calabi-Yau property from our Poincaré Van
den Bergh duality (Theorem 1.1), we apply this theorem to the left A°-module M = A€ viewed
as an A-bimodule. We show that the complex of Koszul chains with coefficients in the left
A¢-module A€ is naturally isomorphic, as a right A°-module, to the Koszul bimodule complex
K (A). Using the fact that the homology of K(A) is isomorphic to A in degree 0, and to 0 in
degree 1, we obtain a generalisation of the 2-Calabi-Yau property, formulated as follows.

Theorem 1.3. Let A be the preprojective algebra of a connected graph A distinct from Ay and
Ag, over a field F. Let us denote by K(A) the Koszul bimodule complex of A. Then the A-
bimodule HKP(A, A°) is isomorphic to the A-bimodule Hy_,(K (A)) for 0 < p < 2. In particular,
we have the following.

(i) The A-bimodule HK?(A, A®) is isomorphic to the A-bimodule A.

(i) HK!(A, A¢) = 0.

(iii) The A-bimodule HKY(A, A®) is isomorphic to the A-bimodule Ho(K(A)), which is al-
ways non-zero when A is Dynkin of type ADE.

We then say that the preprojective algebra A is a generalised Calabi- Yau algebra of dimen-
sion 2. We generalise this definition to any dimension n in Definition 1.4 below, formulated in
terms of derived categories. Since there is an F-linear isomorphism

H(0)) = T — — : HK*(4, M) — HKy_o(A, M),

we say that the class Wy € HKy(A) is the fundamental class of the generalised Calabi-Yau algebra
A, by analogy with Poincaré’s duality in singular homology/cohomology [27]. In Definition 1.7,
we give a stronger version of Definition 1.4 in order to obtain a Poincaré-like duality, that is, a
duality isomorphism expressed as a cap action by a suitably defined fundamental class.

Let us remark that the A-bimodule structures in Theorem 1.3 are compatible with the
Koszul cup and cap actions of HK®*(A) on HK®(A, A¢) and H(K(A)). These actions can be
viewed as graded actions of left HK®(A)°-modules, while the A-bimodules can be viewed as
compatible right A°-modules. So the isomorphism HK®(A, A°) = Hy_o(K(A)) in Theorem
1.3 is an isomorphism of graded HK®(A)®-A°-bimodules. This enriched isomorphism is the
expression of the stronger version of the generalised Calabi-Yau property, as we shall see in
Definition 1.7.

Note that if A is not Dynkin ADE, then A is Koszul, so Theorem 1.3 enables us to recover
the well-known result that A is 2-Calabi-Yau in the sense of Ginzburg [10, 8]. However, if A is
Dynkin ADE, then A is not homologically smooth since its minimal projective resolution has
infinite length, so that Ginzburg’s definition of Calabi-Yau algebras cannot be applied in this
case [24]. Moreover, the restricted Hochschild calculus is drastically different from the restricted
Koszul calculus, because by [16] there is a cohomological Hochschild periodicity

HHP6(A) = HHP(A), p >0

and, consequently, there are non-zero spaces HHP(A) for infinitely many values of p. Even
taking into account this 6-periodicity, the list of cohomological Koszul invariants consists only
of HK®(A), HK!(A) and HK?(A) and is therefore shorter than the list of Hochschild invariants.



In [20], Eu and Schedler define periodic Calabi-Yau Frobenius algebras, for finite dimen-
sional algebras only. Their main example is given by the preprojective algebras of Dynkin
ADE graphs [20, Example 2.3.10]. Then the above cohomological Hochschild periodicity is a
part of remarkable isomorphims in Hochschild calculus for any periodic Calabi-Yau Frobenius
algebra [20, Theorem 2.3.27 and Theorem 2.3.47].

From Theorem 1.3, we are led to introduce a general definition.

Definition 1.4. Let Q = (Qp, Q1) be a finite quiver, and let F be a field. Let A be an F-
algebra defined on the path algebra FQ of Q by homogeneous quadratic relations. Define the
ring k = FQy, so that A is regarded as a quadratic k-algebra (not necessarily k-central, but
F-central). We say that A is generalised Calabi-Yau of dimension n, for an integer n > 0, if
(i) the bimodule Koszul complex K(A) of A has length n, and
(i) RHom ge (K (A), A¢) =2 K(A)[—n] in the bounded derived category of A-bimodules.

Property (ii) means, in terms of derived categories, that the A-bimodules HK?(A, A®) and
H, _,(K(A)) are isomorphic for any p.

In our context (that of quadratic algebras), Definition 1.4 is a definition of a new Calabi-Yau
property, valid whether A is finite dimensional or not. In this definition, we do not impose that
K(A) be a resolution of A, that is, A is not necessarily Koszul, meaning that the bimodules
HKP(A, A°) for 0 < p < n — 2 may be non-zero. Under the assumptions of Definition 1.4, we
verify that, if A is Koszul, Definition 1.4 is equivalent to Ginzburg’s definition of n-Calabi-
Yau algebras [24, 35]. We then prove a new Poincaré Van den Bergh duality for generalised
Calabi-Yau algebras, adapted to Koszul (co)homologies.

Theorem 1.5. Let A be a generalised Calabi-Yau algebra of dimension n. Then for any A-
bimodule M, the F-vector spaces HKP(A, M) and HK,,_,(A, M) are isomorphic.

Definition 1.6. Let A be a generalised Calabi-Yau algebra of dimension n. The image ¢ €
HK,,(A) of the unit 1 of the algebra A under the isomorphism HK®(A) = HK,,(A) in Theorem
1.5 is called the fundamental class of the generalised Calabi- Yau algebra A.

In order to describe the duality isomorphism of Theorem 1.5 explicitly as a cap-product
by the fundamental class for strong generalised Calabi-Yau algebras, we shall use derived cate-
gories in the general context of DG algebras, as presented and detailed in the preprint book by
Yekutieli [37]. Let us present briefly what we need in this general context.

We introduce the F-central DG algebra A = Hom e (K (A), A). The complexes K(A) and
Hom 4¢ (K (A), A®) of A-bimodules have an enriched structure since they can be viewed as DG
A-bimodules in the abelian category A of A-bimodules, in the sense of [37].

Denote by C(A, A) the DG category of DG A-bimodules in A [37]. Let M be an A-bimodule.
For any chain DG A-bimodule C' in A, Hom 4« (C, M) is a cochain DG A-bimodule in the abelian
category & of F-vector spaces (in A when M = A€). For any cochain DG A-bimodule €’ in
A, M ®4e C" is a cochain DG A-bimodule in €. The bounded derived categories D°(A, A)
and DY(A, £) are defined in [37]. However we do not know if the functors Hom ge(—, M) and
M ® e — from C°(A, A) to C°(A, ) are derivable.

Definition 1.7. Let A be a generalised Calabi- Yau algebra of dimension n. Then A is said to be
a strong generalised Calabi-Yau algebra if the derived functor of the endofunctor Hom ge (—, A°)
of C*(A, A) exists and if RHom e (K(A), A®) = K(A)[-n] in the bounded derived category
DV(A, A).

The second property in this definition (assuming the first one) is equivalent to saying that
the graded HK®(A)¢-A°-bimodules HK®*(A, A°) and H,,_(K(A)) are isomorphic [37].



Theorem 1.8. Let A be a generalised Calabi-Yau algebra of dimension n and let ¢ be its
fundamental class. We assume that A is a strong generalised Calabi-Yau algebra and that the
derived functors of the functors Homae(—, A) and A ®4c — from CP(A, A) to CY(A, &) exist.
Then

co HK*(A) — HK,,_+(A)

is an isomorphism of HK*(A)-bimodules, inducing an isomorphism of HK},;(A)-bimodules from
HKS,(A) to HK!M [(A). For all « € HKP(A), we have c o= (—1)"P« =

Let us describe the contents of the paper. In Section 2, we extend the general formal-
ism — including some results — of Koszul calculus [6] to quadratic quiver algebras. In Section
3, we introduce a right action which is an important tool in order to adapt the definition of
Calabi-Yau algebras to quadratic quiver algebras endowed with the Koszul calculus instead of
the Hochschild calculus. The Poincaré Van den Bergh duality for preprojective algebras is pre-
sented in Section 4, where Theorem 1.1, Proposition 1.2 and Theorem 1.3 of our introduction
are proved. In Section 5, we define our generalisations of Calabi-Yau algebras and we thor-
oughly explain the new objects and remaining results outlined in the introduction. Section 6 is
devoted to the computations of the Koszul calculus in ADE Dynkin types. As an application
of the computations, we prove that the spaces HKY (A), HK};(A) and HK?,(A) form a minimal
complete list of invariants for the ADE preprojective algebras.

Acknowledgements. The second author thanks the project CAP2025 of the Université Cler-
mont Auvergne for its support.

2 Koszul calculus for quiver algebras with quadratic relations

2.1 Setup

Let Q be a finite quiver, meaning that the vertex set Qg and the arrow set Q; are finite. Let
F be a field. The vertex space k = FQy becomes a commutative ring by associating with Qg a
complete set of orthogonal idempotents {e;; i € Qp}. The ring k is isomorphic to FI9ol where
|Qo| is the cardinal of Qy. Throughout the paper, the case |Qy| = 1 will be called the one vertex
case, which is equivalent to saying that k is a field. Koszul calculus over a field k is treated
in [6].

For each arrow o € Qy, denote its source vertex by s(«) and its target vertex by t(a). The
arrow space V' =IFQ; is a k-bimodule for the following actions: ejae; is equal to zero if i # s(«)
or j # t(a), and is equal to «v if ¢ = s() and j = t(«). If there is an arrow joining two distinct
vertices, the k-bimodule V' is not symmetric.

Via the ring morphism F — & that maps 1 to ) ;.o €, the tensor k-algebra Ty (V') of the
k-bimodule V is an F-algebra isomorphic to the path algebra FQ, so that V®*™ is identified
with FQ,,, where Q,, is the set of paths of length m. For two arrows a and 3, note that a ®; 3
is zero if t(f) # s(«), and otherwise a®y, 8 is identified with the composition af of paths (where
paths are written from right to left, as in [3]).

Let R be a sub-k-bimodule of V ®; V = FQs. The unital associative k-algebra A =
Ti(V)/(R), where (R) denotes the two-sided ideal of T}, (V') generated by R, is called a quadratic
k-algebra over the finite quiver Q. The degree induced on A by the path length is called the
weight, so that A is a graded algebra for the weight grading. The component of weight m of
A is denoted by A,,. Clearly, Ay = k and A; = V. The algebra A is F-central, but if there is
an arrow joining two distinct vertices, A is not k-central. The A-bimodules are not necessarily



k-symmetric, but they are always assumed to be F-symmetric. Setting A° = A ®p AP, any
A-bimodule can be viewed as a left (or right) A°-module, as usual.

For brevity, the notation ®r is replaced by the unadorned tensor product ®. Similarly for
the notations Homy and dimp abbreviated to Hom and dim. If unspecified, a vector space is an
F-vector space and a linear map is F-linear.

The tensor product ®y, is different from the unadorned tensor product ®. However, if M is a
right A-module and N is a left A-module, then the natural linear map Me;, ®e; N — Me; @ e; N
is an isomorphism, so that for a € Me; and b € e; N, we can identify a ® b = a®b. Similarly, if
M and N are A-bimodules, ¢;Me; and e; Ne; are k-bimodules, that may be viewed as left and
right k°-modules, where k¢ = k ® k. The natural linear map e;Me; ® e;Ne; — e;Me; Qpe e;Ne;
is an isomorphism, so for a € e;Me; and b € e;Ne;, we can identify a Qpe b = a ® b. We shall
freely use these identifications, without explicitly mentioning them.

Although the algebra A is not k-central, we define its bar resolution B(A) following standard
texts [36] by (A @ A®*® @ A, d) with

dla®yay...ap R d) =aa; @ ay...ap R ad + Z (—1)ia®ka1...(aiai+1)...ap®kal

+(-1)Pa®ai...ap—1 @ apd,

for a, a’ and ay,...,a, in A. When k is not central, the extra degeneracy is defined and is still a
contracting homotopy, hence B(A) is a resolution of A by projective A-bimodules. See Lemma
2.1 below for the fact that the A-bimodules A ®;, A®*P ®, A are projective.

For any A-bimodule M, Hochschild homology and cohomology are defined by

HH, (A, M) = TorZ (M, A) = Hy(M ® e B(A), M ® 4¢ d),
HH®*(A, M) = Ext%.(A, M) = H*(Homye(B(A), M), Hom e (d, M)).
The linear map
M ®ac (A @y A% @) A) — M Qpe (ACFP) (2.1)
m® e (ag R - .. Qk ap+1) = (apr1mag) ke (a1 Rk ... Ok ap)
is well-defined and is an isomorphism. Similarly, the linear map
Homye (A% M) — Hom e (A @y AP @y, A, M) (2.2)
fr= (a0 ®k ... O app1 — apf(a1 O ... Ok ap)api1)

defines an isomorphism. Transporting M ® 4e d and Hom 4e(d, M) via these isomorphisms, we
obtain the Hochschild differentials b” and by, so that

HH, (A, M) = Hy(M ®p A%+ bH),
HH®(A, M) = H®*(Homye (A%, M), by ).
The Hochschild homology differential is then defined, for m € M and ay,...,a, in A, by
by (m ®pe (a1 ... ap)) = may Spe (ag...ap) + > (=1)'m@ge (a1... (aiaiy1) . . ap)
1<i<p—1
+ (—=1)Papm ®pe (a1 ... ap—1).

The Hochschild cohomology differential (including a Koszul sign in Hom ge(d, M)) is defined,
for f € Hompe (A%, M) and ay,...,ap+1 in A, by

Wi (F)ar .. app1) = flar...ap)apy — > (=P f(ar.. (aigir1) ... aps1)

1<i<p

— (—1)pa1f(a2 e ap+1).



2.2 Koszul homology and cohomology

Let A =T,(V)/(R) be a quadratic k-algebra over Q. Following [6], the Koszul complex K(A)
is the subcomplex of the bar resolution B(A) defined by the sub-A-bimodules A ®j, W, ®j, A of
A®p AP @, A, where Wy =k, Wi =V and, for p > 2,

W= [ V@ Ry VO, (2.3)
i+2+j=p

Here W), is considered as a sub-k-bimodule of VO C A9kP_ Tt is immediate that the differential
d of K(A) is defined on A ®;, W, ®;, A by

dla®kx1...7pQpad) =ar) Q3. 2y O a' + (—1)Pa @ 21 ... Tp_1 Qf Tpa', (2.4)

for a, a’ in A and z; ...z, in W),

In this paper, we systematically follow [6] for the notation of elements of W),. Let us recall
this notation. Asin (2.4), an arbitrary element of W), is denoted by a product z; ...z, thought
of as a sum of such products, where z1,...,x, are in V. Moreover, regarding W), as a subspace
of VO @) W, @ VS with ¢+ r + s = p, the element 7 ...z, viewed in V& @4 W, @) VS
will be denoted by the same notation, meaning that the product z411...x44, represents an
element of W, and the other x; are arbitrary in V.

We pursue along the same lines as [6]. We present the different objects with their funda-
mental results more quickly. We keep the same notations as in [6] and we leave the details to
the reader when they are the same as in the one vertex case.

The homology of K(A) is equal to A in degree 0, and to 0 in degree 1. The quadratic
algebra A is said to be Koszul if the homology of K(A) is 0 in any degree > 1. Denote by
w: ARk A — A the multiplication of A. Then A is Koszul if and only if u: K(A) - Ais a
resolution of A. If R=0and if R =V ®;V, then A is Koszul. Besides these extreme examples,
many Koszul algebras occur in the literature in the one vertex case [31]. Beyond the one vertex
case, it is well-known that preprojective algebras are Koszul when the graph is not Dynkin of
type ADE (see Proposition 4.1).

Let us show that the A-bimodules A ®; W, @i A forming K (A) are projective and finitely
generated. It is an immediate consequence of the following lemma, since W), is a sub-k-bimodule
of VEkP,

Lemma 2.1. Let E be a k-bimodule.
(i) The A-bimodule A ®y E ®j A is projective.
(ii) If E is finite dimensional, then the A-bimodule A ®) E ®y A is finitely generated.

Proof. Clearly E = €P; ;cq, ¢jFei. From A = P,o Ae; = D,cg, €jA, we deduce that the
A-bimodule A ®; E ®;, A is isomorphic to the A-bimodule

F, = @ Aej ® ejEei ® e; A.
1,7€Q0
Considering I} as a sub-A-bimodule of F = A® F ® A, we see that F' = F| & Fy, where
= EB Ae;, @ e, Eeiy ® e, A
11,12,13,14€ Qo

in which the sum is taken over the set of indices with i1 # is and i3 # i4. As the A-bimodule
F is free, we conclude that Fj is projective. Part (4i) follows from the fact that F is finite
dimensional if and only if all the (e;Ee;) are finite dimensional and is left to the reader. ]



Definition 2.2. For any A-bimodule M, Koszul homology and cohomology are defined by
HKo(A, M) = He(M ®4c K(A)) and HK®*(A, M) = H*(Hom e (K (A), M)).
We set HKq(A) = HKq (A4, A) and HK®*(A) = HK®*(A, A).

Since K (A) is a complex of projective A-bimodules, M — HKq(A, M) and M — HK®*(A, M)
define -functors from the category of A-bimodules to the category of vector spaces, that is, a
short exact sequence of A-bimodules gives rise to a long exact sequence in Koszul homology
and in Koszul cohomology [36]. As in [6], HK,(A, M) (respectively HKP(A, M)) is isomorphic
to a Hochschild hyperhomology (respectively hypercohomology) space.

The inclusion x : K(A) — B(A) is a morphism of complexes that induces the following
morphisms of complexes

X:M®A6X2M®Ae K(A) —>M®Ae B(A),

X" = Homge(x, M) : Homge (B(A), M) — Homye(K(A), M).

The linear maps H(x) : HK,(A, M) — HH,(A, M) and H(x*) : HH?(A, M) — HKP(A, M) are
always isomorphisms for p = 0 and p = 1, and if A is Koszul they are isomorphisms for any p.
Replacing B(A) by K(A) in the isomorphisms (2.1) and (2.2) gives the isomorphisms

HK. (A, M) = Hy(M ® W, b5),
HK.(A, M) = H'(Homke(W.,M),bK).

The Koszul differentials b% and by are given by

bff(m Qke X1 ... Tp) = M.T] Qke T ... Ty + (—1)PTp.m Qpe 1 ... 2p_1, (2.5)

b?l(f)(xl v Zpp1) = flxr . oxp)xppr — ()P f(za. . xpia), (2.6)

where m € M and z ...z, € W), respectively f € Homye(W,, M) and 1 ... 2pp1 € Wpi1.

Note that the k-algebra A is augmented by the natural projection €4 : A — Ay = k. Let us
examine now the particular case M = k, where k is the A-bimodule defined by €4. The action
on k of an element of A, with p > 0 is zero, so that the Koszul differentials vanish when M = k.
Consequently, we have the linear isomorphisms

HK, (A, k) = k @ W, 2 €D e;Wpes,
1€Qo

HKP (A, k) = Homye (Wp, k) = €D Hom(e;Wye;, F).
1€Q0
In particular HKP(A, k) = Hom(HK, (A, k),F), generalising [6].

2.3 Koszul cup and cap products

Let A = Ti(V)/(R) be a quadratic k-algebra over Q. We proceed as in [6]. The usual cup
and cap products — and —~ in Hochschild cohomology and homology provide, by restriction
from B(A) to K(A), the Koszul cup and cap products = and 2 in Koszul cohomology and

homology. Let us give these products, expressed on Koszul cochains and chains. Let P, @
and M be A-bimodules. For f € Homye(W,, P), g € Homge(W,, Q) and z = m Qe x1 ... 24 €



M ®@e Wy, we define f <9 € Homge(W),, P ®4 Q), f = F € (P ®a M) ke Wy_p and
2> € (M®aP) ke Wo—p by

(f X 9 (@1 Tpig) = ()P f(z1.. 2p) @4 9(Tpa1 - Tpag), (2.7)
f == (D) I PP(f(2g i1 Tg) @A M) Dpe T1 - - - Tgp, (2.8)
Z =D mea f(rr...2p)) Qke Tpy1 - . - Tq (2.9)

For any Koszul cochains f, g h and any Koszul chain z, we have the associativity relations

(fz9)h = f;(g;h),

folgne) = (fr9 s
(zo9) o f = Z?(g;f),
folzng) = (f22) 29

inducing the same relations on Koszul classes.
We define the general Koszul calculus of A as being the datum of all the spaces HK®*(A, P)
and HK,(A, M) endowed with < and > when the A-bimodules P and M vary.

For any A-bimodule M, Homge(W,, M) and M ®ie W, are DG bimodules over the DG
algebra (Homke(W.,A),bK,}?) for the actions of = and 2 respectively. The Koszul calcu-

lus of A consists of the graded associative algebra (HK®(A), }/) and of the graded HK®(A)-

bimodules HK®*(A, M) and HK,(A, M). Since HK’(A) = Z(A) is the centre of the algebra A,
the spaces HKP(A, M) and HK,(A, M) are symmetric Z(A)-bimodules. However HK”(A, M)
and HK,(A, M) are not k-bimodules in general. For example, e; ¢ Z(A) if there is an arrow
joining ¢ to another vertex.

The restricted Koszul calculus of A consists of the graded associative algebra HK®*(A) and of
the graded HK®(A)-bimodule HK4(A). The scalar Koszul calculus of A consists of the graded
associative algebra HK®(A, k) and of the graded HK®(A, k)-bimodule HK,4 (A, k).

Example 2.3. If Q1 =0, then V =0 and A is reduced to k. The (general) Koszul calculus of
k coincides with the (tensor) category of k-bimodules.

2.4 Fundamental formulas of Koszul calculus

Let A = Ti(V)/(R) be a quadratic k-algebra over Q. We continue to follow the one vertex
case [6]. First, we define the Koszul cup and cap brackets. Let P, @ and M be A-bimodules,
and take f € Homye(Wp, P), g € Homye(Wy,Q), 2 = m Qpe 1 ... 24 € M Qpe W, When P or
Q is equal to A, we set

gl = f— g (=17 . (2.10)

—
K

When P or M is equal to A, we set

fido =~ 2= (=12~ . (2.11)

K K
These brackets induce brackets on the Koszul classes.
The Koszul 1-cocycles f : V. — M are called Koszul derivations with coefficients in M.

Such an f extends to a unique derivation from the k-algebra A to the A-bimodule M, realising



an isomorphism from the space of Koszul derivations with coefficients in M to the space of
derivations from A to M. In particular, the Koszul 1-cocycle from V to A coinciding with the
identity map on V, is sent to the Euler derivation D4 of the graded algebra A. This Koszul
1-cocycle is denoted by e4 and is called the fundamental 1-cocycle. Its Koszul class is denoted
by €4 and is called the fundamental 1-class. In the one vertex case, ¢4 is not a coboundary if
V' # 0 [6], but this property does not hold in general.

Lemma 2.4. Let A =T(V)/(R) be a quadratic k-algebra over Q with Q1 # 0. If the under-
lying graph of Q is simple, that is, it contains neither loops nor multiple edges, then e4 is a
coboundary.

Proof. The 1-cocycle ¢4 is a coboundary if and only if there exists a k®-linear map ¢ : k — k
such that e4 = b (c). Such a map is of the form c(e;) = A\je; with A; € F, for any ¢ € Qp. Then
ea = bx/(c) if and only if A\yq) — As(q) = 1 for any o € Q1. The assumption on the graph means
that Q has no loop and that given two distinct vertices, there is at most one arrow joining them.
Then we can choose Ay,) =1 and A,y = 0. [

This proof shows that if Q has a loop, ¢4 is not a coboundary. The same conclusion holds if
charF # 2 and @ contains an oriented 2-cycle. The following propositions are proved as in the
one vertex case. Formulas (2.12) and (2.13) are the fundamental formulas of Koszul calculus.

Proposition 2.5. Let A = T;.(V)/(R) be a quadratic k-algebra over Q. For any Koszul cochain
f and any Koszul chain z with coefficients in an A-bimodule M, we have

[QA, f]}/ = _bK(f)’ (212)
[eA’Z]}? = —bg(2). (2.13)
Proposition 2.6. Let A = T(V)/(R) be a quadratic k-algebra over Q and let M be an A-

bimodule. For any o € HKP(A, M) withp =0 orp =1, B € HK?(A) and v € HK,(A), we have
the identities

[, B]_ =0, (2.14)
[a, 7]~ = 0. (2.15)

Identity (2.15) also holds if p=q & {0,1}.

2.5 Higher Koszul calculus
Let A = T, (V)/(R) be a quadratic k-algebra over Q. Formula (2.7) shows that e4 e = 0.

Therefore, ey e is a cochain differential on Hompge(W,, M), and ey e is a cochain
differential on HK®(A, M). Similarly, e4 i is a chain differential on M ®xe W,, and ¢4 =

is a chain differential on HK4(A, M). For a p-cocycle f: W, — M and 1 ...zp41 in Wyy1, we
have

(ea % .. xpp1) = f1...2p).pi.

For a p-cycle z = m ®pe 1 ... 2 in M Qe W), we have

€4 2 =MT1 Qke T2 ... Tp.
K
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Definition 2.7. Let A = T (V)/(R) be a quadratic k-algebra over a finite quiver Q and let
M be an A-bimodule. The differentials ¢4 = and €4 = — are denoted by O_ and 0.

The homologies of the complexes (HK®*(A, M),0_) and (HKq(A, M),0~) are called the higher
Koszul cohomology and homology of A with coefficients in M and are denoted by HK3?,(A, M)
and HKM(A, M). We set HK},(A) = HK3,(A, A) and HK!M(A) = HKM (A, A).

The higher classes of Koszul classes will be denoted between square brackets. For example,
the unit 1 of A is still the unit of HK®*(A), and 0_ (1) = ¢4 implies that [e4] = 0. If ¢4 # 0, the
unit of HK®*(A) does not survive in higher Koszul cohomology.

As in the one vertex case, the actions of the Koszul cup and cap products of HK®*(A) on
HK*®(A, M) and HK,(A, M) induce actions on higher cohomology and homology. Thus HK},(A)
is a graded algebra, and HK$,(A, M), HKM(A, M) are graded HK},(A)-bimodules, constituting
the higher Koszul calculus of A. If ¢4 = 0, the higher Koszul calculus coincides with the Koszul
calculus. It is the case when A = k as in Example 2.3.

For M =k, ey i and ey = vanish, so that the higher scalar Koszul calculus coincides

with the scalar Koszul calculus. Proposition 3.12 in [6] generalises immediately as follows.

Proposition 2.8. Let A = T,(V)/(R) be a quadratic k-algebra over Q and let M be an A-
bimodule. Then HKY,(A, M) is the space of elements u in Z(M) such that there exists v € M
satisfying u.a = v.a — a.v for any a in Q1.

2.6 Grading the restricted Koszul calculus by the weight

A Koszul p-cochain f : W, — A,, is said to be homogeneous of weight m. Since Q; is finite,
the spaces W), are finite dimensional, thus the space of Koszul cochains Homye (W,, A) is N x N-
graded by the biweight (p,m), where p is called the homological weight and m is called the
coefficient weight. If f: W, — A, and g : W, — A,, are homogeneous of biweights (p, m) and
(g,m) respectively, then f e Wpiq = Amyn is homogeneous of biweight (p + ¢,m + n).

Moreover bk is homogeneous of biweight (1,1) and the algebra HK®(A) is N x N-graded by the
biweight. The homogeneous component of biweight (p, m) of HK®(A) is denoted by HKP(A),,.
Since

O_ : HKP(A),, — HKPT(A) 01,

the algebra HK7,(A) is N x N-graded by the biweight, and its (p, m)-component is denoted by
HK? .(A)y,. From Proposition 2.8, we deduce the following.

Proposition 2.9. Let A =Ty (V)/(R) be a quadratic k-algebra over Q. Assume that A is finite
dimensional. Let max be the highest m such that A,, # 0. Then HK?Li(A)maX 18 isomorphic to
the space spanned by the cycles of Q of length max.

Similarly, a Koszul g-chain z in A, ®g W, is said to be homogeneous of weight n. The
space of Koszul chains A @k W, is N x N-graded by the biweight (q,n), where ¢ is called
the homological weight and n is called the coefficient weight. Moreover bX is homogeneous of
biweight (—1,1) and the space HKq(A) is N x N-graded by the biweight. The homogeneous
component of biweight (g, n) of HK4(A) is denoted by HK,(A),. Since

O~ : HKq(A)n — Hqul(A)nle,

the space HK?(A) is N x N-graded by the biweight, and its (¢, n)-component is denoted by
HK"(A),.
q n

11



If f: W, - A, and z € A, ®ke W, are homogeneous of biweights (p, m) and (¢,n)
respectively, then f o and z 2 f are homogeneous of biweight (¢ — p, m + n) where

2= (=D)CPPf(r, iy xy)a e T1 - Ty, (2.16)

f

z

K
- f=ED)Maf(x...ap) Qpe Tpy ... Zq, (2.17)

and 2 = a ®pe 1 ...24. The Homke(W., A)-bimodule A ®ge W,, the HK®(A)-bimodule HK,(A)
and the HKS,(A)-bimodule HK?(A) are thus N x N-graded by the biweight. The proof of the
following is left to the reader.

Proposition 2.10. Let A =T, (V)/(R) be a quadratic k-algebra over Q. We have
HKJ(A)g = HKo(A)g = k.

Moreover HKg(A); = HK;(A)o is isomorphic to the space spanned by the loops of Q, and
0~ : HK (A)o — HK((A)1 identifies with the identity map of this space. As a consequence,

HKJ(A); = HKM(A) = 0.

2.7 Invariance of Koszul calculus

In [5], the first author proved that the Koszul calculus of an N-homogeneous algebra A over
a field k only depends on the structure of associative algebra of A, independently of any pre-
sentation A = T(V)/(R) of A as an N-homogeneous algebra. This result was based on an
isomorphism lemma due to Bell and Zhang [2]. In the quadratic case N = 2, we are going to
extend this Koszul calculus invariance to any quadratic quiver algebra. For that, we shall use
an extension of the isomorphism lemma to quiver algebras with homogeneous relations, due to
Gaddis [21].

Let Q and Q' be finite quivers, and F be a field. We introduce the commutative rings
k = FQy and k' = FQ'y, the k-bimodule V' = FQ; and the k-bimodule V' = FQ). As
explained in Subsection 2.1, we make the identifications of graded algebras Ty (V) = FQ and
T (V') 2 FQ'. We are interested in the graded F-algebra isomorphisms w : T(V) — Tp/(V')
given by a ring isomorphim ug : k — k' and by a k-bimodule isomorphism u; : V' — V', where
V' is a k-bimodule via ug. This implies that ug maps Qg to Qg, and the bijection Qy — Q¢
induced by ug transforms the adjacency matrix of Q into the adjacency matrix of Q' [21].

Let us fix a sub-k-bimodule R of V ®; V and a sub-k’-bimodule R’ of V' ®i V'. We define
the graded k-algebra A = T;(V)/(R) and the graded k'-algebra A’ = T}, (V')/(R'). Following
the terminology of the one vertex case, a graded F-algebra isomorphism u : A — A’ is called
a Manin isomorphism if u is defined by a ring isomorphism ug : £ — &/, and by a k-bimodule
isomorphism wu; : V' — V’, such that the k-bimodule isomorphism u?ﬁ : VO2 5 V9,2 (that
actually takes values in V'®'2 via ug) satisfies u?’“z(R) = R/. In particular, u is an isomorphism
of the augmented k-algebra A to the augmented k’-algebra A’, the augmentations being the
projections A — Ag =k and A’ — A[ = k.

As in [5], for any A-bimodule M, the Manin isomorphism u naturally defines an isomor-
phism of complexes from (M @ge W, b%) to (M @pe W., %), where M is an A’-bimodule via u,
inducing natural isomorphisms HKq (A, M) = HK,(A’, M). Similarly,  induces natural isomor-
phisms HK®(A’, M) = HK®*(A, M). It is clear from the definitions in Subsection 2.3 that these
isomorphisms respect the Koszul cup and cap products. To summarise all these properties, we
say that a Manin isomorphism induces isomorphic (general) Koszul calculi. Since ui(eq) = ea
by functoriality, it also induces isomorphic higher Koszul calculi.

12



As an application, let us show that the various Koszul calculi of a quadratic k-algebra
A = T,(V)/(R) over a finite quiver Q only depend on the graph A underlying Q, not on an
orientation of A. In fact, if a quiver Q' has the same underlying graph A, then Qy = Qg and
there is a natural bijection Q1 — @’y inducing a k-bimodule isomorphism u; : V — V' = FQ',
so that R maps to a sub-k-bimodule R’ of FQ's. We obtain a Manin isomorphism u from A to
A" =T, (V")/(R'). Thus the (general, higher) Koszul calculi of A and A’ are isomorphic.

Using Gaddis’s result, we can now prove ungraded invariance. Let C be a commutative ring.
Let A be an augmented associative C-algebra (not necessarily C-central) having a quadratic
quiver algebra presentation B, meaning that the augmented C-algebra A is isomorphic to a
quadratic k-algebra B = Ty(V)/(R) over a finite quiver Q, naturally augmented over k by the
projection B — By = k. This implies that the ring C' is isomorphic to k = FQy. Then we can
define the (general) Koszul calculus of A as being the (general) Koszul calculus of B.

In fact, if B = T (V')/(R') over a finite quiver Q' is another quadratic quiver algebra
presentation of A, then the ungraded augmented k-algebra B is isomorphic to the ungraded
augmented k’-algebra B’. By Gaddis’s theorem [21], there exists a Manin isomorphism from B
to B’, thus the (general) Koszul calculi of B and B’ are isomorphic by Manin invariance. The
higher Koszul calculus of A is also defined as being the higher Koszul calculus of B.

2.8 Comparing Koszul (co)homology with Hochschild (co)homology in de-
gree 2

Let A = Ti(V)/(R) be a quadratic k-algebra over Q. Recall that, for p = 0 and p = 1, we
have linear isomorphisms HK,(A4, M) = HH, (A, M) and HHP(A, M) = HKP(A, M) (Subsection
2.2). It is no longer true if p > 2 and if A is an arbitrary non-Koszul algebra. Preprojective
algebras of Dynkin type will give infinitely many counterexamples when p = 2. However, in
general, we can compare the Koszul and Hochschild space when p = 2, by providing a surjection
HKy(A, M) — HHy(A, M) and an injection HH?(A, M) — HK?(A, M). To prove that, we use
a minimal projective resolution of the graded k-algebra A, described as follows.

As in the one vertex case [6], we know that, in the category of graded A-bimodules, A has
a minimal projective resolution P(A) whose component of homological degree p can be written
as A @ Ep, @, A, where E, is a weight-graded k-bimodule. Then P(A) ®4 k (respectively
k®4 P(A)) is a minimal projective resolution of the graded left (respectively right) A-module k
(see for instance [1]), so that the weight-graded k-bimodules E,, can be obtained inductively on
p either by the construction of a left minimal projective resolution of k£ or by the construction
of a right one. The differential § of P(A) is the graded sum of the left (respectively right)
differentials d ® 4 k (respectively k® 4 ) extended by right (respectively left) A-linearity to each
A R Ep Rk A.

The left or right construction of the weight-graded k-bimodules £, shows that the minimal
weight of E, is equal to p and the homogeneous component of weight p in E, is equal to W),
The inclusions A ® W, ®; A = A ®j, E, ®j, A constitute an inclusion map ¢ : K(A) — P(A)
of weight-graded A-bimodule complexes. So we can view the complex K(A) as the diagonal
part of the weight-graded resolution P(A), and A is Koszul if and only if P(A) = K(A). The
beginning of P(A) coincides with K (A), that is, Fy = k, E1 =V, E5 = R, and the differential
d of P(A) coincides with the differential d of K(A) in degrees 1 and 2.

For any A-bimodule M, ¢ induces I = M ®4e ¢ and * = Homge (¢, M) decomposed in
ip: M @pe Wy = M Qpe By and vy : Hompe (E), M) — Homye (W), M). The linear maps

H(D), : HK,(A, M) — HH,(A, M) and H(.*), : HHP(A, M) — HKP(A, M) (2.18)

are isomorphisms for p = 0 and p = 1, and for any p if A is Koszul. Since ¢, is an identity map
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for p=10,1,2, i, and ¢, are also identity maps for the same p’s. Therefore

bE bk
M®k6W3i> M@]«;R# M Qe V
is ] id | id | (2.19)
M @pe B3 25 M @pe R M@ V

03 03
Homke (V, M) —2> Homke (R, M) —3) Homke (Eg, M)
id | id | i (2.20)

b2 b3
Homye(V, M) -5 Hompe(R, M) —= Homye (W3, M)

are commutative diagrams in which 73 is injective and ¢} is surjective (the ring k° is semi-simple),
so that we obtain.

Proposition 2.11. Let A =T, (V)/(R) be a quadratic k-algebra over Q. For any M,
(i) H()y : HKo(A, M) — HHy(A, M) is surjective with kernel isomorphic to im(d3) /im(b5),
(ii) H(*)y : HH*(A, M) — HK2*(A,M) is injective with image isomorphic to
ker(6%)/im(b%).

We can be more specific when M = A, by using the weight grading (Subsection 2.6). Unlike
the Koszul differentials b and by, the Hochschild differentials b” and by are not homogeneous
for the coefficient weight, but only for the total weight. The grading of HH,(A) and HHP(A) for
the total weight ¢ is denoted by HH,(A); and HHP(A);. Denote the weight of a homogeneous
element a of A by |a|. Recall that the total weight of a homogeneous p-chain z = a®ye (a1 . . . ap)
is equal to t = |a|+|ai|+. ..+ |ap|, and the total weight of a homogeneous p-cochain f mapping
aj...ap to an element of A, is equal to t = m — |a1| — ... — |ap|. Then H(7)2 is homogeneous
from the coefficient weight r to the total weight r 4+ 2, while H(.*)2 is homogeneous from the
total weight » — 2 to the coefficient weight r.

Corollary 2.12. Let A=T,(V)/(R) be a quadratic k-algebra over Q.

(i) H(7)2 is an isomorphism from HK9(A), to HHa(A)r12 if 7 =0 and r = 1.

(ii) Assume that A is finite dimensional. Let max be the highest m such that A,, # 0. Then
H(1*)y is an isomorphism from HH?(A),_o to HK?(A), if r = max and r = max —1.

Proof. Denote by E,,, the homogeneous component of weight m of E,. Since E32 = 0 and
Es3 3 = W3, both maps 83 and bg( vanish on the component of total weight 2 of A ®ge F3, while
on that of total weight 3, they coincide with the inclusion map of W3 into V ®pe R. Then we
deduce (i) from (i) of the proposition.

Under the assumptions of (i), if f : R — Apax, then b3-(f) = 0. Moreover, any other
component of §3(f) mapping E3,, to Amax+m—2 = 0 vanishes as well. Thus 65(f) =0, and we
conclude by (ii) of the proposition. The same proof works if f : R — Apax—1 since 05(f) is
then reduced to a map W3 — Apax coinciding with b3 (f). ]

3 A right action on the Koszul calculus

3.1 Compatibility

Lemma 3.1. Let A and B be unital associative F-algebras. Let M be an A-bimodule (hence the
induced F-bimodule is symmetric). Assume that M is a right B-module such that the actions
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of F induced on M by A and by B are the same. Let A° = A @y A be the enveloping algebra.
The following are equivalent.

(i) Viewing M as a left A°-module, M is an A®-B-bimodule.

(ii) Viewing M as a right A-module, the right actions of A® and B on M commute.

(iii) M is an A-B-bimodule and the right actions of A and B on M commute.

The proof is straightforward. Under the assumptions of the lemma and if the equivalent
assertions hold, we say that the right action of B on M is compatible with the A-bimodule M.

Example 3.2. With B = M = A®, A€ is a natural A®-A®-bimodule for the multiplication of
the F-algebra A€. Recall that the left A°-module A° is isomorphic to the A-bimodule A é A for
the outer action (a ® b).(a ® f) = (aa) @ (Bb), while the right A°-module A° is isomorphic to
the A-bimodule A ® A for the inner action (a ® B).(a ® b) = (aa) ® (bf).

3.2 DG bimodules over a DG algebra

Let A =T,(V)/(R) be a quadratic k-algebra over Q. Fix a unital associative F-algebra B and
an A-bimodule M. We assume that M is a right B-module compatible with the A-bimodule
structure. Then the space M ®ie W, is a right B-module for the action of b € B on z =
m Qe 1 ...24 € M Qe W, defined by

z2.b=(m.b) @pe x1 ... 24.
It is well-defined since (Amp).b = A(m.b)u for any A and p in k. From (2.5) and (2.8), we
check that b® and ey > —are B-linear. Thus HK,(A, M) and HK" (A, M) are graded right

B-modules.
Moreover, for any k-bimodule morphism f : W, — A, we verify that

f - (z.0) = (f - z).b and (z.b) - f=(z , f)-b,

so that the right action of B on M ®e W, is compatible with the Homye (W,, A)-bimodule
structure underlying the DG bimodule M ®ye W, (Subsection 2.3). Therefore the right action
of B on HK,(A, M) and on HK( A, M) is respectively compatible with the structure of HK®(A)-
bimodule and of HK},(A)-bimodule.

It is convenient to translate what we have obtained in terms of DG bimodules over a DG
algebra. We refer to [37] for these notions. We introduce the F-central DG algebra

A = Hom e (K (A), A) = Homye (W,, A)

whose grading is given by the cohomological degree of cochains, whose differential is by and

whose multiplication is e Note that H(A) = HK®*(A). Denote by B the category of right

B-modules. Then M ®pe W, is a DG A-bimodule in the abelian category B, in the sense
of [37]. Moreover, HK(A, M) is a graded HK®(A)-bimodule in B, and HK(A, M) is a graded
HK3?,(A)-bimodule in B.
Similarly, Homge (W,, M) is a right B-module for the action of b on f : W, — M defined by
(fo)(x1...2p) = fx1...2p).D.

Then by and ¢4 — — are B-linear, so that HK®*(A, M) and HK},(A, M) are graded right

K
B-modules. For g : W, — A, we have

95 (f0)=(g9 - f)-band (£b) = g=(f - 9)b.
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The right B-module Hompge(W,, M) is compatible with the Hompge(W,, A)-bimodule struc-
ture underlying the DG bimodule Homye(W,, M). The right action of B on HK®*(A, M) and
on HK?, (A, M) are compatible respectively with the structure of HK®(A)-bimodule and of
HK3}.(A)-bimodule. In terms of DG bimodules, Homge(W,, M) is a DG A-bimodule in B,
HK*®(A, M) is a graded HK®(A)-bimodule in B, and HK} (A, M) is a graded HK3?,(A)-bimodule
in B.

3.3 Application to the Koszul complex K(A)

Let us specialise to B = M = A€ as in Example 3.2. So M = A é A is a left A°-module for
the outer structure, and a right A°-module for the inner structure. Our aim is to identify the

A-bimodule complex K(A) with the complex ((A ® A) e We, b)) endowed with the right
action of A°. The statement is the following.

Proposition 3.3. Let A =Ty(V)/(R) be a quadratic k-algebra over Q.
(i) For any q > 0, the bilinear map ¢q : (A ® A) x Wy — Ay W, ® A defined by
pla®B,x1...29) = Bk (21 ...24) Qpf

induces an isomorphism ¢g : (A 5{) A) @pe Wy = A®, Wy @ A.

(ii) The direct sum ¢ of the maps @4 is an isomorphism from the complex ((A ® A) Rpe
W, %) to the Koszul complex (K (A),d).
(iii) The isomorphism ¢ is right A®-linear.

Proof. The A-bimodule A (§> A is a k-bimodule for the actions Ma ® f)p = Aa ® Bu, with «
and fin A, A and p in k, thus it is a right k°-module for (o ® 8)(A ® p) = pa ® SA. Then it is
easy to check that

Oq(Ha @ BN, x1 ... xq) = @a(a @ B, Az ... Zgpt),

proving the existence of ¢,. We define similarly an inverse linear map, therefore ¢, is an
isomorphism, which gives (7).
Let us show that ¢ is a morphism of complexes. From

bK((Oé ® 5) Rpe L1 ... .%'q) = (Oé & (,81‘1)) Qe T2 ... 2Tq + (—1)(1((1',106) ® 5) Qke X1+ Tg—1,
we get
@obK((og@ﬁ) Rpe xl...xq) ="' ®kx2...xq®ka+(—1)qﬂ®kx1...xq_1 QR Tqox

whose right-hand side is equal to d(8 @y, x1 ...z, @) «), as expected.
Let us prove (iii). Here the A-bimodule A ®; W, ®; A is seen as a right A°-module. For
2= (a®p) Qe x1...24 and a, b in A, we have

Pq(2.(a®@b)) = @q((aa @ bB) Qpe 1 ... x4)
whose right-hand side is equal to the left-hand side of
bB Rk (21 ...24) Qk aa = Pg(z).(a @ b). [

So ¢ is an isomorphism from the A-bimodule complex ((A ® A) @pe Wa,bX) whose A-
bimodule structure is the inner one, to the A-bimodule complex K(A). Denote by A the
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category of A-bimodules. According to Subsection 3.2, (A é A) ®pe W, is a DG A-bimodule
in A. Transporting the Homye (We, A)-bimodule structure via ¢, we obtain that the Koszul
complex K(A) is a DG A-bimodule in the abelian category A. This DG bimodule will play an
essential role in the generalisations of Calabi-Yau algebras (Sections 4 and 5). Next, H(K (A)) is
a graded HK®(A)-bimodule in A, so that H (@) : HK4(A4, A ® A) — H(K(A)) is an isomorphism
of graded HK®(A)-bimodules in A.

Let us compute explicitly the Homye(W,, A)-bimodule structure obtained on K(A) in this
way. Consider z = (0« ® ) Qge x1...24 in (A ® A) Qe Wy and f in Homye (W), A), we easily
derive from (2.8) that the left action of f on K(A) is defined by

f 2 (BREx1...2q @ 0) = (-D)@ PPz ... Tgep Ot [(Xgept1...Tq)ou (3.1)

Analogously, using (2.9), we define the right action of f on K(A) by

BRrx1... .24 O ) - f=EDPIB (1. .. xp) Qf Tpi - .. Tq O . (3.2)
The fundamental formula (2.13) reduces to
d(2') = —eq - 2+ (-1)% ~ea (3.3)
on K(A), where 2/ = S ®p x1 ... 24 Q o, and
e4 > Y= (1)1 B @ .. g1 B Ty, (3.4)
2 A= (—1)1Bz1 ®p 2 ... 2y O . (3.5)

The differential ¢4 i induces a differential, still denoted by 0, on H(K(A)). The homology

of (H(K(A)),0~) is denoted by H" (K (A)) and is called the higher homology of K (A). Then
H"(K(A)) is a graded HK$,;(A)-bimodule in A and H(H(p)) : HKM(A, A ® A) — HM(K(A))
is an isomorphism of graded HK},(A)-bimodules in A.

4 Poincaré Van den Bergh duality of preprojective algebras

4.1 Preprojective algebras

Throughout this section, A is a connected graph whose vertex set and edge set are finite. Follow-
ing a usual presupposition in the papers devoted to Hochschild (co)homology of preprojective
algebras, we assume that the graph A is not labelled, that is, the labels of the edges are all
equal to (1,1) [3, Definition 4.1.9]. In particular, the Dynkin graphs are limited to types ADE,
and the Euclidean (or extended) Dynkin graphs are limited to types ADE [3, Definition 4.5.1].

Let @Q be a quiver whose underlying graph is A. Define a quiver Q* whose vertex set is Qg
and whose arrow set is QF = {a*;a € Q1} where 5(a*) = t(a) and t(a*) = s(a). Let Q be the
double quiver of @, that is, the quiver whose vertex set is Q, = Qo and whose arrow set is the
disjoint union Q; = Q@ U Q}. We shall view (—)* as an involution of Q.

Let F be a field. As before, we denote the ring FQq by k& and the k-bimodule FQ, by V and
we identify the graded k-algebras Ty (V) =2 FQ (see Subsection 2.1).

The preprojective algebra associated with the graph A over the field F is the quadratic k-
algebra A(A) over @ defined by A(A) = FQ/(R), where the sub-k-bimodule R of FQ, is

generated by
o; = Z aa® — Z a*a = Z g(a)aa™  for all i € Qo,

a€Q1 ac@Qn eqQ
t(a)=1 s(a)=i Jféat):li
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where e(a) =1ifa € Q1,e(a) = —-1if a € Q7.

If Q' is another quiver whose underlying graph is A, then the underlying graphs of Q and Q’
are the same, equal to the double of A. Therefore, according to Subsection 2.7, the quadratic
k-algebra A(A) and the (general, higher) Koszul calculus of A(A) depend only on the graph
A and not on @, justifying the notation A(A). If A is a tree, A(A) is isomorphic to the
preprojective algebra defined without signs (as in [14, 15, 16]).

If A = Ay, then A(A) = k. If A = Ay, then R = FQ, and A(A) = FQo @ FQ,. These
quadratic k-algebras are Koszul, but they are the only exceptions among the Dynkin graphs.
More precisely, the following standard result holds, for which we just give proof references.

Proposition 4.1. Assume that the graph A is distinct from Ay and As. The following are
equivalent.

(i) A is Dynkin of type ADE.

(ii) A(A) is not Koszul.

(iii) A(A) is finite dimensional.

Proof. The equivalence (i) (ii) is treated in [29] if A is a tree, in [26] otherwise. The equivalence
(1)< (iii) for any Dynkin graph is cited in [30] as a result by Gelfand and Ponomarev [23]. =

Sections 2 and 3 can be applied to preprojective algebras. For example, according to the
remark following Lemma 2.4, the fundamental 1-cocycle e4(a) is not a coboundary if A has a
loop or if charF # 2 and A # A;. In the remainder of this section, we often abbreviate A(A)
to A and we freely use notations and results from Sections 2 and 3.

4.2 The Koszul complex K(A) has length 2

If A=Ay, then K(A) has length 0. If A = Ay, then K(A) has infinite length. Apart from
these cases, the length of K(A) is always equal to 2.

Theorem 4.2. Let A = A(A) be a preprojective algebra over F with A # Ay and A # As.
Then the Koszul complex K(A) of A has length 2. Consequently, HKP(A, M) = HK,(A, M) =0
for all A-bimodules M and all p > 3.

Proof. From the defining equality (2.3) of W), we have W), = (W,_1 @5 V)N (V @4 W)_1) for all
p = 3. Moreover R # 0, therefore it is enough to prove that W3 = 0, that is, (R V)N(V@iR) =
0. For that, we only assume that A # A;. Our goal is to prove that W3 # 0 implies A = As.

Let u be a non-zero element in W3, viewed as an element in FQ3. There exist vertices e, f
in Qo such that euf # 0, therefore we may assume that « is in eWs3f. Then u can be written
uniquely as

u = Z Aac(a)aa™ o = Z e (b)Bbb*.
aceQ beEfQ1
aceQs f BefQ1e

We now use the fact that @ is the disjoint union of 1 and Q% and the definition of € to write

U= Z Agaa*a — Z Aot ac + Z Aograa’a’™ — Z Aogra*an’®

aceQ1 f aceQ1 f a€fQie acfQie
ace@ aceQre ace@1 acQe
= D B = Y B+ D BB~ Y g SV,
peeQ1 f peeQ f BEfQue BEfQue
befin beQn f befQ1 beQq f
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From these expressions, we obtain the following relations in the path algebra FQ:

Z Aaraa*a* =0 (4.1)

acfQie
aceQ1

Z Aot ac =0 (4.2)

aceQ1 f
acQ1e

> paBbb* =0 (4.3)

BeeQ1f
befQ1

> upBbb=0 (4.4)
BefQ1e
be@rf

Aq0a™ o = — wp b b (4.5)
B

aceQ1 f BeeQ1 f
ace@ be@1 f

Z AaraFaa™ = — Z a3 bb* (4.6)
a€cfQie BEfQ1e
a€Qie befQ1
Indeed, relation (4.1) follows from the fact that no other path that occurs in the expressions of
u ends with two arrows in Q*, and the other relations are obtained from similar arguments.
In the path algebra FQ, the relations (4.1) to (4.4) above are equivalent to

Va € fQie, Va € eQ1, Ao =0 (4.7)
Ya € e@Q1f, Va € Qie, Ay =0 (4.8)
VB eeQif, Yae fQi, \g=0 (4.9)

VB € fQie, Ya e Qrf, Ag- =0. (4.10)

We have assumed that u # 0, so that either there exists o € eQq f such that A, # 0 or there
exists a € fQe such that A\, # 0, using the first expression of u. We separate the two cases.

Assume that there exists a € eQ1f such that A, # 0. Then it follows from relation (4.8)
that Qe is empty. From (4.5), for all a € eQq, there exist 5 € eQf and b € Q1 f such that
Aaaa* o = —pgfb*b. Hence f = a = b = a and therefore eQ1 = {a} = eQqf and pug = —Ao # 0.
From (4.9), it follows that f@Q; is empty. Finally, (4.5) becomes

Ao a = oo+ N, Z ab®b
beQr f
b#£a
so that ) pc, f @b*b =0 and hence Q1 f = {a}.
b#a

We have proved that Qie = ) = fQ1 so that in particular e # f, and that Q1f = {a} =
eQ1 =eQ:f. Finally, Q = e <& f and A = A.

In the case where there exists o € f@Qie such that A\, # 0, a similar proof using (4.7),
(4.10) and (4.6) shows that Q@ = f & e and A = A,. ]

As an immediate consequence of Proposition 2.6 and Theorem 4.2, we obtain that in the
Koszul calculus of A(A), the Koszul cup product is graded commutative and the Koszul cap
product is graded symmetric. The precise statement is the following.
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Corollary 4.3. Let A = A(A) be a preprojective algebra over F with A # Ay and A # Ay. We
consider an A-bimodule M. For any o € HK®*(A, M), p € HK®*(A) and v € HKq(A), we have
the identities

[O"ﬁ]}/ =0, (411)
[a,y]? = 0. (4.12)

The same conclusion holds if A = A; (obvious) and if A = Ay (because A is Koszul).

4.3 Duality in Koszul (co)homology of preprojective algebras

There is a remarkable duality between Koszul homology and cohomology for preprojective
algebras. This duality is realised as a cap action by a Koszul 2-chain wy € A ®e R defined for

any graph A by
wo = Z €; Qpe 05 = Z e ® o;.
1€Qo 1€Qo

From o; = Zae@’t(a):i e(a)aa™, we get

wo = Z 1 ®pe e(a)aa™ = — Z 1 ®pe £(a)a”a. (4.13)

acQ acQr

Then it is easy to check that wq is a Koszul 2-cycle. Being homogeneous of weight 0, wqg is not
a 2-boundary whenever A £ A;.

Theorem 4.4. Let A = A(A) be a preprojective algebra over F with A # Ay and A # As.
Consider the Koszul 2-cycle wg = Zier e; ®0o; € ARge R. For each Koszul p-cochain f with
coefficients in an A-bimodule M, we define the Koszul (2 — p)-chain Opr(f) with coefficients in
M by

Orr(f) =0 = . (4.14)

Then the equalities
Ovean(f 2 9) =0u(f) ~9=F—On(9) (4.15)

hold for any Koszul cochains f and g with coefficients in A-bimodules M and N respectively.
Moreover the linear map 0y : Hompe(Wo, M) — M Qe Wo_q is an isomorphism of DG
bimodules over the DG algebra, A = Homye (W, A).
It follows that H(0yr) : HK®*(A, M) — HKs_o(A, M) is an isomorphism of graded HK®(A)-
bimodules and that H(H (0yr)) : HKS;(A, M) — HKA (A, M) is an isomorphism of graded
HK3,(A)-bimodules.

Proof. First we show that f 2 Wo = wo > f for all f € Homge(W), M). Using the definition of
wp and the equalities (4.13), (2.8) and (2.9), we obtain for p =0, 1,2,

fowo= Z (f(Der) @e i = Y (eif (1)) @pe 03 = wp - f

1€Qo 1€Qo
f TE==2 g(a)(f(a*)]) Qe a = Z e(a)(1f(a)) ®ke a* = wy 2 fs
a€Q1 acQn
fow= Z (€if(0i)) @pe 1 = Z (floi)ei) ®pe 1 =wo 2 f.
i€EQo 1€Qo
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Next, for f € Homge (W), M) and g € Homge(W,, M), we have

Ovean(f - 9)=wo— (fg)=wo = f)mg=(f2w)~g=F>(w29),

providing equalities (4.15). Therefore 0y, : Homge (We, M) — M ®pe Wo_, is a morphism of
graded Homge (W,, A)-bimodules for the actions of = and 2 respectively.
Assuming M = A in the equalities (4.15), we derive
On(f,9]-) = [0a(F), 9~ = [f,0n(9)]
K K K
Combining Oy ([ea,9]—) = [ea,0n(9)] ~ with bx = —[ea, —]_ and bF = —[es, —] ~, we deduce
K K K K
that 0y : Hompe(We, M) — M ®pe Wa—e is a morphism of complexes, thus a morphism of DG
bimodules over the DG algebra A = (Homye (W, A), b, }/)

We prove that 6, is an isomorphism by giving an inverse map 1 : M ®geWo_¢ — Homge (We, M).
We define 1, : M ®@ye Wo_p, — Hompe (W), M) for p =0,1,2, by

no(m Qe 0i)(e;) = dij ejme;
n1(m Qge a)(b) = Spo (b) t(b) ms(b) for any arrows a and b of Q

ng(m Re ei)(aj) = 5@']’ e;jme;

where ¢ is the Kronecker symbol. It is routine to verify that these linear maps are well-defined
and form an inverse map for 0p;.
Finally the isomorphism H(0;;) of graded HK®(A)-bimodules satisfies

H(@M)(EA \[—(/ a) =Tty /[; H(@M)(Oc)

for all « € HK®*(A, M). Therefore H(6r) is a morphism of complexes for higher (co)homologies.
Taking higher (co)homologies, we get a HK?,(A)-bimodule isomorphism

H(H(0y)) : HKS, (A, M) — HKE (A, M). »

By analogy with the Poincaré duality in singular (co)homology [27] and with the Van den
Bergh duality in Hochschild (co)homology [33, 28], we say that the isomorphism

H(03r) =T — — : HK*(A, M) — HKy_o(4, M)

is a Poincaré Van den Bergh duality for Koszul (co)homology, of fundamental class @y, where
wo € HK3(A)g. In the next subsection, we extract from this duality a generalisation of the
2-Calabi-Yau property.

Apart from the cases where A has no loop and charF = 2, the class ¢4 € HK!(A); is
non-zero, hence

H(@A)(EA) = Wy /[; eq = ({9,\(50)

is non-zero in HK;(A);. Consequently, the fundamental class @y of the Poincaré Van den Bergh
duality is not a cycle for the higher Koszul homology, so that the isomorphism H(H (65))
cannot be naturally expressed as a cap action.

The class H(64)(¢a) is the class of the Koszul 1-cycle wy = e where

wo > e = Z e(a)a Qe a* = Z (a Qe a* — a* Qe a).
aE@l a€Q1
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It is interesting to view the last element as the image by the canonical linear map can :
VRV =V Qe V of the element

w = Z(a@ka*—a*@)ka): Z e(a)aa® € RCV @ V.
acQ1 a€Q1

In the identification V @3V = FQq, V @ V is identified with the subspace of cycles of length 2
and the map can is identified with the projection whose kernel is the space spanned by the non-
cyclic paths. Since R is generated by the cycles o;, we can make the identification wg Dea=w.

The element w was defined in [10, Proposition 8.1.1] as a representative of a bi-symplectic 2-
form w. Bi-symplectic 2-forms were introduced by Crawley-Boevey, Etingof and Ginzburg as
an essential ingredient of the Hamiltonian reduction in noncommutative geometry [10]; they are
related to the double Poisson algebras defined by Van den Bergh [34].

4.4 Deriving an adapted 2-Calabi-Yau property

Let A = A(A) be a preprojective algebra over F with A # A; and A # As. Let M be an
A-bimodule. Assume that B is a unital associative algebra such that M is a right B-module

compatible with the A—bifnodule structure (Subsection 3.1). Denote by B the category of right
B-modules. Recall that A denotes the DG algebra (Homye (W, A), b, \[-(/)

According to Subsection 3.2, M ®ke W, and Homge (W,, M) are DG A-bimodules in the
abelian category B. Moreover, HK4(A, M) and HK®(A, M) are graded HK®(A)-bimodules in
B, that is, graded HK®(A)®-B-bimodules. Finally, HK!(A, M) and HK},(A, M) are graded
HK37,(A)-bimodules in B, that is, graded HK},(A)®-B-bimodules.

Lemma 4.5. The map 0y : Homge(Wo, M) — M Qke Wa_e is an isomorphism of DG A-
bimodules in B. Moreover, H(0yr) : HK®*(A, M) — HKo_o(A, M) is an isomorphism of graded
HK®(A)-bimodules in B, and H(H (0yr)) : HKS, (A, M) — HKS (A, M) is an isomorphism of
graded HK3},;(A)-bimodules in B.

Proof. 1t is enough to prove that 07 : f — wy = f is B-linear. For a k-bimodule morphism
f W, =M, z=aQpex1...24 € ARpe Wy and b € B, we verify the identities

(f.b) oE= (f/[;z)b and 2 (f.b) = (z;f)b

The first one uses the fact that the right actions of A and B on M commute, while the second
one uses the fact that M is an A-B-bimodule (see (7ii) in Lemma 3.1). Applying the second
one to z = wy, we obtain that 6,; is B-linear. [

We specialise this lemma to M = B = A® and apply Subsection 3.3 to get the next propo-
sition (recall that A denotes the abelian category of A-bimodules).

Proposition 4.6. Let A = A(A) be a preprojective algebra over F with A # Ay and A # As.
The map
9,46 : Homke (W., Ae) — K(A)Q_.

is an isomorphism of DG A-bimodules in A. Moreover,
H(04e) : HK*(A, A°) — Ho_o(K(A))

is an isomorphism of graded HK®(A)-bimodules in A.
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The homology of K (A) is isomorphic to A in degree 0, and to 0 in degree 1, hence we obtain
a generalisation of the 2-Calabi-Yau property, formulated as follows.

Theorem 4.7. Let A = A(A) be a preprojective algebra over F with A # Ay and A # As.
Then the HK®(A)¢-A°-bimodules HK®*(A, A¢) and Hy—_o(K(A)) are isomorphic. In particular,
we have the following.

(i) The A-bimodule HK%(A, A®) is isomorphic to the A-bimodule A.

(1) HK!(A, A¢) = 0.

(iii) The A-bimodule HKY(A, A®) is isomorphic to the A-bimodule Ho(K(A)).

Since Hi(K(A)) = HK'(A, A°) = 0, the higher Koszul differentials vanish. Therefore
H;}’(K(A)) =~ H,(K(A)), HKV (A, A°) = HKP(A, A®) and H(H (04¢)) = H(0 ).

From the generator 1 ®; 1 of the A-bimodule Hy(K(A)), we draw from (i) a generator of
the free A-bimodule HK?(A, A¢) defined as the class of f: R — A <§> A with f(o;) = e; ® e; for
any 1.

In (iii), the A-bimodules are never 0 when A is Dynkin of types ADE since A is not Koszul
in this case. This situation is drastically different from the 2-Calabi-Yau property defined
by Ginzburg in terms of the Hochschild cohomology spaces HHP(A, A¢) [24]. In Ginzburg’s
definition, these spaces are zero for all p < 2.

5 Generalisations of Calabi-Yau algebras

5.1 Duality for generalised Calabi-Yau algebras

From Theorem 4.7, we are led to introduce a general definition in the framework of quiver
algebras with homogeneous quadratic relations (see Section 2). Notations of Section 2 stand
throughout. We are interested in quadratic k-algebras A = Tj(V)/(R) with finite quiver Q
as defined in Subsection 2.1, and in the Koszul calculus of A as presented in the remainder of
Section 2.

Definition 5.1. Let A =Ty (V)/(R) be a quadratic k-algebra over Q. Let n > 0 be an integer.
We say that A is generalised Calabi-Yau of dimension n if

(i) the Koszul bimodule complex K(A) of A has length n, and

(i) RHom ge (K (A), A°) =2 K(A)[—n] in the bounded derived category of A-bimodules.

It is a fundamental fact of derived categories that the homology functor is conservative [37,
Corollary 7.2.13]. This means in our situation that property (7i) is equivalent to saying that the
A-bimodules HK? (A, A¢) and H,,_,(K(A)) are isomorphic for any p. According to Theorem 4.2
and Theorem 4.7, a preprojective algebra A(A) over F with A # A; and A # Ay is generalised
Calabi-Yau of dimension 2.

Definition 5.1 is a true generalisation of Ginzburg’s definition [24, 35]. If A is Dynkin of
type ADE, A(A) is not Calabi-Yau in Ginzburg’s definition since A(A) is not homologically
smooth in this case (the minimal projective resolution of A(A) has infinite length). However,
the two definitions coincide if A is Koszul.

Proposition 5.2. Let A = Ti(V)/(R) be a quadratic k-algebra over Q. Assume that A is
Koszul. Then A is generalised n-Calabi- Yau if and only if A is n-Calabi- Yau.

Proof. Assume that A is generalised n-Calabi-Yau. Since A is Koszul, A is homologically
smooth, that is, A has a finite projective resolution by finitely generated A-bimodules. Fur-
thermore, K(A) = A in D°(A). Thus RHomae(A, A°) =2 A[-n] in D’(A), and we recover
Ginzburg’s definition in terms of derived categories [35, Definition 8.2].
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Assume that A is n-Calabi-Yau. We know that n is equal to the projective dimension of the
A-bimodule A [33] which in turn is equal to the length of a minimal projective resolution of A
(see for instance [4]). Hence K (A) has length n and K(A) = A in D°(A), which allows us to
conclude that A is generalised n-Calabi-Yau. ]

Consequently, if the graph A is not Dynkin ADE, we know that A(A) is Koszul (Proposition
4.1), thus we recover the fact that A(A) is 2-Calabi-Yau [10, 8].

In Subsection 2.8, we have seen that K(A) and the minimal projective resolution P(A)
coincide up to the homological degree 2. Therefore, if n € {0,1} and if A is n-Calabi Yau or
generalised n-Calabi-Yau, then P(A) = K(A) so that A is Koszul, and it follows that the two
definitions are equivalent when n € {0, 1}.

Proposition 5.3. Let A=T,(V)/(R) be a quadratic k-algebra over Q. Then A is Calabi- Yau
of dimension 0 if and only if Q1 = 0.

We leave the proof as an exercise. If A is Calabi-Yau of dimension 1, then R = 0, that is,
A=T,(V)=2FQ with Q1 # . It is indeed 1-Calabi-Yau if Q has only one vertex and one loop,
but we have not yet found other examples when Q is connected.

If A is n-Calabi-Yau, the Van den Bergh duality theorem states that the vector spaces
HHP(A, M) and HH,,_,(A, M) are isomorphic [33]. From Definition 5.1, we draw an analogous
duality theorem for Koszul homology/cohomology.

Theorem 5.4. Let A be a generalised Calabi-Yau algebra of dimension n. Then for any A-
bimodule M, the vector spaces HKP(A, M) and HK,,_,(A, M) are isomorphic.

Proof. Denote by A (respectively &) the abelian category of A-bimodules (resp. vector spaces).

L
For any A-bimodule M, the left derived functor M ®4e — and the right derived functor
RHom 4¢(—, M) are defined from the bounded derived category D?(A) to the bounded derived

category D°(E) [36]. For any bounded complex C' of projective A-bimodules, we have

L
H,(M ®ac C) = Hy(M ®ae C), HP(Hompe(C,M)) = HP(RHom4e(C, M)).
For C' = K(A), we obtain

HK,, (A, M) 2 H,(M & 4 K(A)), HKP(A, M) = H?(RHom 4 (K(A), M)).

Using Lemma 5.5 below for C' = K(A), we have

L
M X Ae RHOHIAE(K(A),AE) = RHOHIAE(K(A),M)

in D?(&). Thus (4) in Definition 5.1 implies that

L
RHOHIAE (K(A), M) =M X Ae K(A) [—n]
in D*(€). Passing to homology, we deduce HKP(A, M) = HK,,_,(A, M) as vector spaces. ]

Lemma 5.5 is based on a natural transformation ¢p; : H o G = F depending on an A-
bimodule M. Let F' : A — £ be the functor F' : N — Homye(N, M) where M and N are
seen as right A°-modules. Specialising to M = A€ in F', we define a functor G : A — A. Let
H: A— & be the functor H : N' — M ®4¢ N’ where N’ is viewed as a left A®-module. Then
we define a linear map

dr M @ e Homye (N, A®) — Homye (N, M)
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by ¢rr(m®ae g)(x) = m.g(x) for m € M, g € Homae(N, A°) and x € N. This map is functorial
in N, defining a natural transformation ¢p; : Ho G = F.

For any bounded chain complex C of A-bimodules, ¢j; induces a morphism of bounded
cochain complexes of vector spaces

O M ® e Homye (C) A°) — Homge (C, M) (5.1)
still denoted by ¢ps. Recall that if d : C,11 — C), is the differential of C, the differential
d* : Hom e (Cp, M) — Hom ge (Cpy1, M)

of Hom 4e(C, M) is defined by d*(u) = —(—1)Puod for u € Home(Cp, M). Extending F, G
and H as functors on bounded complexes of A-bimodules, we view ¢ : Ho G = F as a natural
transformation of functors on bounded complexes. The last natural transformation induces a
natural transformation ¢p; : LH o RG = RF of derived functors [36, 37].

Lemma 5.5. Let M and P be A-bimodules viewed as right A°-modules. Assume that P is
projective and finitely generated. Then the linear map

dar : M ®4e Hom e (P, A®) — Hom ge (P, M) (5.2)

is an isomorphism. For any bounded chain compler C of finitely generated projective A-
bimodules, ¢yr induces in D*(E) an isomorphism

L
M X Ae RHOHIAE (C, Ae) = RHOHIAE (C, M) (53)

Proof. The linear isomorphism (5.2) comes from [9, Proposition (8.3) (c)], in which R = A® and
P is replaced by Hom 4e (P, A€). On the category of finitely generated projective A-bimodules,
we have thus a natural isomorphim ¢p; : H o G 2 F, inducing ¢, : LH o RG =2 RF on the
bounded chain complexes of finitely generated projective A-bimodules. Then (5.3) follows. =

5.2 Generalised Calabi-Yau algebras versus Calabi-Yau algebras

Recall that if A # Ay and A # Ay, then A(A) is generalised 2-Calabi-Yau. But observe that if
A(A) is moreover 2-Calabi-Yau, then A(A) is Koszul. We are led to the following conjecture.

Conjecture 5.6. Let A = Ti(V)/(R) be a quadratic k-algebra. If A is n-Calabi-Yau and
generalised n-Calabi- Yau, then A is Koszul. In other words, if A is not Koszul, the properties
n-Calabi- Yau and generalised n-Calabi- Yau are not simultaneoously true.

Proposition 5.7. Let A =T, (V)/(R) be a quadratic k-algebra. Conjecture 5.6 holds if n < 3.

Proof. Assume that A is n-Calabi-Yau and generalised n-Calabi-Yau. We can assume that
n > 2. Since HKP(A, A¢) = HHP(A, A°) = 0 when p = 0 and p = 1, we have H,(K(A)) =
H,_1(K(A)) =0, hence A is Koszul if n = 2 and n = 3. [ |

5.3 Strong generalised Calabi-Yau algebras

Definition 5.8. Let A be a generalised n-Calabi- Yau algebra. The image ¢ € HK,,(A) of the
unit 1 of the algebra A by the isomorphism HK°(A) = HK, (A) in Theorem 5.4 is called the
fundamental class of the generalised n-Calabi- Yau algebra A.
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We shall now define strong generalised Calabi-Yau algebras, and for this we need to work
with DG A-bimodules in A. Recall that A (resp. £) denotes the category of A-bimodules (resp.
vector spaces) and that A denotes the DG algebra Hom 4¢ (K (A), A)). Denote by C(4,.A) the DG
category of DG A-bimodules in A. Following [37], a DG A-bimodule in A is a chain complex
C in A (as usual, C can be viewed as a cochain complex), together with two morphisms of
F-central DG algebras

n&: A — Endy(C), n%: A% — Endy(0),

encoding the left and right graded actions (assumed to commute). According to Subsection 3.3,
K(A) is a DG A-bimodule in A.

For any A-bimodule M, Homue(C, M) is a (cochain) DG A-bimodule in € (in A when
M = A°) for the following actions

(fu)(@) = (=DPu(z.f), (u.f)(z) =u(f.z)

where f: A®, W, @ A — A, u:Cy— M and x € Cpyy. Note that z.f and f.z are in Cy by
the graded actions of A on C. If C' = K(A), we recover the cup actions, that is, fou = f U

and u.f = u = f. In particular, Hom 4¢ (K (A), A¢) is a DG A-bimodule in A.

Similarly, for any cochain DG A-bimodule ¢’ in A, M ® 4 C' is a cochain DG A-bimodule
in & for the following actions

fim®@geu) =m@ge (fou), (MRgeu).f=m®e4 (u.f)

where f € A, m e M and u € C'.

The bounded derived categories DY(A, A) and DY(A, £) are defined in [37]. Unfortunately, it
is not clear for us if the functors Hom e (—, M) : C®(A, A) — C*(A, E) and M ® 4e — : C*(A, A) —
Cb(A, &) can be derived. Note that the first one takes values in C?(A, A) when M = A°.

Definition 5.9. Let A be a generalised n-Calabi- Yau algebra. Then A is said to be a strong
generalised n-Calabi-Yau algebra if the derived functor of the endofunctor Hom ge(—, A¢) of
C(A, A) exists and if RHom e (K (A), A®) = K (A)[—n] in D?(A, A).

Since the homology functor is conservative [37, Corollary 7.2.13|, the second property in
this definition (assuming the first one) is equivalent to saying that the graded HK®(A)¢-A°-
bimodules HK*(A, A¢) and H,,_+(K (A)) are isomorphic. In particular, Theorem 4.7 shows that
the preprojective algebras of connected graphs distinct from A; and As are strong generalised
2-Calabi-Yau algebras if they satisfy the first property.

Theorem 5.10. Let A be a generalised n-Calabi-Yau algebra with fundamental class c. We

assume that A is a strong generalised n-Calabi-Yau algebra and that the derived functors of the
functors Hom ge(—, A) and A ®4e — from CP(A, A) to C*(A,&) exist. Then

co HK*(A) — HK,,_+(A)

is an isomorphism of HK®(A)-bimodules, inducing an isomorphism of HK},;(A)-bimodules from
HKS,.(A) to HK! [(A). For all a € HKP(A), we have ¢ Sa= (—1)"Pa o

Proof. Following the proof of Theorem 5.4, we are interested in the morphism (5.1) of cochain
complexes
Or M ® e Homye (C) A°) — Hom 4o (C, M),
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when the bounded chain complex C of A-bimodules is moreover a DG A-bimodule in A. We
prove now that ¢ is a morphism of DG A-bimodules in &, that is, a morphism of the category
Cb(fl, &) whose objects are viewed as cochain complexes. For this, we need only prove that ¢y
is a morphism of A-bimodules. Let us prove that ¢, is left A-linear, the right linearity being
similar. For f: A®@p W, ®r A —= A, u:Cy — A® and = € Cp14, we have

Our(f-(m @ae w))(2) = pr(m @ae (fu))(2) = m.((fu)(2) = (=1)Pm.(u(z.f)),

while f.(¢rr(m @4e u))(x) = (=1)Podpr(m @4e w)(z.f) = (=1)Pm.(u(z.f)), which is what we
want.

Continuing as in the proof of Theorem 5.4, the functors F'; G and H induce functors on
the complexes with enriched structures. Precisely, F' and G are now functors from Cb([l,.A)
to C*(4,€&), and H is now an endofunctor of C’(A, A). Under these notations, ¢y; defines a
natural transformation ¢y : Ho G = F.

We specialise to M = A. The assumptions in the theorem show that the derived functors
of F', G and H exist, so that we can derive the natural transformation ¢4 [37]. Thus we obtain
a natural transformation LH o RG = RF still denoted by ¢ 4. Equivalently, we write

L
da:ARpe RHOmAe(C, Ae) = RHom 4e (C, A) (5.4)

If the bounded chain complex underlying the DG A-bimodule C in A is formed by finitely
generated projective A-bimodules, Lemma 5.5 shows that we have an isomorphism

L
da:ARpe RHOInAe(C, Ae) = RHomAe(C, A) (5.5)

in D(A, ). Applying this to C = K(A) and using Definition 5.9, we get

RHom ac (K (A), M) = M &4 K(A)[=n]

in DY(A,€). Taking homology, we deduce that HK*(A) = HK,,_.(A) is an isomorphism of

graded bimodules over the graded algebra H(A) = HK®*(A). Denote this isomorphism by .
The fact that ¢ is a morphism of HK®(A)-bimodules translates as

Yo B) = wla) = 6= (~1)a ~ ¥() (56)

K
for any o € HKP(A) and 8 € HK®(A). In accordance with Definition 5.8, define ¢ € HK,,(A) by
¢ = (1) where 1 € HK%(A) is the unit of A. Applying identities (5.6) to the trivial equalities
a=1—a=a—1, we obtain
K K
= ~ = —1 np ~ C. .

() coa ( )aKc (5.7)

Finally ® is a morphism of complexes for higher (co)homologies since we have

b(Ea - a) = (=1)"ea = d(a).

Then H(v) : HK,;(A) — HK! ,(A) is an isomorphism of HK},(A)-bimodules. |

Except in some particular cases, ¢4 € HK!(A) is non-zero, so that

b(ea) = (=1)"ea — e = (=1)"9~(c)
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is non-zero in HK,,_;(A). Therefore ¢ € HK,,(A) is not a cycle for higher Koszul homology
and the isomorphism H(v) cannot be naturally expressed as a cap action. As suggested by
the preprojective algebras (Subsection 4.3), the class 1(¢4) should be of interest for further
investigations.

It is also interesting to remark that the identities (5.6) involving the isomorphism v imply
that the graded algebra HK®(A) is commutative if and only if the graded HK®(A)-bimodule
HK,(A) is symmetric. As seen in Corollary 4.3, we have a stronger result for the preprojective
algebras.

6 Koszul calculus of the preprojective algebras of Dynkin ADE
type

We shall determine in this section the Koszul calculus and the higher Koszul calculus of any
non-Koszul preprojective algebra A, that is, an algebra of type A, D or E with at least 3 vertices.
We first give some general facts and notation.

(N1) We shall use the dimensions of the Hochschild cohomology and homology spaces of A
which can be obtained in all characteristics as a consequence of the work of Etingof, Eu
and Schedler in [20, Theorem 3.2.7] and [17]. In particular, by [20, Lemma 3.2.17] the
centre of A is independent of the characteristic of F. Bases of the Hochschild (co)homology
spaces in characteristic zero induce free subsets of the Hochschild (co)homology spaces in
positive characteristic, but there may be some extra basis elements in some cases.

(N2) We know from Corollary 4.3 that the cup product on the Koszul cohomology of a pre-
projective algebra is graded commutative and that the cap product is graded symmetric.
Moreover, it follows from Theorem 4.4 that the cap product can be obtained from the cup
product. Indeed, if f € HKP(A) and € HK,(A), we have

Jmw = 0a(f = 031 @) = 0a((—1)"03 (0) = f) = (-1~ f. (63)

(N3) Let X and Y be N-graded spaces and let f: X — Y be a homogeneous map of degree 1.
Let y1,...,yp be elements of pairwise different degrees. Then if > %, y; € Im f, at least
one of the y; is in Im f. We shall use this in the following context. The differentials b}
and b%( are homogeneous of weight 1. If we have a set of cocycles of pairwise different
coefficient weights, that are not coboundaries, then they are linearly independent up to
coboundaries, that is, they represent linearly independent cohomology classes. This also
applies if some of the elements have the same weight but we already know that these
elements are linearly independent up to coboundaries.

(N4) We shall use the map k: A — A constructed as follows. Let A be a preprojective algebra
over a graph A; let @) be its quiver. Consider the map Q1 — @7 that sends a to a*. It
induces an anti-automorphism x of A (since xk sends the relation o; = > acO, e(a)aa* to

t(a)=i
itself).

(N5) When we define a cochain f € Homge (X, A) with X € {k,V, A}, it will be implicit that if
f(z) is not defined for some x € X then f(z) = 0.

(N6) For any cochain f € Homye (W), A), we shall set f = 04(f) € A @pe Wa_,.

(N7) Finally, given a Dynkin graph A and a ring L, we shall denote by A the preprojective
algebra of A over L, so that A = Ap.
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6.1 Koszul calculus for preprojective algebras of type A

The preprojective algebra A of type A, is defined by the quiver

ao al as an—3 an—2
Q 07 17 X2 ... Tap-27 Tn-1

~—— ~— S— ~— -~

ag aj a3 a3 az o

subject to the relations

_ *
0o = —Qapao
O = Qi—10;_; — a;a; 1<i<n—-2

*
Op—1 = Qp_2ay_,

Erdmann and Snashall have given in [14] a basis B of A. We shall only need the sets ¢; Be;,
e;Be;11 and e;41Be;, which can be rewritten as follows: set m4 = L"T_lj, then

e;Be; = {(a;‘ai)g;o <l < min(i,n —1-— z)} for 0 < i <n—1, with (aja;)° = e; for all i,
eir1Be; = {ai(a’;ai)é; 0 <{< min(i,n —2 — 2)} and e;Be;j+1 = k(ej+1Be;).

For each i, Ae; contains precisely one basis element of maximal length n — 1, which is

ap—2---a;(aa;)’ ifi<mgy
. ma I .
o g (A, Qi y) if i =my and n is even
v * ma DY .
(@ Omy) if i =my4 and n is odd

*

* . * n—1—1
ay_iq o ai_q(ai—1a;_y)

if i >may.
They form a basis of the socle of A.

It can be checked using [38, Proposition 3.3] that the Nakayama automorphism v of A is
given by v(e;) = ep—1-4, v(a;) = a, and v(a}) = apn—2—;.

n—2—1

6.1.1 The Koszul cohomology and homology spaces in type A

The spaces HK®(A) = HHY(A) = Z(A) and HK!(A) = HH!(A) are known from [14]. Therefore
we only need to compute HK?(A). Recall our assumption that n > 3; then by Theorem 4.2
all the elements in Homge (R, A) are cocycles. Moreover, using Theorem 4.4 and [20, Theorem
3.2.7], we have dim HK?(A) = dim HKo(A) = dim HHy(A) = n. Since every element in Im b2
has coefficient weight at least 1, the n cocycles h; defined by h;(c;) = d;je; for all j are linearly
independent modulo Tm b%. It follows that they form a basis of HK?(A).

Combining with the results from [14], we have the following result.

Proposition 6.1. Let A be a preprojective algebra of type A,.

A basis of HK?(A) is given by the set {24;0 < £ <ma} with 29 = 1 and zp = Y1~ (afa;)" =
S aray)t = 2 for 1 <€ <mg.

A basis of HKY(A) is given by the set {Eg;O <l<n—2— mA}, where (o € Hompye(V, A) is
defined by Co(a;) = a;(ata;)* for all i (or for £ <i<n—2—14).

A basis of HK2(A) is given by the set {EZ-;O <i<n— 1} where h; € Homge (R, A) defined
by hi(O'j) = 5ijei fOT all ]

As a consequence of Theorem 4.4, we obtain bases of the Koszul homology spaces.
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Corollary 6.2. A basis of HKy(A) is given by the set {FL_Z, 0<i<n— 1} where h; = ¢; ® e;.
A basis of HK1(A) is given by the set {Eg; 0<l<n—my— 2} where ¢y = Z?;OQ ai(aia;)t®

a; = z;‘:;f_e ai(afa;)* @ af. A basis of HKa(A) is given by the set {Z;0 < £ < ma} where
2= Y (aja) ® 0.

Note that Z; = wq is the fundamental class.

6.1.2 Cup and cap products

We know from Corollary 4.3 that the cup product on HK®(A) is graded-commutative. The
following result gives all the non zero cup products of elements in HK®*(A).

Proposition 6.3. Let A be a preprojective algebra of type A,,. Up to graded commutativity, the
non zero cup products in HK®*(A) are given by

20 f=7f forallfcHK*(A)
20 \I_(/ Ry = R+l if {1 + 42 <my
2'21 ;632:6514»@2 2f€1+€2<n—m,4—2

Proof. The first cup product is clear and the other cup products in the statement only involve
in HH(A) and HH'(A), therefore they are known from [14].

The basis elements of HK?(A) have coefficient weight 0, and b%( is homogeneous of weight
1, therefore any element that has positive coefficient weight must be a coboundary. The other
cup products (that all vanish) follow from this. ]

We now deduce the cap products from (6.8).
Corollary 6.4. Up to graded symmetry, the non zero cap products are the following.
0T =T for all x € HKq(A)
20, 2 20y = Zoy40, 1+ 02 <my

Z0 /I}\éfg = Coney  ifli+la<n—my—2

6.1.3 Higher Koszul cohomology and homology
We start with a lemma giving the cohomology class of the fundamental 1-cocycle.
Lemma 6.5. The cohomology class of e4 is equal to the cohomology class of 2(p.

Proof. Let ¢§ € Homge(V, A) be the cocycle defined by (j(af) = af for all i € Qp. Since
ea = (o + (3, we must prove that (J — (o is a coboundary.

Consider v = Y72 Z;L;iz ei € Dicq, cidei = Homye(k, A). Then bl(v) = ¢ — (o, as
required. [ |

As a consequence, the complex defining the higher Koszul cohomology is
0 oL 1 92 2
0 - HK"(4A) — HK"(4A) — HK*(A) — 0---

with 91 (z) = 2¢p for 0 < £ < n —my — 2 and 92, = 0. We then have the following higher
Koszul cohomology.
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Proposition 6.6. Let A be a preprojective algebra of type Ay,. If char(F) = 2, then HK},;(A) =
HK®(A).
If char(F) # 2 and n is even, then

HIZ, (4) = HK?(A)
HK? (A) =0 if p # 2.
Finally, if char(F) # 2 and n is odd, then

HKY,(A) = HK°(A)a,,,, has dimension 1 and is spanned by zm
HK7,(A) = HK?(A)

HKY.(A) =0 if p# 0 and p # 2.

Higher Koszul homology can then be deduced using duality (Theorem 4.4).
Corollary 6.7. If char(F) = 2, then HK!(A) = HK,(A).
If char(F) # 2 and n is even, then
HK{'(A) = HKo(A)
hi .
HK,"(A) =0 ifp# 0.
Finally, if char(F) # 2 and n is odd, then
HKJ/(4) = HKo(4)
HKY(A) = HKo(A)om, has dimension 1 and is spanned by %, ,

hi .
HK,(A) =0ifp# 0 and p # 2.

6.2 Koszul calculus for preprojective algebras of type D
The preprojective algebra A of type D,, is defined by the quiver

0 a0
ag as a4 an—3 an—2
= * e R — _—
Q % 2 3 4 e -2 n—1
al N—_ T ~N— ~— -~
/ a; az ay an-3 a2
1< o
subject to the relations
o0 = —ayag 0i = Qi_1a;_1] — a;a; 3<i<n—2
o1 = —ajay

*
On—1 = An—-20y_2
* * *
09 = apag + a1aq7 — A9a2

n—2

2

Eu has given in [18] a basis B of A. Set mp = |252] and v = n — mp — 2. We shall only
need bases of the e;Ae; when 7 and j are equal or adjacent vertices, which can be rewritten as
follows:

epBeg = {(aaala’{ao)é; 0<?

N

e1Be; = {(a”{aoaaal)z;o <fL<mp

o)
j
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eiBe; = {(afai)g;O <l<n—1i— 1}
U {(a;‘ai)zai,l ceagaqajay - --a;_1;0 <l<n—i— 1} if i >2
eoBe; = {(a;‘ag)zai;O <l<n— 3} for 1 € {0,1}
e;r1Be; = {(afﬂawl)eai;o <l<n—1— 2}
U {(a;‘HaHl)eai ceagarajay - a;_1;0 <L n—i— 2} ifi >2

e;Bejy1 = K(€i+1Bei), e;Bey = H(GQBG()) for i € {0, 1} .
For each i, Ae; contains precisely one basis element of maximal length 2(n — 2), which is

ko N ) (agarajag)™P if n is even
o = QpQoQg -+ Ay _olp—2 - Q34200 = ata (a*a ata )mD s odd
1a0\qpd1a,do

ko x N ) (ajaoagar)™P if n is even
Tl = a1G2a3 -~ Qp_20p—2" " A3A201 = § o a*a )0 i is odd
aoal(alaoaoal) ifniso

)n—i—l

™ = (a;a; ai—1---aga1ajay---a;_; if2<i<n—2

* K *
Tpn—1 = Ap—20p—-3 - A1G1A9 * - Qy_9.

They form a basis of the socle of A.

It can be checked using [38, Proposition 3.3] that the Nakayama automorphism v of A is
id4 if n is even, and that when n is odd, it exchanges ey and eq, agp and a; and af) and aj, and
fixes all the other vertices and arrows.

6.2.1 The Koszul cohomology and homology spaces in type D

The centre of A does not depend on the characteristic of F by fact (N1) and was computed in [18]
in characteristic 0. Moreover, dim HK*(A) = dim HH!(A), which is equal to dim HH!(A¢) = n
if char(F) # 2 and to dim HH!(A¢) + m if char(F) = 2 by [20].

It also follows from Theorem 4.4 and [20] that dim HK?*(A) = dim HK((A4) = dim HHy(A),
which is equal to n — mp — 2 if char(F) # 2 and to n — 2 if char(F) = 2.

In order to give bases of the HKP(A) for p = 0, 1,2, we define the following cochains:

e the elements zp = 1 and 2z = (ajarafao)’ + (afapaiar)! + S1=7 (afa;)? = 24 for £> 0 in
A. Note that if n is even, then z}' = 2" = my + 71, but if n is odd then 2z} = 0;

the elements ¢, € Homye(V, A) with 0 < £ < u — 1 defined by (y(a;) = a;z¢ for all i;

the elements p; € Homye(V, A) with 0 < £ < mp — 1 where py(a;) = (abaz)?'a; for
i =0,1 and py(a}) = a}(abaz)?*! for i =0, 1;

e the elements h; € Homye (R, A) for 0 < j < n — 1, where hj(0;) = d;j5e5;
e the elements v, € Homye (R, A) for 1 < ¢ < mp where v,(00) = (ajaiajap)’.
Proposition 6.8. Let A be a preprojective algebra of type D,,.

(i) The elements in {m;;0 <i<n—1andv(e)=e¢e}U{z;0<l<u—1} form a basis of
HKY(A).
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(i3) If char(F) # 2, the C;, for 0 < £ < u — 1, form a basis of HK(A).
If char(F) = 2, the {; for 0 < £ < u—1 and the py for 0 < £ < mp — 1 form a basis of
HK!(A).

(i1i) If char(F) # 2, the hj for 0 < j <n —1 form a basis of HK?*(A).
If char(F) = 2, the h; for 0 < j < n—1 and the 7, for 1 < £ < mp form a basis of

HK?(A).

Proof. The results for HK(A) and, when char(F) # 2, for HK!(A) follow from the comments
before the proposition.

Assume that char(F) = 2. In order to prove the result for HK!(A), we must prove that the
elements we have considered in Homye(V, A) are cocycles that are linearly independent modulo
coboundaries. It is in fact enough to prove that the p, are cocycles that are not coboundaries
by fact (N3).

First note that, at the level of cochains, p, = pg = Therefore, to prove that p, is a
cocycle, it is enough to prove that pg is a cocycle, and this is easy to check.

Since py = #mp-1-£ = Pmp-1, in order to prove that p, is not a coboundary for all ¢, it is

enough to prove that p,,,_1 is not a coboundary. The map p,,,—1 has coefficient weight 4mp—1.
If pmp—1 is a coboundary, then it is the image of a morphism in Homye(k, A) = ®i€Q0 e; Ae;
whose coefficients are linear combinations of cycles in A of weight 4mp — 2, which are known.
It is then straightforward to show that the image of any such morphism under b}( is not equal
to pmp—1-

For (iii), we first observe that every cochain in Homye(R, A) is a cocycle. Moreover, the
h; are n cocycles that are clearly linearly independent modulo coboundaries (all coboundaries
have coefficient weight at least equal to 1). Therefore if char(F) # 2, the result follows.

If char(F) = 2, it is enough to prove that the 7, are not coboundaries by fact (N3). At the
level of cochains, ~y = Fmp—t = Ymp for 1 < ¢ < mp, therefore it is enough to prove that 7, , is

not a coboundary. The map 7,,,, has coefficient weight 4mp, therefore if v,,,, is a coboundary,
then it is the image of a morphism in Homye(V, A) whose coefficients are linear combinations
of elements of weight 4mp — 2 in A between two adjacent vertices in )y, which are known.
Here again, checking that that the image of any such morphism under b%( is not equal to vy,
is straightforward. ™

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.

6.2.2 Cup and cap products

We now determine the cup products of the elements in the bases of the Koszul cohomology
spaces given above.

Lemma 6.9. For 1 < i < n — 2, consider the cochains u;, v; and w; in Homye(R, A) defined
by ul-(aj) = 6@'6@21, UZ‘(O']') = 6ij77i and wl-(aj) = 5ijafaiz1 fOT all j € Qo.

If char(FF) # 2, the u;, v; and w; are all coboundaries.

If char(F) = 2, then the u; for i > 2 are coboundaries, and Wy = wy = J1. Moreover, if n is
odd, all the v; are coboundaries and if n is even, then U; = 7y, for all i. Finally, the w; are
all coboundaries.

Proof. Every element in Homge (R, A) is a cocycle. Moreover, the differential b% is homogeneous
of degree 1 with respect to the coefficient weight, and the coefficient weight of all the basis
elements in HK?(A) is a multiple of 4, and is 0 if char(F) # 2.
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It follows that if char(F) # 2, all the w;, v; and w; must be coboundaries, and if char(F) = 2,
the w; are coboundaries and so are the v; if n is odd.

Assume that char(IF) = 2. We must now study the u;, as well as the v; when n is even.

Note that u,—9 = 0 and ug = 1. For 0 < i < n — 3, define p; € Homge (V, A) by p;(ag) =
ajaiag, pi(a1) = apafar and p;(a;) = a;afa; if i > 2. Then, for 2 < ¢ < n — 3, we have
u; = b%( <Z;L;23 pj). Moreover, b%( (Z?;g’ pj) = ug +uq. It follows that the cohomology classes
of ug and u; are both equal to that of ~;.

We now turn to the v;. Note that since n is even and char(F) = 2, the map vy is the map
Ymp, Which is not a coboundary.

Define ¢; € Homge(V, A) by ¢;(a;) = (af+1ai+1)"_i_2ai cagarajay---a;_q for 1 <i<n—2
and go(ag) = (ajaz)” 3. Then, for 2 < i < n — 2, we have v; — vy = b3% (23;11 qj>, and

V1 — Vg = b%((qo — q1). Therefore v; = vy = ¥, for all . [
We now give all the non zero cup products.

Proposition 6.10. Let A be a preprojective algebra of type D,,. Up to graded commutativity,
the non zero cup products of elements in HK®*(A) are:

201442 lfgl +€2 Su-— 17

20— f=f for all f € HK*(A); 20, ~— 2p, =
OKf 1 / (4) g b {7T0—|—7T1 if n is even and {1 + fo = mp;

Zfl \I-(/ Eﬁg = C_-fl-f—fg Zfél + 62 < u— 1;

~ B ’ — e if £ > 1, char(F) =2 and i € {0,1}
g P = Pty it b s R {hi if € =0;
2 Yty = Tor4ty if L1+ Uy < mp; mi hj = Ymp if i = j, n is even and char(F) = 2.

Proof. We use the notation in Lemma 6.9.
For ¢ > 1, we have z, < hi = zp_1 = 21 = hi = zp_1 < u; and the result follows from

Lemma 6.9.
Next, m; = hj = d;;v; and again the result is a consequence of Lemma 6.9.

Now assume that char(IF) = 2, so that the p; occur in the basis of HK!(A). At the level of
cochains, we have py, = Pl = W2 Ftty, which is a coboundary.

The map py, = Cop, = Ua = Zg,+0,+1 15 also a coboundary, as required.

The remaining cup products are easy to compute. Note that the cup product in HK((A) =
Z(A) is the ordinary product, and that the elements 7; are in the socle of A, hence are annihi-
lated by the radical of A. [ ]

The cap products follow using duality, as in Corollary 6.4.

6.2.3 Higher Koszul (co)homology

As in the case of a preprojective algebra of type A, the cohomology class of the fundamental
1-cocycle is equal to 2¢q so that 91 (z;) = 2{, for 0 < £ < u— 1, &L (m;) = 0 and 92 = 0. We
then have the following higher Koszul cohomology.

Proposition 6.11. Let A be a preprojective algebra of type D,.
(1) If char(F) = 2, then HK} (A) = HK*(A).
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(ii) If char(F) # 2, then

HKY.(A) = HK°(A)<¢ has basis the m; that are in Z(A)
HK7,(A) = HK*(A)
HK}.(A) =0 if p#0 and p # 2.

Higher Koszul homology follows from Theorem 4.4 as in Corollary 6.7.

6.3 Koszul calculus for preprojective algebras of type Eg

The preprojective algebra A of type Eg is defined by the quiver

0
ag ag
al a as a4
e ~—— ~— ~—
aj a3 a3 aj
subject to the relations

o0 = —agsag o3 = apag + aga; — ajas
o1 = —ajay o4 = azaz — aja4
o9 = aja] — asas o5 = asa)

To simplify notation, we shall denote by cy = apag, c2 = aga3 and c3 = ajas the three
2-cycles at the vertex 3.

The socle is the part of weight 10 of A, and the set {m;;i € Qp} where my = aacgcoc?,ao,
1 = a4a3CpcCzCoazal, Mo = a§(03co)2a§, T3 — 03(0003)2, T4 = /€(7T2) and Ty — /€(7T1).

The Nakayama automorphism is defined by v(a;) = —a; and v(a}) = af for all i € Q.

6.3.1 The Koszul cohomology and homology spaces in type Eg

We shall follow the same method as in types A and D, using the results from [20] and Theorem
4.4 to determine the dimensions of the spaces, and using results from [18] for the parts that are
the same as in characteristic 0.

We define the following elements

o in A: zp = 1, z = aja’azazaza; + (Z;C%(ZQ — cge3cy + agcgag + agazazazaza; and zg =
ascocscoas + cocgco + ascocscpas;

e in Homye(V, A): the maps (; defined by (y(a;) = a;z¢ for £ € {0,6,8}, the map p3
defined by ps(az) = copaz, ps(as) = aszcs and ps(a’) = ajes, and the map ps defined by
ps(ao) = caczao, ps(ar) = ascoazar, ps(az) = claz, ps(af) = —aic3, ps(af) = —ajajcoan
and ps(a3) = a3e3;

e in Homye(R, A): the maps h; defined for 0 < j < 5 by hj(o;) = d;;¢; for all 4, the map 74
defined by v4(00) = aczap and the map ¢ defined by v6(0p) = aacgao.

We shall use the following lemma.
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Lemma 6.12. Assume that char(F) = 3. Let v € Homye(R, A) be an element of coefficient
weight 6, so that

2 2 / " 2
v(00) = Aoagcsao v(03) = Azczco + Azczcocs + Azcocs
/
v(o1) = Majascoazar v(04) = M\azcoczas + Ayazcscoaz
/
Y(o2) = A2ascoczag + Ajaszcscoan v(o5) = Asasascoasay.

Then v is a coboundary if, and only if, Z?:o i+ 0o N4 N = 0.

Proof. The proof is straightforward, once we know that a cochain of weight 5 takes its values
in A; = E® k(FE), where E is the space spanned by cgao, €oC3a0, A5CHa20a1, C%(ZQ, coc3ae, azcycs,
ascsco, a4a3coas. (]

Proposition 6.13. Let A be a preprojective algebra of type Eg.
(i) The elements in {zo, 26, 28, M0, T3} form a basis of HKY(A).

(ii) If char(F) & {2,3}, the elements in {(s; ¢ = 0,6,8} form a basis of HK'(A).
If char(F) = 2, the elements in {Eg;f = 0,6,8} U {p3} form a basis of HK!(A).
If char(F) = 3, the elements in {(s; ¢ =0,6,8} U{ps} form a basis of HK'(A).
)
)

If char(F) = 2, the elements in {hj;j € Qo} U{74} form a basis of HKZ2(A).

(
(
(
(iii) If char(F) & {2,3}, the elements in {hj;j € Qo} form a basis of HK?(A).
(
If char(F) = 3, the elements in {hj;j € Qo} U{¥s} form a basis of HK*(A).

Proof. The centre was given in [18], so we have (7).

For HK'(A) and HK?(A), the number of elements in the statement is equal to the dimension
of the corresponding cohomology space. Moreover, all the elements in the statement are indeed
cocycles.

If char(F) is not 2 or 3, a basis of HK!(A) = HH!(A) was given in [18]. Tt consists of the
classes of the (; with ¢ € {0,6,8} where (;(a;) = a2z for 0 < i < 2 and ()(a)) = ajz for
3 < i < 4. Since {p — ¢} is equal to bk-(e3 + 2e5), and { — ¢, = (o — &) = is also a
coboundary, (, and (; represent the same cohomology class for ¢ € {0,6,8}. Moreover, as in
types A and D, the elements h; form a basis of HK?(A).

If char(F) € {2, 3}, we need only prove that the extra elements are not coboundaries by fact
(N3).

If char(F) = 2, we have zg = p3—Cs = b,lc(g) where g is defined by g(e2) = ajcscoczag, and (g

is not a coboundary, therefore p3 cannot be a coboundary. Moreover, assume that 4 = b}((g' ) is
a coboundary. Then ¢’ would be of coefficient weight 3, and we would necessarily take values in
As = E®k(FE) where E is spanned by csag, cpag, csag, ascy, ascs. This leads to a contradiction.

If char(F) = 3, assume that ps is a coboundary b} (h), then h is of weight 4, and necessarily
h(eo) = Xoajcsag, h(e2) = Xaajcsas and h(esz) = Agesco + Asc3 + Micoe?, and by considering
bl-(h)(ao), bk-(h)(ay), bk (h)(az) and bk (h)(a}) we get a contradiction. Finally, the fact that g
is not a coboundary follows from Lemma 6.12. [

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.
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6.3.2 Cup and cap products

We now determine the cup products of the elements in the bases of the Koszul cohomology
spaces given above.

Proposition 6.14. Let A be a preprojective algebra of type Eg. Up to graded commutativity,
the non zero cup products of elements in HK®*(A) are:

zovf:fforallfeHK°(A) Co = Cy for £ €{0,6,8)

50
— -:_ 1,4 v}'_L A~ if 4 2.5
oo hi=To ifi € {1,4) o= if i € {2.5)
26}//)3:&3 Co;ﬂ 3 = V4.

Proof. The first two cup products are clear.
For the cup products of zg with the h; and for (g = P5, we use Lemma 6.12.

The last cup product follows from the fact that we have (y P = bl-(g') where
g (ay) = ajes and ¢'(a3) = ages. The cup product zg = p3 was already in the proof of
Proposition 6.13.

Consideration of the coefficient weights yields the vanishing of the other cup products. =

The cap products follow using duality, as in Corollary 6.4.

6.3.3 Higher Koszul cohomology and homology

As in type A, the differential 9! sends z, to 2, for £ € {0, 6,8} and the differential 92 is zero.
We then have the following higher Koszul cohomology.

Proposition 6.15. Let A be a preprojective algebra of type Eg.
If char(F) = 2, then HK3,(A) = HK*(A).
If char(F) =3, then

K9.(A) = HK®(A)19 has dimension 2 and is spanned by o and T3
K2.(A) = HK?(A)

HKm(A) span {[7n]}

HKY.(A) =0 1ifp> 2.

If char(FF) & {2,3}, then

HKY.(A) = HK°(A)1o has dimension 2 and is spanned by my and 3
HKZ(4) = HK(A)
HKY (A) =0 if p#0 and p # 2.

Higher Koszul homology follows from Theorem 4.4.

6.4 Koszul calculus for preprojective algebras of type E;

The preprojective algebra A of type Er is defined by the quiver

0
ag ag
al as as a4 as
- T T Y S
aj a3 a3 aj aj



subject to the relations

o0 = —asag 04 = azaz — ayay
o1 = —ajaq 05 = 40y — a5as
09 = a1ai] — asag 06 = asas

o3 = apay + agay — azas

To simplify notation, we shall denote by cy = apag, c2 = aza3 and c3 = azasz the three 2-cycles
at the vertex 3.
The socle of A is the part of weight 16 of A. A basis of the socle is given by 7y =

(ajcsap)t, m1 = —ajascocs(csco)?agar, mo = —(abcoaz)?, m3 = (c3c0)3c?, ma = —(azcoal)?,
75 = —agas(csco)ala) and 6 = —azas(ascoal)dajas.
The Nakayama automorphism is given by v(a;) = —a; and v(a}) = a} for i € Q.

6.4.1 The Koszul cohomology and homology spaces in type E~

We define the following elements

e inA: zo=1, 25 = aSCQCOCQ(zO—a’Q‘CQCOCQQQ—020?,’02—|—a3000200a§—a4a303a§af1+a5a4agcoa§a2a§
2 2 2 2 .
and z12 = a{(ca2cp)?caal + a3(coca)?coar — (c3cocs)® + ases(cocs) as;

e in Homge(V, A): the maps (; defined by (y(a;) = ajz; for £ € {0,8,12}, the map p3
defined by p3(az) = coaz, p3(as) = ascs, p3(as) = aqazaj and p3(a3) = ascs, the map pr
defined by pr(ag) = ciag + czcoczao, pr(as) = ascscoes and pr(al) = cscocsal, the map
p15 defined by pi5(ag) = (c2cp)3c2ag and p15(af) = afea(cocz)® and the map ps defined by
ps(ag) = —cacsan, ps(az) = cacoaz, ps(az) = azc3, ps(ay) = apes and ps(al) = —ascaco;

e in Homye (R, A): the maps h; defined for 0 < j < 6 by hj(0;) = d;5¢; for all 4, the map 4
defined by 74(00) = agcsag, the map g defined by v5(00) = afjc3ag, the map 16 defined
by 716(00) = mo and the map and 7 defined by v5(00) = ajczao.

Lemma 6.16. First assume that char(FF) = 2.

(i) Let uig € Homge(R, A) be an element of weight 16 so that uig(o;) = N for i € Qo.
Then uig @s a coboundary if, and only if, Z?:o A =0.

(ii) Let ug € Homye(R, A) be an element of weight 8 so that us(co) = Aoagciao, ug(oz) =
oabescocsaz + Nyasciepaz, ug(os) = Ascico + Nyeecs + Njeocieg + Ny c3eoes, ug(oy) =
Mascicoal + Nyjagescoesal + Mascocial, us(os) = Asasascscoaial + Nsagagcocsalal and
ug(06) = asasasapagaiaiat. Then ug is a coboundary if, and only if, Ao+ Ao+ Xy + Az +

Mg+ X+ X+ X+ A+ A5+ A+ X =0.
Now assume that char(F) = 3.

(iii) Let ug € Homye(R, A) be an element of weight 6 so that ug(cg) = Aoagciao, ug(or) =
Matascoasay, ug(o2) = Aeajcscoas + Ahascdas, ug(os) = Asescoes + Nycaco + Mycoeseo +
M e3+, ug(o4) = Mascocsal + Njasescoal and ug(os) = Asasagcoalal. Then ug is a
coboundary if, and only if, Z?zo Xi — A+ M — N, =0.

Proof. For each ¢ € {16,6}, if the map uy were a coboundary, it would be the image of a map
g¢ € Homye(V, A) whose coefficients would be in the space generated by the paths between
adjacent vertices with weight £ — 1. The proof is then straightforward once we know bases of
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these spaces. Note that once we have a basis of ®aeQ1 €(a) Awes(a), aPPlying k gives a basis of
€5(a) Awei(a) for a given weight w.

In weight 15, a basis of @ate €ya)A15€5(0) 1S given by ap = (ajcsao)ages, @ =

2 =~ __ 3 = 3 = __ 3 =~ __

—ajajcocs(cscp)az, @ = —ajco(caco)’, az = (c3co)’czay, as = —az(cscp)’ajay, as =
ag(ascoal)ajal.

In weight 7, a basis of ®aeQ1 ey(a) A7€s(a) 18 given by cgao, €3¢0C3a0, a§c§a2a1, c%coa% cocgag,
€3C0C303, A3C3CHC3, agcocg, (Z3C§CO. @4a3C3C0a3, A4A3CHC303, A504A3CoA50,.

In weight 5, a basis of EBate €y(a) As€s(a) is given by c%ao, €oC3a0, a5CHA2a1, C3CHA2, COC3aA2,
a3c3Cy, a3cHCs, agcg, a4a3coas. [

Proposition 6.17. Let A be a preprojective algebra of type Ex.
(i) The elements in {zo, 28, z12} U {mi;i € Qo} form a basis of HKY(A).
(i) If char(F) & {2, 3}, the elements in {C;;¢ = 0,8,12} form a basis of HK'(A).
If char(F) = 2, the elements in {(s; ¢ = 0,8,12} U {p3, pr, P15} form a basis of HK!(A).
= 3, the elements in {Eg;ﬁ =0,8, 12} U {ps} form a basis of HK*(A).
(iii) If char(F) & {2,3}, the elements in {hj;j € Qo} form a basis of HK?(A).
If char(F) = 2, the elements in {hj;j € Qo} U {4, 78, Y16} form a basis of HK?(A).
If char(F) = 3, the elements in {hj;j € Qo} U{¥s} form a basis of HK?(A).

(
(
(
(

Proof. The centre was given in [18], so we have (7).

For HK'(A) and HK?(A), the number of elements in the statement is equal to the dimension
of the corresponding cohomology space. Moreover, all the elements in the statement are indeed
cocycles.

If char(F) is not 2 or 3, a basis of HK!(A) = HH!(A) was given in [18]. Tt consists of the
classes of the ¢, with £ € {0,8,12} where (;(a;) = a;z; for 0 < i < 2 and ()(af) = ajz for
3 <i < 5. Since {p — ¢} is equal to bk-(e3 + 2e5 + 3eq), and § — ¢ = (¢o — ¢) A is also a
coboundary, (; and (; represent the same cohomology class for ¢ € {0,8,12}. Moreover, as in
types A, D and Eg, the elements f_Lj form a basis of HKQ(A).

If char(F) € {2, 3}, we need only prove that the extra elements are not coboundaries by fact
(N3).

If char(F) = 2, it follows from Lemma 6.16 that (o P15 =716, (s < PTG, (12 = P36,
28 08— M6 and 219 = ¥4~ 76 are coboundaries. Therefore it is enough to check that 14 is

not a coboundary, and this also follows from Lemma 6.16.
If char(F) = 3, again using Lemma 6.16, ¢ < P56 is a coboundary and ~g is not a

coboundary, therefore ps is not a coboundary either. [

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.

6.4.2 Cup and cap products

We now determine the cup products of the elements in the bases of the Koszul cohomology
spaces given above.

Proposition 6.18. Let A be a preprojective algebra of type E;. Up to graded commutativity,
the non zero cup products of elements in HK®*(A) are:

zo}/f:fforalleHK'(A) 22 =g+ Ty — T
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20+ Co = (o for £ € {0,8,12} % = 1= D5

212 52 P3 = P15 Wz\lgﬁz':%(ﬁfwié@o
ZS\I—(/f_Li:’Vg ifi € {0,4,6} 2 T8 = T

212 Y4 = Y16 Co e pe = =41 for £ € {3,7,15,6}
(8 % p7 = Y16 (12 % p3 = Y16

Proof. Most of the cup-products are easy to compute, follow from Lemma 6.16 or vanish for
weight reasons. The remaining ones are obtained as follows (at the level of cochains):

2 PT= P15 bic([es = (caco)’cs))
212 = p3 = p15 + bic([es = (csco)’ca))
G~ p3 =1+ bic (h)
where h € Homye(V, As) is defined by h(ag) = csag and h(az) = coas. ]

The cap products follow using duality, as in Corollary 6.4.

6.4.3 Higher Koszul cohomology and homology

As in types A, D and Eg, the differential 01 sends z, to 2{, for ¢ € {0,8,12} and the differential
02 is zero except when char(F) = 3 where 9% (p5) = 7s.
We then have the following higher Koszul cohomology.

Proposition 6.19. Let A be a preprojective algebra of type Ex.
If char(F) = 2, then HK},(A) = HK*(A).
If char(F) # 2, then

HKY.(A) = HK°(A)1 has dimension 7 and is spanned by the m; for i € Qo
HK?.(A) = HK?(A)o has dimension 7 and is spanned by the [h;] for i € Qo
HK}.(A) =0 ifp# 0 and p # 2.

Higher Koszul homology follows from Theorem 4.4.

6.5 Koszul calculus for preprojective algebras of type Eg

The preprojective algebra A of type Eg is defined by the quiver

0
ag ao
al a2 as aq as ae
S— ~— S — ~— S — ~—
aj as az ay ag ag
subject to the relations

o0 = —asag 04 = azaz — aya4
o1 = —ajay 05 = aqay — azas
o9 = aja] — asas 06 = a5a; — agag
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o3 = apag + aga;y — azas o7 = apag

To simplify notation, we shall denote by ¢y = apag, c2 = aga3 and c3 = a3asz the three 2-cycles
at the vertex 3.

The socle of A is the part of weight 28 of A. A basis of the socle is given by my =
(a602a0)7, m = —ajai(cocz)’cacpasay, m = —(abcoas)’, w3 = (cacy), Ty = —a3(0200)602a§,
75 = agag(caco)®alal, m¢ = —asasaz(coca)’coaiaial and 17 = agasasas(coca)®(caco)?alaiaiag.

The Nakayama automorphism is given by v(a;) = —a; and v(a}) = a} for i € Q.

6.5.1 The Koszul cohomology and homology spaces in type Eg
We define the following elements
e in A:

+ 20— 1,

+ 212 = Q5A4a3CHC2C0a5a4a% + a4a3(0200)2a§a2 + a3(0260)202a§ — (636263)2 + a;(COCQ)QCOCLQ —
atajcocicoasal + afy(caco)?eaay,

+ 290 = a5a4a3(0002)300a§af1a’5‘ + a4a3(0002)2(0200)2a§a2 + a300(6260)4a§ + (c2c0)® — (Cocg)gco +
(coca)® + aj(cacocz)®ag + af(caco)*caap and

v 294 = 225

e in Homy.(V, A):

+ the maps (; defined by (y(a;) = a;z for ¢ € {0,12,20,24},

+ the map p3 defined by p3(az) = coaz, ps(as) = ascs, p3(as) = aqazal, ps(as) = asasa) and
p3(a3) = ases,

+ the map p7 defined by p7(ag) = coc3ao, pr(as) = aszcocl + azcico + ascocsco and pr(ah) =
c3coc3as,

+ the map pi5 defined by pi5(as) = asca(caco)?, pis(as) = asas(cocs)?ay + asas(cocd)?af +
asaz(csco)®as, pis(as) = asasasco(csco)®ajal, pis(al) = ajes(esco)® and pis(af) =
agaz(cocs)?epaiajak,

+ the map poy defined by par(as) = asco(csc)® and por(a}) = (csco)®csal,

+ the map p5 defined by ps(ag) = —coczag — c3ag, ps(as) = ascsco + ascl, ps(as) = agazczal,
ps(ap) = ages and ps(a3) = —cscoas,

+ the map p17 defined by defined by p17(ag) = —c2(cocs)3ao — (cocs)*ao, p17(as) = az(csco)* +
asz(coes)* + as(cseo)3e, pir(ag) = af(caco)3c? and pi7(a}) = —(c3co)*as, and

+ the map pg defined by pg(ag) = —2c3cocsao + 2c3cociag + (cocs)?ag, polaz) = c3cpcaan +
(caco)?ag, po(az) = —az(cocs)®, polay) = 2afcieocs — 2agescocs + aglcaco)?, polaz) =

aseacocs — az(caco)® and py(a}) = (cocs)’as;

e in Homye(R, A): the maps h; defined for 0 < j < 7 by hj(o;) = d;;¢; for all ¢, and

. * . * 3
Y4 O > QpC3a0 Y8 0g > apC3a0
Y16: 00 — 06(0200)3620/0 Y28 : 00 > TQ

. * 2 i * 2 3
Y61 00 — ApC3a0 Y181 00 F> agez(cocs) ao

Y10: 00 F ajcicocsag
Lemma 6.20. First assume that char(F) = 2.
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(i) Let ugg € Homye(R, A) be an element of weight 28, so that uis(o;) = N\im; for all i € Q.
Then uig is a coboundary if, and only if, Zier A =0.

Now assume that char(F) = 3.

(ii) Let uig € Homge (R, A) be an element of weight 18, so that uis(oo) = Aoagci(cocs)®ao +
)\6@80300(030@03)2610, ulg(O'l) = )\1@’{@500(020@)30,20,1, ulg(O'Q) = )\2@5(020002)20002@2 +
)\/20,3(6062)4(@ + Aga5(0200)4a2, U18(0'3) = )\300(6360)4 + )\g(0360)463 + )\g(C3CO)QC3(C3CO)2 +
)\§3)(6003)263(6003)2 + )\gl)(c?,co)gc%co + )\§5)COC§(0063)3, uig(oy) = )\4a3(0360)4a§ +
Nyas(coes)tal + Mjascd(csco)al + )\513)613(0003)30%@3, uis(os5) = Asasag(csco)dcsaialy +
Msagazes(cseo)datal + Magas(cocs)®csalal, ws(os) = Aeasasas(csco)alajal +
Nsasasas(cocs)dajalal, uis(o7) = Magasasaz(cocs)?coaiaiatal. Then uig is a cobound-
ary if, and only if, Ao+ Ny + A1+ Ny + M+ Ny + M+ AD + A0 AP N - N -
AY s M= A =g — A — Ay = 0.

(i7i) The map p17 € Homge (V) A) is not a coboundary.
Now assume that char(F) = 5.

(iv) Let uyg € Homye(R, A) be an element of weight 10, so that uig(oo) = Aoagcicocsao +
loaanCoC%ao, ulo(O'l) = )\1(1?(],;006200(12@1, ulo(O'Q) = )\2(1;(6002)2612 + )\/2615(0260)2(12 +
hacocicoas, wio(os) = Asco(csco)? + MNyes(coes)? + Nyes(eseo)? + A§3) (coc3)?es +

A3(4)czcocico + )\§5)coc§coc?,, uio(o4) = Mag(cocs)?al + Nyas(eseo)?ay + Njasescoclaly +
Ai3)a3630063a§, u10(05) = Asasazcocscoalay + Nsagazcicoalal + Nasascociaial, uio(og) =
Asasasagcscoasalai + Ngasasagcocsasayay, uip(or) = Aragasagsascoaiaiatal. Then uyg is
a coboundary if, and only if, Ao+ Ny + A1+ A2 + Xy + NJ + N+ M + )\g?’) + )\:(,,4) + )\gg,) +
Mg = N, 42X+ 200 4+ X5 4 20 + 20 4 226 + 2X; + 2M7 = 0.

Proof. For each ¢ € {28,18,10}, if the map uy were a coboundary, it would be the image of a
map g¢ € Homye(V, A) whose coefficients would be in the space generated by the paths between
adjacent vertices with weight ¢ — 1. The proof of (i), (ii) and (iv) is then straightforward once
we know bases of these spaces.

In weight 27, a basis is given by @ = ajca(coce)®, @1 = —ajai(coc2)’Bag, @ =
—abco(eaco)®, @3 = (caco)bcoal, @y = —as(caco)®alal, a5 = —agazco(caco)’ajajal, ag =
asaaz(coc)®(caco)?alaiatay, and the r(a;) for all i € Q.

In weight 17, the space @ate e(a) A18€5(a) has basis (cocs)ao, c2(cocs)®ao, csco(cscocs)?aq,
ajcacoca(caco)?asay, aj(coca)dcoazar, (csco)az, (cocs)*as, (cocs)®cscoan, cscolcscocs)?as,
az(czco)?, az(cocs)?, az(cocs)®ezco, azcocs(csco)®, az(csco)’c3, asaz(cocs)®coas, asaz(cocs)®czas,
asazcs(cseo)das,  asasas(csco)daial,  asagaz(cocs)aial,  agasasas(cocs)’coaiajai  and
Dacq, o) A1sua) = £ (EBate 6t<a)A18€s<a>>-

In weight 9, the space @ate
ajcocacoanal, cicocaaz, (caco)?az, (cocz)?as, cocicoas, azescocs, as(coes)?, as(csco)?, agcocico,
a4a30§coa§, a4agcoc§a§, a4a3CoC3COA3, A504G3C3CHA50Y, A50403C0C3A30,, O6A504a3Coasayas and

@ate es(a)A9et(a) =K (@ate et(oz)AQGE(oz)> .

Finally, if pi7 were a coboundary, it would be equal to bi(g) for some g €
Homye (k, A1g).  Such a map g would necessarily satisfy g(eo) € span{af(csco)®csao},

2 2 2
eya)Aoesa) has basis cjcocsan, cscoczan, (cocs)”ao,

g(es3) € span {(0300)4, (0063)4, 6003(0360)3, (6063)36360, 65(6063)3, 6360(636063)2}, and
g(eq) € span {a300(63co)3a§,a363(6003)3a§, ages(csco)das, a3(0063)363a§}. Then, by consid-
ering bt (g)(ao), bj.(9)(af) and bi(g)(as) we get a contradiction. ]

42



Proposition 6.21. Let A be a preprojective algebra of type Es.
(i) The elements in {z0, 212, 720, 224} U {misi € Qo} form a basis of HK"(A).

(ii) If char(F) € {2,3,5}, the elements in {(s; ¢ = 0,12,20,24} form a basis of HK'(A).

If char(F) = 2, the elements in {Eg;f =0, 12,20,24} U {ps, p7, P15, P27} form a basis of
HK!(A).

If char(IF) = 3, the elements in {Eg;f = 0,12, 20, 24} U {ps, p17} form a basis of HK!(A).
If char(IF) = 5, the elements in {Eg;f = 0,12, 20, 24} U{pg} form a basis of HK'(A).

If char(FF
If char(F) = 3, the elements in {hj;j € Qo} U{¥s, Y18} form a basis of HK?(A).
If char(F) = 5, the elements in {h;;j € Qo} U{F10} form a basis of HK*(A).

)

)

) & {2,3,5}, the elements in {h;;j € Qo} form a basis of HK?*(A).

) = 2, the elements in {f_Lj;j € Qo} U {74, 78, V16, Tos } form a basis of HK?(A).
)

(

(
(71i) If char(F

(

(

(

Proof. The centre was given in [18], so we have (7).

For HK'(A) and HK?(A), the number of elements in the statement is equal to the dimension
of the corresponding cohomology space. Moreover, all the elements in the statement are indeed
cocycles.

If char(IF) is not 2, 3 or 5, a basis of HK!(A) = HH!(A) was given in [I18]. It consists of the
classes of the (; with ¢ € {0,12,20,24} where (j(a;) = a;jz¢ for 0 < i < 2 and (j(a}) = a}z for
3 <i < 6. Since (o — ¢ is equal to bl (es + 2e5 + 3eg + 4er), and ¢ — ¢} = ({o — ¢}) = is also
a coboundary, {; and ¢, represent the same cohomology class for ¢ € {0,12,20,24}. Moreover,
as in types A, D, Eg and Er, the elements f_Lj form a basis of HKQ(A).

The rest of the proof is the same as that of Proposition 6.17, based on Lemma 6.20 and the
fact that the following cup products at the level of cochains are all coboundaries: (j = P21 =28,

Ci2 = P15 728, Coa < P32, G20 S PT V28, 224 1 VAT 28, 212 7 V16 T 28, 220 2 V8 728,

212 2 P5 P17, 212 5 V6 — V18, o = P9 — Mo, whereas 728, 718, 10 and p17 are not. u

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.

6.5.2 Cup and cap products

We now determine the cup products of the elements in the bases of the Koszul cohomology
spaces given above.

Proposition 6.22. Let A be a preprojective algebra of type Es. Up to graded commutativity,
the non zero cup products of elements in HK®*(A) are:

20 5 f = f for all f € HK®*(A) 22, = 24
2~ Co = C¢ for £ € {0,12,20,24} 212 < P3 = Pis
224 p3 = P27 212 2 P15 = P27
220 2 p7 = P27 212 2 ps = P17
212 Py = —C20 212 (12 =C
Wi\}—(/f_Li:’stfOMGQo 212 7 T4 =716
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Z12 \k/ Y16 = 728 224 \i(/ 4 = 728

};7 8 = 728 Z12 2 76 = 718
C12}; 15 = 728 Czo}; 7= Y28
(24 = P3 =128

Proof. Most of the cup-products are easy to compute, follow from Lemma 6.20 or vanish for
weight reasons. The remaining ones are obtained as follows (at the level of cochains): zo4 =

ps = par + bk (les — colcsc)®]), we have 219 %P3 = P15 + bl (h) where h is defined by

h(az) = (coc2)3coaz, hlaz) = asco(csco)® + ases(cocs)?, h(as) = a4a3(coc§)2a§ and h(ad) =
ajco(caco)® + ajca(cocz)?, and finally 219 <Pt Ca0 = br (') where I/ is defined by h'(eg) =
ag(csco)tesag, B (e2) = 2a3(caco) caan, h'(e3) = —2(cocs)® + 2c3(cocs)* + (czco)icd, B (eq) =
—a3(0003)4coa§ + a303(03co)4a§ — a3(0003)403a§ and I (e5) = —a4a3(0003)4a§az. n

The cap products follow using duality, as in Corollary 6.4.

6.5.3 Higher Koszul cohomology and homology

As in types A, D, Eg and E7, the differential d1 sends z, to 2¢, for ¢ € {0,8,12} and the
differential 92 is zero except when char(F) = 5 where 9% (pg) = 271¢.
We then have the following higher Koszul cohomology.

Proposition 6.23. Let A be a preprojective algebra of type Es.
If char(F) = 2, then HK},(A) = HK*(A).
If char(F) = 3, then

K9.(A) = HK®(A)og and the m; fori € Qqy form a basis
HK,"(A) = span {[ps], [P17]}

K2.(A) = HK?(A)g and the [h;] for i € Qo form a basis
HKP(A): if p#0 and p # 2.

If char(F) & {2,3}, then

HKY.(A) = HK°(A)os has dimension 8 and is spanned by the m; for i € Qo
HK?.(A) = HK?(A)o has dimension 8 and is spanned by the [h;] for i € Qo
HK}.(A) =0 if p# 0 and p # 2.

Higher Koszul homology follows from Theorem 4.4.

6.6 Comparison of Koszul and Hochschild (co)homology for preprojective
algebras of type ADE

Let A be a preprojective algebra over a Dynkin graph of type ADE. Schofield constructed
a minimal projective resolution (P°®,9°) of A as a bimodule over itself, that is periodic (of
period at most 6), which was described in [16, 18]. Following Proposition 2.11, the em-
bedding H(:*)2 sends the Hochschild cohomology class of an element in Ker(93 o —) to its
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Koszul cohomology class, and the surjection H(7)2 induces an isomorphism between HHg(A)
and HK2(A)/Im(id4 ®53).

We first transport the maps 9% o — and id4 ®9? via the natural isomorphisms A ® 4e (Ae; ®
e;A) — e;Ae; that sends A ® (a ® b) to bAa and Hom 4e(Ae; ® e A, A) = e; Ae; that sends f to
flei @ ej).

The associative non degenerate bilinear form on the selfinjective preprojective A can be
defined as follows, see [16] and [38, Proposition 3.15]: let B be a basis of A consisting of
homogeneous elements, that contains the idempotents e;, ¢ € (g, and such that each v € B
belongs to e;Ae; for some i,j in Qo. Then if x € Ae;, (y,x) is the coefficient of 7; in the
expression of yx as a linear combination of elements in B. The Nakayama automorphism v
of A satisfies (y,z) = (v(x),y) for all z,y in A, and induces a permutation of the indices,
the Nakayama permutation 7, that is, a permutation of Qg such that top(Ae;) = soc(Aey;)),
characterised by v(e;) = ez;).

Let B be the dual basis of B with respect to the non degenerate form (—,—), so that
(W, v) = dyy for all v,w in B. In particular, if v € Be;, the coefficient of 7; in vv is 1. Note that
v € e;Be; if and only if v € e,y(i)éej.

Then the maps 0% o — and id4 ® 4¢0® become respectively

53 @ e;Ae; — GB eiAey(;) defined by y — Z Tyx

1€Qo 1€Qo zeB
and d3: @ eiAegy — EB e;Ae; defined by y — Z TYT.
1€Q0 1€Q0 zeB

It then follows as in [20, Proposition 3.2.25] that Imds3 is the span of the d3(e;) such that
(i) = i, and that for such an i we have d3(€;) = > ;coyp(j)=; tT(Vje;a¢;)T;- Moreover, the
matrix whose coefficients are the tr(v|c, a¢,) is either easy to compute or given in [18] for types
D and E;. It is also known from [20] that the set of elements of weight 0 in Ker ® identifies
with the kernel of the Cartan matrix of A. Moreover, for any element of positive weight a € A,
we have 6%(a) = 0. Therefore HH?(A) is obtained by taking all the elements of positive weight
in HK2(A) and adding the kernel of the Cartan matrix.

We shall use this as well as the dimensions of the Hochschild and Koszul (co)homology
spaces to compare HH?(A) with HK?(A) and HHy(A) with HKy(A) in each case.

6.6.1 Comparison of the second Koszul and Hochschild cohomology groups

In type A, the space HH? (A) was completely described by Erdmann and Snashall in [14], and
they proved that dim HH?(A) = n — m4 — 1 and gave a basis {ﬁi;() <i<n—my— 2} with

hi = h; + hy—1—;. The morphism of complexes t5 sends h; to h; + hn_1—i, and this describes the
injection HH?(A) — HK?(A).

In type D, if char(F) # 2 and n is even, there is nothing to do since HH?(A) = 0. If
char(F) # 2 and n is odd, then dim HH?(A) = 1, the basis given in [18] for HH?(A¢) (where Ac
is the preprojective C-algebra with the same Dynkin graph as A) also gives a basis of HH?(A),
and it is the cohomology class of the map vy defined by ¢g(0¢) = ep and 1g(01) = —e;. The
embedding HH?(A) — HK?(A) is therefore given by g — hg — hy.

Now assume that char(F) = 2. Then dim HH?(A) = n + mp — 2. As we explained above,
a basis of HH?(A) may be obtained from a basis of the set of elements of positive coefficient
weight in HK?(A) to which we add elements obtained by determining a basis of the kernel of
the Cartan matrix of A. It follows that a basis of HH?(A) is given by

Fp1<l<m}U{p;;2<i<n—1} ifniseven
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{Ful<t<m}pU{vo}U{i3<i<n—1} ifnisodd

where Vop11(02p11) = €2pg1, Vopr2(0opr2) = ezpr2 and Yopia(o2) = €2, pop(02,) = ez,
Yop+1(02p43) = egpr3 and popi1(03) = es, for p > 1. Therefore, the embedding HH2(A) —
HKZ(A) fixes the 7, and sends @), to h2p and Papy3 to h3 + hapis when n is even, and g to
ho + hq, 7/’2p+1 to h2p+1 and 1/121,+2 to hg + h2p+2 when n is odd.

In type Eg, the Cartan matrix is equivalent, through row operations, to

200000
010001
001010
000200

Let g, 1, w2 and @3 be the maps in Homge (R, A) defined by ¢o(o9) = eo, ¢1(01) = ei,
©1(05) = —es5, a(02) = e, pa(04) = —ey and p3(03) = e3. Then HH?(A) is the subspace of
HK?(A) spanned by

o1, oo if char(F) ¢ {2,3}
%0, P1, P2, P3, Va if char(F) =2
P1, P2, 76 if char(F) = 3.

In type E7, if char(F) # 2, we have dim HH?*(A) = dim HK?(A)~q, so that HH?(A) is
precisely the subspace of HK?(A) of elements of positive weight (which is zero unless char(F) €
{2,3}). If char(F) = 2, then the Cartan matrix of A is equlvalent through row operations, to
the matrix (100010 1) so that HH?(A) is the subspace of HK?(A) spanned by 74, 78, Y16, I,
h2, hg, h5, ho + h4 and ho + h6

In type Eg, we only need to look at dimensions. Indeed, if char(F) = 2, then dim HH?(A) =
dim HK?(A) so that HH?(A) = HK?(A), and if char(F) # 2 then dim HH?(A) = dim HK?(A)x
so that HH?(A) is precisely the subspace of HK?(A) of elements of positive weight (which is
zero unless char(FF) € {2,3,5}).

6.6.2 Comparison of the second Koszul and Hochschild homology groups

In type A, if n is even or if n is odd and char(F) divides (my4 + 1), we have seen that
dimHK3(A) = dimHHy(A) and therefore HKy(A) = HHy(A). Now assume that n is odd
and char(F) { (ma + 1). Then dim HKs(A) = dim HH9(A) — 1. We must determine the image
of the map d3 given in Subsection 6.6.

The Nakayama permutation 7 has precisely one fixed point, which is m 4. The matrix of v
restricted to e, , Aen,, is the identity matrix I, ,+1. Consequently, d3(em ) = (ma + 1),
spans the image of d3. Via the isomorphism @ZEQO eide; = A Qe R, 7, corresponds to Zp, ,
so that we have HHy(A) = HK9(A)/span {Z,,, }

In type D, if n is odd and char(F) = 2, then we know that dim HK5(A) = dim HHs(A) and
therefore HK5(A) = HH2(A). In the other cases, we need to determine the image of the map
J3.

If n is odd and char(F) # 2, the fixed points of the Nakayama permutation are the integers
i with 2 < ¢ < n — 1. The matrix H” whose (3, j)-coefficient is the trace of v restricted to e;Ae;

was given in [18, paragraph 11.2.3], so that tr <u‘ejAei> = 2 if ¢ and j are even and is equal to 0

mD+1
p_

Dicq, cidei = A @y R, we obtain HHy(A) = HK3(A)/ span {z mp+l 7721,}
If n is even, all the integers ¢ with 0 < ¢ < n — 1 are fixed pomts of 7. The matrix H”
was given in [18, paragraph 11.2.2] and is equivalent, through column operations, to the matrix

otherwise. Therefore for all i fixed by 7, we have d3(e;) = > 2m9p. Using the isomorphism
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whose last n — 2 columns are 0 and whose first two columns are

mp+11-n

—mp n—1
0 0
1 0
0 0

—=o
OO+

It follows that, if n is even,

HK,(A)/ span { (mp + 1)t — mpis + X0 @pﬂ} if char(F)|(n — 1)

HH,(A)
HKQ(A)/span T — T3 7o + z;n:%-i-l ﬁ-Zp—f—l} if char(IF) J( (n — 1)

1

In types Eg and Eg, since they have the same dimensions, the homology spaces HHy(A) and
HK3(A) are isomorphic.

Finally, in type E7, if char(F) = 3, then HHs(A) = HK3(A). Now assume that char(F) # 3.
The matrix H” was given in [19] and its non zero rows are those corresponding to vertices 0, 4
and 6 and are all equal to (30003 03). It follows that HHo(A) = HKy(A)/span {7¢ + 74 + 76 }-

6.7 A minimal complete list of invariants

Theorem 6.24. Let A be the preprojective algebra of a Dynkin graph A over F. Assume that A
has type either A,, withn > 3, or D, withn > 4, or E, withn = 6, 7, 8. Let A’ be a preprojective
algebra of type ADE, where the integer n' concerning A’ is subjected to the same assumptions.
Denote by (dp) the equality dim HK} .(A) = dim HK}(A’). If (dp) holds for p = 0,1 and 2, then
n=n', and A and A’ have the same type. The conclusion of this implication does not hold if
(dg) is removed from the assumption.

Proof. We apply the results contained in Propositions 6.6, 6.11, 6.15, 6.19 and 6.23. The
implication is a consequence of the following items.

(1) Assume that A and A’ have types A or D. If char F # 2, then n = n’ by (d3), and A and
A’ have the same type by (dp). If charF = 2 and A and if A’ both have type A, then
n=n' by (dg). If charF = 2, A is of type A, and A’ is of type D,,, then the sum of (dy)
and (d;) shows that n = 2n’ +m/, — 2 or —3 which contradicts (dz): n = n’ +m/,. If
char F = 2 and if A and A" both have type D, then n =n’ by (d;).

(2) If A and A" have type E, then n = n’ by (dp).

(3) If A is of type A, and A’ of type Eg, then (d2) implies either that n = 6 if charF # 2,3
or that n = 7 if charF = 2,3, but each case is excluded by (dp). Similarly when A’ is of
type E7 and Ej.

(4) If A is of type D,, and A’ is of type Eg, then (dz) implies one of the three following cases:
n =6 if charF # 2,3, n = 7 if charF = 3 or n +mp = 7 if charF = 2, but each case is
excluded by (dp). Similarly when A’ is of type E; and Eg (we also use (dy) for Eg).

Let us show that we cannot remove assumption (ds). It is clear if char F # 2 because when
A is of type Az and A’ is of type As, both (dg) and (dy) hold. If char F = 2, we check that when
A is of type Ag and A’ is of type Eg then (dy) and (d;) hold. [ ]
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It is obvious that HK7,(A) = F if A is of type A; and it is easy to check that HK},(A) =0
when A is of type As, therefore we have obtained a minimal complete list of invariants for all
the ADE preprojective algebras.

Another direct application of our computations is the following. If A is as in Theorem
6.24 and if charF # 2, the product of the algebra HK},;(A) is identically zero. If charF = 2,
HK3},(A) = HK®*(A) is a unital algebra whose product is fully described in our results.

Remark 6.25. In the one verter case, the higher Koszul homology and cohomology play an
essential Tole in a specific formulation of a Koszul Poincaré Lemma (a Koszul Poincaré duality),
see Congectures 6.5 and 7.2 in [0]. For this reason, we have formulated Theorem 6.24 in terms
of the higher Koszul cohomology. However, the analogous statement with Koszul cohomology is
also true and follows in the same way from our results.
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