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Koszul calculus of preprojective algebras

Roland Berger and Rachel Taillefer

Abstract

We show that the Koszul calculus of a preprojective algebra, whose graph is distinct
from A1 and A2, vanishes in any (co)homological degree p > 2. Moreover, the (higher)
cohomological calculus is isomorphic as a bimodule to the (higher) homological calculus,
by exchanging degrees p and 2− p, and we prove a generalised version of the 2-Calabi-Yau
property. For the ADE Dynkin graphs, the preprojective algebras are not Koszul and they
are not Calabi-Yau in the sense of Ginzburg’s definition, but they satisfy our generalised
Calabi-Yau property and we say that they are generalised Calabi-Yau. For generalised
Calabi-Yau algebras of any dimension, defined in terms of derived categories, we prove a
Poincaré Van den Bergh duality theorem. We compute explicitly the Koszul calculus of
preprojective algebras for the ADE Dynkin graphs.

1 Introduction

Preprojective algebras are quiver algebras with quadratic relations, that play an important role
in the representation theory of quiver algebras [23, 13, 1], with various applications [11, 12] and
many developments [10, 22, 7, 25]. In [25], the reader will find an introduction to the various
aspects of the preprojective algebras in representation theory, with an extended bibliography.
In our paper, we are interested in some homological properties linked to Hochschild cohomology.

In the two last decades, the Hochschild cohomology of preprojective algebras, as well as
some extra algebraic structures, have been computed in several steps, as follows.

1) Erdmann and Snashall [14, 15] determined the Hochschild cohomology and its cup-
product in type A.

2) Crawley-Boevey, Etingof and Ginzburg [10] determined the Hochschild cohomology for
all preprojective algebras of non-Dynkin type (which are Koszul in this case [29, 26]).

3) In type DE and characteristic zero, Etingof and Eu [17] determined the Hochschild
cohomology and Eu [18] the cup product. The cyclic homology was computed in type ADE
in [17].

4) Assembling and completing the previous results in characteristic zero, Eu gave an explicit
description of the Tamarkin-Tsygan calculus [32] of the preprojective algebras in type ADE,
that is, the homology and the cohomology, the cup product, the contraction map and the Lie
derivative, the Connes differential and the Gerstenhaber bracket [19].

5) Eu and Schedler extended the ADE results to the case where the base ring is Z, and
obtained the corresponding ADE results in any characteristic [20].

In [6], a Koszul calculus was associated with any quadratic algebra over a field, in order to
produce new homological invariants for non-Koszul quadratic algebras. We begin this paper
by extending the Koszul calculus to quadratic quiver algebras. We shall compute the Koszul
calculus of the preprojective algebras whose graph is Dynkin of type ADE (the preprojective
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algebras are then finite dimensional). Except for types A1 and A2, these quadratic quiver
algebras are not Koszul [29, 26], so that the Koszul calculus and the Hochschild calculus provide
different information.

Before presenting our computations, we state and develop a Poincaré Van den Bergh duality
theorem [33] for the Koszul homology/cohomology of any preprojective algebra whose graph is
different from A1 and A2. This theorem is formulated as follows and constitutes the first main
result of the present paper. The duality is precisely part (ii) in this theorem.

Theorem 1.1. Let A be the preprojective algebra of a (non-labelled) connected graph ∆ distinct
from A1 and A2, over a field F. Let M be an A-bimodule.

(i) The Koszul bimodule complex K(A) of A has length 2. In particular, HKp(A,M) =
HKp(A,M) = 0 for any p > 2.

(ii) The HK•(A)-bimodules HK•(A,M) and HK2−•(A,M) are isomorphic.
(iii) The HK•

hi(A)-bimodules HK•
hi(A,M) and HKhi

2−•(A,M) are isomorphic.

In this statement, following [6], HKp(A,M) and HKp(A,M) denote the Koszul homology
and cohomology spaces with coefficients in M , while HKhi

p (A,M) and HKp
hi(A,M) denote the

higher Koszul homology and cohomology spaces. When M = A, these notations are simplified
into HKp(A), HK

p(A), HKhi
p (A) and HKp

hi(A).
In the general setting [6], the Koszul calculus of a quadratic algebra A consists of the graded

associative algebra HK•(A) endowed with the Koszul cup product and, for all A-bimodules
M , of the graded HK•(A)-bimodules HK•(A,M) and HK•(A,M), with actions respectively
defined by the Koszul cup and cap products. The higher Koszul calculus of A is given by the
analogous data, adding the subscript and superscript hi. Sometimes (as will be the case with
our computations in ADE types), these calculi are restricted, meaning that the data is limited
to M = A, so that the restricted Koszul calculus consists of the graded associative algebra
HK•(A) and of the graded HK•(A)-bimodule HK•(A) – similarly for the higher version.

Using Theorem 1.1 for ∆ Dynkin of type ADE, we shall deduce the (higher) homological
restricted Koszul calculus from the computation of the (higher) cohomological restricted Koszul
calculus.

Part (ii) in Theorem 1.1 comes from an explicit isomorphism from the complex defining
HKp(A,M) to the complex defining HK2−p(A,M), described as follows.

Proposition 1.2. Let A be the preprojective algebra of a connected graph ∆ distinct from A1

and A2. Let M be an A-bimodule. The Koszul cup and cap products are denoted by ⌣
K

and ⌢
K
.

Define ω0 =
∑

i ei ⊗ σi, where the sum runs over the vertices i of ∆ and, for each vertex i, ei
is the idempotent and σi is the quadratic relation in A associated with i.

For each Koszul p-cochain f with coefficients inM , we define the Koszul (2−p)-chain θM (f)
with coefficients in M by

θM (f) = ω0 ⌢
K
f.

Then θM is an isomorphism of complexes. Moreover, the equalities

θM⊗AN (f ⌣
K
g) = θM (f)⌢

K
g = f ⌢

K
θN(g)

hold for any Koszul cochains f and g with coefficients in bimodules M and N respectively.

The proof of Proposition 1.2 relies on some manipulations of the defining formula of θM with
fundamental formulas of Koszul calculus [6], using actions involving⌣

K
and⌢

K
. The fundamental
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formulas of Koszul calculus express the Koszul differential bK in cohomology and the Koszul
differential bK in homology respectively as a cup bracket and a cap bracket, namely

bK = −[eA,−]⌣
K

, bK = −[eA,−]⌢
K

,

where eA is a fundamental Koszul 1-cocycle defined by restricting the Euler derivation of the
preprojective algebra A to its arrow space.

In order to extract a generalised version of the 2-Calabi-Yau property from our Poincaré Van
den Bergh duality (Theorem 1.1), we apply this theorem to the left Ae-module M = Ae viewed
as an A-bimodule. We show that the complex of Koszul chains with coefficients in the left
Ae-module Ae is naturally isomorphic, as a right Ae-module, to the Koszul bimodule complex
K(A). Using the fact that the homology of K(A) is isomorphic to A in degree 0, and to 0 in
degree 1, we obtain a generalisation of the 2-Calabi-Yau property, formulated as follows.

Theorem 1.3. Let A be the preprojective algebra of a connected graph ∆ distinct from A1 and
A2, over a field F. Let us denote by K(A) the Koszul bimodule complex of A. Then the A-
bimodule HKp(A,Ae) is isomorphic to the A-bimodule H2−p(K(A)) for 0 6 p 6 2. In particular,
we have the following.

(i) The A-bimodule HK2(A,Ae) is isomorphic to the A-bimodule A.
(ii) HK1(A,Ae) = 0.
(iii) The A-bimodule HK0(A,Ae) is isomorphic to the A-bimodule H2(K(A)), which is al-

ways non-zero when ∆ is Dynkin of type ADE.

We then say that the preprojective algebra A is a generalised Calabi-Yau algebra of dimen-
sion 2. We generalise this definition to any dimension n in Definition 1.4 below, formulated in
terms of derived categories. Since there is an F-linear isomorphism

H(θM ) = ω0 ⌢
K
− : HK•(A,M)→ HK2−•(A,M),

we say that the class ω0 ∈ HK2(A) is the fundamental class of the generalised Calabi-Yau algebra
A, by analogy with Poincaré’s duality in singular homology/cohomology [27]. In Definition 1.7,
we give a stronger version of Definition 1.4 in order to obtain a Poincaré-like duality, that is, a
duality isomorphism expressed as a cap action by a suitably defined fundamental class.

Let us remark that the A-bimodule structures in Theorem 1.3 are compatible with the
Koszul cup and cap actions of HK•(A) on HK•(A,Ae) and H(K(A)). These actions can be
viewed as graded actions of left HK•(A)e-modules, while the A-bimodules can be viewed as
compatible right Ae-modules. So the isomorphism HK•(A,Ae) ∼= H2−•(K(A)) in Theorem
1.3 is an isomorphism of graded HK•(A)e-Ae-bimodules. This enriched isomorphism is the
expression of the stronger version of the generalised Calabi-Yau property, as we shall see in
Definition 1.7.

Note that if ∆ is not Dynkin ADE, then A is Koszul, so Theorem 1.3 enables us to recover
the well-known result that A is 2-Calabi-Yau in the sense of Ginzburg [10, 8]. However, if ∆ is
Dynkin ADE, then A is not homologically smooth since its minimal projective resolution has
infinite length, so that Ginzburg’s definition of Calabi-Yau algebras cannot be applied in this
case [24]. Moreover, the restricted Hochschild calculus is drastically different from the restricted
Koszul calculus, because by [16] there is a cohomological Hochschild periodicity

HHp+6(A) ∼= HHp(A), p > 0

and, consequently, there are non-zero spaces HHp(A) for infinitely many values of p. Even
taking into account this 6-periodicity, the list of cohomological Koszul invariants consists only
of HK0(A), HK1(A) and HK2(A) and is therefore shorter than the list of Hochschild invariants.
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In [20], Eu and Schedler define periodic Calabi-Yau Frobenius algebras, for finite dimen-
sional algebras only. Their main example is given by the preprojective algebras of Dynkin
ADE graphs [20, Example 2.3.10]. Then the above cohomological Hochschild periodicity is a
part of remarkable isomorphims in Hochschild calculus for any periodic Calabi-Yau Frobenius
algebra [20, Theorem 2.3.27 and Theorem 2.3.47].

From Theorem 1.3, we are led to introduce a general definition.

Definition 1.4. Let Q = (Q0,Q1) be a finite quiver, and let F be a field. Let A be an F-
algebra defined on the path algebra FQ of Q by homogeneous quadratic relations. Define the
ring k = FQ0, so that A is regarded as a quadratic k-algebra (not necessarily k-central, but
F-central). We say that A is generalised Calabi-Yau of dimension n, for an integer n > 0, if

(i) the bimodule Koszul complex K(A) of A has length n, and
(ii) RHomAe(K(A), Ae) ∼= K(A)[−n] in the bounded derived category of A-bimodules.

Property (ii) means, in terms of derived categories, that the A-bimodules HKp(A,Ae) and
Hn−p(K(A)) are isomorphic for any p.

In our context (that of quadratic algebras), Definition 1.4 is a definition of a new Calabi-Yau
property, valid whether A is finite dimensional or not. In this definition, we do not impose that
K(A) be a resolution of A, that is, A is not necessarily Koszul, meaning that the bimodules
HKp(A,Ae) for 0 6 p 6 n − 2 may be non-zero. Under the assumptions of Definition 1.4, we
verify that, if A is Koszul, Definition 1.4 is equivalent to Ginzburg’s definition of n-Calabi-
Yau algebras [24, 35]. We then prove a new Poincaré Van den Bergh duality for generalised
Calabi-Yau algebras, adapted to Koszul (co)homologies.

Theorem 1.5. Let A be a generalised Calabi-Yau algebra of dimension n. Then for any A-
bimodule M , the F-vector spaces HKp(A,M) and HKn−p(A,M) are isomorphic.

Definition 1.6. Let A be a generalised Calabi-Yau algebra of dimension n. The image c ∈
HKn(A) of the unit 1 of the algebra A under the isomorphism HK0(A) ∼= HKn(A) in Theorem
1.5 is called the fundamental class of the generalised Calabi-Yau algebra A.

In order to describe the duality isomorphism of Theorem 1.5 explicitly as a cap-product
by the fundamental class for strong generalised Calabi-Yau algebras, we shall use derived cate-
gories in the general context of DG algebras, as presented and detailed in the preprint book by
Yekutieli [37]. Let us present briefly what we need in this general context.

We introduce the F-central DG algebra Ã = HomAe(K(A), A). The complexes K(A) and
HomAe(K(A), Ae) of A-bimodules have an enriched structure since they can be viewed as DG
Ã-bimodules in the abelian category A of A-bimodules, in the sense of [37].

Denote by C(Ã,A) the DG category of DG Ã-bimodules in A [37]. LetM be an A-bimodule.
For any chain DG Ã-bimodule C in A, HomAe(C,M) is a cochain DG Ã-bimodule in the abelian
category E of F-vector spaces (in A when M = Ae). For any cochain DG Ã-bimodule C ′ in
A, M ⊗Ae C ′ is a cochain DG Ã-bimodule in E . The bounded derived categories Db(Ã,A)
and Db(Ã, E) are defined in [37]. However we do not know if the functors HomAe(−,M) and
M ⊗Ae − from Cb(Ã,A) to Cb(Ã, E) are derivable.

Definition 1.7. Let A be a generalised Calabi-Yau algebra of dimension n. Then A is said to be
a strong generalised Calabi-Yau algebra if the derived functor of the endofunctor HomAe(−, Ae)
of Cb(Ã,A) exists and if RHomAe(K(A), Ae) ∼= K(A)[−n] in the bounded derived category
Db(Ã,A).

The second property in this definition (assuming the first one) is equivalent to saying that
the graded HK•(A)e-Ae-bimodules HK•(A,Ae) and Hn−•(K(A)) are isomorphic [37].
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Theorem 1.8. Let A be a generalised Calabi-Yau algebra of dimension n and let c be its
fundamental class. We assume that A is a strong generalised Calabi-Yau algebra and that the
derived functors of the functors HomAe(−, A) and A ⊗Ae − from Cb(Ã,A) to Cb(Ã, E) exist.
Then

c ⌢
K
− : HK•(A)→ HKn−•(A)

is an isomorphism of HK•(A)-bimodules, inducing an isomorphism of HK•
hi(A)-bimodules from

HK•
hi(A) to HKhi

n−•(A). For all α ∈ HKp(A), we have c ⌢
K
α = (−1)npα ⌢

K
c.

Let us describe the contents of the paper. In Section 2, we extend the general formal-
ism – including some results – of Koszul calculus [6] to quadratic quiver algebras. In Section
3, we introduce a right action which is an important tool in order to adapt the definition of
Calabi-Yau algebras to quadratic quiver algebras endowed with the Koszul calculus instead of
the Hochschild calculus. The Poincaré Van den Bergh duality for preprojective algebras is pre-
sented in Section 4, where Theorem 1.1, Proposition 1.2 and Theorem 1.3 of our introduction
are proved. In Section 5, we define our generalisations of Calabi-Yau algebras and we thor-
oughly explain the new objects and remaining results outlined in the introduction. Section 6 is
devoted to the computations of the Koszul calculus in ADE Dynkin types. As an application
of the computations, we prove that the spaces HK0

hi(A), HK
1
hi(A) and HK2

hi(A) form a minimal
complete list of invariants for the ADE preprojective algebras.

Acknowledgements. The second author thanks the project CAP2025 of the Université Cler-
mont Auvergne for its support.

2 Koszul calculus for quiver algebras with quadratic relations

2.1 Setup

Let Q be a finite quiver, meaning that the vertex set Q0 and the arrow set Q1 are finite. Let
F be a field. The vertex space k = FQ0 becomes a commutative ring by associating with Q0 a
complete set of orthogonal idempotents {ei ; i ∈ Q0}. The ring k is isomorphic to F|Q0|, where
|Q0| is the cardinal of Q0. Throughout the paper, the case |Q0| = 1 will be called the one vertex
case, which is equivalent to saying that k is a field. Koszul calculus over a field k is treated
in [6].

For each arrow α ∈ Q1, denote its source vertex by s(α) and its target vertex by t(α). The
arrow space V = FQ1 is a k-bimodule for the following actions: ejαei is equal to zero if i 6= s(α)
or j 6= t(α), and is equal to α if i = s(α) and j = t(α). If there is an arrow joining two distinct
vertices, the k-bimodule V is not symmetric.

Via the ring morphism F → k that maps 1 to
∑

i∈Q0
ei, the tensor k-algebra Tk(V ) of the

k-bimodule V is an F-algebra isomorphic to the path algebra FQ, so that V ⊗km is identified
with FQm, where Qm is the set of paths of length m. For two arrows α and β, note that α⊗k β
is zero if t(β) 6= s(α), and otherwise α⊗kβ is identified with the composition αβ of paths (where
paths are written from right to left, as in [3]).

Let R be a sub-k-bimodule of V ⊗k V ∼= FQ2. The unital associative k-algebra A =
Tk(V )/(R), where (R) denotes the two-sided ideal of Tk(V ) generated by R, is called a quadratic
k-algebra over the finite quiver Q. The degree induced on A by the path length is called the
weight, so that A is a graded algebra for the weight grading. The component of weight m of
A is denoted by Am. Clearly, A0

∼= k and A1
∼= V . The algebra A is F-central, but if there is

an arrow joining two distinct vertices, A is not k-central. The A-bimodules are not necessarily
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k-symmetric, but they are always assumed to be F-symmetric. Setting Ae = A ⊗F A
op, any

A-bimodule can be viewed as a left (or right) Ae-module, as usual.
For brevity, the notation ⊗F is replaced by the unadorned tensor product ⊗. Similarly for

the notations HomF and dimF abbreviated to Hom and dim. If unspecified, a vector space is an
F-vector space and a linear map is F-linear.

The tensor product ⊗k is different from the unadorned tensor product ⊗. However, ifM is a
right A-module and N is a left A-module, then the natural linear mapMei⊗eiN →Mei⊗k eiN
is an isomorphism, so that for a ∈Mei and b ∈ eiN , we can identify a⊗k b = a⊗ b. Similarly, if
M and N are A-bimodules, eiMei and eiNei are k-bimodules, that may be viewed as left and
right ke-modules, where ke = k⊗ k. The natural linear map eiMei⊗ eiNei → eiMei⊗ke eiNei
is an isomorphism, so for a ∈ eiMei and b ∈ eiNei, we can identify a ⊗ke b = a⊗ b. We shall
freely use these identifications, without explicitly mentioning them.

Although the algebra A is not k-central, we define its bar resolution B(A) following standard
texts [36] by (A⊗k A

⊗k• ⊗k A, d) with

d(a⊗k a1 . . . ap ⊗k a
′) = aa1 ⊗k a2 . . . ap ⊗k a

′ +
∑

16i6p−1

(−1)ia⊗k a1 . . . (aiai+1) . . . ap ⊗k a
′

+ (−1)pa⊗k a1 . . . ap−1 ⊗k apa
′,

for a, a′ and a1, . . . , ap in A. When k is not central, the extra degeneracy is defined and is still a
contracting homotopy, hence B(A) is a resolution of A by projective A-bimodules. See Lemma
2.1 below for the fact that the A-bimodules A⊗k A

⊗kp ⊗k A are projective.
For any A-bimodule M , Hochschild homology and cohomology are defined by

HH•(A,M) = TorA
e

• (M,A) = H•(M ⊗Ae B(A),M ⊗Ae d),

HH•(A,M) = Ext•Ae(A,M) = H•(HomAe(B(A),M),HomAe(d,M)).

The linear map

M ⊗Ae (A⊗k A
⊗kp ⊗k A)→M ⊗ke (A

⊗kp) (2.1)

m⊗Ae (a0 ⊗k . . .⊗k ap+1) 7→ (ap+1ma0)⊗ke (a1 ⊗k . . .⊗k ap)

is well-defined and is an isomorphism. Similarly, the linear map

Homke(A
⊗kp,M)→ HomAe(A⊗k A

⊗kp ⊗k A,M) (2.2)

f 7→ (a0 ⊗k . . . ⊗k ap+1 7→ a0f(a1 ⊗k . . .⊗k ap)ap+1)

defines an isomorphism. Transporting M ⊗Ae d and HomAe(d,M) via these isomorphisms, we
obtain the Hochschild differentials bH and bH , so that

HH•(A,M) ∼= H•(M ⊗ke A
⊗k•, bH),

HH•(A,M) ∼= H•(Homke(A
⊗k•,M), bH).

The Hochschild homology differential is then defined, for m ∈M and a1, . . . , ap in A, by

bHp (m⊗ke (a1 . . . ap)) = ma1 ⊗ke (a2 . . . ap) +
∑

16i6p−1

(−1)im⊗ke (a1 . . . (aiai+1) . . . ap)

+ (−1)papm⊗ke (a1 . . . ap−1).

The Hochschild cohomology differential (including a Koszul sign in HomAe(d,M)) is defined,
for f ∈ Homke(A

⊗kp,M) and a1, . . . , ap+1 in A, by

bp+1
H (f)(a1 . . . ap+1) = f(a1 . . . ap)ap+1 −

∑

16i6p

(−1)p+if(a1 . . . (aiai+1) . . . ap+1)

− (−1)pa1f(a2 . . . ap+1).
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2.2 Koszul homology and cohomology

Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Following [6], the Koszul complex K(A)
is the subcomplex of the bar resolution B(A) defined by the sub-A-bimodules A⊗k Wp⊗k A of
A⊗k A

⊗kp ⊗k A, where W0 = k, W1 = V and, for p > 2,

Wp =
⋂

i+2+j=p

V ⊗ki ⊗k R⊗k V
⊗kj . (2.3)

HereWp is considered as a sub-k-bimodule of V ⊗kp ⊆ A⊗kp. It is immediate that the differential
d of K(A) is defined on A⊗k Wp ⊗k A by

d(a⊗k x1 . . . xp ⊗k a
′) = ax1 ⊗k x2 . . . xp ⊗k a

′ + (−1)pa⊗k x1 . . . xp−1 ⊗k xpa
′, (2.4)

for a, a′ in A and x1 . . . xp in Wp.
In this paper, we systematically follow [6] for the notation of elements of Wp. Let us recall

this notation. As in (2.4), an arbitrary element of Wp is denoted by a product x1 . . . xp thought
of as a sum of such products, where x1, . . . , xp are in V . Moreover, regarding Wp as a subspace
of V ⊗kq ⊗kWr⊗k V

⊗ks with q+ r+ s = p, the element x1 . . . xp viewed in V ⊗kq ⊗kWr⊗k V
⊗ks

will be denoted by the same notation, meaning that the product xq+1 . . . xq+r represents an
element of Wr and the other xi are arbitrary in V .

We pursue along the same lines as [6]. We present the different objects with their funda-
mental results more quickly. We keep the same notations as in [6] and we leave the details to
the reader when they are the same as in the one vertex case.

The homology of K(A) is equal to A in degree 0, and to 0 in degree 1. The quadratic
algebra A is said to be Koszul if the homology of K(A) is 0 in any degree > 1. Denote by
µ : A ⊗k A → A the multiplication of A. Then A is Koszul if and only if µ : K(A) → A is a
resolution of A. If R = 0 and if R = V ⊗k V , then A is Koszul. Besides these extreme examples,
many Koszul algebras occur in the literature in the one vertex case [31]. Beyond the one vertex
case, it is well-known that preprojective algebras are Koszul when the graph is not Dynkin of
type ADE (see Proposition 4.1).

Let us show that the A-bimodules A⊗k Wp ⊗k A forming K(A) are projective and finitely
generated. It is an immediate consequence of the following lemma, sinceWp is a sub-k-bimodule
of V ⊗kp.

Lemma 2.1. Let E be a k-bimodule.
(i) The A-bimodule A⊗k E ⊗k A is projective.
(ii) If E is finite dimensional, then the A-bimodule A⊗k E ⊗k A is finitely generated.

Proof. Clearly E =
⊕

i,j∈Q0
ejEei. From A =

⊕
i∈Q0

Aei =
⊕

j∈Q0
ejA, we deduce that the

A-bimodule A⊗k E ⊗k A is isomorphic to the A-bimodule

F1 =
⊕

i,j∈Q0

Aej ⊗ ejEei ⊗ eiA.

Considering F1 as a sub-A-bimodule of F = A⊗ E ⊗A, we see that F = F1 ⊕ F2, where

F2 =
⊕

i1,i2,i3,i4∈Q0

Aei1 ⊗ ei2Eei3 ⊗ ei4A

in which the sum is taken over the set of indices with i1 6= i2 and i3 6= i4. As the A-bimodule
F is free, we conclude that F1 is projective. Part (ii) follows from the fact that E is finite
dimensional if and only if all the (ejEei) are finite dimensional and is left to the reader. ■
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Definition 2.2. For any A-bimodule M , Koszul homology and cohomology are defined by

HK•(A,M) = H•(M ⊗Ae K(A)) and HK•(A,M) = H•(HomAe(K(A),M)).

We set HK•(A) = HK•(A,A) and HK•(A) = HK•(A,A).

SinceK(A) is a complex of projective A-bimodules,M 7→ HK•(A,M) andM 7→ HK•(A,M)
define δ-functors from the category of A-bimodules to the category of vector spaces, that is, a
short exact sequence of A-bimodules gives rise to a long exact sequence in Koszul homology
and in Koszul cohomology [36]. As in [6], HKp(A,M) (respectively HKp(A,M)) is isomorphic
to a Hochschild hyperhomology (respectively hypercohomology) space.

The inclusion χ : K(A) → B(A) is a morphism of complexes that induces the following
morphisms of complexes

χ̃ =M ⊗Aeχ :M ⊗Ae K(A)→M ⊗Ae B(A),

χ∗ = HomAe(χ,M) : HomAe(B(A),M)→ HomAe(K(A),M).

The linear maps H(χ̃) : HKp(A,M)→ HHp(A,M) and H(χ∗) : HHp(A,M)→ HKp(A,M) are
always isomorphisms for p = 0 and p = 1, and if A is Koszul they are isomorphisms for any p.

Replacing B(A) by K(A) in the isomorphisms (2.1) and (2.2) gives the isomorphisms

HK•(A,M) ∼= H•(M ⊗ke W•, b
K),

HK•(A,M) ∼= H•(Homke(W•,M), bK).

The Koszul differentials bK and bK are given by

bKp (m⊗ke x1 . . . xp) = m.x1 ⊗ke x2 . . . xp + (−1)pxp.m⊗ke x1 . . . xp−1, (2.5)

bp+1
K (f)(x1 . . . xp+1) = f(x1 . . . xp).xp+1 − (−1)px1.f(x2 . . . xp+1), (2.6)

where m ∈M and x1 . . . xp ∈Wp, respectively f ∈ Homke(Wp,M) and x1 . . . xp+1 ∈Wp+1.
Note that the k-algebra A is augmented by the natural projection ǫA : A→ A0

∼= k. Let us
examine now the particular case M = k, where k is the A-bimodule defined by ǫA. The action
on k of an element of Ap with p > 0 is zero, so that the Koszul differentials vanish whenM = k.
Consequently, we have the linear isomorphisms

HKp(A, k) ∼= k ⊗ke Wp
∼=

⊕

i∈Q0

eiWpei,

HKp(A, k) ∼= Homke(Wp, k) ∼=
⊕

i∈Q0

Hom(eiWpei,F).

In particular HKp(A, k) ∼= Hom(HKp(A, k),F), generalising [6].

2.3 Koszul cup and cap products

Let A = Tk(V )/(R) be a quadratic k-algebra over Q. We proceed as in [6]. The usual cup
and cap products ⌣ and ⌢ in Hochschild cohomology and homology provide, by restriction
from B(A) to K(A), the Koszul cup and cap products ⌣

K
and ⌢

K
in Koszul cohomology and

homology. Let us give these products, expressed on Koszul cochains and chains. Let P , Q
and M be A-bimodules. For f ∈ Homke(Wp, P ), g ∈ Homke(Wq, Q) and z = m⊗ke x1 . . . xq ∈
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M ⊗ke Wq, we define f ⌣
K

g ∈ Homke(Wp, P ⊗A Q), f ⌢
K

z ∈ (P ⊗A M) ⊗ke Wq−p and

z ⌢
K
f ∈ (M ⊗A P )⊗ke Wq−p by

(f ⌣
K
g)(x1 . . . xp+q) = (−1)pqf(x1 . . . xp)⊗A g(xp+1 . . . xp+q), (2.7)

f ⌢
K
z = (−1)(q−p)p(f(xq−p+1 . . . xq)⊗A m)⊗ke x1 . . . xq−p, (2.8)

z ⌢
K
f = (−1)pq(m⊗A f(x1 . . . xp))⊗ke xp+1 . . . xq. (2.9)

For any Koszul cochains f , g h and any Koszul chain z, we have the associativity relations

(f ⌣
K
g)⌣

K
h = f ⌣

K
(g ⌣

K
h),

f ⌢
K

(g ⌢
K
z) = (f ⌣

K
g)⌢

K
z,

(z ⌢
K
g)⌢

K
f = z ⌢

K
(g ⌣

K
f),

f ⌢
K

(z ⌢
K
g) = (f ⌢

K
z)⌢

K
g,

inducing the same relations on Koszul classes.
We define the general Koszul calculus of A as being the datum of all the spaces HK•(A,P )

and HK•(A,M) endowed with ⌣
K

and ⌢
K
, when the A-bimodules P and M vary.

For any A-bimodule M , Homke(W•,M) and M ⊗ke W• are DG bimodules over the DG
algebra (Homke(W•, A), bK ,⌣

K
) for the actions of ⌣

K
and ⌢

K
respectively. The Koszul calcu-

lus of A consists of the graded associative algebra (HK•(A),⌣
K
) and of the graded HK•(A)-

bimodules HK•(A,M) and HK•(A,M). Since HK0(A) = Z(A) is the centre of the algebra A,
the spaces HKp(A,M) and HKp(A,M) are symmetric Z(A)-bimodules. However HKp(A,M)
and HKp(A,M) are not k-bimodules in general. For example, ei /∈ Z(A) if there is an arrow
joining i to another vertex.

The restricted Koszul calculus of A consists of the graded associative algebra HK•(A) and of
the graded HK•(A)-bimodule HK•(A). The scalar Koszul calculus of A consists of the graded
associative algebra HK•(A, k) and of the graded HK•(A, k)-bimodule HK•(A, k).

Example 2.3. If Q1 = ∅, then V = 0 and A is reduced to k. The (general) Koszul calculus of
k coincides with the (tensor) category of k-bimodules.

2.4 Fundamental formulas of Koszul calculus

Let A = Tk(V )/(R) be a quadratic k-algebra over Q. We continue to follow the one vertex
case [6]. First, we define the Koszul cup and cap brackets. Let P , Q and M be A-bimodules,
and take f ∈ Homke(Wp, P ), g ∈ Homke(Wq, Q), z = m⊗ke x1 . . . xq ∈M ⊗ke Wq. When P or
Q is equal to A, we set

[f, g]⌣
K

= f ⌣
K
g − (−1)pqg ⌣

K
f. (2.10)

When P or M is equal to A, we set

[f, z]⌢
K

= f ⌢
K
z − (−1)pqz ⌢

K
f. (2.11)

These brackets induce brackets on the Koszul classes.
The Koszul 1-cocycles f : V → M are called Koszul derivations with coefficients in M .

Such an f extends to a unique derivation from the k-algebra A to the A-bimodule M , realising
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an isomorphism from the space of Koszul derivations with coefficients in M to the space of
derivations from A to M . In particular, the Koszul 1-cocycle from V to A coinciding with the
identity map on V , is sent to the Euler derivation DA of the graded algebra A. This Koszul
1-cocycle is denoted by eA and is called the fundamental 1-cocycle. Its Koszul class is denoted
by eA and is called the fundamental 1-class. In the one vertex case, eA is not a coboundary if
V 6= 0 [6], but this property does not hold in general.

Lemma 2.4. Let A = Tk(V )/(R) be a quadratic k-algebra over Q with Q1 6= ∅. If the under-
lying graph of Q is simple, that is, it contains neither loops nor multiple edges, then eA is a
coboundary.

Proof. The 1-cocycle eA is a coboundary if and only if there exists a ke-linear map c : k → k
such that eA = bK(c). Such a map is of the form c(ei) = λiei with λi ∈ F, for any i ∈ Q0. Then
eA = bK(c) if and only if λt(α) − λs(α) = 1 for any α ∈ Q1. The assumption on the graph means
that Q has no loop and that given two distinct vertices, there is at most one arrow joining them.
Then we can choose λt(α) = 1 and λs(α) = 0. ■

This proof shows that if Q has a loop, eA is not a coboundary. The same conclusion holds if
charF 6= 2 and Q contains an oriented 2-cycle. The following propositions are proved as in the
one vertex case. Formulas (2.12) and (2.13) are the fundamental formulas of Koszul calculus.

Proposition 2.5. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. For any Koszul cochain
f and any Koszul chain z with coefficients in an A-bimodule M , we have

[eA, f ]⌣
K

= −bK(f), (2.12)

[eA, z]⌢
K

= −bK(z). (2.13)

Proposition 2.6. Let A = Tk(V )/(R) be a quadratic k-algebra over Q and let M be an A-
bimodule. For any α ∈ HKp(A,M) with p = 0 or p = 1, β ∈ HKq(A) and γ ∈ HKq(A), we have
the identities

[α, β]⌣
K

= 0, (2.14)

[α, γ]⌢
K

= 0. (2.15)

Identity (2.15) also holds if p = q 6∈ {0, 1}.

2.5 Higher Koszul calculus

Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Formula (2.7) shows that eA ⌣
K

eA = 0.

Therefore, eA ⌣
K
− is a cochain differential on Homke(W•,M), and eA ⌣

K
− is a cochain

differential on HK•(A,M). Similarly, eA ⌢
K
− is a chain differential on M ⊗ke W•, and eA ⌢

K
−

is a chain differential on HK•(A,M). For a p-cocycle f : Wp →M and x1 . . . xp+1 in Wp+1, we
have

(eA ⌣
K
f)(x1 . . . xp+1) = f(x1 . . . xp).xp+1.

For a p-cycle z = m⊗ke x1 . . . xp in M ⊗ke Wp, we have

eA ⌢
K
z = mx1 ⊗ke x2 . . . xp.
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Definition 2.7. Let A = Tk(V )/(R) be a quadratic k-algebra over a finite quiver Q and let
M be an A-bimodule. The differentials eA ⌣

K
− and eA ⌢

K
− are denoted by ∂⌣ and ∂⌢.

The homologies of the complexes (HK•(A,M), ∂⌣) and (HK•(A,M), ∂⌢) are called the higher
Koszul cohomology and homology of A with coefficients in M and are denoted by HK•

hi(A,M)
and HKhi

• (A,M). We set HK•
hi(A) = HK•

hi(A,A) and HKhi
• (A) = HKhi

• (A,A).

The higher classes of Koszul classes will be denoted between square brackets. For example,
the unit 1 of A is still the unit of HK•(A), and ∂⌣(1) = eA implies that [eA] = 0. If eA 6= 0, the
unit of HK•(A) does not survive in higher Koszul cohomology.

As in the one vertex case, the actions of the Koszul cup and cap products of HK•(A) on
HK•(A,M) and HK•(A,M) induce actions on higher cohomology and homology. Thus HK•

hi(A)
is a graded algebra, and HK•

hi(A,M), HKhi
• (A,M) are graded HK•

hi(A)-bimodules, constituting
the higher Koszul calculus of A. If eA = 0, the higher Koszul calculus coincides with the Koszul
calculus. It is the case when A = k as in Example 2.3.

For M = k, eA ⌣
K
− and eA ⌢

K
− vanish, so that the higher scalar Koszul calculus coincides

with the scalar Koszul calculus. Proposition 3.12 in [6] generalises immediately as follows.

Proposition 2.8. Let A = Tk(V )/(R) be a quadratic k-algebra over Q and let M be an A-
bimodule. Then HK0

hi(A,M) is the space of elements u in Z(M) such that there exists v ∈ M
satisfying u.a = v.a− a.v for any a in Q1.

2.6 Grading the restricted Koszul calculus by the weight

A Koszul p-cochain f : Wp → Am is said to be homogeneous of weight m. Since Q1 is finite,
the spaces Wp are finite dimensional, thus the space of Koszul cochains Homke(W•, A) is N×N-
graded by the biweight (p,m), where p is called the homological weight and m is called the
coefficient weight. If f : Wp → Am and g : Wq → An are homogeneous of biweights (p,m) and
(q, n) respectively, then f ⌣

K
g : Wp+q → Am+n is homogeneous of biweight (p + q,m + n).

Moreover bK is homogeneous of biweight (1, 1) and the algebra HK•(A) is N×N-graded by the
biweight. The homogeneous component of biweight (p,m) of HK•(A) is denoted by HKp(A)m.
Since

∂⌣ : HKp(A)m → HKp+1(A)m+1,

the algebra HK•
hi(A) is N× N-graded by the biweight, and its (p,m)-component is denoted by

HKp
hi(A)m. From Proposition 2.8, we deduce the following.

Proposition 2.9. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Assume that A is finite
dimensional. Let max be the highest m such that Am 6= 0. Then HK0

hi(A)max is isomorphic to
the space spanned by the cycles of Q of length max.

Similarly, a Koszul q-chain z in An ⊗ke Wq is said to be homogeneous of weight n. The
space of Koszul chains A ⊗ke W• is N × N-graded by the biweight (q, n), where q is called
the homological weight and n is called the coefficient weight. Moreover bK is homogeneous of
biweight (−1, 1) and the space HK•(A) is N × N-graded by the biweight. The homogeneous
component of biweight (q, n) of HK•(A) is denoted by HKq(A)n. Since

∂⌢ : HKq(A)n → HKq−1(A)n+1,

the space HKhi
• (A) is N × N-graded by the biweight, and its (q, n)-component is denoted by

HKhi
q (A)n.
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If f : Wp → Am and z ∈ An ⊗ke Wq are homogeneous of biweights (p,m) and (q, n)
respectively, then f ⌢

K
z and z ⌢

K
f are homogeneous of biweight (q − p,m+ n) where

f ⌢
K
z = (−1)(q−p)pf(xq−p+1 . . . xq)a⊗ke x1 . . . xq−p, (2.16)

z ⌢
K
f = (−1)pqa f(x1 . . . xp)⊗ke xp+1 . . . xq, (2.17)

and z = a⊗ke x1 . . . xq. The Homke(W•, A)-bimodule A⊗ke W•, the HK
•(A)-bimodule HK•(A)

and the HK•
hi(A)-bimodule HKhi

• (A) are thus N × N-graded by the biweight. The proof of the
following is left to the reader.

Proposition 2.10. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. We have

HKhi
0 (A)0 ∼= HK0(A)0 ∼= k.

Moreover HK0(A)1 ∼= HK1(A)0 is isomorphic to the space spanned by the loops of Q, and
∂⌢ : HK1(A)0 → HK0(A)1 identifies with the identity map of this space. As a consequence,

HKhi
0 (A)1 ∼= HKhi

1 (A)0 ∼= 0.

2.7 Invariance of Koszul calculus

In [5], the first author proved that the Koszul calculus of an N -homogeneous algebra A over
a field k only depends on the structure of associative algebra of A, independently of any pre-
sentation A = Tk(V )/(R) of A as an N -homogeneous algebra. This result was based on an
isomorphism lemma due to Bell and Zhang [2]. In the quadratic case N = 2, we are going to
extend this Koszul calculus invariance to any quadratic quiver algebra. For that, we shall use
an extension of the isomorphism lemma to quiver algebras with homogeneous relations, due to
Gaddis [21].

Let Q and Q′ be finite quivers, and F be a field. We introduce the commutative rings
k = FQ0 and k′ = FQ′

0, the k-bimodule V = FQ1 and the k′-bimodule V ′ = FQ′
1. As

explained in Subsection 2.1, we make the identifications of graded algebras Tk(V ) ∼= FQ and
Tk′(V

′) ∼= FQ′. We are interested in the graded F-algebra isomorphisms u : Tk(V ) → Tk′(V
′)

given by a ring isomorphim u0 : k → k′ and by a k-bimodule isomorphism u1 : V → V ′, where
V ′ is a k-bimodule via u0. This implies that u0 maps Q0 to Q′

0, and the bijection Q0 → Q
′
0

induced by u0 transforms the adjacency matrix of Q into the adjacency matrix of Q′ [21].
Let us fix a sub-k-bimodule R of V ⊗k V and a sub-k′-bimodule R′ of V ′ ⊗k′ V

′. We define
the graded k-algebra A = Tk(V )/(R) and the graded k′-algebra A′ = Tk′(V

′)/(R′). Following
the terminology of the one vertex case, a graded F-algebra isomorphism u : A → A′ is called
a Manin isomorphism if u is defined by a ring isomorphism u0 : k → k′, and by a k-bimodule
isomorphism u1 : V → V ′, such that the k-bimodule isomorphism u⊗k2

1 : V ⊗k2 → V ′⊗k2 (that
actually takes values in V ′⊗k′2 via u0) satisfies u

⊗k2
1 (R) = R′. In particular, u is an isomorphism

of the augmented k-algebra A to the augmented k′-algebra A′, the augmentations being the
projections A→ A0

∼= k and A′ → A′
0
∼= k′.

As in [5], for any A-bimodule M , the Manin isomorphism u naturally defines an isomor-
phism of complexes from (M ⊗keW•, b

K) to (M ⊗k′eW
′
•, b

K), whereM is an A′-bimodule via u,
inducing natural isomorphisms HK•(A,M) ∼= HK•(A

′,M). Similarly, u induces natural isomor-
phisms HK•(A′,M) ∼= HK•(A,M). It is clear from the definitions in Subsection 2.3 that these
isomorphisms respect the Koszul cup and cap products. To summarise all these properties, we
say that a Manin isomorphism induces isomorphic (general) Koszul calculi. Since u1(eA) = eA′

by functoriality, it also induces isomorphic higher Koszul calculi.
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As an application, let us show that the various Koszul calculi of a quadratic k-algebra
A = Tk(V )/(R) over a finite quiver Q only depend on the graph ∆ underlying Q, not on an
orientation of ∆. In fact, if a quiver Q′ has the same underlying graph ∆, then Q0 = Q′

0 and
there is a natural bijection Q1 → Q

′
1 inducing a k-bimodule isomorphism u1 : V → V ′ = FQ′

1,
so that R maps to a sub-k-bimodule R′ of FQ′

2. We obtain a Manin isomorphism u from A to
A′ = Tk(V

′)/(R′). Thus the (general, higher) Koszul calculi of A and A′ are isomorphic.
Using Gaddis’s result, we can now prove ungraded invariance. Let C be a commutative ring.

Let A be an augmented associative C-algebra (not necessarily C-central) having a quadratic
quiver algebra presentation B, meaning that the augmented C-algebra A is isomorphic to a
quadratic k-algebra B = Tk(V )/(R) over a finite quiver Q, naturally augmented over k by the
projection B → B0

∼= k. This implies that the ring C is isomorphic to k ∼= FQ0. Then we can
define the (general) Koszul calculus of A as being the (general) Koszul calculus of B.

In fact, if B′ = Tk′(V
′)/(R′) over a finite quiver Q′ is another quadratic quiver algebra

presentation of A, then the ungraded augmented k-algebra B is isomorphic to the ungraded
augmented k′-algebra B′. By Gaddis’s theorem [21], there exists a Manin isomorphism from B
to B′, thus the (general) Koszul calculi of B and B′ are isomorphic by Manin invariance. The
higher Koszul calculus of A is also defined as being the higher Koszul calculus of B.

2.8 Comparing Koszul (co)homology with Hochschild (co)homology in de-
gree 2

Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Recall that, for p = 0 and p = 1, we
have linear isomorphisms HKp(A,M) ∼= HHp(A,M) and HHp(A,M) ∼= HKp(A,M) (Subsection
2.2). It is no longer true if p > 2 and if A is an arbitrary non-Koszul algebra. Preprojective
algebras of Dynkin type will give infinitely many counterexamples when p = 2. However, in
general, we can compare the Koszul and Hochschild space when p = 2, by providing a surjection
HK2(A,M) → HH2(A,M) and an injection HH2(A,M) → HK2(A,M). To prove that, we use
a minimal projective resolution of the graded k-algebra A, described as follows.

As in the one vertex case [6], we know that, in the category of graded A-bimodules, A has
a minimal projective resolution P (A) whose component of homological degree p can be written
as A ⊗k Ep ⊗k A, where Ep is a weight-graded k-bimodule. Then P (A) ⊗A k (respectively
k⊗AP (A)) is a minimal projective resolution of the graded left (respectively right) A-module k
(see for instance [4]), so that the weight-graded k-bimodules Ep can be obtained inductively on
p either by the construction of a left minimal projective resolution of k or by the construction
of a right one. The differential δ of P (A) is the graded sum of the left (respectively right)
differentials δ⊗A k (respectively k⊗A δ) extended by right (respectively left) A-linearity to each
A⊗k Ep ⊗k A.

The left or right construction of the weight-graded k-bimodules Ep shows that the minimal
weight of Ep is equal to p and the homogeneous component of weight p in Ep is equal to Wp.
The inclusions A⊗k Wp ⊗k A →֒ A⊗k Ep ⊗k A constitute an inclusion map ι : K(A) →֒ P (A)
of weight-graded A-bimodule complexes. So we can view the complex K(A) as the diagonal
part of the weight-graded resolution P (A), and A is Koszul if and only if P (A) = K(A). The
beginning of P (A) coincides with K(A), that is, E0 = k, E1 = V , E2 = R, and the differential
δ of P (A) coincides with the differential d of K(A) in degrees 1 and 2.

For any A-bimodule M , ι induces ι̃ = M ⊗Ae ι and ι∗ = HomAe(ι,M) decomposed in
ι̃p :M ⊗ke Wp →M ⊗ke Ep and ι∗p : Homke(Ep,M)→ Homke(Wp,M). The linear maps

H(ι̃)p : HKp(A,M)→ HHp(A,M) and H(ι∗)p : HH
p(A,M)→ HKp(A,M) (2.18)

are isomorphisms for p = 0 and p = 1, and for any p if A is Koszul. Since ιp is an identity map
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for p = 0, 1, 2, ι̃p and ι∗p are also identity maps for the same p’s. Therefore

M ⊗ke W3
bK
3−→ M ⊗ke R

bK
2−→ M ⊗ke V

ι̃3 ↓ id ↓ id ↓ (2.19)

M ⊗ke E3
δ̃3−→ M ⊗ke R

δ̃2−→ M ⊗ke V

Homke(V,M)
δ∗
2−→ Homke(R,M)

δ∗
3−→ Homke(E3,M)

id ↓ id ↓ ι∗3 ↓ (2.20)

Homke(V,M)
b2
K−→ Homke(R,M)

b3
K−→ Homke(W3,M)

are commutative diagrams in which ι̃3 is injective and ι
∗
3 is surjective (the ring k

e is semi-simple),
so that we obtain.

Proposition 2.11. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. For any M ,
(i) H(ι̃)2 : HK2(A,M)→ HH2(A,M) is surjective with kernel isomorphic to im(δ̃3)/im(bK3 ),
(ii) H(ι∗)2 : HH2(A,M) → HK2(A,M) is injective with image isomorphic to

ker(δ∗3)/im(b2K).

We can be more specific when M = A, by using the weight grading (Subsection 2.6). Unlike
the Koszul differentials bK and bK , the Hochschild differentials bH and bH are not homogeneous
for the coefficient weight, but only for the total weight. The grading of HHp(A) and HHp(A) for
the total weight t is denoted by HHp(A)t and HHp(A)t. Denote the weight of a homogeneous
element a of A by |a|. Recall that the total weight of a homogeneous p-chain z = a⊗ke (a1 . . . ap)
is equal to t = |a|+ |a1|+ . . .+ |ap|, and the total weight of a homogeneous p-cochain f mapping
a1 . . . ap to an element of Am is equal to t = m− |a1| − . . . − |ap|. Then H(ι̃)2 is homogeneous
from the coefficient weight r to the total weight r + 2, while H(ι∗)2 is homogeneous from the
total weight r − 2 to the coefficient weight r.

Corollary 2.12. Let A = Tk(V )/(R) be a quadratic k-algebra over Q.
(i) H(ι̃)2 is an isomorphism from HK2(A)r to HH2(A)r+2 if r = 0 and r = 1.
(ii) Assume that A is finite dimensional. Let max be the highest m such that Am 6= 0. Then

H(ι∗)2 is an isomorphism from HH2(A)r−2 to HK2(A)r if r = max and r = max−1.

Proof. Denote by Ep,m the homogeneous component of weight m of Ep. Since E3,2 = 0 and
E3,3 =W3, both maps δ̃3 and bK3 vanish on the component of total weight 2 of A⊗ke E3, while
on that of total weight 3, they coincide with the inclusion map of W3 into V ⊗ke R. Then we
deduce (i) from (i) of the proposition.

Under the assumptions of (ii), if f : R → Amax, then b3K(f) = 0. Moreover, any other
component of δ∗3(f) mapping E3,m to Amax+m−2 = 0 vanishes as well. Thus δ∗3(f) = 0, and we
conclude by (ii) of the proposition. The same proof works if f : R → Amax−1 since δ∗3(f) is
then reduced to a map W3 → Amax coinciding with b3K(f). ■

3 A right action on the Koszul calculus

3.1 Compatibility

Lemma 3.1. Let A and B be unital associative F-algebras. Let M be an A-bimodule (hence the
induced F-bimodule is symmetric). Assume that M is a right B-module such that the actions
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of F induced on M by A and by B are the same. Let Ae = A⊗F A
op be the enveloping algebra.

The following are equivalent.
(i) Viewing M as a left Ae-module, M is an Ae-B-bimodule.
(ii) Viewing M as a right Ae-module, the right actions of Ae and B on M commute.
(iii) M is an A-B-bimodule and the right actions of A and B on M commute.

The proof is straightforward. Under the assumptions of the lemma and if the equivalent
assertions hold, we say that the right action of B on M is compatible with the A-bimodule M .

Example 3.2. With B = M = Ae, Ae is a natural Ae-Ae-bimodule for the multiplication of

the F-algebra Ae. Recall that the left Ae-module Ae is isomorphic to the A-bimodule A
o
⊗ A for

the outer action (a ⊗ b).(α ⊗ β) = (aα) ⊗ (βb), while the right Ae-module Ae is isomorphic to

the A-bimodule A
i
⊗ A for the inner action (α⊗ β).(a⊗ b) = (αa)⊗ (bβ).

3.2 DG bimodules over a DG algebra

Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Fix a unital associative F-algebra B and
an A-bimodule M . We assume that M is a right B-module compatible with the A-bimodule
structure. Then the space M ⊗ke Wq is a right B-module for the action of b ∈ B on z =
m⊗ke x1 . . . xq ∈M ⊗ke Wq defined by

z.b = (m.b)⊗ke x1 . . . xq.

It is well-defined since (λmµ).b = λ(m.b)µ for any λ and µ in k. From (2.5) and (2.8), we
check that bK and eA ⌢

K
− are B-linear. Thus HK•(A,M) and HKhi

• (A,M) are graded right

B-modules.
Moreover, for any k-bimodule morphism f : Wp → A, we verify that

f ⌢
K

(z.b) = (f ⌢
K
z).b and (z.b) ⌢

K
f = (z ⌢

K
f).b,

so that the right action of B on M ⊗ke W• is compatible with the Homke(W•, A)-bimodule
structure underlying the DG bimodule M ⊗ke W• (Subsection 2.3). Therefore the right action
of B on HK•(A,M) and on HKhi

• (A,M) is respectively compatible with the structure of HK•(A)-
bimodule and of HK•

hi(A)-bimodule.
It is convenient to translate what we have obtained in terms of DG bimodules over a DG

algebra. We refer to [37] for these notions. We introduce the F-central DG algebra

Ã = HomAe(K(A), A) ∼= Homke(W•, A)

whose grading is given by the cohomological degree of cochains, whose differential is bK and
whose multiplication is ⌣

K
. Note that H(Ã) = HK•(A). Denote by B the category of right

B-modules. Then M ⊗ke W• is a DG Ã-bimodule in the abelian category B, in the sense
of [37]. Moreover, HK•(A,M) is a graded HK•(A)-bimodule in B, and HKhi

• (A,M) is a graded
HK•

hi(A)-bimodule in B.
Similarly, Homke(W•,M) is a right B-module for the action of b on f :Wp →M defined by

(f.b)(x1 . . . xp) = f(x1 . . . xp).b.

Then bK and eA ⌣
K
− are B-linear, so that HK•(A,M) and HK•

hi(A,M) are graded right

B-modules. For g :Wq → A, we have

g ⌣
K

(f.b) = (g ⌣
K
f).b and (f.b)⌣

K
g = (f ⌣

K
g).b.
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The right B-module Homke(W•,M) is compatible with the Homke(W•, A)-bimodule struc-
ture underlying the DG bimodule Homke(W•,M). The right action of B on HK•(A,M) and
on HK•

hi(A,M) are compatible respectively with the structure of HK•(A)-bimodule and of
HK•

hi(A)-bimodule. In terms of DG bimodules, Homke(W•,M) is a DG Ã-bimodule in B,
HK•(A,M) is a graded HK•(A)-bimodule in B, and HK•

hi(A,M) is a graded HK•
hi(A)-bimodule

in B.

3.3 Application to the Koszul complex K(A)

Let us specialise to B = M = Ae as in Example 3.2. So M = A
o
⊗ A is a left Ae-module for

the outer structure, and a right Ae-module for the inner structure. Our aim is to identify the

A-bimodule complex K(A) with the complex ((A
o
⊗ A) ⊗ke W•, b

K) endowed with the right
action of Ae. The statement is the following.

Proposition 3.3. Let A = Tk(V )/(R) be a quadratic k-algebra over Q.

(i) For any q > 0, the bilinear map ϕq : (A
o
⊗ A)×Wq → A⊗k Wq ⊗k A defined by

ϕq(α⊗ β, x1 . . . xq) = β ⊗k (x1 . . . xq)⊗k α

induces an isomorphism ϕ̃q : (A
o
⊗ A)⊗ke Wq → A⊗k Wq ⊗k A.

(ii) The direct sum ϕ̃ of the maps ϕ̃q is an isomorphism from the complex ((A
o
⊗ A) ⊗ke

W•, b
K) to the Koszul complex (K(A), d).

(iii) The isomorphism ϕ̃ is right Ae-linear.

Proof. The A-bimodule A
o
⊗ A is a k-bimodule for the actions λ(α ⊗ β)µ = λα ⊗ βµ, with α

and β in A, λ and µ in k, thus it is a right ke-module for (α⊗ β)(λ⊗ µ) = µα⊗ βλ. Then it is
easy to check that

ϕq(µα⊗ βλ, x1 . . . xq) = ϕq(α⊗ β, λx1 . . . xqµ),

proving the existence of ϕ̃q. We define similarly an inverse linear map, therefore ϕ̃q is an
isomorphism, which gives (i).

Let us show that ϕ̃ is a morphism of complexes. From

bK((α⊗ β)⊗ke x1 . . . xq) = (α⊗ (βx1))⊗ke x2 . . . xq + (−1)q((xqα)⊗ β)⊗ke x1 . . . xq−1,

we get

ϕ̃ ◦ bK((α ⊗ β)⊗ke x1 . . . xq) = βx1 ⊗k x2 . . . xq ⊗k α+ (−1)qβ ⊗k x1 . . . xq−1 ⊗k xqα

whose right-hand side is equal to d(β ⊗k x1 . . . xp ⊗k α), as expected.
Let us prove (iii). Here the A-bimodule A ⊗k Wq ⊗k A is seen as a right Ae-module. For

z = (α ⊗ β)⊗ke x1 . . . xq and a, b in A, we have

ϕ̃q(z.(a ⊗ b)) = ϕ̃q((αa ⊗ bβ)⊗ke x1 . . . xq)

whose right-hand side is equal to the left-hand side of

bβ ⊗k (x1 . . . xq)⊗k αa = ϕ̃q(z).(a ⊗ b). ■

So ϕ̃ is an isomorphism from the A-bimodule complex ((A
o
⊗ A) ⊗ke W•, b

K) whose A-
bimodule structure is the inner one, to the A-bimodule complex K(A). Denote by A the
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category of A-bimodules. According to Subsection 3.2, (A
o
⊗ A) ⊗ke W• is a DG Ã-bimodule

in A. Transporting the Homke(W•, A)-bimodule structure via ϕ̃, we obtain that the Koszul
complex K(A) is a DG Ã-bimodule in the abelian category A. This DG bimodule will play an
essential role in the generalisations of Calabi-Yau algebras (Sections 4 and 5). Next, H(K(A)) is

a graded HK•(A)-bimodule in A, so that H(ϕ̃) : HK•(A,A
o
⊗ A)→ H(K(A)) is an isomorphism

of graded HK•(A)-bimodules in A.
Let us compute explicitly the Homke(W•, A)-bimodule structure obtained on K(A) in this

way. Consider z = (α ⊗ β) ⊗ke x1 . . . xq in (A
o
⊗ A) ⊗ke Wq and f in Homke(Wp, A), we easily

derive from (2.8) that the left action of f on K(A) is defined by

f ⌢
K

(β ⊗k x1 . . . xq ⊗k α) = (−1)(q−p)pβ ⊗k x1 . . . xq−p ⊗k f(xq−p+1 . . . xq)α. (3.1)

Analogously, using (2.9), we define the right action of f on K(A) by

(β ⊗k x1 . . . xq ⊗k α)⌢
K
f = (−1)pqβf(x1 . . . xp)⊗k xp+1 . . . xq ⊗k α. (3.2)

The fundamental formula (2.13) reduces to

d(z′) = −eA ⌢
K
z′ + (−1)qz′ ⌢

K
eA (3.3)

on K(A), where z′ = β ⊗k x1 . . . xq ⊗k α, and

eA ⌢
K
z′ = (−1)q−1β ⊗k x1 . . . xq−1 ⊗k xqα, (3.4)

z′ ⌢
K

eA = (−1)qβx1 ⊗k x2 . . . xq ⊗k α. (3.5)

The differential eA ⌢
K
− induces a differential, still denoted by ∂⌢, on H(K(A)). The homology

of (H(K(A)), ∂⌢) is denoted by Hhi(K(A)) and is called the higher homology of K(A). Then

Hhi(K(A)) is a graded HK•
hi(A)-bimodule in A and H(H(ϕ̃)) : HKhi

• (A,A
o
⊗ A)→ Hhi(K(A))

is an isomorphism of graded HK•
hi(A)-bimodules in A.

4 Poincaré Van den Bergh duality of preprojective algebras

4.1 Preprojective algebras

Throughout this section, ∆ is a connected graph whose vertex set and edge set are finite. Follow-
ing a usual presupposition in the papers devoted to Hochschild (co)homology of preprojective
algebras, we assume that the graph ∆ is not labelled, that is, the labels of the edges are all
equal to (1, 1) [3, Definition 4.1.9]. In particular, the Dynkin graphs are limited to types ADE,
and the Euclidean (or extended) Dynkin graphs are limited to types ÃD̃Ẽ [3, Definition 4.5.1].

Let Q be a quiver whose underlying graph is ∆. Define a quiver Q∗ whose vertex set is Q0

and whose arrow set is Q∗
1 = {a∗; a ∈ Q1} where s(a∗) = t(a) and t(a∗) = s(a). Let Q be the

double quiver of Q, that is, the quiver whose vertex set is Q0 = Q0 and whose arrow set is the
disjoint union Q1 = Q1 ∪Q

∗
1. We shall view (−)∗ as an involution of Q1.

Let F be a field. As before, we denote the ring FQ0 by k and the k-bimodule FQ1 by V and
we identify the graded k-algebras Tk(V ) ∼= FQ (see Subsection 2.1).

The preprojective algebra associated with the graph ∆ over the field F is the quadratic k-
algebra A(∆) over Q defined by A(∆) = FQ/(R), where the sub-k-bimodule R of FQ2 is
generated by

σi :=
∑

a∈Q1

t(a)=i

aa∗ −
∑

a∈Q1

s(a)=i

a∗a =
∑

a∈Q1

t(a)=i

ε(a)aa∗ for all i ∈ Q0,
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where ε(a) = 1 if a ∈ Q1, ε(a) = −1 if a ∈ Q∗
1.

If Q′ is another quiver whose underlying graph is ∆, then the underlying graphs of Q and Q′

are the same, equal to the double of ∆. Therefore, according to Subsection 2.7, the quadratic
k-algebra A(∆) and the (general, higher) Koszul calculus of A(∆) depend only on the graph
∆ and not on Q, justifying the notation A(∆). If ∆ is a tree, A(∆) is isomorphic to the
preprojective algebra defined without signs (as in [14, 15, 16]).

If ∆ = A1, then A(∆) = k. If ∆ = A2, then R = FQ2 and A(∆) = FQ0 ⊕ FQ1. These
quadratic k-algebras are Koszul, but they are the only exceptions among the Dynkin graphs.
More precisely, the following standard result holds, for which we just give proof references.

Proposition 4.1. Assume that the graph ∆ is distinct from A1 and A2. The following are
equivalent.

(i) ∆ is Dynkin of type ADE.
(ii) A(∆) is not Koszul.
(iii) A(∆) is finite dimensional.

Proof. The equivalence (i)⇔(ii) is treated in [29] if ∆ is a tree, in [26] otherwise. The equivalence
(i)⇔(iii) for any Dynkin graph is cited in [30] as a result by Gelfand and Ponomarev [23]. ■

Sections 2 and 3 can be applied to preprojective algebras. For example, according to the
remark following Lemma 2.4, the fundamental 1-cocycle eA(∆) is not a coboundary if ∆ has a
loop or if charF 6= 2 and ∆ 6= A1. In the remainder of this section, we often abbreviate A(∆)
to A and we freely use notations and results from Sections 2 and 3.

4.2 The Koszul complex K(A) has length 2

If ∆ = A1, then K(A) has length 0. If ∆ = A2, then K(A) has infinite length. Apart from
these cases, the length of K(A) is always equal to 2.

Theorem 4.2. Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6= A2.
Then the Koszul complex K(A) of A has length 2. Consequently, HKp(A,M) ∼= HKp(A,M) ∼= 0
for all A-bimodules M and all p > 3.

Proof. From the defining equality (2.3) of Wp, we have Wp = (Wp−1⊗k V )∩ (V ⊗kWp−1) for all
p > 3. Moreover R 6= 0, therefore it is enough to prove thatW3 = 0, that is, (R⊗kV )∩(V⊗kR) =
0. For that, we only assume that ∆ 6= A1. Our goal is to prove that W3 6= 0 implies ∆ = A2.

Let u be a non-zero element in W3, viewed as an element in FQ3. There exist vertices e, f
in Q0 such that euf 6= 0, therefore we may assume that u is in eW3f. Then u can be written
uniquely as

u =
∑

a∈eQ1

α∈eQ1f

λαε(a)aa
∗α =

∑

b∈fQ1

β∈fQ1e

µβε(b)βbb
∗.

We now use the fact that Q1 is the disjoint union of Q1 and Q∗
1 and the definition of ε to write

u =
∑

α∈eQ1f
a∈eQ1

λαaa
∗α−

∑

α∈eQ1f
a∈Q1e

λαa
∗aα+

∑

α∈fQ1e
a∈eQ1

λα∗aa∗α∗ −
∑

α∈fQ1e
a∈Q1e

λα∗a∗aα∗

=
∑

β∈eQ1f
b∈fQ1

µββbb
∗ −

∑

β∈eQ1f
b∈Q1f

µββb
∗b+

∑

β∈fQ1e
b∈fQ1

µβ∗β∗bb∗ −
∑

β∈fQ1e
b∈Q1f

µβ∗β∗b∗b.
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From these expressions, we obtain the following relations in the path algebra FQ:

∑

α∈fQ1e
a∈eQ1

λα∗aa∗α∗ = 0 (4.1)

∑

α∈eQ1f
a∈Q1e

λαa
∗aα = 0 (4.2)

∑

β∈eQ1f
b∈fQ1

µββbb
∗ = 0 (4.3)

∑

β∈fQ1e
b∈Q1f

µβ∗β∗b∗b = 0 (4.4)

∑

α∈eQ1f
a∈eQ1

λαaa
∗α = −

∑

β∈eQ1f
b∈Q1f

µββb
∗b (4.5)

∑

α∈fQ1e
a∈Q1e

λα∗a∗aα∗ = −
∑

β∈fQ1e
b∈fQ1

µβ∗β∗bb∗ (4.6)

Indeed, relation (4.1) follows from the fact that no other path that occurs in the expressions of
u ends with two arrows in Q∗, and the other relations are obtained from similar arguments.

In the path algebra FQ, the relations (4.1) to (4.4) above are equivalent to

∀α ∈ fQ1e, ∀a ∈ eQ1, λα∗ = 0 (4.7)

∀α ∈ eQ1f, ∀a ∈ Q1e, λα = 0 (4.8)

∀β ∈ eQ1f, ∀a ∈ fQ1, λβ = 0 (4.9)

∀β ∈ fQ1e, ∀a ∈ Q1f, λβ∗ = 0. (4.10)

We have assumed that u 6= 0, so that either there exists α ∈ eQ1f such that λα 6= 0 or there
exists α ∈ fQ1e such that λα∗ 6= 0, using the first expression of u. We separate the two cases.

Assume that there exists α ∈ eQ1f such that λα 6= 0. Then it follows from relation (4.8)
that Q1e is empty. From (4.5), for all a ∈ eQ1, there exist β ∈ eQ1f and b ∈ Q1f such that
λαaa

∗α = −µββb
∗b. Hence β = a = b = α and therefore eQ1 = {α} = eQ1f and µβ = −λα 6= 0.

From (4.9), it follows that fQ1 is empty. Finally, (4.5) becomes

λααα
∗α = λααα

∗α+ λα
∑

b∈Q1f
b6=α

αb∗b

so that
∑

b∈Q1f
b6=α

αb∗b = 0 and hence Q1f = {α} .

We have proved that Q1e = ∅ = fQ1 so that in particular e 6= f , and that Q1f = {α} =
eQ1 = eQ1f . Finally, Q = e

α
← f and ∆ = A2.

In the case where there exists α ∈ fQ1e such that λα∗ 6= 0, a similar proof using (4.7),
(4.10) and (4.6) shows that Q = f

α
← e and ∆ = A2. ■

As an immediate consequence of Proposition 2.6 and Theorem 4.2, we obtain that in the
Koszul calculus of A(∆), the Koszul cup product is graded commutative and the Koszul cap
product is graded symmetric. The precise statement is the following.
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Corollary 4.3. Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6= A2. We
consider an A-bimodule M . For any α ∈ HK•(A,M), β ∈ HK•(A) and γ ∈ HK•(A), we have
the identities

[α, β]⌣
K

= 0, (4.11)

[α, γ]⌢
K

= 0. (4.12)

The same conclusion holds if ∆ = A1 (obvious) and if ∆ = A2 (because A is Koszul).

4.3 Duality in Koszul (co)homology of preprojective algebras

There is a remarkable duality between Koszul homology and cohomology for preprojective
algebras. This duality is realised as a cap action by a Koszul 2-chain ω0 ∈ A⊗ke R defined for
any graph ∆ by

ω0 =
∑

i∈Q0

ei ⊗ke σi =
∑

i∈Q0

ei ⊗ σi.

From σi =
∑

a∈Q1, t(a)=i ε(a)aa
∗, we get

ω0 =
∑

a∈Q1

1⊗ke ε(a)aa
∗ = −

∑

a∈Q1

1⊗ke ε(a)a
∗a. (4.13)

Then it is easy to check that ω0 is a Koszul 2-cycle. Being homogeneous of weight 0, ω0 is not
a 2-boundary whenever ∆ 6= A1.

Theorem 4.4. Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6= A2.
Consider the Koszul 2-cycle ω0 =

∑
i∈Q0

ei ⊗ σi ∈ A ⊗ke R. For each Koszul p-cochain f with
coefficients in an A-bimodule M , we define the Koszul (2− p)-chain θM (f) with coefficients in
M by

θM (f) = ω0 ⌢
K
f. (4.14)

Then the equalities
θM⊗AN (f ⌣

K
g) = θM (f)⌢

K
g = f ⌢

K
θN(g) (4.15)

hold for any Koszul cochains f and g with coefficients in A-bimodules M and N respectively.
Moreover the linear map θM : Homke(W•,M) → M ⊗ke W2−• is an isomorphism of DG

bimodules over the DG algebra Ã = Homke(W•, A).
It follows that H(θM ) : HK•(A,M)→ HK2−•(A,M) is an isomorphism of graded HK•(A)-

bimodules and that H(H(θM )) : HK•
hi(A,M) → HKhi

2−•(A,M) is an isomorphism of graded
HK•

hi(A)-bimodules.

Proof. First we show that f ⌢
K
ω0 = ω0 ⌢

K
f for all f ∈ Homke(Wp,M). Using the definition of

ω0 and the equalities (4.13), (2.8) and (2.9), we obtain for p = 0, 1, 2,

f ⌢
K
ω0 =

∑

i∈Q0

(f(1)ei)⊗ke σi =
∑

i∈Q0

(eif(1))⊗ke σi = ω0 ⌢
K
f,

f ⌢
K
ω0 = −

∑

a∈Q1

ε(a)(f(a∗)1)⊗ke a =
∑

a∈Q1

ε(a)(1f(a)) ⊗ke a
∗ = ω0 ⌢

K
f,

f ⌢
K
ω0 =

∑

i∈Q0

(eif(σi))⊗ke 1 =
∑

i∈Q0

(f(σi)ei)⊗ke 1 = ω0 ⌢
K
f.
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Next, for f ∈ Homke(Wp,M) and g ∈ Homke(Wq,M), we have

θM⊗AN (f ⌣
K
g) = ω0 ⌢

K
(f ⌣

K
g) = (ω0 ⌢

K
f)⌢

K
g = (f ⌢

K
ω0)⌢

K
g = f ⌢

K
(ω0 ⌢

K
g),

providing equalities (4.15). Therefore θM : Homke(W•,M) → M ⊗ke W2−• is a morphism of
graded Homke(W•, A)-bimodules for the actions of ⌣

K
and ⌢

K
respectively.

Assuming M = A in the equalities (4.15), we derive

θN ([f, g]⌣
K

) = [θA(f), g]⌢
K

= [f, θN (g)]⌢
K

.

Combining θN ([eA, g]⌣
K

) = [eA, θN (g)]⌢
K

with bK = −[eA,−]⌣
K

and bK = −[eA,−]⌢
K

, we deduce

that θM : Homke(W•,M)→M ⊗ke W2−• is a morphism of complexes, thus a morphism of DG
bimodules over the DG algebra Ã = (Homke(W•, A), bK ,⌣

K
).

We prove that θM is an isomorphism by giving an inverse map η :M⊗keW2−• → Homke(W•,M).
We define ηp :M ⊗ke W2−p → Homke(Wp,M) for p = 0, 1, 2, by

η0(m⊗ke σi)(ej) = δij ejmei

η1(m⊗ke a)(b) = δba∗ ε(b) t(b)m s(b) for any arrows a and b of Q

η2(m⊗ke ei)(σj) = δij ejmei

where δ is the Kronecker symbol. It is routine to verify that these linear maps are well-defined
and form an inverse map for θM .

Finally the isomorphism H(θM ) of graded HK•(A)-bimodules satisfies

H(θM )(eA ⌣
K
α) = eA ⌢

K
H(θM )(α)

for all α ∈ HK•(A,M). ThereforeH(θM ) is a morphism of complexes for higher (co)homologies.
Taking higher (co)homologies, we get a HK•

hi(A)-bimodule isomorphism

H(H(θM )) : HK•
hi(A,M)→ HKhi

2−•(A,M). ■

By analogy with the Poincaré duality in singular (co)homology [27] and with the Van den
Bergh duality in Hochschild (co)homology [33, 28], we say that the isomorphism

H(θM ) = ω0 ⌢
K
− : HK•(A,M)→ HK2−•(A,M)

is a Poincaré Van den Bergh duality for Koszul (co)homology, of fundamental class ω0, where
ω0 ∈ HK2(A)0. In the next subsection, we extract from this duality a generalisation of the
2-Calabi-Yau property.

Apart from the cases where ∆ has no loop and charF = 2, the class eA ∈ HK1(A)1 is
non-zero, hence

H(θA)(eA) = ω0 ⌢
K

eA = ∂⌢(ω0)

is non-zero in HK1(A)1. Consequently, the fundamental class ω0 of the Poincaré Van den Bergh
duality is not a cycle for the higher Koszul homology, so that the isomorphism H(H(θM ))
cannot be naturally expressed as a cap action.

The class H(θA)(eA) is the class of the Koszul 1-cycle ω0 ⌢
K

eA where

ω0 ⌢
K

eA =
∑

a∈Q1

ε(a)a⊗ke a
∗ =

∑

a∈Q1

(a⊗ke a
∗ − a∗ ⊗ke a).
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It is interesting to view the last element as the image by the canonical linear map can :
V ⊗k V → V ⊗ke V of the element

w =
∑

a∈Q1

(a⊗k a
∗ − a∗ ⊗k a) =

∑

a∈Q1

ε(a)aa∗ ∈ R ⊆ V ⊗k V.

In the identification V ⊗k V ∼= FQ2, V ⊗ke V is identified with the subspace of cycles of length 2
and the map can is identified with the projection whose kernel is the space spanned by the non-
cyclic paths. Since R is generated by the cycles σi, we can make the identification ω0 ⌢

K
eA = w.

The element w was defined in [10, Proposition 8.1.1] as a representative of a bi-symplectic 2-
form ω. Bi-symplectic 2-forms were introduced by Crawley-Boevey, Etingof and Ginzburg as
an essential ingredient of the Hamiltonian reduction in noncommutative geometry [10]; they are
related to the double Poisson algebras defined by Van den Bergh [34].

4.4 Deriving an adapted 2-Calabi-Yau property

Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6= A2. Let M be an
A-bimodule. Assume that B is a unital associative algebra such that M is a right B-module
compatible with the A-bimodule structure (Subsection 3.1). Denote by B the category of right
B-modules. Recall that Ã denotes the DG algebra (Homke(W•, A), bK ,⌣

K
).

According to Subsection 3.2, M ⊗ke W• and Homke(W•,M) are DG Ã-bimodules in the
abelian category B. Moreover, HK•(A,M) and HK•(A,M) are graded HK•(A)-bimodules in
B, that is, graded HK•(A)e-B-bimodules. Finally, HKhi

• (A,M) and HK•
hi(A,M) are graded

HK•
hi(A)-bimodules in B, that is, graded HK•

hi(A)
e-B-bimodules.

Lemma 4.5. The map θM : Homke(W•,M) → M ⊗ke W2−• is an isomorphism of DG Ã-
bimodules in B. Moreover, H(θM ) : HK•(A,M) → HK2−•(A,M) is an isomorphism of graded
HK•(A)-bimodules in B, and H(H(θM )) : HK•

hi(A,M) → HKhi
2−•(A,M) is an isomorphism of

graded HK•
hi(A)-bimodules in B.

Proof. It is enough to prove that θM : f 7→ ω0 ⌢
K
f is B-linear. For a k-bimodule morphism

f :Wp →M , z = a⊗ke x1 . . . xq ∈ A⊗ke Wq and b ∈ B, we verify the identities

(f.b)⌢
K
z = (f ⌢

K
z).b and z ⌢

K
(f.b) = (z ⌢

K
f).b.

The first one uses the fact that the right actions of A and B on M commute, while the second
one uses the fact that M is an A-B-bimodule (see (iii) in Lemma 3.1). Applying the second
one to z = ω0, we obtain that θM is B-linear. ■

We specialise this lemma to M = B = Ae and apply Subsection 3.3 to get the next propo-
sition (recall that A denotes the abelian category of A-bimodules).

Proposition 4.6. Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6= A2.
The map

θAe : Homke(W•, A
e)→ K(A)2−•

is an isomorphism of DG Ã-bimodules in A. Moreover,

H(θAe) : HK•(A,Ae)→ H2−•(K(A))

is an isomorphism of graded HK•(A)-bimodules in A.

22



The homology of K(A) is isomorphic to A in degree 0, and to 0 in degree 1, hence we obtain
a generalisation of the 2-Calabi-Yau property, formulated as follows.

Theorem 4.7. Let A = A(∆) be a preprojective algebra over F with ∆ 6= A1 and ∆ 6= A2.
Then the HK•(A)e-Ae-bimodules HK•(A,Ae) and H2−•(K(A)) are isomorphic. In particular,
we have the following.

(i) The A-bimodule HK2(A,Ae) is isomorphic to the A-bimodule A.
(ii) HK1(A,Ae) = 0.
(iii) The A-bimodule HK0(A,Ae) is isomorphic to the A-bimodule H2(K(A)).

Since H1(K(A)) ∼= HK1(A,Ae) = 0, the higher Koszul differentials vanish. Therefore
Hhi

p (K(A)) ∼= Hp(K(A)), HKp
hi(A,A

e) ∼= HKp(A,Ae) and H(H(θAe)) ∼= H(θAe).
From the generator 1 ⊗k 1 of the A-bimodule H0(K(A)), we draw from (i) a generator of

the free A-bimodule HK2(A,Ae) defined as the class of f : R→ A
o
⊗ A with f(σi) = ei ⊗ ei for

any i.
In (iii), the A-bimodules are never 0 when ∆ is Dynkin of types ADE since A is not Koszul

in this case. This situation is drastically different from the 2-Calabi-Yau property defined
by Ginzburg in terms of the Hochschild cohomology spaces HHp(A,Ae) [24]. In Ginzburg’s
definition, these spaces are zero for all p < 2.

5 Generalisations of Calabi-Yau algebras

5.1 Duality for generalised Calabi-Yau algebras

From Theorem 4.7, we are led to introduce a general definition in the framework of quiver
algebras with homogeneous quadratic relations (see Section 2). Notations of Section 2 stand
throughout. We are interested in quadratic k-algebras A = Tk(V )/(R) with finite quiver Q
as defined in Subsection 2.1, and in the Koszul calculus of A as presented in the remainder of
Section 2.

Definition 5.1. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Let n > 0 be an integer.
We say that A is generalised Calabi-Yau of dimension n if

(i) the Koszul bimodule complex K(A) of A has length n, and
(ii) RHomAe(K(A), Ae) ∼= K(A)[−n] in the bounded derived category of A-bimodules.

It is a fundamental fact of derived categories that the homology functor is conservative [37,
Corollary 7.2.13]. This means in our situation that property (ii) is equivalent to saying that the
A-bimodules HKp(A,Ae) and Hn−p(K(A)) are isomorphic for any p. According to Theorem 4.2
and Theorem 4.7, a preprojective algebra A(∆) over F with ∆ 6= A1 and ∆ 6= A2 is generalised
Calabi-Yau of dimension 2.

Definition 5.1 is a true generalisation of Ginzburg’s definition [24, 35]. If ∆ is Dynkin of
type ADE, A(∆) is not Calabi-Yau in Ginzburg’s definition since A(∆) is not homologically
smooth in this case (the minimal projective resolution of A(∆) has infinite length). However,
the two definitions coincide if A is Koszul.

Proposition 5.2. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Assume that A is
Koszul. Then A is generalised n-Calabi-Yau if and only if A is n-Calabi-Yau.

Proof. Assume that A is generalised n-Calabi-Yau. Since A is Koszul, A is homologically
smooth, that is, A has a finite projective resolution by finitely generated A-bimodules. Fur-
thermore, K(A) ∼= A in Db(A). Thus RHomAe(A,Ae) ∼= A[−n] in Db(A), and we recover
Ginzburg’s definition in terms of derived categories [35, Definition 8.2].
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Assume that A is n-Calabi-Yau. We know that n is equal to the projective dimension of the
A-bimodule A [33] which in turn is equal to the length of a minimal projective resolution of A
(see for instance [4]). Hence K(A) has length n and K(A) ∼= A in Db(A), which allows us to
conclude that A is generalised n-Calabi-Yau. ■

Consequently, if the graph ∆ is not Dynkin ADE, we know that A(∆) is Koszul (Proposition
4.1), thus we recover the fact that A(∆) is 2-Calabi-Yau [10, 8].

In Subsection 2.8, we have seen that K(A) and the minimal projective resolution P (A)
coincide up to the homological degree 2. Therefore, if n ∈ {0, 1} and if A is n-Calabi Yau or
generalised n-Calabi-Yau, then P (A) = K(A) so that A is Koszul, and it follows that the two
definitions are equivalent when n ∈ {0, 1}.

Proposition 5.3. Let A = Tk(V )/(R) be a quadratic k-algebra over Q. Then A is Calabi-Yau
of dimension 0 if and only if Q1 = ∅.

We leave the proof as an exercise. If A is Calabi-Yau of dimension 1, then R = 0, that is,
A = Tk(V ) ∼= FQ with Q1 6= ∅. It is indeed 1-Calabi-Yau if Q has only one vertex and one loop,
but we have not yet found other examples when Q is connected.

If A is n-Calabi-Yau, the Van den Bergh duality theorem states that the vector spaces
HHp(A,M) and HHn−p(A,M) are isomorphic [33]. From Definition 5.1, we draw an analogous
duality theorem for Koszul homology/cohomology.

Theorem 5.4. Let A be a generalised Calabi-Yau algebra of dimension n. Then for any A-
bimodule M , the vector spaces HKp(A,M) and HKn−p(A,M) are isomorphic.

Proof. Denote by A (respectively E) the abelian category of A-bimodules (resp. vector spaces).

For any A-bimodule M , the left derived functor M
L
⊗Ae − and the right derived functor

RHomAe(−,M) are defined from the bounded derived category Db(A) to the bounded derived
category Db(E) [36]. For any bounded complex C of projective A-bimodules, we have

Hp(M ⊗Ae C) ∼= Hp(M
L
⊗Ae C), Hp(HomAe(C,M)) ∼= Hp(RHomAe(C,M)).

For C = K(A), we obtain

HKp(A,M) ∼= Hp(M
L
⊗Ae K(A)), HKp(A,M) ∼= Hp(RHomAe(K(A),M)).

Using Lemma 5.5 below for C = K(A), we have

M
L
⊗Ae RHomAe(K(A), Ae) ∼= RHomAe(K(A),M)

in Db(E). Thus (ii) in Definition 5.1 implies that

RHomAe(K(A),M) ∼=M
L
⊗Ae K(A)[−n]

in Db(E). Passing to homology, we deduce HKp(A,M) ∼= HKn−p(A,M) as vector spaces. ■

Lemma 5.5 is based on a natural transformation φM : H ◦ G ⇒ F depending on an A-
bimodule M . Let F : A → E be the functor F : N 7→ HomAe(N,M) where M and N are
seen as right Ae-modules. Specialising to M = Ae in F , we define a functor G : A → A. Let
H : A → E be the functor H : N ′ 7→ M ⊗Ae N ′ where N ′ is viewed as a left Ae-module. Then
we define a linear map

φM :M ⊗Ae HomAe(N,Ae)→ HomAe(N,M)
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by φM (m⊗Ae g)(x) = m.g(x) for m ∈M , g ∈ HomAe(N,Ae) and x ∈ N . This map is functorial
in N , defining a natural transformation φM : H ◦G⇒ F .

For any bounded chain complex C of A-bimodules, φM induces a morphism of bounded
cochain complexes of vector spaces

φM :M ⊗Ae HomAe(C,Ae)→ HomAe(C,M) (5.1)

still denoted by φM . Recall that if d : Cp+1 → Cp is the differential of C, the differential

d∗ : HomAe(Cp,M)→ HomAe(Cp+1,M)

of HomAe(C,M) is defined by d∗(u) = −(−1)pu ◦ d for u ∈ HomAe(Cp,M). Extending F , G
and H as functors on bounded complexes of A-bimodules, we view φM : H ◦G⇒ F as a natural
transformation of functors on bounded complexes. The last natural transformation induces a
natural transformation φM : LH ◦RG⇒ RF of derived functors [36, 37].

Lemma 5.5. Let M and P be A-bimodules viewed as right Ae-modules. Assume that P is
projective and finitely generated. Then the linear map

φM :M ⊗Ae HomAe(P,Ae)→ HomAe(P,M) (5.2)

is an isomorphism. For any bounded chain complex C of finitely generated projective A-
bimodules, φM induces in Db(E) an isomorphism

M
L
⊗Ae RHomAe(C,Ae) ∼= RHomAe(C,M). (5.3)

Proof. The linear isomorphism (5.2) comes from [9, Proposition (8.3) (c)], in which R = Ae and
P is replaced by HomAe(P,Ae). On the category of finitely generated projective A-bimodules,
we have thus a natural isomorphim φM : H ◦ G ∼= F , inducing φM : LH ◦ RG ∼= RF on the
bounded chain complexes of finitely generated projective A-bimodules. Then (5.3) follows. ■

5.2 Generalised Calabi-Yau algebras versus Calabi-Yau algebras

Recall that if ∆ 6= A1 and ∆ 6= A2, then A(∆) is generalised 2-Calabi-Yau. But observe that if
A(∆) is moreover 2-Calabi-Yau, then A(∆) is Koszul. We are led to the following conjecture.

Conjecture 5.6. Let A = Tk(V )/(R) be a quadratic k-algebra. If A is n-Calabi-Yau and
generalised n-Calabi-Yau, then A is Koszul. In other words, if A is not Koszul, the properties
n-Calabi-Yau and generalised n-Calabi-Yau are not simultaneoously true.

Proposition 5.7. Let A = Tk(V )/(R) be a quadratic k-algebra. Conjecture 5.6 holds if n 6 3.

Proof. Assume that A is n-Calabi-Yau and generalised n-Calabi-Yau. We can assume that
n > 2. Since HKp(A,Ae) ∼= HHp(A,Ae) = 0 when p = 0 and p = 1, we have Hn(K(A)) ∼=
Hn−1(K(A)) = 0, hence A is Koszul if n = 2 and n = 3. ■

5.3 Strong generalised Calabi-Yau algebras

Definition 5.8. Let A be a generalised n-Calabi-Yau algebra. The image c ∈ HKn(A) of the
unit 1 of the algebra A by the isomorphism HK0(A) ∼= HKn(A) in Theorem 5.4 is called the
fundamental class of the generalised n-Calabi-Yau algebra A.
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We shall now define strong generalised Calabi-Yau algebras, and for this we need to work
with DG Ã-bimodules in A. Recall that A (resp. E) denotes the category of A-bimodules (resp.
vector spaces) and that Ã denotes the DG algebra HomAe(K(A), A)). Denote by C(Ã,A) the DG
category of DG Ã-bimodules in A. Following [37], a DG Ã-bimodule in A is a chain complex
C in A (as usual, C can be viewed as a cochain complex), together with two morphisms of
F-central DG algebras

ηℓC : Ã→ EndA(C), ηrC : Ãop → EndA(C),

encoding the left and right graded actions (assumed to commute). According to Subsection 3.3,
K(A) is a DG Ã-bimodule in A.

For any A-bimodule M , HomAe(C,M) is a (cochain) DG Ã-bimodule in E (in A when
M = Ae) for the following actions

(f.u)(x) = (−1)pu(x.f), (u.f)(x) = u(f.x)

where f : A⊗k Wp ⊗k A→ A, u : Cq → M and x ∈ Cp+q. Note that x.f and f.x are in Cq by
the graded actions of Ã on C. If C = K(A), we recover the cup actions, that is, f.u = f ⌣

K
u

and u.f = u ⌣
K
f . In particular, HomAe(K(A), Ae) is a DG Ã-bimodule in A.

Similarly, for any cochain DG Ã-bimodule C ′ in A, M ⊗Ae C ′ is a cochain DG Ã-bimodule
in E for the following actions

f.(m⊗Ae u) = m⊗Ae (f.u), (m⊗Ae u).f = m⊗Ae (u.f)

where f ∈ Ã, m ∈M and u ∈ C ′.
The bounded derived categories Db(Ã,A) and Db(Ã, E) are defined in [37]. Unfortunately, it

is not clear for us if the functors HomAe(−,M) : Cb(Ã,A)→ Cb(Ã, E) andM⊗Ae− : Cb(Ã,A)→
Cb(Ã, E) can be derived. Note that the first one takes values in Cb(Ã,A) when M = Ae.

Definition 5.9. Let A be a generalised n-Calabi-Yau algebra. Then A is said to be a strong
generalised n-Calabi-Yau algebra if the derived functor of the endofunctor HomAe(−, Ae) of
Cb(Ã,A) exists and if RHomAe(K(A), Ae) ∼= K(A)[−n] in Db(Ã,A).

Since the homology functor is conservative [37, Corollary 7.2.13], the second property in
this definition (assuming the first one) is equivalent to saying that the graded HK•(A)e-Ae-
bimodules HK•(A,Ae) and Hn−•(K(A)) are isomorphic. In particular, Theorem 4.7 shows that
the preprojective algebras of connected graphs distinct from A1 and A2 are strong generalised
2-Calabi-Yau algebras if they satisfy the first property.

Theorem 5.10. Let A be a generalised n-Calabi-Yau algebra with fundamental class c. We
assume that A is a strong generalised n-Calabi-Yau algebra and that the derived functors of the
functors HomAe(−, A) and A⊗Ae − from Cb(Ã,A) to Cb(Ã, E) exist. Then

c ⌢
K
− : HK•(A)→ HKn−•(A)

is an isomorphism of HK•(A)-bimodules, inducing an isomorphism of HK•
hi(A)-bimodules from

HK•
hi(A) to HKhi

n−•(A). For all α ∈ HKp(A), we have c ⌢
K
α = (−1)npα ⌢

K
c.

Proof. Following the proof of Theorem 5.4, we are interested in the morphism (5.1) of cochain
complexes

φM :M ⊗Ae HomAe(C,Ae)→ HomAe(C,M),
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when the bounded chain complex C of A-bimodules is moreover a DG Ã-bimodule in A. We
prove now that φM is a morphism of DG Ã-bimodules in E , that is, a morphism of the category
Cb(Ã, E) whose objects are viewed as cochain complexes. For this, we need only prove that φM
is a morphism of Ã-bimodules. Let us prove that φM is left Ã-linear, the right linearity being
similar. For f : A⊗k Wp ⊗k A→ A, u : Cq → Ae and x ∈ Cp+q, we have

φM (f.(m⊗Ae u))(x) = φM (m⊗Ae (f.u))(x) = m.((f.u)(x)) = (−1)pm.(u(x.f)),

while f.(φM (m ⊗Ae u))(x) = (−1)pφM (m ⊗Ae u)(x.f) = (−1)pm.(u(x.f)), which is what we
want.

Continuing as in the proof of Theorem 5.4, the functors F , G and H induce functors on
the complexes with enriched structures. Precisely, F and G are now functors from Cb(Ã,A)
to Cb(Ã, E), and H is now an endofunctor of Cb(Ã,A). Under these notations, φM defines a
natural transformation φM : H ◦G⇒ F .

We specialise to M = A. The assumptions in the theorem show that the derived functors
of F , G and H exist, so that we can derive the natural transformation φA [37]. Thus we obtain
a natural transformation LH ◦RG⇒ RF still denoted by φA. Equivalently, we write

φA : A
L
⊗Ae RHomAe(C,Ae)⇒ RHomAe(C,A). (5.4)

If the bounded chain complex underlying the DG Ã-bimodule C in A is formed by finitely
generated projective A-bimodules, Lemma 5.5 shows that we have an isomorphism

φA : A
L
⊗Ae RHomAe(C,Ae) ∼= RHomAe(C,A) (5.5)

in Db(Ã, E). Applying this to C = K(A) and using Definition 5.9, we get

RHomAe(K(A),M) ∼=M
L
⊗Ae K(A)[−n]

in Db(Ã, E). Taking homology, we deduce that HK•(A) ∼= HKn−•(A) is an isomorphism of
graded bimodules over the graded algebra H(Ã) = HK•(A). Denote this isomorphism by ψ.

The fact that ψ is a morphism of HK•(A)-bimodules translates as

ψ(α ⌣
K
β) = ψ(α) ⌢

K
β = (−1)npα ⌢

K
ψ(β) (5.6)

for any α ∈ HKp(A) and β ∈ HK•(A). In accordance with Definition 5.8, define c ∈ HKn(A) by
c = ψ(1) where 1 ∈ HK0(A) is the unit of A. Applying identities (5.6) to the trivial equalities
α = 1⌣

K
α = α ⌣

K
1, we obtain

ψ(α) = c ⌢
K
α = (−1)npα ⌢

K
c. (5.7)

Finally ψ is a morphism of complexes for higher (co)homologies since we have

ψ(eA ⌣
K
α) = (−1)n eA ⌢

K
ψ(α).

Then H(ψ) : HK•
hi(A)→ HKhi

n−•(A) is an isomorphism of HK•
hi(A)-bimodules. ■

Except in some particular cases, eA ∈ HK1(A) is non-zero, so that

ψ(eA) = (−1)n eA ⌢
K
c = (−1)n∂⌢(c)
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is non-zero in HKn−1(A). Therefore c ∈ HKn(A) is not a cycle for higher Koszul homology
and the isomorphism H(ψ) cannot be naturally expressed as a cap action. As suggested by
the preprojective algebras (Subsection 4.3), the class ψ(eA) should be of interest for further
investigations.

It is also interesting to remark that the identities (5.6) involving the isomorphism ψ imply
that the graded algebra HK•(A) is commutative if and only if the graded HK•(A)-bimodule
HK•(A) is symmetric. As seen in Corollary 4.3, we have a stronger result for the preprojective
algebras.

6 Koszul calculus of the preprojective algebras of Dynkin ADE

type

We shall determine in this section the Koszul calculus and the higher Koszul calculus of any
non-Koszul preprojective algebra A, that is, an algebra of type A, D or E with at least 3 vertices.

We first give some general facts and notation.

(N1) We shall use the dimensions of the Hochschild cohomology and homology spaces of A
which can be obtained in all characteristics as a consequence of the work of Etingof, Eu
and Schedler in [20, Theorem 3.2.7] and [17]. In particular, by [20, Lemma 3.2.17] the
centre of A is independent of the characteristic of F. Bases of the Hochschild (co)homology
spaces in characteristic zero induce free subsets of the Hochschild (co)homology spaces in
positive characteristic, but there may be some extra basis elements in some cases.

(N2) We know from Corollary 4.3 that the cup product on the Koszul cohomology of a pre-
projective algebra is graded commutative and that the cap product is graded symmetric.
Moreover, it follows from Theorem 4.4 that the cap product can be obtained from the cup
product. Indeed, if f ∈ HKp(A) and x ∈ HKq(A), we have

f ⌢
K
x = θA(f ⌣

K
θ−1
A (x)) = θA((−1)

pqθ−1
A (x)⌣

K
f) = (−1)pqx ⌢

K
f. (6.8)

(N3) Let X and Y be N-graded spaces and let f : X → Y be a homogeneous map of degree 1.
Let y1, . . . , yp be elements of pairwise different degrees. Then if

∑p
i=1 yi ∈ Im f , at least

one of the yi is in Im f . We shall use this in the following context. The differentials b1K
and b2K are homogeneous of weight 1. If we have a set of cocycles of pairwise different
coefficient weights, that are not coboundaries, then they are linearly independent up to
coboundaries, that is, they represent linearly independent cohomology classes. This also
applies if some of the elements have the same weight but we already know that these
elements are linearly independent up to coboundaries.

(N4) We shall use the map κ : A→ A constructed as follows. Let A be a preprojective algebra
over a graph ∆; let Q be its quiver. Consider the map Q1 → Q1 that sends a to a∗. It
induces an anti-automorphism κ of A (since κ sends the relation σi =

∑
a∈Q1

t(a)=i

ε(a)aa∗ to

itself).

(N5) When we define a cochain f ∈ Homke(X,A) with X ∈ {k, V,A}, it will be implicit that if
f(x) is not defined for some x ∈ X then f(x) = 0.

(N6) For any cochain f ∈ Homke(Wp, A), we shall set f̌ = θA(f) ∈ A⊗ke W2−p.

(N7) Finally, given a Dynkin graph ∆ and a ring L, we shall denote by ΛL the preprojective
algebra of ∆ over L, so that A = ΛF.
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6.1 Koszul calculus for preprojective algebras of type A

The preprojective algebra A of type An is defined by the quiver

Q 0
a0

((
1

a1
((

a∗
0

hh 2
a2 **

a∗
1

hh · · ·
a∗
2

hh

an−3 ,,
n− 2

a∗n−3

jj

an−2 ,,
n− 1

a∗n−2

ll

subject to the relations





σ0 = −a
∗
0a0

σi = ai−1a
∗
i−1 − a

∗
i ai 1 6 i 6 n− 2

σn−1 = an−2a
∗
n−2

Erdmann and Snashall have given in [14] a basis B of A. We shall only need the sets eiBei,
eiBei+1 and ei+1Bei, which can be rewritten as follows: set mA =

⌊
n−1
2

⌋
; then

eiBei =
{
(a∗i ai)

ℓ; 0 6 ℓ 6 min(i, n − 1− i)
}

for 0 6 i 6 n− 1, with (a∗i ai)
0 = ei for all i,

ei+1Bei =
{
ai(a

∗
i ai)

ℓ; 0 6 ℓ 6 min(i, n − 2− i)
}

and eiBei+1 = κ(ei+1Bei).

For each i, Aei contains precisely one basis element of maximal length n− 1, which is

πi =





an−2 · · · ai(a
∗
i ai)

i if i < mA

amA
(a∗mA

amA
)mA if i = mA and n is even

(a∗mA
amA

)mA if i = mA and n is odd

a∗n−i−1 · · · a
∗
i−1(ai−1a

∗
i−1)

n−1−i if i > mA.

They form a basis of the socle of A.
It can be checked using [38, Proposition 3.3] that the Nakayama automorphism ν of A is

given by ν(ei) = en−1−i, ν(ai) = a∗n−2−i and ν(a
∗
i ) = an−2−i.

6.1.1 The Koszul cohomology and homology spaces in type A

The spaces HK0(A) = HH0(A) = Z(A) and HK1(A) = HH1(A) are known from [14]. Therefore
we only need to compute HK2(A). Recall our assumption that n > 3; then by Theorem 4.2
all the elements in Homke(R,A) are cocycles. Moreover, using Theorem 4.4 and [20, Theorem
3.2.7], we have dimHK2(A) = dimHK0(A) = dimHH0(A) = n. Since every element in Im b2K
has coefficient weight at least 1, the n cocycles hi defined by hi(σj) = δijei for all j are linearly
independent modulo Im b2K . It follows that they form a basis of HK2(A).

Combining with the results from [14], we have the following result.

Proposition 6.1. Let A be a preprojective algebra of type An.
A basis of HK0(A) is given by the set {zℓ; 0 6 ℓ 6 mA} with z0 = 1 and zℓ =

∑n−2
i=1 (a

∗
i ai)

ℓ =∑n−1−ℓ
i=ℓ (a∗i ai)

ℓ = zℓ1 for 1 6 ℓ 6 mA.
A basis of HK1(A) is given by the set

{
ζℓ; 0 6 ℓ 6 n− 2−mA

}
, where ζℓ ∈ Homke(V,A) is

defined by ζℓ(ai) = ai(a
∗
i ai)

ℓ for all i (or for ℓ 6 i 6 n− 2− ℓ).
A basis of HK2(A) is given by the set

{
hi; 0 6 i 6 n− 1

}
where hi ∈ Homke(R,A) defined

by hi(σj) = δijei for all j.

As a consequence of Theorem 4.4, we obtain bases of the Koszul homology spaces.
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Corollary 6.2. A basis of HK0(A) is given by the set
{
ȟi; 0 6 i 6 n− 1

}
where ȟi = ei ⊗ ei.

A basis of HK1(A) is given by the set
{
ζ̌ℓ; 0 6 ℓ 6 n−mA − 2

}
where ζ̌ℓ =

∑n−2
i=0 ai(a

∗
i ai)

ℓ⊗

a∗i =
∑n−2−ℓ

i=ℓ ai(a
∗
i ai)

ℓ ⊗ a∗i . A basis of HK2(A) is given by the set {žℓ; 0 6 ℓ 6 mA} where
žℓ =

∑n−1
i=0 (a

∗
i ai)

ℓ ⊗ σi.

Note that ž0 = ω0 is the fundamental class.

6.1.2 Cup and cap products

We know from Corollary 4.3 that the cup product on HK•(A) is graded-commutative. The
following result gives all the non zero cup products of elements in HK•(A).

Proposition 6.3. Let A be a preprojective algebra of type An. Up to graded commutativity, the
non zero cup products in HK•(A) are given by

z0 ⌣
K
f = f for all f ∈ HK•(A)

zℓ1 ⌣
K
zℓ2 = zℓ1+ℓ2 if ℓ1 + ℓ2 6 mA

zℓ1 ⌣
K
ζℓ2 = ζℓ1+ℓ2 if ℓ1 + ℓ2 6 n−mA − 2

Proof. The first cup product is clear and the other cup products in the statement only involve
in HH0(A) and HH1(A), therefore they are known from [14].

The basis elements of HK2(A) have coefficient weight 0, and b2K is homogeneous of weight
1, therefore any element that has positive coefficient weight must be a coboundary. The other
cup products (that all vanish) follow from this. ■

We now deduce the cap products from (6.8).

Corollary 6.4. Up to graded symmetry, the non zero cap products are the following.

z0 ⌢
K
x = x for all x ∈ HK•(A)

zℓ1 ⌢
K
žℓ2 = žℓ1+ℓ2 if ℓ1 + ℓ2 6 mA

zℓ1 ⌢
K
ζ̌ℓ2 = ζ̌ℓ1+ℓ2 if ℓ1 + ℓ2 6 n−mA − 2

6.1.3 Higher Koszul cohomology and homology

We start with a lemma giving the cohomology class of the fundamental 1-cocycle.

Lemma 6.5. The cohomology class of eA is equal to the cohomology class of 2ζ0.

Proof. Let ζ∗0 ∈ Homke(V,A) be the cocycle defined by ζ∗0 (a
∗
i ) = a∗i for all i ∈ Q0. Since

eA = ζ0 + ζ∗0 , we must prove that ζ∗0 − ζ0 is a coboundary.
Consider v =

∑n−2
i=0

∑n−2
j=i ei ∈

⊕
i∈Q0

eiAei ∼= Homke(k,A). Then b1K(v) = ζ∗0 − ζ0, as
required. ■

As a consequence, the complex defining the higher Koszul cohomology is

0→ HK0(A)
∂1
⌣−−→ HK1(A)

∂2
⌣−−→ HK2(A)→ 0 · · ·

with ∂1⌣(zℓ) = 2ζℓ for 0 6 ℓ 6 n − mA − 2 and ∂2⌣ = 0. We then have the following higher
Koszul cohomology.
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Proposition 6.6. Let A be a preprojective algebra of type An. If char(F) = 2, then HK•
hi(A) =

HK•(A).
If char(F) 6= 2 and n is even, then

HK2
hi(A) = HK2(A)

HKp
hi(A) = 0 if p 6= 2.

Finally, if char(F) 6= 2 and n is odd, then

HK0
hi(A) = HK0(A)2mA

has dimension 1 and is spanned by zmA

HK2
hi(A) = HK2(A)

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

Higher Koszul homology can then be deduced using duality (Theorem 4.4).

Corollary 6.7. If char(F) = 2, then HKhi
• (A) = HK•(A).

If char(F) 6= 2 and n is even, then

HKhi
0 (A) = HK0(A)

HKhi
p (A) = 0 if p 6= 0.

Finally, if char(F) 6= 2 and n is odd, then

HKhi
0 (A) = HK0(A)

HKhi
2 (A) = HK2(A)2mA

has dimension 1 and is spanned by žmA

HKhi
p (A) = 0 if p 6= 0 and p 6= 2.

6.2 Koszul calculus for preprojective algebras of type D

The preprojective algebra A of type Dn is defined by the quiver

0
a0

��
Q 2a∗

0

XX

a2
((

a∗
1

tt

3
a3

((

a∗
2

hh 4
a4 **

a∗
3

hh · · ·
a∗
4

hh

an−3 ,,
n− 2

a∗n−3

jj

an−2 ,,
n− 1

a∗n−2

ll

1

a1
44

subject to the relations

σ0 = −a
∗
0a0 σi = ai−1a

∗
i−1 − a

∗
i ai 3 6 i 6 n− 2

σ1 = −a
∗
1a1 σn−1 = an−2a

∗
n−2

σ2 = a0a
∗
0 + a1a

∗
1 − a

∗
2a2

Eu has given in [18] a basis B of A. Set mD =
⌊
n−2
2

⌋
and u = n −mD − 2. We shall only

need bases of the ejAei when i and j are equal or adjacent vertices, which can be rewritten as
follows:

e0Be0 =
{
(a∗0a1a

∗
1a0)

ℓ; 0 6 ℓ 6 mD

}

e1Be1 =
{
(a∗1a0a

∗
0a1)

ℓ; 0 6 ℓ 6 mD

}
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eiBei =
{
(a∗i ai)

ℓ; 0 6 ℓ 6 n− i− 1
}

∪
{
(a∗i ai)

ℓai−1 · · · a2a1a
∗
1a

∗
2 · · · a

∗
i−1; 0 6 ℓ 6 n− i− 1

}
if i > 2

e2Bei =
{
(a∗2a2)

ℓai; 0 6 ℓ 6 n− 3
}

for i ∈ {0, 1}

ei+1Bei =
{
(a∗i+1ai+1)

ℓai; 0 6 ℓ 6 n− i− 2
}

∪
{
(a∗i+1ai+1)

ℓai · · · a2a1a
∗
1a

∗
2 · · · a

∗
i−1; 0 6 ℓ 6 n− i− 2

}
if i > 2

eiBei+1 = κ(ei+1Bei), eiBe2 = κ(e2Be0) for i ∈ {0, 1} .

For each i, Aei contains precisely one basis element of maximal length 2(n− 2), which is

π0 = a∗0a
∗
2a

∗
3 · · · a

∗
n−2an−2 · · · a3a2a0 =

{
(a∗0a1a

∗
1a0)

mD if n is even

a∗1a0(a
∗
0a1a

∗
1a0)

mD if n is odd

π1 = a∗1a
∗
2a

∗
3 · · · a

∗
n−2an−2 · · · a3a2a1 =

{
(a∗1a0a

∗
0a1)

mD if n is even

a∗0a1(a
∗
1a0a

∗
0a1)

mD if n is odd

πi = (a∗i ai)
n−i−1ai−1 · · · a2a1a

∗
1a

∗
2 · · · a

∗
i−1 if 2 6 i 6 n− 2

πn−1 = an−2an−3 · · · a1a
∗
1a

∗
2 · · · a

∗
n−2.

They form a basis of the socle of A.
It can be checked using [38, Proposition 3.3] that the Nakayama automorphism ν of A is

idA if n is even, and that when n is odd, it exchanges e0 and e1, a0 and a1 and a∗0 and a∗1, and
fixes all the other vertices and arrows.

6.2.1 The Koszul cohomology and homology spaces in type D

The centre of A does not depend on the characteristic of F by fact (N1) and was computed in [18]
in characteristic 0. Moreover, dimHK1(A) = dimHH1(A), which is equal to dimHH1(ΛC) = n
if char(F) 6= 2 and to dimHH1(ΛC) +m if char(F) = 2 by [20].

It also follows from Theorem 4.4 and [20] that dimHK2(A) = dimHK0(A) = dimHH0(A),
which is equal to n−mD − 2 if char(F) 6= 2 and to n− 2 if char(F) = 2.

In order to give bases of the HKp(A) for p = 0, 1, 2, we define the following cochains:

• the elements z0 = 1 and zℓ = (a∗0a1a
∗
1a0)

ℓ + (a∗1a0a
∗
0a1)

ℓ +
∑n−2

i=2 (a
∗
i ai)

2ℓ = zℓ1 for ℓ > 0 in
A. Note that if n is even, then zu1 = zmD

1 = π0 + π1, but if n is odd then zu1 = 0;

• the elements ζℓ ∈ Homke(V,A) with 0 6 ℓ 6 u− 1 defined by ζℓ(ai) = aizℓ for all i;

• the elements ρℓ ∈ Homke(V,A) with 0 6 ℓ 6 mD − 1 where ρℓ(ai) = (a∗2a2)
2ℓ+1ai for

i = 0, 1 and ρℓ(a
∗
i ) = a∗i (a

∗
2a2)

2ℓ+1 for i = 0, 1;

• the elements hj ∈ Homke(R,A) for 0 6 j 6 n− 1, where hj(σi) = δijej;

• the elements γℓ ∈ Homke(R,A) for 1 6 ℓ 6 mD where γℓ(σ0) = (a∗0a1a
∗
1a0)

ℓ.

Proposition 6.8. Let A be a preprojective algebra of type Dn.

(i) The elements in {πi; 0 6 i 6 n− 1 and ν(ei) = ei} ∪ {zℓ; 0 6 ℓ 6 u− 1} form a basis of
HK0(A).
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(ii) If char(F) 6= 2, the ζℓ, for 0 6 ℓ 6 u− 1, form a basis of HK1(A).

If char(F) = 2, the ζℓ for 0 6 ℓ 6 u − 1 and the ρℓ for 0 6 ℓ 6 mD − 1 form a basis of
HK1(A).

(iii) If char(F) 6= 2, the hj for 0 6 j 6 n− 1 form a basis of HK2(A).

If char(F) = 2, the hj for 0 6 j 6 n − 1 and the γℓ for 1 6 ℓ 6 mD form a basis of
HK2(A).

Proof. The results for HK0(A) and, when char(F) 6= 2, for HK1(A) follow from the comments
before the proposition.

Assume that char(F) = 2. In order to prove the result for HK1(A), we must prove that the
elements we have considered in Homke(V,A) are cocycles that are linearly independent modulo
coboundaries. It is in fact enough to prove that the ρℓ are cocycles that are not coboundaries
by fact (N3).

First note that, at the level of cochains, ρℓ = ρ0 ⌣
K
zℓ. Therefore, to prove that ρℓ is a

cocycle, it is enough to prove that ρ0 is a cocycle, and this is easy to check.
Since ρℓ ⌣

K
zmD−1−ℓ = ρmD−1, in order to prove that ρℓ is not a coboundary for all ℓ, it is

enough to prove that ρmD−1 is not a coboundary. The map ρmD−1 has coefficient weight 4mD−1.
If ρmD−1 is a coboundary, then it is the image of a morphism in Homke(k,A) ∼=

⊕
i∈Q0

eiAei
whose coefficients are linear combinations of cycles in A of weight 4mD − 2, which are known.
It is then straightforward to show that the image of any such morphism under b1K is not equal
to ρmD−1.

For (iii), we first observe that every cochain in Homke(R,A) is a cocycle. Moreover, the
hj are n cocycles that are clearly linearly independent modulo coboundaries (all coboundaries
have coefficient weight at least equal to 1). Therefore if char(F) 6= 2, the result follows.

If char(F) = 2, it is enough to prove that the γℓ are not coboundaries by fact (N3). At the
level of cochains, γℓ ⌣

K
zmD−ℓ = γmD

for 1 6 ℓ 6 mD, therefore it is enough to prove that γmD
is

not a coboundary. The map γmD
has coefficient weight 4mD, therefore if γmD

is a coboundary,
then it is the image of a morphism in Homke(V,A) whose coefficients are linear combinations
of elements of weight 4mD − 2 in A between two adjacent vertices in Q0, which are known.
Here again, checking that that the image of any such morphism under b2K is not equal to γmD

is straightforward. ■

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.

6.2.2 Cup and cap products

We now determine the cup products of the elements in the bases of the Koszul cohomology
spaces given above.

Lemma 6.9. For 1 6 i 6 n − 2, consider the cochains ui, vi and wi in Homke(R,A) defined
by ui(σj) = δijeiz1, vi(σj) = δijπi and wi(σj) = δija

∗
i aiz1 for all j ∈ Q0.

If char(F) 6= 2, the ui, vi and wi are all coboundaries.
If char(F) = 2, then the ui for i > 2 are coboundaries, and u0 = u1 = γ1. Moreover, if n is

odd, all the vi are coboundaries and if n is even, then vi = γmD
for all i. Finally, the wi are

all coboundaries.

Proof. Every element in Homke(R,A) is a cocycle. Moreover, the differential b2K is homogeneous
of degree 1 with respect to the coefficient weight, and the coefficient weight of all the basis
elements in HK2(A) is a multiple of 4, and is 0 if char(F) 6= 2.
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It follows that if char(F) 6= 2, all the ui, vi and wi must be coboundaries, and if char(F) = 2,
the wi are coboundaries and so are the vi if n is odd.

Assume that char(F) = 2. We must now study the ui, as well as the vi when n is even.
Note that un−2 = 0 and u0 = γ1. For 0 6 i 6 n − 3, define pi ∈ Homke(V,A) by pi(a0) =

a1a
∗
1a0, pi(a1) = a0a

∗
0a1 and pi(ai) = aia

∗
i ai if i > 2. Then, for 2 6 i 6 n − 3, we have

ui = b2K

(∑n−3
j=i pj

)
. Moreover, b2K

(∑n−3
j=0 pj

)
= u0+u1. It follows that the cohomology classes

of u0 and u1 are both equal to that of γ1.
We now turn to the vi. Note that since n is even and char(F) = 2, the map v0 is the map

γmD
, which is not a coboundary.
Define qi ∈ Homke(V,A) by qi(ai) = (a∗i+1ai+1)

n−i−2ai · · · a2a1a
∗
1a

∗
2 · · · a

∗
i−1 for 1 6 i 6 n− 2

and q0(a0) = (a∗2a2)
n−3. Then, for 2 6 i 6 n − 2, we have vi − v1 = b2K

(∑i−1
j=1 qj

)
, and

v1 − v0 = b2K(q0 − q1). Therefore vi = v0 = γmD
for all i. ■

We now give all the non zero cup products.

Proposition 6.10. Let A be a preprojective algebra of type Dn. Up to graded commutativity,
the non zero cup products of elements in HK•(A) are:

z0 ⌣
K
f = f for all f ∈ HK•(A); zℓ1 ⌣

K
zℓ2 =

{
zℓ1+ℓ2 if ℓ1 + ℓ2 6 u− 1;

π0 + π1 if n is even and ℓ1 + ℓ2 = mD;

zℓ1 ⌣
K
ζℓ2 = ζℓ1+ℓ2 if ℓ1 + ℓ2 6 u− 1;

zℓ1 ⌣
K
ρℓ2 = ρℓ1+ℓ2 if ℓ1 + ℓ2 6 u− 1; zℓ ⌣

K
hi =

{
γℓ if ℓ > 1, char(F) = 2 and i ∈ {0, 1}

hi if ℓ = 0;

zℓ1 ⌣
K
γℓ2 = γℓ1+ℓ2 if ℓ1 + ℓ2 6 mD; πi ⌣

K
hj = γmD

if i = j, n is even and char(F) = 2.

Proof. We use the notation in Lemma 6.9.
For ℓ > 1, we have zℓ ⌣

K
hi = zℓ−1 ⌣

K
z1 ⌣

K
hi = zℓ−1 ⌣

K
ui and the result follows from

Lemma 6.9.
Next, πi ⌣

K
hj = δijvj and again the result is a consequence of Lemma 6.9.

Now assume that char(F) = 2, so that the ρℓ occur in the basis of HK1(A). At the level of
cochains, we have ρℓ1 ⌣

K
ρℓ2 = w2 ⌣

K
zℓ1+ℓ2 , which is a coboundary.

The map ρℓ1 ⌣
K
ζℓ2 = u2 ⌣

K
zℓ1+ℓ2+1 is also a coboundary, as required.

The remaining cup products are easy to compute. Note that the cup product in HK0(A) ∼=
Z(A) is the ordinary product, and that the elements πi are in the socle of A, hence are annihi-
lated by the radical of A. ■

The cap products follow using duality, as in Corollary 6.4.

6.2.3 Higher Koszul (co)homology

As in the case of a preprojective algebra of type A, the cohomology class of the fundamental
1-cocycle is equal to 2ζ0 so that ∂1⌣(zℓ) = 2ζℓ for 0 6 ℓ 6 u− 1, ∂1⌣(πi) = 0 and ∂2⌣ = 0. We
then have the following higher Koszul cohomology.

Proposition 6.11. Let A be a preprojective algebra of type Dn.

(i) If char(F) = 2, then HK•
hi(A) = HK•(A).
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(ii) If char(F) 6= 2, then

HK0
hi(A) = HK0(A)>0 has basis the πi that are in Z(A)

HK2
hi(A) = HK2(A)

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

Higher Koszul homology follows from Theorem 4.4 as in Corollary 6.7.

6.3 Koszul calculus for preprojective algebras of type E6

The preprojective algebra A of type E6 is defined by the quiver

0

a0

		
1

a1
((
2

a2
((

a∗
1

hh 3
a3

((

a∗
2

hh

a∗
0

HH

4
a4

((

a∗
3

hh 5
a∗
4

hh

subject to the relations

σ0 = −a
∗
0a0 σ3 = a0a

∗
0 + a2a

∗
2 − a

∗
3a3

σ1 = −a
∗
1a1 σ4 = a3a

∗
3 − a

∗
4a4

σ2 = a1a
∗
1 − a

∗
2a2 σ5 = a4a

∗
4

To simplify notation, we shall denote by c0 = a0a
∗
0, c2 = a2a

∗
2 and c3 = a∗3a3 the three

2-cycles at the vertex 3.
The socle is the part of weight 10 of A, and the set {πi; i ∈ Q0} where π0 = a∗0c

2
3c0c3a0,

π1 = a4a3c0c3c0a2a1, π2 = a∗2(c3c0)
2a∗3, π3 = c3(c0c3)

2, π4 = κ(π2) and π5 = κ(π1).
The Nakayama automorphism is defined by ν(ai) = −ai and ν(a

∗
i ) = a∗i for all i ∈ Q0.

6.3.1 The Koszul cohomology and homology spaces in type E6

We shall follow the same method as in types A and D, using the results from [20] and Theorem
4.4 to determine the dimensions of the spaces, and using results from [18] for the parts that are
the same as in characteristic 0.

We define the following elements

• in A: z0 = 1, z6 = a∗1a
∗
2a

∗
3a3a2a1 + a∗2c

2
3a2 − c0c3c0 + a3c

2
2a

∗
3 + a4a3a2a

∗
2a

∗
3a

∗
4 and z8 =

a∗2c0c3c0a2 + c0c
2
3c0 + a3c0c3c0a

∗
3;

• in Homke(V,A): the maps ζℓ defined by ζℓ(ai) = aizℓ for ℓ ∈ {0, 6, 8}, the map ρ3
defined by ρ3(a2) = c0a2, ρ3(a3) = a3c3 and ρ3(a

∗
2) = a∗2c3, and the map ρ5 defined by

ρ5(a0) = c2c3a0, ρ5(a1) = a∗2c0a2a1, ρ5(a2) = c22a2, ρ5(a
∗
0) = −a

∗
0c

2
3, ρ5(a

∗
1) = −a

∗
1a

∗
2c0a2

and ρ5(a
∗
2) = a∗2c

2
3;

• in Homke(R,A): the maps hj defined for 0 6 j 6 5 by hj(σi) = δijej for all i, the map γ4
defined by γ4(σ0) = a∗0c3a0 and the map γ6 defined by γ6(σ0) = a∗0c

2
3a0.

We shall use the following lemma.
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Lemma 6.12. Assume that char(F) = 3. Let γ ∈ Homke(R,A) be an element of coefficient
weight 6, so that

γ(σ0) = λ0a
∗
0c

2
3a0 γ(σ3) = λ3c

2
3c0 + λ′3c3c0c3 + λ′′3c0c

2
3

γ(σ1) = λ1a
∗
1a

∗
2c0a2a1 γ(σ4) = λ4a3c0c3a

∗
3 + λ′4a3c3c0a

∗
3

γ(σ2) = λ2a
∗
2c0c3a2 + λ′2a

∗
2c3c0a2 γ(σ5) = λ5a4a3c0a

∗
3a

∗
4.

Then γ is a coboundary if, and only if,
∑5

i=0 λi +
∑4

i=2 λ
′
i + λ′′3 = 0.

Proof. The proof is straightforward, once we know that a cochain of weight 5 takes its values
in A5 = E⊕κ(E), where E is the space spanned by c23a0, c0c3a0, a

∗
2c0a2a1, c

2
3a2, c0c3a2, a3c0c3,

a3c3c0, a4a3c0a
∗
3. ■

Proposition 6.13. Let A be a preprojective algebra of type E6.

(i) The elements in {z0, z6, z8, π0, π3} form a basis of HK0(A).

(ii) If char(F) 6∈ {2, 3}, the elements in
{
ζℓ; ℓ = 0, 6, 8

}
form a basis of HK1(A).

If char(F) = 2, the elements in
{
ζℓ; ℓ = 0, 6, 8

}
∪ {ρ3} form a basis of HK1(A).

If char(F) = 3, the elements in
{
ζℓ; ℓ = 0, 6, 8

}
∪ {ρ5} form a basis of HK1(A).

(iii) If char(F) 6∈ {2, 3}, the elements in
{
hj ; j ∈ Q0

}
form a basis of HK2(A).

If char(F) = 2, the elements in
{
hj ; j ∈ Q0

}
∪ {γ4} form a basis of HK2(A).

If char(F) = 3, the elements in
{
hj ; j ∈ Q0

}
∪ {γ6} form a basis of HK2(A).

Proof. The centre was given in [18], so we have (i).
For HK1(A) and HK2(A), the number of elements in the statement is equal to the dimension

of the corresponding cohomology space. Moreover, all the elements in the statement are indeed
cocycles.

If char(F) is not 2 or 3, a basis of HK1(A) = HH1(A) was given in [18]. It consists of the
classes of the ζ ′ℓ with ℓ ∈ {0, 6, 8} where ζ ′ℓ(ai) = aizℓ for 0 6 i 6 2 and ζ ′ℓ(a

∗
i ) = a∗i zℓ for

3 6 i 6 4. Since ζ0 − ζ ′0 is equal to b1K(e3 + 2e5), and ζℓ − ζ ′ℓ = (ζ0 − ζ ′0) ⌣
K

zℓ is also a

coboundary, ζℓ and ζ ′ℓ represent the same cohomology class for ℓ ∈ {0, 6, 8}. Moreover, as in
types A and D, the elements hj form a basis of HK2(A).

If char(F) ∈ {2, 3}, we need only prove that the extra elements are not coboundaries by fact
(N3).

If char(F) = 2, we have z6 ⌣
K
ρ3−ζ8 = b1k(g) where g is defined by g(e2) = a∗2c3c0c3a2, and ζ8

is not a coboundary, therefore ρ3 cannot be a coboundary. Moreover, assume that γ4 = b1K(g′) is
a coboundary. Then g′ would be of coefficient weight 3, and we would necessarily take values in
A3 = E⊕κ(E) where E is spanned by c3a0, c0a2, c3a2, a3c0, a3c3. This leads to a contradiction.

If char(F) = 3, assume that ρ5 is a coboundary b1k(h), then h is of weight 4, and necessarily
h(e0) = λ0a

∗
0c3a0, h(e2) = λ2a

∗
2c3a2 and h(e3) = λ3c3c0 + λ′3c

2
3 + λ′′3c0c

3, and by considering
b1K(h)(a0), b

1
K(h)(a∗0), b

1
K(h)(a2) and b

1
K(h)(a∗2) we get a contradiction. Finally, the fact that γ6

is not a coboundary follows from Lemma 6.12. ■

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.
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6.3.2 Cup and cap products

We now determine the cup products of the elements in the bases of the Koszul cohomology
spaces given above.

Proposition 6.14. Let A be a preprojective algebra of type E6. Up to graded commutativity,
the non zero cup products of elements in HK•(A) are:

z0 ⌣
K
f = f for all f ∈ HK•(A) zℓ ⌣

K
ζ0 = ζℓ for ℓ ∈ {0, 6, 8}

z6 ⌣
K
hi = γ6 if i ∈ {1, 4} z6 ⌣

K
hi = −γ6 if i ∈ {2, 5}

z6 ⌣
K
ρ3 = ζ8 ζ0 ⌣

K
ρ3 = γ4.

Proof. The first two cup products are clear.
For the cup products of z6 with the hi and for ζ0 ⌣

K
ρ5, we use Lemma 6.12.

The last cup product follows from the fact that we have ζ0 ⌣
K

ρ3 − γ4 = b1K(g′) where

g′(a∗0) = a∗0c3 and g′(a3) = a3c3. The cup product z6 ⌣
K

ρ3 was already in the proof of

Proposition 6.13.
Consideration of the coefficient weights yields the vanishing of the other cup products. ■

The cap products follow using duality, as in Corollary 6.4.

6.3.3 Higher Koszul cohomology and homology

As in type A, the differential ∂1⌣ sends zℓ to 2ζℓ for ℓ ∈ {0, 6, 8} and the differential ∂2⌣ is zero.
We then have the following higher Koszul cohomology.

Proposition 6.15. Let A be a preprojective algebra of type E6.
If char(F) = 2, then HK•

hi(A) = HK•(A).
If char(F) = 3, then

HK0
hi(A) = HK0(A)10 has dimension 2 and is spanned by π0 and π3

HK2
hi(A) = HK2(A)

HK1
hi(A) = span {[ρ5]}

HKp
hi(A) = 0 if p > 2.

If char(F) 6∈ {2, 3}, then

HK0
hi(A) = HK0(A)10 has dimension 2 and is spanned by π0 and π3

HK2
hi(A) = HK2(A)

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

Higher Koszul homology follows from Theorem 4.4.

6.4 Koszul calculus for preprojective algebras of type E7

The preprojective algebra A of type E7 is defined by the quiver

0

a0

		
1

a1
((
2

a2
((

a∗
1

hh 3
a3

((

a∗
2

hh

a∗
0

HH

4
a4

((

a∗
3

hh 5
a∗
4

hh
a5

((
6

a∗
5

hh
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subject to the relations

σ0 = −a
∗
0a0 σ4 = a3a

∗
3 − a

∗
4a4

σ1 = −a
∗
1a1 σ5 = a4a

∗
4 − a

∗
5a5

σ2 = a1a
∗
1 − a

∗
2a2 σ6 = a5a

∗
5

σ3 = a0a
∗
0 + a2a

∗
2 − a

∗
3a3

To simplify notation, we shall denote by c0 = a0a
∗
0, c2 = a2a

∗
2 and c3 = a∗3a3 the three 2-cycles

at the vertex 3.
The socle of A is the part of weight 16 of A. A basis of the socle is given by π0 =

(a∗0c3a0)
4, π1 = −a∗1a

∗
2c0c3(c3c0)

2a2a1, π2 = −(a∗2c0a2)
4, π3 = (c3c0)

3c23, π4 = −(a3c0a
∗
3)

4,
π5 = −a4a3(c3c0)

3a∗3a
∗
4 and π6 = −a5a4(a3c0a

∗
3)

3a∗4a
∗
5.

The Nakayama automorphism is given by ν(ai) = −ai and ν(a
∗
i ) = a∗i for i ∈ Q0.

6.4.1 The Koszul cohomology and homology spaces in type E7

We define the following elements

• in A: z0 = 1, z8 = a∗0c2c0c2a0−a
∗
2c2c0c2a2−c2c

2
3c2+a3c0c2c0a

∗
3−a4a3c

2
2a

∗
3a

∗
4+a5a4a3c0a

∗
3a

∗
4a

∗
5

and z12 = a∗0(c2c0)
2c2a

∗
0 + a∗2(c0c2)

2c0a2 − (c3c0c3)
2 + a3c3(c0c3)

2a∗3;

• in Homke(V,A): the maps ζℓ defined by ζℓ(ai) = aizℓ for ℓ ∈ {0, 8, 12}, the map ρ3
defined by ρ3(a2) = c0a2, ρ3(a3) = a3c3, ρ3(a4) = a4a3a

∗
3 and ρ3(a

∗
2) = a∗2c3, the map ρ7

defined by ρ7(a0) = c33a0 + c3c0c3a0, ρ7(a3) = a3c3c0c3 and ρ7(a
∗
3) = c3c0c3a

∗
3, the map

ρ15 defined by ρ15(a0) = (c2c0)
3c2a0 and ρ15(a

∗
0) = a∗0c2(c0c2)

3 and the map ρ5 defined by
ρ5(a0) = −c2c3a0, ρ5(a2) = c3c0a2, ρ5(a3) = a3c

2
3, ρ5(a

∗
0) = a∗0c

2
3 and ρ5(a

∗
2) = −a

∗
2c2c0;

• in Homke(R,A): the maps hj defined for 0 6 j 6 6 by hj(σi) = δijej for all i, the map γ4
defined by γ4(σ0) = a∗0c3a0, the map γ8 defined by γ8(σ0) = a∗0c

3
3a0, the map γ16 defined

by γ16(σ0) = π0 and the map and γ6 defined by γ6(σ0) = a∗0c
2
3a0.

Lemma 6.16. First assume that char(F) = 2.

(i) Let u16 ∈ Homke(R,A) be an element of weight 16 so that u16(σi) = λiπi for i ∈ Q0.
Then u16 is a coboundary if, and only if,

∑6
i=0 λi = 0.

(ii) Let u8 ∈ Homke(R,A) be an element of weight 8 so that u8(σ0) = λ0a
∗
0c

3
3a0, u8(σ2) =

λ2a
∗
2c3c0c3a2 + λ′2a

∗
2c

2
3c0a2, u8(σ3) = λ3c

3
3c0 + λ′3ccc

3
3 + λ′′3c0c

2
3c0 + λ′′′3 c

2
3c0c3, u8(σ4) =

λ4a3c
2
3c0a

∗
3 + λ′4a3c3c0c3a

∗
3 + λ′′4a3c0c

2
3a

∗
3, u8(σ5) = λ5a4a3c3c0a

∗
3a

∗
4 + λ′5a4a3c0c3a

∗
3a

∗
4 and

u8(σ6) = a5a4a3a0a
∗
0a

∗
3a

∗
4a

∗
5. Then u8 is a coboundary if, and only if, λ0 + λ2 + λ′2 + λ3 +

λ′3 + λ′′′3 + λ4 + λ′4 + λ′′4 + λ5 + λ′5 + λ6 = 0.

Now assume that char(F) = 3.

(iii) Let u6 ∈ Homke(R,A) be an element of weight 6 so that u6(σ0) = λ0a
∗
0c

2
3a0, u6(σ1) =

λ1a
∗
1a

∗
2c0a

∗
2a

∗
1, u6(σ2) = λ2a

∗
2c3c0a2 + λ′2a

∗
2c

2
3a2, u6(σ3) = λ3c3c0c3 + λ′3c

2
3c0 + λ′′3c0c3c0 +

λ′′′3 c
3
3+, u6(σ4) = λ4a3c0c3a

∗
3 + λ′4a3c3c0a

∗
3 and u6(σ5) = λ5a4a3c0a

∗
3a

∗
4. Then u6 is a

coboundary if, and only if,
∑5

i=0 λi − λ
′
2 + λ′3 − λ

′
4 = 0.

Proof. For each ℓ ∈ {16, 6}, if the map uℓ were a coboundary, it would be the image of a map
gℓ ∈ Homke(V,A) whose coefficients would be in the space generated by the paths between
adjacent vertices with weight ℓ − 1. The proof is then straightforward once we know bases of
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these spaces. Note that once we have a basis of
⊕

α∈Q1
et(α)Awes(α), applying κ gives a basis of

es(α)Awet(α) for a given weight w.
In weight 15, a basis of

⊕
α∈Q1

et(α)A15es(α) is given by a0 = (a∗0c3a0)
3a∗0c3, a1 =

−a∗1a
∗
2c0c3(c3c0)

2a2, a2 = −a∗2c0(c2c0)
3, a3 = (c3c0)

3c3a
∗
3, a4 = −a3(c3c0)

3a∗3a
∗
4, a5 =

a4(a3c0a
∗
3)

3a∗4a
∗
5.

In weight 7, a basis of
⊕

α∈Q1
et(α)A7es(α) is given by c33a0, c3c0c3a0, a

∗
2c

2
3a2a1, c

2
3c0a2, c0c

2
3a2,

c3c0c3a2, a3c3c0c3, a3c0c
2
3, a3c

2
3c0. a4a3c3c0a

∗
3, a4a3c0c3a

∗
3, a5a4a3c0a

∗
3a

∗
4.

In weight 5, a basis of
⊕

α∈Q1
et(α)A5es(α) is given by c23a0, c0c3a0, a

∗
2c0a2a1, c3c0a2, c0c3a2,

a3c3c0, a3c0c3, a3c
2
3, a4a3c0a

∗
3. ■

Proposition 6.17. Let A be a preprojective algebra of type E7.

(i) The elements in {z0, z8, z12} ∪ {πi; i ∈ Q0} form a basis of HK0(A).

(ii) If char(F) 6∈ {2, 3}, the elements in
{
ζℓ; ℓ = 0, 8, 12

}
form a basis of HK1(A).

If char(F) = 2, the elements in
{
ζℓ; ℓ = 0, 8, 12

}
∪ {ρ3, ρ7, ρ15} form a basis of HK1(A).

If char(F) = 3, the elements in
{
ζℓ; ℓ = 0, 8, 12

}
∪ {ρ5} form a basis of HK1(A).

(iii) If char(F) 6∈ {2, 3}, the elements in
{
hj ; j ∈ Q0

}
form a basis of HK2(A).

If char(F) = 2, the elements in
{
hj ; j ∈ Q0

}
∪ {γ4, γ8, γ16} form a basis of HK2(A).

If char(F) = 3, the elements in
{
hj ; j ∈ Q0

}
∪ {γ6} form a basis of HK2(A).

Proof. The centre was given in [18], so we have (i).
For HK1(A) and HK2(A), the number of elements in the statement is equal to the dimension

of the corresponding cohomology space. Moreover, all the elements in the statement are indeed
cocycles.

If char(F) is not 2 or 3, a basis of HK1(A) = HH1(A) was given in [18]. It consists of the
classes of the ζ ′ℓ with ℓ ∈ {0, 8, 12} where ζ ′ℓ(ai) = aizℓ for 0 6 i 6 2 and ζ ′ℓ(a

∗
i ) = a∗i zℓ for

3 6 i 6 5. Since ζ0 − ζ
′
0 is equal to b1K(e3 + 2e5 + 3e6), and ζℓ − ζ

′
ℓ = (ζ0 − ζ

′
0) ⌣

K
zℓ is also a

coboundary, ζℓ and ζ ′ℓ represent the same cohomology class for ℓ ∈ {0, 8, 12}. Moreover, as in
types A, D and E6, the elements hj form a basis of HK2(A).

If char(F) ∈ {2, 3}, we need only prove that the extra elements are not coboundaries by fact
(N3).

If char(F) = 2, it follows from Lemma 6.16 that ζ0 ⌣
K
ρ15−γ16, ζ8 ⌣

K
ρ7−γ16, ζ12 ⌣

K
ρ3−γ16,

z8 ⌣
K
γ8 − γ16 and z12 ⌣

K
γ4 − γ16 are coboundaries. Therefore it is enough to check that γ16 is

not a coboundary, and this also follows from Lemma 6.16.
If char(F) = 3, again using Lemma 6.16, ζ0 ⌣

K
ρ5 − γ6 is a coboundary and γ6 is not a

coboundary, therefore ρ5 is not a coboundary either. ■

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.

6.4.2 Cup and cap products

We now determine the cup products of the elements in the bases of the Koszul cohomology
spaces given above.

Proposition 6.18. Let A be a preprojective algebra of type E7. Up to graded commutativity,
the non zero cup products of elements in HK•(A) are:

z0 ⌣
K
f = f for all f ∈ HK•(A) z28 = π0 + π4 − π6
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zℓ ⌣
K
ζ0 = ζℓ for ℓ ∈ {0, 8, 12} z8 ⌣

K
ρ7 = ρ15

z12 ⌣
K
ρ3 = ρ15 πi ⌣

K
hi = γ16 for i ∈ Q0

z8 ⌣
K
hi = γ8 if i ∈ {0, 4, 6} z8 ⌣

K
γ8 = γ16

z12 ⌣
K
γ4 = γ16 ζ0 ⌣

K
ρℓ = −γℓ+1 for ℓ ∈ {3, 7, 15, 6}

ζ8 ⌣
K
ρ7 = γ16 ζ12 ⌣

K
ρ3 = γ16

Proof. Most of the cup-products are easy to compute, follow from Lemma 6.16 or vanish for
weight reasons. The remaining ones are obtained as follows (at the level of cochains):

z8 ⌣
K
ρ7 = ρ15 + b1K([e3 7→ (c3c0)

3c3])

z12 ⌣
K
ρ3 = ρ15 + b1K([e3 7→ (c3c0)

3c2])

ζ0 ⌣
K
ρ3 = γ4 + b1K(h)

where h ∈ Homke(V,A3) is defined by h(a0) = c3a0 and h(a2) = c2a2. ■

The cap products follow using duality, as in Corollary 6.4.

6.4.3 Higher Koszul cohomology and homology

As in types A, D and E6, the differential ∂
1
⌣ sends zℓ to 2ζℓ for ℓ ∈ {0, 8, 12} and the differential

∂2⌣ is zero except when char(F) = 3 where ∂2⌣(ρ5) = γ6.
We then have the following higher Koszul cohomology.

Proposition 6.19. Let A be a preprojective algebra of type E7.
If char(F) = 2, then HK•

hi(A) = HK•(A).
If char(F) 6= 2, then

HK0
hi(A) = HK0(A)16 has dimension 7 and is spanned by the πi for i ∈ Q0

HK2
hi(A) = HK2(A)0 has dimension 7 and is spanned by the [hi] for i ∈ Q0

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

Higher Koszul homology follows from Theorem 4.4.

6.5 Koszul calculus for preprojective algebras of type E8

The preprojective algebra A of type E8 is defined by the quiver

0

a0

		
1

a1
((
2

a2
((

a∗
1

hh 3
a3

((

a∗
2

hh

a∗
0

HH

4
a4

((

a∗
3

hh 5
a∗
4

hh
a5

((
6

a∗
5

hh
a6

((
7

a∗
6

hh

subject to the relations

σ0 = −a
∗
0a0 σ4 = a3a

∗
3 − a

∗
4a4

σ1 = −a
∗
1a1 σ5 = a4a

∗
4 − a

∗
5a5

σ2 = a1a
∗
1 − a

∗
2a2 σ6 = a5a

∗
5 − a

∗
6a6
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σ3 = a0a
∗
0 + a2a

∗
2 − a

∗
3a3 σ7 = a6a

∗
6

To simplify notation, we shall denote by c0 = a0a
∗
0, c2 = a2a

∗
2 and c3 = a∗3a3 the three 2-cycles

at the vertex 3.
The socle of A is the part of weight 28 of A. A basis of the socle is given by π0 =

(a∗0c2a0)
7, π1 = −a∗1a

∗
2(c0c2)

5c2c0a2a1, π2 = −(a∗2c0a2)
7, π3 = (c2c0)

7, π4 = −a3(c2c0)6c2a∗3,
π5 = a4a3(c2c0)

6a∗3a
∗
4, π6 = −a5a4a3(c0c2)

5c0a
∗
3a

∗
4a

∗
5 and π7 = a6a5a4a3(c0c2)

3(c2c0)
2a∗3a

∗
4a

∗
5a

∗
6.

The Nakayama automorphism is given by ν(ai) = −ai and ν(a
∗
i ) = a∗i for i ∈ Q0.

6.5.1 The Koszul cohomology and homology spaces in type E8

We define the following elements

• in A:

✦ z0 = 1,

✦ z12 = a5a4a3c0c2c0a
∗
3a

∗
4a

∗
5 + a4a3(c2c0)

2a∗3a
∗
4 + a3(c2c0)

2c2a
∗
3 − (c3c2c3)

2 + a∗2(c0c2)
2c0a2 −

a∗1a
∗
2c0c

2
2c0a2a1 + a∗0(c2c0)

2c2a0,

✦ z20 = a5a4a3(c0c2)
3c0a

∗
3a

∗
4a

∗
5 + a4a3(c0c2)

2(c2c0)
2a∗3a

∗
4 + a3c0(c2c0)

4a∗3 + (c2c0)
5− (c0c

2
2)

3c0 +
(c0c2)

5 + a∗2(c2c0c2)
3a2 + a∗0(c2c0)

4c2a0 and

✦ z24 = z212;

• in Homke(V,A):

✦ the maps ζℓ defined by ζℓ(ai) = aizℓ for ℓ ∈ {0, 12, 20, 24},

✦ the map ρ3 defined by ρ3(a2) = c0a2, ρ3(a3) = a3c3, ρ3(a4) = a4a3a
∗
3, ρ3(a5) = a5a4a

∗
4 and

ρ3(a
∗
2) = a∗2c3,

✦ the map ρ7 defined by ρ7(a0) = c0c
2
3a0, ρ7(a3) = a3c0c

2
3 + a3c

2
3c0 + a3c0c3c0 and ρ7(a

∗
3) =

c3c0c3a
∗
3,

✦ the map ρ15 defined by ρ15(a3) = a3c2(c2c0)
2, ρ15(a4) = a4a3(c0c3)

2a∗3 + a4a3(c0c
2
3)

2a∗3 +
a4a3(c3c0)

3a∗3, ρ15(a5) = a5a4a3c0(c3c0)
2a∗3a

∗
4, ρ15(a

∗
0) = a∗0c3(c3c0)

3 and ρ15(a
∗
5) =

a4a3(c0c3)
2c0a

∗
3a

∗
4a

∗
5,

✦ the map ρ27 defined by ρ27(a3) = a3c0(c3c0)
6 and ρ27(a

∗
3) = (c3c0)

6c3a
∗
3,

✦ the map ρ5 defined by ρ5(a0) = −c0c3a0 − c
2
3a0, ρ5(a3) = a3c3c0 + a3c

2
3, ρ5(a4) = a4a3c3a

∗
3,

ρ5(a
∗
0) = a∗0c

2
3 and ρ5(a

∗
3) = −c3c0a

∗
3,

✦ the map ρ17 defined by defined by ρ17(a0) = −c
2
3(c0c3)

3a0− (c0c3)
4a0, ρ17(a3) = a3(c3c0)

4+
a3(c0c3)

4 + a3(c3c0)
3c23, ρ17(a

∗
0) = a∗0(c2c0)

3c23 and ρ17(a
∗
3) = −(c3c0)

4a∗3, and

✦ the map ρ9 defined by ρ9(a0) = −2c23c0c3a0 + 2c3c0c
2
3a0 + (c0c3)

2a0, ρ9(a2) = c22c0c2a2 +
(c2c0)

2a2, ρ9(a3) = −a3(c0c3)
2, ρ9(a

∗
0) = 2a∗0c

2
3c0c3 − 2a∗0c3c0c

2
3 + a∗0(c3c0)

2, ρ9(a
∗
2) =

a∗2c2c0c
2
2 − a

∗
2(c2c0)

2 and ρ9(a
∗
3) = (c0c3)

2a∗3;

• in Homke(R,A): the maps hj defined for 0 6 j 6 7 by hj(σi) = δijej for all i, and

γ4 : σ0 7→ a∗0c3a0 γ8 : σ0 7→ a∗0c
3
3a0

γ16 : σ0 7→ a∗0(c2c0)
3c2a0 γ28 : σ0 7→ π0

γ6 : σ0 7→ a∗0c
2
3a0 γ18 : σ0 7→ a∗0c

2
3(c0c3)

3a0

γ10 : σ0 7→ a∗0c
2
3c0c3a0

Lemma 6.20. First assume that char(F) = 2.
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(i) Let u28 ∈ Homke(R,A) be an element of weight 28, so that u16(σi) = λiπi for all i ∈ Q0.
Then u16 is a coboundary if, and only if,

∑
i∈Q0

λi = 0.

Now assume that char(F) = 3.

(ii) Let u18 ∈ Homke(R,A) be an element of weight 18, so that u18(σ0) = λ0a
∗
0c

2
3(c0c3)

3a0 +
λ′0a

∗
0c3c0(c3c0c3)

2a0, u18(σ1) = λ1a
∗
1a

∗
2c0(c2c0)

3a2a1, u18(σ2) = λ2a
∗
2(c2c0c2)

2c0c2a2 +
λ′2a

∗
2(c0c2)

4a2 + λ′′2a
∗
2(c2c0)

4a2, u18(σ3) = λ3c0(c3c0)
4 + λ′3(c3c0)

4c3 + λ′′3(c3c0)
2c3(c3c0)

2 +

λ
(3)
3 (c0c3)

2c3(c0c3)
2 + λ

(4)
3 (c3c0)

3c23c0 + λ
(5)
3 c0c

2
3(c0c3)

3, u18(σ4) = λ4a3(c3c0)
4a∗3 +

λ′4a3(c0c3)
4a∗3 + λ′′4a3c

2
3(c3c0)

3a∗3 + λ
(3)
4 a3(c0c3)

3c23a
∗
3, u18(σ5) = λ5a4a3(c3c0)

3c3a
∗
3a

∗
4 +

λ′5a4a3c3(c3c0)
3a∗3a

∗
4 + λ′′5a4a3(c0c3)

3c3a
∗
3a

∗
4, u18(σ6) = λ6a5a4a3(c3c0)

3a∗3a
∗
4a

∗
5 +

λ′6a5a4a3(c0c3)
3a∗3a

∗
4a

∗
5, u18(σ7) = λ7a6a5a4a3(c0c3)

2c0a
∗
3a

∗
4a

∗
5a

∗
6. Then u18 is a cobound-

ary if, and only if, λ0 + λ′0 + λ1 + λ′2 + λ′′2 + λ′3 + λ′′3 + λ
(3)
3 + λ

(4)
3 + λ

(5)
3 + λ4 + λ′4 − λ

′′
4 −

λ
(3)
4 − λ5 − λ

′
5 − λ

′′
5 − λ6 − λ

′
6 − λ7 = 0.

(iii) The map ρ17 ∈ Homke(V,A) is not a coboundary.

Now assume that char(F) = 5.

(iv) Let u10 ∈ Homke(R,A) be an element of weight 10, so that u10(σ0) = λ0a
∗
0c

2
3c0c3a0 +

λ′0a
∗
0c3c0c

2
3a0, u10(σ1) = λ1a

∗
1a

∗
2c0c2c0a2a1, u10(σ2) = λ2a

∗
2(c0c2)

2a2 + λ′2a
∗
2(c2c0)

2a2 +

λ′′2a
∗
2c0c

2
2c0a2, u10(σ3) = λ3c0(c3c0)

2 + λ′3c3(c0c3)
2 + λ′′3c3(c3c0)

2 + λ
(3)
3 (c0c3)

2c3 +

λ3(4)c3c0c
2
3c0 + λ

(5)
3 c0c

2
3c0c3, u10(σ4) = λ4a3(c0c3)

2a∗3 + λ′4a3(c3c0)
2a∗3 + λ′′4a3c3c0c

2
3a

∗
3 +

λ
(3)
4 a3c

2
3c0c3a

∗
3, u10(σ5) = λ5a4a3c0c3c0a

∗
3a

∗
4+λ

′
5a4a3c

2
3c0a

∗
3a

∗
4+λ

′′
5a4a3c0c

2
3a

∗
3a

∗
4, u10(σ6) =

λ6a5a4a3c3c0a
∗
3a

∗
4a

∗
5 + λ′6a5a4a3c0c3a

∗
3a

∗
4a

∗
5, u10(σ7) = λ7a6a5a4a3c0a

∗
3a

∗
4a

∗
5a

∗
6. Then u10 is

a coboundary if, and only if, λ0 + λ′0 + λ1 + λ2 + λ′2 + λ′′2 + λ′3 + λ′′3 + λ
(3)
3 + λ

(4)
3 + λ

(5)
3 +

λ4 − λ
′
4 + 2λ′′4 + 2λ

(3)
4 + λ5 + 2λ′5 + 2λ′′5 + 2λ6 + 2λ′6 + 2λ7 = 0.

Proof. For each ℓ ∈ {28, 18, 10}, if the map uℓ were a coboundary, it would be the image of a
map gℓ ∈ Homke(V,A) whose coefficients would be in the space generated by the paths between
adjacent vertices with weight ℓ− 1. The proof of (i), (ii) and (iv) is then straightforward once
we know bases of these spaces.

In weight 27, a basis is given by a0 = a∗0c2(c0c2)
6, a1 = −a∗1a

∗
2(c0c2)

5c23a2, a2 =
−a∗2c0(c2c0)

6, a3 = (c2c0)
6c2a

∗
3, a4 = −a3(c2c0)

6a∗3a
∗
4, a5 = −a4a3c0(c2c0)

5a∗3a
∗
4a

∗
5, a6 =

a5a4a3(c0c2)
3(c2c0)

2a∗3a
∗
4a

∗
5a

∗
6, and the κ(ai) for all i ∈ Q0.

In weight 17, the space
⊕

α∈Q1
et(α)A18es(α) has basis (c0c3)

4a0, c
2
3(c0c3)

3a0, c3c0(c3c0c3)
2a0,

a∗2c2c0c2(c2c0)
2a2a1, a∗2(c0c2)

3c0a2a1, (c3c0)
4a2, (c0c3)

4a2, (c0c3)
3c3c0a2, c3c0(c3c0c3)

2a2,
a3(c3c0)

4, a3(c0c3)
4, a3(c0c3)

3c3c0, a3c0c3(c3c0)
3, a3(c3c0)

3c23, a4a3(c0c3)
3c0a

∗
3, a4a3(c0c3)

3c3a
∗
3,

a4a3c3(c3c0)
3a∗3, a5a4a3(c3c0)

3a∗3a
∗
4, a5a4a3(c0c3)

3a∗3a
∗
4, a6a5a4a3(c0c3)

2c0a
∗
3a

∗
4a

∗
5 and

⊕
α∈Q1

es(α)A18et(α) = κ
(⊕

α∈Q1
et(α)A18es(α)

)
.

In weight 9, the space
⊕

α∈Q1
et(α)A9es(α) has basis c23c0c3a0, c3c0c

2
3a0, (c0c3)

2a0,

a∗2c0c2c0a2a1, c
2
2c0c2a2, (c2c0)

2a2, (c0c2)
2a2, c0c

2
2c0a2, a3c3c0c

2
3, a3(c0c3)

2, a3(c3c0)
2, a3c0c

2
3c0,

a4a3c
2
3c0a

∗
3, a4a3c0c

2
3a

∗
3, a4a3c0c3c0a

∗
3, a5a4a3c3c0a

∗
3a

∗
4, a5a4a3c0c3a

∗
3a

∗
4, a6a5a4a3c0a

∗
3a

∗
4a

∗
5 and

⊕
α∈Q1

es(α)A9et(α) = κ
(⊕

α∈Q1
et(α)A9es(α)

)
.

Finally, if ρ17 were a coboundary, it would be equal to b1k(g) for some g ∈
Homke(k,A16). Such a map g would necessarily satisfy g(e0) ∈ span

{
a∗0(c3c0)

3c3a0
}
,

g(e3) ∈ span
{
(c3c0)

4, (c0c3)
4, c0c3(c3c0)

3, (c0c3)
3c3c0, c

2
3(c0c3)

3, c3c0(c3c0c3)
2
}
, and

g(e4) ∈ span
{
a3c0(c3c0)

3a∗3, a3c3(c0c3)
3a∗3, a3c3(c3c0)

3a∗3, a3(c0c3)
3c3a

∗
3

}
. Then, by consid-

ering b1k(g)(a0), b
1
k(g)(a

∗
0) and b

1
k(g)(a3) we get a contradiction. ■
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Proposition 6.21. Let A be a preprojective algebra of type E8.

(i) The elements in {z0, z12, z20, z24} ∪ {πi; i ∈ Q0} form a basis of HK0(A).

(ii) If char(F) 6∈ {2, 3, 5}, the elements in
{
ζℓ; ℓ = 0, 12, 20, 24

}
form a basis of HK1(A).

If char(F) = 2, the elements in
{
ζℓ; ℓ = 0, 12, 20, 24

}
∪ {ρ3, ρ7, ρ15, ρ27} form a basis of

HK1(A).

If char(F) = 3, the elements in
{
ζℓ; ℓ = 0, 12, 20, 24

}
∪ {ρ5, ρ17} form a basis of HK1(A).

If char(F) = 5, the elements in
{
ζℓ; ℓ = 0, 12, 20, 24

}
∪ {ρ9} form a basis of HK1(A).

(iii) If char(F) 6∈ {2, 3, 5}, the elements in
{
hj ; j ∈ Q0

}
form a basis of HK2(A).

If char(F) = 2, the elements in
{
hj ; j ∈ Q0

}
∪ {γ4, γ8, γ16, γ28} form a basis of HK2(A).

If char(F) = 3, the elements in
{
hj ; j ∈ Q0

}
∪ {γ6, γ18} form a basis of HK2(A).

If char(F) = 5, the elements in
{
hj ; j ∈ Q0

}
∪ {γ10} form a basis of HK2(A).

Proof. The centre was given in [18], so we have (i).
For HK1(A) and HK2(A), the number of elements in the statement is equal to the dimension

of the corresponding cohomology space. Moreover, all the elements in the statement are indeed
cocycles.

If char(F) is not 2, 3 or 5, a basis of HK1(A) = HH1(A) was given in [18]. It consists of the
classes of the ζ ′ℓ with ℓ ∈ {0, 12, 20, 24} where ζ ′ℓ(ai) = aizℓ for 0 6 i 6 2 and ζ ′ℓ(a

∗
i ) = a∗i zℓ for

3 6 i 6 6. Since ζ0− ζ
′
0 is equal to b1K(e3 +2e5 +3e6 +4e7), and ζℓ− ζ

′
ℓ = (ζ0− ζ

′
0)⌣

K
zℓ is also

a coboundary, ζℓ and ζ
′
ℓ represent the same cohomology class for ℓ ∈ {0, 12, 20, 24}. Moreover,

as in types A, D, E6 and E7, the elements hj form a basis of HK2(A).
The rest of the proof is the same as that of Proposition 6.17, based on Lemma 6.20 and the

fact that the following cup products at the level of cochains are all coboundaries: ζ0 ⌣
K
ρ27−γ28,

ζ12 ⌣
K
ρ15− γ28, ζ24 ⌣

K
ρ3− γ28, ζ20 ⌣

K
ρ7− γ28, z24 ⌣

K
γ4− γ28, z12 ⌣

K
γ16− γ28, z20 ⌣

K
γ8− γ28,

z12 ⌣
K
ρ5 − ρ17, z12 ⌣

K
γ6 − γ18, ζ0 ⌣

K
ρ9 − γ10, whereas γ28, γ18, γ10 and ρ17 are not. ■

Koszul homology follows using duality (Theorem 4.4), as in Corollary 6.2.

6.5.2 Cup and cap products

We now determine the cup products of the elements in the bases of the Koszul cohomology
spaces given above.

Proposition 6.22. Let A be a preprojective algebra of type E8. Up to graded commutativity,
the non zero cup products of elements in HK•(A) are:

z0 ⌣
K
f = f for all f ∈ HK•(A) z212 = z24

zℓ ⌣
K
ζ0 = ζℓ for ℓ ∈ {0, 12, 20, 24} z12 ⌣

K
ρ3 = ρ15

z24 ⌣
K
ρ3 = ρ27 z12 ⌣

K
ρ15 = ρ27

z20 ⌣
K
ρ7 = ρ27 z12 ⌣

K
ρ5 = ρ17

z12 ⌣
K
ρ9 = −ζ20 z12 ⌣

K
ζ12 = ζ24

πi ⌣
K
hi = γ28 for i ∈ Q0 z12 ⌣

K
γ4 = γ16
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z12 ⌣
K
γ16 = γ28 z24 ⌣

K
γ4 = γ28

z20 ⌣
K
γ8 = γ28 z12 ⌣

K
γ6 = γ18

ζ0 ⌣
K
ρℓ = −γℓ+1 for ℓ ∈ {3, 7, 15, 27, 9} ζ12 ⌣

K
ρ3 = γ16

ζ12 ⌣
K
ρ15 = γ28 ζ20 ⌣

K
ρ7 = γ28

ζ24 ⌣
K
ρ3 = γ28.

Proof. Most of the cup-products are easy to compute, follow from Lemma 6.20 or vanish for
weight reasons. The remaining ones are obtained as follows (at the level of cochains): z24 ⌣

K

ρ3 = ρ27 + b1K([e3 7→ c0(c3c0)
6]), we have z12 ⌣

K
ρ3 = ρ15 + b1K(h) where h is defined by

h(a2) = (c0c2)
3c0a2, h(a3) = a3c0(c3c0)

3 + a3c3(c0c3)
3, h(a4) = a4a3(c0c

2
3)

2a∗3 and h(a∗2) =
a∗2c0(c2c0)

3 + a∗2c2(c0c2)
3, and finally z12 ⌣

K
ρ9 + ζ20 = bK(h′) where h′ is defined by h′(e0) =

a∗0(c3c0)
4c3a0, h

′(e2) = 2a∗2(c2c0)
4c2a2, h

′(e3) = −2(c0c3)
5 + 2c23(c0c3)

4 + (c3c0)
4c23, h

′(e4) =
−a3(c0c3)

4c0a
∗
3 + a3c3(c3c0)

4a∗3 − a3(c0c3)
4c3a

∗
3 and h′(e5) = −a4a3(c0c3)

4a∗3a
∗
4. ■

The cap products follow using duality, as in Corollary 6.4.

6.5.3 Higher Koszul cohomology and homology

As in types A, D, E6 and E7, the differential ∂1⌣ sends zℓ to 2ζℓ for ℓ ∈ {0, 8, 12} and the
differential ∂2⌣ is zero except when char(F) = 5 where ∂2⌣(ρ9) = 2γ10.

We then have the following higher Koszul cohomology.

Proposition 6.23. Let A be a preprojective algebra of type E8.
If char(F) = 2, then HK•

hi(A) = HK•(A).
If char(F) = 3, then

HK0
hi(A) = HK0(A)28 and the πi for i ∈ Q0 form a basis

HK1
hi(A) = span {[ρ5], [ρ17]}

HK2
hi(A) = HK2(A)0 and the [hi] for i ∈ Q0 form a basis

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

If char(F) 6∈ {2, 3}, then

HK0
hi(A) = HK0(A)28 has dimension 8 and is spanned by the πi for i ∈ Q0

HK2
hi(A) = HK2(A)0 has dimension 8 and is spanned by the [hi] for i ∈ Q0

HKp
hi(A) = 0 if p 6= 0 and p 6= 2.

Higher Koszul homology follows from Theorem 4.4.

6.6 Comparison of Koszul and Hochschild (co)homology for preprojective
algebras of type ADE

Let A be a preprojective algebra over a Dynkin graph of type ADE. Schofield constructed
a minimal projective resolution (P •, ∂•) of A as a bimodule over itself, that is periodic (of
period at most 6), which was described in [16, 18]. Following Proposition 2.11, the em-
bedding H(ι∗)2 sends the Hochschild cohomology class of an element in Ker(∂3 ◦ −) to its
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Koszul cohomology class, and the surjection H(ι̃)2 induces an isomorphism between HH2(A)
and HK2(A)/ Im(idA⊗∂

3).
We first transport the maps ∂3 ◦− and idA⊗∂

3 via the natural isomorphisms A⊗Ae (Aej ⊗
eiA)→ eiAej that sends λ⊗ (a⊗ b) to bλa and HomAe(Aei ⊗ ejA,A) ∼= eiAej that sends f to
f(ei ⊗ ej).

The associative non degenerate bilinear form on the selfinjective preprojective A can be
defined as follows, see [16] and [38, Proposition 3.15]: let B be a basis of A consisting of
homogeneous elements, that contains the idempotents ei, i ∈ Q0, and such that each v ∈ B
belongs to ejAei for some i, j in Q0. Then if x ∈ Aei, (y, x) is the coefficient of πi in the
expression of yx as a linear combination of elements in B. The Nakayama automorphism ν
of A satisfies (y, x) = (ν(x), y) for all x, y in A, and induces a permutation of the indices,
the Nakayama permutation ν, that is, a permutation of Q0 such that top(Aei) ∼= soc(Aeν(i)),
characterised by ν(ei) = eν(i).

Let B̂ be the dual basis of B with respect to the non degenerate form (−,−), so that
(ŵ, v) = δvw for all v,w in B. In particular, if v ∈ Bei, the coefficient of πi in v̂v is 1. Note that
v ∈ ejBei if and only if v̂ ∈ eν(i)B̂ej .

Then the maps ∂3 ◦ − and idA⊗Ae∂3 become respectively

δ3 :
⊕

i∈Q0

eiAei →
⊕

i∈Q0

eiAeν(i) defined by y 7→
∑

x∈B

x̂yx

and δ3 :
⊕

i∈Q0

eiAeν(i) →
⊕

i∈Q0

eiAei defined by y 7→
∑

x∈B

xyx̂.

It then follows as in [20, Proposition 3.2.25] that Im δ3 is the span of the δ3(ei) such that
ν(i) = i, and that for such an i we have δ3(ei) =

∑
j∈Q0ν(j)=j tr(ν|ejAei)πj . Moreover, the

matrix whose coefficients are the tr(ν|ejAei) is either easy to compute or given in [18] for types

D and E7. It is also known from [20] that the set of elements of weight 0 in Ker δ3 identifies
with the kernel of the Cartan matrix of A. Moreover, for any element of positive weight a ∈ A,
we have δ3(a) = 0. Therefore HH2(A) is obtained by taking all the elements of positive weight
in HK2(A) and adding the kernel of the Cartan matrix.

We shall use this as well as the dimensions of the Hochschild and Koszul (co)homology
spaces to compare HH2(A) with HK2(A) and HH2(A) with HK2(A) in each case.

6.6.1 Comparison of the second Koszul and Hochschild cohomology groups

In type A, the space HH2(A) was completely described by Erdmann and Snashall in [14], and

they proved that dimHH2(A) = n −mA − 1 and gave a basis
{
h̃i; 0 6 i 6 n−mA − 2

}
with

h̃i = hi+hn−1−i. The morphism of complexes ι∗2 sends h̃i to hi+hn−1−i, and this describes the
injection HH2(A)→ HK2(A).

In type D, if char(F) 6= 2 and n is even, there is nothing to do since HH2(A) = 0. If
char(F) 6= 2 and n is odd, then dimHH2(A) = 1, the basis given in [18] for HH2(ΛC) (where ΛC

is the preprojective C-algebra with the same Dynkin graph as A) also gives a basis of HH2(A),
and it is the cohomology class of the map ψ0 defined by ϕ0(σ0) = e0 and ψ0(σ1) = −e1. The
embedding HH2(A)→ HK2(A) is therefore given by ψ0 7→ h0 − h1.

Now assume that char(F) = 2. Then dimHH2(A) = n +mD − 2. As we explained above,
a basis of HH2(A) may be obtained from a basis of the set of elements of positive coefficient
weight in HK2(A) to which we add elements obtained by determining a basis of the kernel of
the Cartan matrix of A. It follows that a basis of HH2(A) is given by

{γℓ; 1 6 ℓ 6 m} ∪ {ϕi; 2 6 i 6 n− 1} if n is even
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{γℓ; 1 6 ℓ 6 m} ∪
{
ψ0

}
∪ {ψi; 3 6 i 6 n− 1} if n is odd

where ψ2p+1(σ2p+1) = e2p+1, ψ2p+2(σ2p+2) = e2p+2 and ψ2p+2(σ2) = e2, ϕ2p(σ2p) = e2p,
ϕ2p+1(σ2p+3) = e2p+3 and ϕ2p+1(σ3) = e3, for p > 1. Therefore, the embedding HH2(A) →
HK2(A) fixes the γℓ and sends ϕ2p to h2p and ϕ2p+3 to h3 + h2p+3 when n is even, and ψ0 to
h0 + h1, ψ2p+1 to h2p+1 and ψ2p+2 to h2 + h2p+2 when n is odd.

In type E6, the Cartan matrix is equivalent, through row operations, to

(
2 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 2 0 0

)

Let ϕ0, ϕ1, ϕ2 and ϕ3 be the maps in Homke(R,A) defined by ϕ0(σ0) = e0, ϕ1(σ1) = e1,
ϕ1(σ5) = −e5, ϕ2(σ2) = e2, ϕ2(σ4) = −e4 and ϕ3(σ3) = e3. Then HH2(A) is the subspace of
HK2(A) spanned by

ϕ1, ϕ2 if char(F) 6∈ {2, 3}

ϕ0, ϕ1, ϕ2, ϕ3, γ4 if char(F) = 2

ϕ1, ϕ2, γ6 if char(F) = 3.

In type E7, if char(F) 6= 2, we have dimHH2(A) = dimHK2(A)>0, so that HH2(A) is
precisely the subspace of HK2(A) of elements of positive weight (which is zero unless char(F) ∈
{2, 3}). If char(F) = 2, then the Cartan matrix of A is equivalent, through row operations, to
the matrix ( 1 0 0 0 1 0 1 ) so that HH2(A) is the subspace of HK2(A) spanned by γ4, γ8, γ16, h1,
h2, h3, h5, h0 + h4 and h0 + h6.

In type E8, we only need to look at dimensions. Indeed, if char(F) = 2, then dimHH2(A) =
dimHK2(A) so that HH2(A) ∼= HK2(A), and if char(F) 6= 2 then dimHH2(A) = dimHK2(A)>0

so that HH2(A) is precisely the subspace of HK2(A) of elements of positive weight (which is
zero unless char(F) ∈ {2, 3, 5}).

6.6.2 Comparison of the second Koszul and Hochschild homology groups

In type A, if n is even or if n is odd and char(F) divides (mA + 1), we have seen that
dimHK2(A) = dimHH2(A) and therefore HK2(A) ∼= HH2(A). Now assume that n is odd
and char(F) ∤ (mA + 1). Then dimHK2(A) = dimHH2(A) − 1. We must determine the image
of the map δ3 given in Subsection 6.6.

The Nakayama permutation ν has precisely one fixed point, which is mA. The matrix of ν
restricted to emA

AemA
is the identity matrix ImA+1. Consequently, δ3(emA

) = (mA + 1)πmA

spans the image of δ3. Via the isomorphism
⊕

i∈Q0
eiAei ∼= A ⊗ke R, πmA

corresponds to žmA

so that we have HH2(A) ∼= HK2(A)/ span {žmA
}.

In type D, if n is odd and char(F) = 2, then we know that dimHK2(A) = dimHH2(A) and
therefore HK2(A) ∼= HH2(A). In the other cases, we need to determine the image of the map
δ3.

If n is odd and char(F) 6= 2, the fixed points of the Nakayama permutation are the integers
i with 2 6 i 6 n− 1. The matrix Hν whose (i, j)-coefficient is the trace of ν restricted to ejAei

was given in [18, paragraph 11.2.3], so that tr
(
ν|ejAei

)
= 2 if i and j are even and is equal to 0

otherwise. Therefore for all i fixed by ν, we have δ3(ei) =
∑mD+1

p=0 2π2p. Using the isomorphism
⊕

i∈Q0
eiAei ∼= A⊗ke R, we obtain HH2(A) ∼= HK2(A)/ span

{∑mD+1
p=0 π̌2p

}
.

If n is even, all the integers i with 0 6 i 6 n − 1 are fixed points of ν. The matrix Hν

was given in [18, paragraph 11.2.2] and is equivalent, through column operations, to the matrix
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whose last n− 2 columns are 0 and whose first two columns are



mD+1 1−n
−mD n−1

0 0
1 0
0 0
...

...
0 0
1 0



.

It follows that, if n is even,

HH2(A) ∼=




HK2(A)/ span

{
(mD + 1)π̌0 −mDπ̌1 +

∑mD
p=0 π̌2p+1

}
if char(F)|(n− 1)

HK2(A)/ span
{
π̌1 − π̌2; π̌0 +

∑mD+1
p=0 π̌2p+1

}
if char(F) ∤ (n− 1)

In types E6 and E8, since they have the same dimensions, the homology spaces HH2(A) and
HK2(A) are isomorphic.

Finally, in type E7, if char(F) = 3, then HH2(A) ∼= HK2(A). Now assume that char(F) 6= 3.
The matrix Hν was given in [19] and its non zero rows are those corresponding to vertices 0, 4
and 6 and are all equal to ( 3 0 0 0 3 0 3 ) . It follows that HH2(A) ∼= HK2(A)/ span {π̌0 + π̌4 + π̌6}.

6.7 A minimal complete list of invariants

Theorem 6.24. Let A be the preprojective algebra of a Dynkin graph ∆ over F. Assume that A
has type either An with n > 3, or Dn with n > 4, or En with n = 6, 7, 8. Let A′ be a preprojective
algebra of type ADE, where the integer n′ concerning A′ is subjected to the same assumptions.
Denote by (dp) the equality dimHKp

hi(A) = dimHKp
hi(A

′). If (dp) holds for p = 0, 1 and 2, then
n = n′, and A and A′ have the same type. The conclusion of this implication does not hold if
(d2) is removed from the assumption.

Proof. We apply the results contained in Propositions 6.6, 6.11, 6.15, 6.19 and 6.23. The
implication is a consequence of the following items.

(1) Assume that A and A′ have types A or D. If charF 6= 2, then n = n′ by (d2), and A and
A′ have the same type by (d0). If charF = 2 and A and if A′ both have type A, then
n = n′ by (d2). If charF = 2, A is of type An and A′ is of type Dn′ , then the sum of (d0)
and (d1) shows that n = 2n′ +m′

D − 2 or −3 which contradicts (d2): n = n′ +m′
D. If

charF = 2 and if A and A′ both have type D, then n = n′ by (d1).

(2) If A and A′ have type E, then n = n′ by (d0).

(3) If A is of type An and A′ of type E6, then (d2) implies either that n = 6 if charF 6= 2, 3
or that n = 7 if charF = 2, 3, but each case is excluded by (d0). Similarly when A′ is of
type E7 and E8.

(4) If A is of type Dn and A′ is of type E6, then (d2) implies one of the three following cases:
n = 6 if charF 6= 2, 3, n = 7 if charF = 3 or n +mD = 7 if charF = 2, but each case is
excluded by (d0). Similarly when A′ is of type E7 and E8 (we also use (d1) for E8).

Let us show that we cannot remove assumption (d2). It is clear if charF 6= 2 because when
A is of type A3 and A′ is of type A5, both (d0) and (d1) hold. If charF = 2, we check that when
A is of type A9 and A′ is of type E6 then (d0) and (d1) hold. ■

47



It is obvious that HK•
hi(A)

∼= F if A is of type A1 and it is easy to check that HK•
hi(A) = 0

when A is of type A2, therefore we have obtained a minimal complete list of invariants for all
the ADE preprojective algebras.

Another direct application of our computations is the following. If A is as in Theorem
6.24 and if charF 6= 2, the product of the algebra HK•

hi(A) is identically zero. If charF = 2,
HK•

hi(A) = HK•(A) is a unital algebra whose product is fully described in our results.

Remark 6.25. In the one vertex case, the higher Koszul homology and cohomology play an
essential role in a specific formulation of a Koszul Poincaré Lemma (a Koszul Poincaré duality),
see Conjectures 6.5 and 7.2 in [6]. For this reason, we have formulated Theorem 6.24 in terms
of the higher Koszul cohomology. However, the analogous statement with Koszul cohomology is
also true and follows in the same way from our results.
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