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Abstract An accurate force estimate for finite-size particle simulations is pro-
posed based on Lagrange extrapolation of third order, coupled with a Taylor
interpolation of same order, to estimate pressure and viscous constraints on
the surface of particles. The main point of our approach is to upwind the in-
terpolation support in the normal direction to the fluid/solid interface so as
to use only fluid values to estimate forces. Also, detailed validations of forces
are considered for estimating accuracy and convergence order of the method
on various incompressible motions such as the flow around an isolated particle
at various Reynolds numbers and flows across packed spheres under Faced-
Centered Cubic, random and bi-disperse arrangements.

Keywords Accurate drag force calculation · Finite size particles · Immersed
boundary techniques · Penalty methods · Fixed arrangements of spheres

1 Introduction

In the framework of finite-size particle motions, the numerical simulation of
a particulate flow interacting with a surrounding fluid can be investigated
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stephane.vincent@u-pem.fr

J.-L. Estivalèzes
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following two different numerical strategies: unstructured or structured grids.
This important choice is in particular motivated by the instantaneous descrip-
tion of the evolving complex shape represented by the interface between the
carrier fluid and a set of moving particles. On the one hand, the more natural
discretization seems to be the implementation of an unstructured body-fitted
grid to simulate the fluid area in the two-phase particle flow [1] [2] [3] [4].
Building such a finite-volume or finite-element mesh in three-dimensions is
not easy and requires automatic remeshing as the solid particles move accord-
ing to time and space. The remeshing process at each calculation step is time
consuming and can be very difficult to manage automatically in computer
softwares when the global shape of the fluid-solid interface is changing at each
calculation step [5]. On the other hand, it can be imagined to develop a fixed
structured grid approach to simulate particulate flows. With this method, the
mesh is not adapted to the fluid-solid interfaces and includes both phases. On
a mesh point of view, this approach is simpler than the previous one. The dif-
ficulty lies in taking into account the presence of particles in the fluid whose
interface is not explicitly tracked by the mesh that does not conform to the
fluid/particle interface. This type of modeling and numerical problem belongs
to the class of fictitious domains [6] [7]. The penalty modeling strategy[8] [9]
[10] developed hereafter is based on this approach and will be reported in the
next section.

One major interest of finite-size particle motion simulation is to provide a
local estimate of all flow characteristics (velocity, pressure, viscous stress) to-
gether with a local description of the particle-fluid interface. The resolved scale
particle motion does not require any force modeling nor interaction model as
soon as the mesh is refined enough. In the present work, we will demonstrate
that having at least 5 points in the boundary layer attached to a given par-
ticle allows to recover all the physics of the particle flow without using any
force or interaction model (drag, lift, lubrication, etc). As a consequence, the
finite-size particle approach can be considered as a kind of fully resolved Direct
Numerical Simulation (DNS) of the particulate flow as soon as no modeling
is required to solve the problem. The mesoscopic or macrocopic particle flow
models (Eulerian-Lagrangian, Eulerian-Eulerian) do require the knowledge of
interaction forces to close specific particle-motion interaction terms. For an
isolated particle in an infinite medium, the drag force law of Schiller and Nau-
mann [11] is well known and often used in large scale models. For fixed and
moving beds of particles, we can cite the correlations based on experiments
proposed by Ergun [12] and Wen&Yu [13] and also Gobin [14] who proposed
a correlation based on these two correlations. As soon as the solid fraction is
high and the particle size or shape of particles is not constant (bi-dispersed
flows, spheroidal particles, etc), drag and lift laws have to be designed. This is
the main objective of the present work, i.e. providing a DNS framework with
accurate force calculation in order to finally obtain new force laws for various
particulate motions.
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Numerous numerical works have been devoted to performing DNS of finite-
size particulate flows and obtaining resulting drag force laws from the macro-
scopic analysis of local flow motions in the vicinity of the particle surface. The
first class of numerical models, generally investigated for fixed arrangements of
particles, is the Lattice Boltzmann approach. It was used in numerous works
by Ladd [15] [16] for particle suspensions, by Hill et al. [17] for monodiperse
face cubic centered (FCC) array of spheres, by Hoef et al. [18] and beetstra
et al. [19] for random monodisperse and bidisperse array of spheres to cite a
few. Another class of very popular methods for handling finite-size particle is
the Immersed Boundary Method (IBM) coupled with incompressible Navier-
Stokes equations initially developped for particulate flows by [20] [21]. For
random monodisperse array of spheres, the work of Tenneti et al. [22] is very
interesting as it covers a wide range of solid fractions αd = 0.1 − 0.4, and
also Reynolds number up to 300. At the end, a new correlation is proposed
for drag force laws. The last interesting class of numerical approaches is the
body fitted mesh method, that is restricted to fixed array of particles as it is
impossible to generate automatically a three-dimensional mesh that adapts to
the motion of particles. Among the most interesting works in the field, we can
cite the simulations and analysis of Massol et al. [23] for monodispersed FCC
arrays of spheres.

In all these numerical approaches, the drag force can be deduced in different
ways:

• with Darcy penalty methods [24], it can be obtained directly from the
source term used to accelerate the fluid ouside the particles.

• with the LBM, the drag force exerted by the fluid on the particles is cal-
culated according to the momentum exchange algorithm of Ladd [15].

• In the IBM approach, the forces exerted by the fluid on the particles can be
deduced from the reaction IBM force imposed in the momentum equations
to satisfy a solid behaviour [25].

• with the Volume Penalty Method (VPM), Bizid [26] uses Taylor extrapo-
lations to get the pressure and viscous stress projection on particle surface.

In the framework of macroscopic Eulerian-Eulerian or mesoscopic Eulerian-
Lagrangian models, the previously cited drag force laws are used in many
industrial processes such as fluid catalytic cracking reactors [27], gas phase
polymerisation reactors [14], chemical looping [28] or fluidized beds [10] [29].
However, convergence studies and accuracy analysis of force calculation have
rarely been considered.

Our major contribution is to propose an accurate force estimate for finite-
size particle simulations. Even if all full DNS of particle flows extract forces
on particles [10] [20] [30] [2], few works report on how practically these forces
can be calculated and what is the accuracy or convergence order of the forces.
Among the wide literature devoted to full DNS of particle motions, we can cite
the work of Bizid [26] [31] who uses Taylor extrapolation to estimate pressure
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and viscous constraints on the particle surface. This approach is of low accu-
racy as it utilizes velocity and pressure values that can be inside the particle
volume. The most advanced work on force calculation on immersed interfaces
is due to Zastawny et al. [32] with an improved mirroring immersed boundary
method. In the present work, a new force calculation is proposed based on
Lagrange extrapolation of third order, coupled with a Taylor interpolation of
same order. The main point of our approach is to upwind the interpolation
support in the normal direction to the fluid/solid interface so as to use only
fluid values to estimate forces. Detailed validations of forces are considered for
estimating accuracy and convergence order of the proposed method.

The article is structured as follows. A presentation of the models and nu-
merical methods is first proposed in section 2, paying attention to describe
fictitious domain and penalty methods used to model and approximate in-
compressible particulate motions. In the third section, a new force calculation
for immersed interfaces is proposed, with discussions conducted on order of
approximations and associated accuracy. Validations for flows interacting with
isolated spherical particles at various Reynolds number are presented in the
fourth section. Section 5 is devoted to simulations and validations of flows
through fixed arrangements of mono- and bi-dispersed spheres. Finally, con-
clusions and perspectives are drawn.

2 Model and numerical methods

2.1 Fictitious domain approach

The modeling and simulation of moving objects (bubbles, droplets, solid parti-
cles) interacting with a carrier fluid is impossible to realize with unstructured
meshes as soon as these objects deform or move in a 3D geometry. The com-
monly developed alternative approach consists in simulating this kind of flow
on a fixed grid and to locate the interface thanks to an auxiliary phase func-
tion such as Volume Of Fluid or Level Set functions [33]. The concept that
disconnects the interface motion and the mesh used to solve the conservation
equations is called fictitious domain approach [7] [34]. Indeed, from the motion
equation point of view, the interface is not known, only its presence is taken
into account thanks to a volume auxiliary function. In these approaches, the
interface tracking and the associated building of the phase function is of pri-
mary importance.

As proposed in [10], incompressible two-phase flows involving a carrier
fluid and a solid phase can be modeled on a fixed mesh with fictitious domain
approaches by considering the incompressible Navier-Stokes equations together
with a phase function C describing the particle phase shape evolutions through
an advection equation on the corresponding phase function. As explained by
Kataoka [35] for fluid/fluid two-phase flows and Vincent [10] for particle flows,
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the resulting model takes implicitly into account the coupling between different
phases separated by resolved interfaces, i.e. larger than the mesh cell size. The
motion equations reads

∇ · u = 0 (1)

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+ ρg +∇ ·

[
µ(∇u +∇tu)

]
+ Fsi + Fm (2)

∂C

∂t
+ u · ∇C = 0 (3)

where u is the velocity, p the pressure, t the time, g the gravity vector, ρ and
µ respectively the density and the viscosity of the equivalent fluid. The two-
way coupling between particle and fluid motions is ensured in the momentum
equations by the presence of a solid interaction force Fsi [36] [37] which is
not considered in the present work as only fixed particles are dealt with. The
source term Fm is used to impose a flow rate to the fluid.

The one-fluid model is almost identical to the classical incompressible
Navier-Stokes equations, except that

• the local properties of the equivalent fluid (ρ and µ) depend on C. In the
present work, an arithmetic average is used for density and an harmonic
average is considered for viscosity [10].

• the interface localization requires the solving of an additional equation on
C. Instead of solving this equation on the Eulerian mesh, which is source
of numerical diffusion or tearing of interfaces, a Lagrangian representation
is preferred. A specific mesh (linear elements in 2D and set of triangles in
3D) is considered for the particle surface S. Equation (3) is reformulated

as
dXb

dt
= Vp, with Xb the centroid of the spherical particle and Vp the

velocity of the particle interpolated with surrounding Eulerian velocities
coming from the solving of equations (1-2). The approximation of the La-
grangian tracking of Xb is detailed in [10]. Once Xb is known, the position
of each particle surface mesh element is also known. The phase function
C is automatically build by projecting the Lagrangian particle mesh onto
the Eulerian mesh [33]. For non-spherical particles the rotational motion
has to be considered. It is for example solved with Quaternions [38]. In
the present work, only fixed arrangements of particles are dealt with. As a
consequence, the Lagrangian particle tracking is not considered even if the
Lagrangian mesh for representing particles is used to calculate forces.

Satisfying the incompressible and solid constraints in fluid and particles re-
quires developing a specific model. Two penalty approaches are proposed and
detailed in the next section to tackle with these constraints.
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2.2 Penalty methods

As explained in the previous section, the one-fluid model and the fictitious
domain approach formulated for dealing with particle flows require to con-
sider each different phase (fluid, solid) as a fluid domain with specific material
properties (density and viscosity for an isothermal flow). Each sub-domain is
located by a phase function C.

In addition to local physical characteristics of the fluid that change over
time due to particle motion, the local constraints that have to be fulfilled
change potentially at each time step. Indeed, a given point or cell can be inside
a fluid zone at time n∆t and can be solid at the next time step (n+1)∆t. Here,
n is the time index and ∆t the associated time step. Two different numerical
methods are used to satisfy in a coupled way and at the same time the fluid
incompressibility and the solid behavior:

• Ensuring the solid behavior in the solid zones where C = 1 requires to de-
fine a specific rheological law for the rigid fluid part without imposing the
velocity, as the particle velocities are not always known a priori in partic-
ulate motions (particle sedimentation, fluidized beds, turbulence particle
interaction). A specific model is implemented for handling the solid par-
ticle behavior in the one-fluid Navier-Stokes equations. It is based on a
decomposition of the viscous stress tensor and on a penalty method that
acts on the viscosity which tends to large values in the particles [39] to
implicitly impose the solid behavior and also the coupling between fluid
and solid motion. For fixed particles, the velocity of the cell containing
the centroid of the particle is imposed equal to zero. The viscous penalty
method propagates the zero velocity in the whole solid medium.

• Following a similar walkthrough as in the work on Stokes and Navier-Stokes
equations proposed by Fortin and Glowinski [40], an augmented Lagrangian
method is applied to the unsteady Navier-Stokes equations dedicated to
particulate flows. The main objective is to deal with the coupling between
velocity and pressure and to satisfy the fluid and solid constraints at the
same time. Starting with u∗,0 = un and p∗,0 = pn, the augmented La-
grangian solution reads
while ||∇ · u∗,m|| > ε, solve

(u∗,0, p∗,0) = (un, pn)

ρ

(
u∗,m − u∗,0

∆t
+ u∗,m−1 · ∇u∗,m

)
−∇(r∇ · u∗,m)

= −∇p∗,m−1 + ρg +∇ · [µ(∇u∗,m +∇Tu∗,m)] + Fsi + Fm

p∗,m = p∗,m−1 − r∇ · u∗,m

(4)

where r is an augmented Lagrangian parameter used to impose the in-
compressibility constraint, m is an iterative convergence index and ε a nu-
merical threshold controlling the constraint. The augmented Lagrangian
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method is a kind of penalty technique: if r → +∞, the incompressibility
is imposed but the solving of the linear system is difficult with iterative
solvers while r → 0 does not act on the fluid constraint and keeps the
conditioning of the matrix unchanged. Usually, a constant value of r is
used, for example equal to the average between the minimum and maxi-
mum eigenvalues of the linear system for Stokes flows [40]. From numerical
experiments, optimal values are found to be of the order of ρi and µi in
each phase (fluid or solid) to accurately solve the motion equations in the
related zone [8] [9]. Algebraic improvements have also been proposed by
Vincent [41] to automatically estimate the local values of r. In the present
work, a constant value of r will be used. Its magnitude will be discussed in
the validation sections.

2.3 Discretization schemes and solvers

The schemes and solvers used in the present work are detailed in [10]. The
mass and momentum conservation equations, containing the viscous and aug-
mented Lagrangian penalty terms, are discretized with implicit finite volumes
on structured staggered meshes. The time derivative is approximated with a
first or second order Euler scheme while the inertial, viscous and augmented
Lagrangian terms are discretized with a second-order centered scheme. All
fluxes are written at time (n+ 1)∆t, except the non-linear inertial term that
is linearized at first or second order as follows

• u · ∇u ≈ un · ∇un+1 for first order linearization
• u · ∇u ≈

(
2un − un−1

)
· ∇un+1 for second order Adams-Bashforth like

linearization

The obtained linear system is solved with a BiCGSTAB II iterative solver
[42], preconditionned with a Modified and Incomplete LU approach [43]. All
the code is working on massively parallel computers by using MPI devices and
exchanges [10].

3 Lagrangian extrapolation of forces for immersed boundary
methods

The drag force due to the fluid-solid interaction at a surface S of the solid
phase is:

FD = Fp + Fv (5)

where the pressure force Fp and the viscous force Fv are:

Fp =

∮
S

−p n dS (6)

Fv =

∮
S

2µσ.n dS (7)
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Fig. 1: Details of a 2D discretization of the particle surface S used in drag
force computation

Here, σ is the fluid viscous stress tensor.

The computation of these forces consists in discretizing S on a set of N
elements (triangles in 3d and segments in 2d) called Lagrangian mesh (see
figure 1), such that:

Fp ≈
N∑
l

−pl nl dSl (8)

Fv ≈
N∑
l

2µσl.nl dSl (9)

where pl, σl and nl are respectively the pressure, strain tensor and outgo-
ing normal vector at the center Cl of the lth element of the Lagrangian mesh
as illustrated in figure 1. Normal nl and element surface dSl are deduced from
the coordinates of the nodes constituting the lth element.

3.1 Low order naive approach

Given that the pressure field p and the viscous stress tensor σ, used in the drag
force computation, are known on the Eulerian mesh and not on the Lagrangian
mesh as explained above, the naive approach to overcome this problem consist
in interpolating them from the Eulerian mesh on the Lagrangian mesh using
a second order Taylor interpolation detailed in Appendix 1.

To validate this approach, we compute the drag force exerted by a uniform
Stokes flow (Re = 10−3) on an isolated cylinder (2D) and an isolated sphere
(3D), as detailed below.
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Uniform Stokes flow past a cylinder

According to [31], a uniform Stokes flow past a cylinder of diameter d = 2m,
with the undisturbed velocity being noted U∞ = 1m/s, is solution of the

Brinkman equation −∇p+ µ∆ui −
µ

K
ui = 0. In the polar coordinate frame

(r, θ) centered on the particle, it reads:

u (r, θ) =


1
r

(
−
(

1 + 2K1(λ)
λK0(λ)

)
1
r + r + 2

λK0(λ)
K1(λr)

)
cos θ

−
(

1 +
(

1 + 2K1(λ)
λK0(λ)

)
1
r2 − 2

K0(λ)

(
K0(λr) + K1(λr)

λr

))
sin θ

(10)

p (r, θ) = µλ2
(
−
(

1 +
2K1(λ)

λK0(λ)

)
1

r
− r
)

cos θ (11)

The corresponding drag force is:

FD =
2π

Re

(
2λ2 + 4

λK1(λ)

K0(λ)

)
ex (12)

where λ =
d2

4K
is the dimensionless permeability of the porous medium in

Brinkman sens, K is the permeability of the porous cylinder, K0 and K1 are
the modified Bessel functions of rank 0 and 1. For K → 0, the porous cylinder
can be likened to an impermeable solid particle.

Uniform Stokes flow past a sphere

For the uniform flow past a sphere in Stokes regime, the velocity and pressure
are [44] :

u (x, y, z) =


U∞ − 3

4 (d2 )U∞
(
x2

r3 + 1
r

)
+ 3

4 (d2 )3U∞
(
x2

r5 − 1
3r3

)
3
4U∞

(
( d
2 )

3

r5 −
( d
2 )

r3

)
xy

3
4U∞

(
( d
2 )

3

r5 −
( d
2 )

r3

)
xz

(13)

p = −3

4
µdU∞

x

r3
(14)

where r =
√
x2 + y2 + z2.

The drag force is analytically given by:

FD = 3πµdU∞ex (15)
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Fig. 2: Drag force relative error (%) for the Stokes flow past a cylinder (left),
and the Stokes flow past a sphere (right) in terms of Lagrangian mesh refine-
ment - the force is computed with the naive 2nd order Taylor interpolation
method. The size of the Lagrangian particle surface mesh element is l while
the size of the Cartesian Navier-Stokes mesh is ∆x.

Simulations setup

The computational domain used to simulate a uniform Stokes flow past a
cylinder (resp. a sphere ) is a square (resp. a cube) of a Length L = 2d, and
the spatial discretization, using a regular Cartesian grid called Eulerian mesh,
is represented by the number of grid cells across the diameter of the particle

Dm =
d

∆x
= 20. The exact solution (10), (11) (resp. (13), (14)) for a Stokes

flow past a cylinder (resp. a sphere) was implemented at boundary conditions
to be able to simulate such a flow in a numerically small domain not extending
to infinity as Stokes flow would require. Practically, the considered simulation
domain is two particle diameter long in each space direction.

Results

Figure 2 shows that the computation of the drag force with a naive approach
is not accurate, the error being about at least 40% even if the surface La-
grangian mesh is refined. This is due to the use of pressure and strain tensor
values in the cells containing the fluid-solid interface where the error with the
analytic solution is the highest, as illustrated in figure 3 for the uniform flow
past a cylinder (2D) and a sphere (3D). This error is due to the fact that
the physical characteristics (µ, ρ) in the mixed fluid-solid cells are the average
between those of the fluid and those of the solid.

To prevent the use of wrong pressure and velocities in the cells cut by
the fluid-particle interface, we have to extrapolate the pressure and the strain
tensor from the fluid area far from the particle to the interface. To do so, a
Lagrange extrapolation is considered, as detailed below.



Title Suppressed Due to Excessive Length 11

Fig. 3: Relative error (%) of the first component of velocity for Stokes flow
past cylinder (left) and Stokes flow past sphere (right) in the whole domain
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Fig. 4: Details of third order Lagrange extrapolation used in drag force com-
putation

3.2 New high order method based on Lagrange extrapolation

Given a function f : X ∈ R3 → R and a set of k points Pi, i = 1..k, the kth

Lagrange extrapolation of f at point Cl is given by:

f(Cl) =

k∑
i=1

f(Pi)Li(Cl) , where Li(Cl) =

k∑
j 6=i

|Cl −Pj |
|Pi −Pj |

(16)

The kth order of the drag force computation consists now of interpolating
(using the kth order Taylor interpolation detailed in Appendix 1) the pressure
and the strain tensor on k Pi fictitious points built along the normal (see
figure 4 for third order), and then using the kth order Lagrange extrapolation
(16) to compute them at Cl. With (5), (8), (9), the friction force exerted by
the fluid on the particle can be calculated.

In figure 4, points P1, P2 and P3 are the fictitious points used in third
order Lagrange extrapolation of the pressure and viscous components of the
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Fig. 5: Drag force relative error (%) according to extrapotation distance δ
(written in ∆x unit) for the Stokes flow past a cylinder (left) and the Stokes
flow past a sphere (right) at different order: ( ) first, ( ) second, ( ) third,
and ( ) fourth orders are plotted.

force on the particle surface. The zone between the particle surface S (solid
line) and the dash line corresponds to the Eulerian discrete points that have
an influence on the force calculation. Parameter δ is the minimum distance
between the first fluid point and S that is required to obtain a correct force
estimate.

Note that the order of the drag force computation may not be the same on
all the Lagrangian mesh element. Indeed the choice of the computation order
located at the centre Cl of each Lagrangian mesh element is governed by the
fact that all the points used in the Lagrange extrapolation and the Taylor in-
terpolation have to be fully fluid, i.e the fluid-phase indicator function C = 0
on these points.

Considering that the pressure and strain tensor have to be extrapolated
from the nearest fluid region in the vicinity of the particle, where the physical
characteristics belong to the fluid, to the interface region where the drag force
is computed, the first step consists in increasing the distance δ (see figure 4)
until the computation of the force is accurate enough. As illustrated in figure 5,
the minimum error is reached for δ = ∆x and remains stable for the third and
fourth order Lagrange interpolation, for both simulations, namely the Stokes
flow past a cylinder (left), and past a sphere (right) . As a consequence, the
third order force computation with δ = ∆x will be considered thereafter as
it requires less computational effort. The errors obtained with the new high
order force calculation method are reported in figure 6. Compared to the naive
approach, the error levels for both cylinder and sphere cases are now always
less or around 2% as soon as the local size of the Lagrangian surface mesh
elements is comparable to ∆x. Thanks to the novel force estimate, the error
has been reduced by a factor of 20. In the rest of the work, the value of δ will
be chosen to be ∆x if not specified.
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Fig. 6: Drag force relative error (%) for the Stokes flow past a cylinder (left)
and the Stokes flow past a sphere (right) in term of the Lagrangian mesh
refinement l: force computed using 3rd Lagrange extrapolation and 2nd order
Taylor interpolation

4 Validation on flows interacting with an isolated particle

4.1 Drag coefficient

For validation purpose, the force acting on a particle and in particular the
corresponding drag coefficient is recalled. It is defined as [45]:

Cd =
|FD|

1
2ρŨ

2Ap
(17)

where Ũ = |U∞ex −Up| is the relative velocity between the particle and the
fluid velocity at infinity, U∞ex is fluid velocity in the mean flow direction far
from the particle, Up is the particle velocity, ν is the fluid kinematic viscosity

and Ap =
π

4
d2 the cross-sectional area of the particle.

The drag coefficient is dependent on the flow regime determined by the
Reynolds number:

Re =
Ũd

ν
(18)

The drag coefficient in Stokes regime, i.e. when Re→ 0, is:

Cd =
24

Re
(19)

The correlation of drag coefficient for a finite Reynolds number, proposed
by Schiller & Naumann [11] is:

Cd =
24

Re

(
1 + 0.15 Re0.687

)
(20)



14 Mohamed-Amine Chadil et al.

 

 

𝑈∞ 

Fig. 7: Illustration of instantaneous stream lines obtained for a uniform flow
past an isolated sphere at Re=290. The upstream unperturbed velocity U∞ is
imposed at the left boundary condition.

4.2 Simulations setup

The computational domain is first chosen, its lengths being Lx = 16d and
Ly = Lz = 8d in each Cartesian direction. The Eulerian mesh refinement is
constant in a box of extension [(2d, 3d, 3d) ; (6d, 5d, 5d)] centered around the
particle position. Outside this box, the Eulerian mesh is exponentially coarsen
from the box to the boundaries of the simulation domain. Accurate drag force
calculation needs properly resolved boundary layers around the particle. It is
expected that a 5 cell resolution in the boundary layer thickness will be enough
at least for the range of Reynolds numbers studied in the present article. This
choice is also consistent with the compact support of cells needed to get third
order Lagrange extrapolation accuracy (see figure 24 in appendix 1). This gives
d√
Re

= 5∆x according to scaling laws for laminar dynamic boundary layers.

Therefore, in the box surrounding the particle, the minimum cell size is:

∆x =
d

5
√
Re

(21)

The inlet boundary conditions is u = U∞ex (see figure 7) and Neumann
conditions are applied elsewhere.

4.3 Study of numerical parameters for the Lagrange extrapolation

As an extension of the work carried out for the Stokes regime, we have per-
formed the same kind of study for a higher finite Reynolds number Re = 100
when inertial effects are important. The effect on the drag force computation
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Fig. 8: Drag force relative error (%) for the uniform flow past sphere at Re =
100. Different orders of Lagrange extrapolation are considered: ( ) first, ( )
second, ( ) third, and ( ) fourth order. The distance between the first Eulerian
point used to extrapolate forces and the particle surface is δ.
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Fig. 9: Drag force relative error (%) according to Lagrangian surface element
size l for uniform flow past sphere at Re = 100.

of the distance δ between the particle interface points Cl and the first Eule-
rian mesh extrapolation point P1 has been considered. The role played by the
Lagrangian mesh refinement have also been analyzed.

One can observe in figure 8 a similar behaviour of error as already found for
Stokes flows (the reader can refer to figure 5 right) indicating that in this range,
Reynolds number have little influence on drag force errors at least for 2nd, 3rd

and 4th order Lagrange extrapolations. To conclude on the distance between
Eulerian interpolation points and particle surface, as soon as δ ≥ ∆x, the
error on drag force calculation is less than 2% for 3rd and 4th order Lagrange
extrapolation in Stokes and Navier-Stokes regimes. In this case, a 3rd order
Lagrange extrapolation is considered, as being a good compromise between
implementation complexity, calculation time and accuracy.

As illustrated in figure 9, the Lagrangian mesh refinement does not affect
a lot the drag force computation as soon as the Lagrangian particle surface
element size l is of the order of ∆x. For Re = 100, the error is around 2% on
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Fig. 10: Drag coefficient for uniform flow past sphere at different Reynolds
number: ( ) Schiller & Naumann [11], ( ) present work.

the drag force calculation.

In the rest of the present work, the 3rd order Lagrange extrapolation will
always be used together with l = ∆x.

4.4 Result on the drag coefficient

The transition area between axisymmetric flow and non-axisymmetric vortex
shedding regime being around Re = 300, for a uniform flow past a fixed
isolated sphere, we have conducted several simulations for Reynolds numbers
up to 290 (Re = 0.1, 1, 10, 20, 40, 60, 80, 100, 150, 200, 250, 290). In each case,
the simulations are stopped when the steady state of the flow is reached. The
drag coefficient obtained at the final step of each simulation is compared to
the correlations (19) and (20). Figure 10 shows a very good agreement of the
numerically calculated drag coefficient compared to the correlation of Schiller
& Naumann [11]. This test case provides an interesting validation of the force
calculation for a single particle.

4.5 Pressure coefficient

The analysis of local pressure profiles can give insight into the pressure be-
havior depending on the Reynolds number. The local pressure coefficients are
defined by equation (22) in a spherical coordinate system (see figure 11). They
are considered along the polar angle θ as follows:

Cp(θ) =
p(θ)
1
2ρU

2∞
(22)

The pressure coefficient distribution according to θ is compared for Re =
1, 10, 100 to some available body fitted simulations results conducted by Mag-
naudet [47], Dennis & Walker [46], LeClair & al. [48] and Massol [23]. The
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Fig. 11: Spherical coordinate system around a particle. The flow direction is
represented by the undisturbed velocity U∞.
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Fig. 12: Pressure coefficient for a uniform flow past an isolated sphere at
(a)Re = 1, (b)Re = 10,(c)Re = 100 : ( ) Dennis & al. [46], ( ) Magnaudet &
al.[47], ( ) LeClair & al. [48], ( ) Massol [23], and ( ) present work
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results are presented in figure 12. It can be observed that a very good agree-
ment is found between our force calculations and reference results. We can
observe that the local pressure profile is symmetric with respect to θ = 90 for
Re = 1 as shown in figure 12 a) and become increasingly asymmetric while
increasing the Reynolds number in figures 12 b) and c). This feature of the
flow is clearly highlighted for Re = 10 where the local pressure profile is no
more symmetric with a negative pressure region that took place after θ = 60.
For Re = 100, the same conclusion holds where the negative pressure region
appears at θ = 50.

5 Forces in fixed arrangements of spheres

In the previous section, we have exhibited various successfull validations of
the force calculation for uniform flows past a fixed isolated sphere. We can
now confidently complexify the simulated particulate motion by investigating
a flow past fixed particle assemblies which corresponds to a gas-solid flow with
high Stokes number. Two way are possible to set up a uniform flow past fixed
packed particles:

• by imposing a constant pressure gradient in the domain. In this configu-

ration, the mean fluid velocity 〈uf 〉 =

∫
V

(1− C)udV∫
V

(1− C)dV
evolves to reach a

steady state corresponding to the imposed pressure gradient.
• by choosing a desired mean fluid velocity 〈uf 〉 = ud, and so a desired

Reynolds number. A source term Fm = −ρ 〈uf 〉 − ud
∆t

+

∑Np

i FDi
Vf

is in-

serted in the momentum conservation equations. It is adjusted until the
desired Reynolds number is reached. This is the method used in this work.
Its main advantage is to be able to simulate a prescribed Reynolds number
without a trial and error procedure unlike to what is require in the pressure
gradient technique.

Two ways to distribute the particles are studied in this work: a Face-
Centered Cubic arrangement of spheres for both mono and bi-dispersed flows,
and random assemblies of spheres only for mono-dispersed flows.

The particulate Reynolds number Re =
|〈uf 〉|d
ν

is used studying the Face-

Centered Cubic arrangement of spheres following the work of Massol [23].
On the other hand, in the random assemblies of spheres, another Reynolds
number based on the superficial velocity (1 − αd)|〈uf 〉| is considered to take
into account the solid loading in the characterization of the flows [22][19]. It
is given by:

ReS =
(1− αd)|〈uf 〉|d

ν
(23)
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The relation between the solid volume fraction αd and the number of par-
ticle Np is:

Np =
6

π

(
L

D

)3

αd (24)

As for the uniform flow past an isolated sphere, the grid resolution is fixed

by imposing 5 Cartesian cells in the boundary layer as ∆x =
d

5
√
ReS

.

The mean non-dimensional drag force for all the particles is then defined
as:

F =
|〈FD〉|

3πµd(1− αd)|〈uf 〉|
(25)

with 〈FD〉 =
1

Np

Np∑
i

FDi , FDi being the drag force computed over the ith par-

ticle.

5.1 Monodispersed arrangements of spheres

5.1.1 Face-Centred Cubic periodic arrangement of spheres

A Face-Centered Cubic (FCC) array is a cube where three spheres are placed
on the faces centers, and one sphere is located on the vertices with periodic
boundary conditions, as illustrated in the figure 13.

This configurations was widely studied [23] [17][22] to understand and sep-
arate the wake effects, observed when spheres are aligned along the flow direc-
tion, i.e. streamwise interactions, from the blocking effects, where the spheres
are aligned along the direction perpendicular to the flow direction, i.e. lateral
interactions. Two regimes, i.e. attached and separated flows, govern the uni-
form flow past a FCC array of spheres, depending on the Reynolds number
and the solid volume fraction. They are considered below.

Regime 1: attached flows

For low Reynolds numbers, the boundary layer remains attached to the parti-
cles. Unlike the isolated sphere configurations, the boundary layer detachment
occurs for higher Reynolds numbers when FCC arrays are considered, due to
the blocking effect of the surrounding particles. In fact, the presence of lateral
spheres speeds-up the flow between the spheres and blocks the detachment of
the boundary layer. Figure 14 illustrates this regime for Re = 50, αd = 0.15. A
very good agreement is observed for the pressure distribution over the spheres
in both plans β = 0 and β = 45 as shown in figure 14(a) and 14(b), compared
to the results of Massol et al. [23] obtained with body fitted meshes. The same
agreement is observed for the axial friction coefficient as illustrated in figure
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Fig. 13: Streamlines of a steady flow along the x-axis of a Face-Centred Cubic
array of spheres at Re = 50 and αd = 0.5. The particle shape is plotted in
blue.
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Fig. 14: Pressure coefficient [(a) β = 0, (b) β = 45] and axial friction coefficient
[(c) β = 0, (d) β = 45], for a uniform flow past a FCC at Re = 50, αd = 0.15 :
( ) Massol et al. [23], and ( ) present work

14(c) and 14(d) for the plans β = 0 and β = 45, the spherical coordinates α
and β are illustrated in the figure 11. It is worthwhile to note that the flow is
non-axisymmetric even if all particles see the same flow due to the symmetry
of the array and the periodicity of boundary conditions.
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Fig. 15: Pressure coefficient [(a) β = 0, (b) β = 45] and axial friction coefficient
[(c) β = 0, (d) β = 45], for a uniform flow past a FCC at Re = 300, αd = 0.15:
( ) Massol et al. [23], and ( ) present work

Regime 2: separated flows downstream of the spheres

With increasing Reynolds numbers, a separation of the boundary layer oc-
curs in the downstream hemisphere of the particles. As noticed for an isolated
sphere, the recirculating zone length increases with the Reynolds number. The
flow confinement due to the presence of the lateral particles is so significant
that high speed jet flows are obtained between the particles. These jet flows im-
pact the spheres onto the upstream hemisphere. As illustrated in figure 15(a),
this mechanism induces the development of a fountain effect on the vertical
plan β = 0, the direct consequence of which is that the maximum pressure
is no longer at θ = 0 but at θ = 36. Note that the same result was found
by Massol et al. [23]. Figures 15(a) and 15(b) show again the good agreement
of the pressure distribution on the vertical and lateral plans with the body
fitted simulations of Massol et al. [23], and the same conclusions is observed
in the figures 15(c) and 15(d) for the axial friction coefficient distribution. It
can be noticed that for this Reynolds number of 300, larger differences are
observed between our force calculation and body fitted grid results, mostly in
the vicinity of the pressure peaks in the β = 0 plans.

Drag force

The drag force F normalized by the isolated sphere drag (given by Schiller [11])

Fs = 1 + 0.15Re0.687, noted as
F

Fs
, is compared to existing literature results:
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• Tenneti et al. [22]:

FT =
Fs

(1− αd)2
+ Fφ + Fφ,Re

Fφ =
5.81φ

(1− αd)2
+ 0.48

α
1
3

d

(1− αd)3

Fφ,Re = (1− αd)α3
dRe

(
0.95 +

0.61α3
d

(1− αd)2
)

• Gobin et al. [14]:

FG =

{
FWY if αd ≤ 0.3
min(FWY , FE) otherwise

FWY = Fs(1− αd)−3.7 Wen&Yu[13]

FE =
150

18

αd
(1− αd)2

+
7

4

1

18

Re

(1− αd)2
Ergun[12]

• Beetstra et al. [19]:

FB =
10αd

(1− αd)2
+ (1− αd)2 (1 + 1.5

√
αd) +

0.413

(1− αd)2
Re

24
1

(1−αd)
+ 3(1− αd)αd + 8.4Re−0.343

1 + 103αdRe−0.5−2αd

(26)

Comparisons with these results are presented in figure 16 at different
Reynolds number Re = 10 figure 16(a), Re = 50 figure 16(b), Re = 100 figure
16(c) and Re = 300 figure 16(d). It can be observed that a nice match is found
between our results and those of Massol et al. [23] which was extracted from
body fitted simulations. Reasonable agreement is also observed with Gobin
et al. [14], and Beetstra et al. [19] even if larger differences are noticed for
Re = 10 and 300. The correlation given by Tenneti et al. [22] seems to differ
from the other results for high solid volume fraction. Note that the works of
Beetstra et al. [19] and Tenneti et al. [22] was conducted using an immersed
boundary methods to carry out these simulations.

5.1.2 Random periodic arrangement of spheres

A new step is taken in the complexity of the problem by randomly distributing
a set of spheres for a given solid volume fraction. An illustration is given in
figure 17 for ReS = 50 and αd = 0.3. The locations of the spheres are set by
means of a classical Monte Carlo procedure to distribute them in the domain
until the desired compacity is reached, and a hard sphere collisions model is
used to prevent spheres from overlapping [49]. To simulate an infinite domain,
periodic boundary conditions are specified in all directions.
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Fig. 16: Drag force for a uniform flow past a FCC, normalized by Schiller &
Naumann [11] drag force for a uniform flow past an isolated sphere. Results are
presented as a function of the solid volume fraction αd and Reynolds number
(a)Re = 10, (b)Re = 50,(c)Re = 100 ,(d)Re = 300 : ( ) Tenneti et al. [22],
( ) Gobin et al.. [14], ( ) Beetstra et al. [19], ( ) Randrianarivelo [24], ( )
Massol et al. [23], and ( ) present work.

Fig. 17: Random periodic arrangement of spheres, for ReS = 50 and αd = 0.3
- The particle shape is plotted in blue while black lines represent streamlines.
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Fig. 18: Normalized drag force for a uniform flow past random packed spheres
as function of the superficial Reynolds number ReS and solid volume fraction
(a) αd = 0.1, (b) αd = 0.15, (c) αd = 0.2, (d) αd = 0.3: ( ) Tenneti et al.
[22], ( ) Gobin et al. [14], ( ) Beetstra et al. [19] and ( ) present work.
The error bars represent 95% confidence intervals in the estimation of the
normalized drag force.

To be statistically converged, we performed for most cases five Multiple In-
dependent Simulations (MIS), Tenneti et al. [22] conducted the same number
of MIS to obtain their correlation for the drag force. Consequently, the rep-
resentative non-dimensional drag force numerically obtained is an average of
those calculated over the different realizations (MIS). Simulations with various
solid volume fraction αd = 0.1, 0.15, 0.2, 0.3 have been investigated, together
with different superficial Reynolds numbers ranging from 20 to 200.

The results presented in figure 18 demonstrate again a good global agree-
ment of our results with existing correlations of Tenneti et al. [22], Gobin et
al. [14] and Beetstra et al. [19] for each solid volume fractions studied here as
shown in figures: 18(a) for αd = 0.1, 18(b) for αd = 0.15, 18(c) for αd = 0.2
and 18(d) for αd = 0.3, all function of the superficial Reynolds number. In
all cases, for larger ReS , the correlation of Beetstra et al. [19] is farther from
other works.

The pressure profiles according to θ are given in figure 20. They have been
obtained with our force calculation and our simulations. No comparisons to
other works is possible as these profiles are not reported in the literature. It
can be noticed that the pressure contribution on the drag force increase with
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Fig. 19: Pressure coefficient for a uniform flow past random packed spheres at
ReS = 200 as function of αd (a)β = 0, (b)β = 45: ( ) αd = 0.1, ( ) αd = 0.2
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Fig. 20: Pressure coefficient for a uniform flow past random packed spheres at
αd = 0.2 as function of ReS (a)β = 0, (b)β = 45: ( ) ReS = 50, ( ) ReS = 100,
( ) ReS = 150 and ( ) ReS = 200

the solid volume fraction in both vertical plan β = 0 as illustrated in figure
20(a) and lateral plan β = 45 see figure 20(b). On the contrary, it seems that
the Reynolds number has a small effect on the distribution of the pressure over
the particles, and here again for both plans, as illustrated in figure 19. This
result has previously been obtained in the study of Tenneti et al. [22].

As can suggest the correlation of Gobin et al. [14], our results (see figure
21) show that the drag force in a random arrangement of spheres is having the
same dependence on the Reynolds number as for an isolated sphere. On the
contrary, different behaviours are noticed for Tenneti and Beetstra simulations.

5.2 Bidisperse arrangements of spheres

For a bidisperse arrangement of sphere, i.e. with two types of particle size,
we studied a Face-Centred Cubic periodic arrangement for the two species
of spheres: the larger particles are distributed in the same configuration as
the one previously presented for monodisperse arrangements while the smaller
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Fig. 21: Drag force for a uniform flow past random packed spheres, normalized
by Schiller & Naumann [11] drag force for a uniform flow past an isolated
sphere, as function of the superficial Reynolds number ReS and solid volume
fraction (a) αd = 0.1, (b) αd = 0.15, (c) αd = 0.2, (d) αd = 0.3: ( ) Tenneti
et al. [22], ( ) Gobin et al. [14], ( ) Beetstra et al. [19] and ( ) present
work. The error bars represent 95% confidence intervals in the estimation of
the normalized drag force

particles are positioned at the center of the vertices and at the center of the
cubic simulation domain. This geometry of the particle arrangement is illus-
trated in figure 22.

Two additional dimensionless parameters, for each species, are now neces-
sary to characterize the flow:

xi =
αi
αd

, yi =
di
ds

(27)

where di and αi are the particle diameter and the solid volume fraction of the
specie i respectively. The Sauter mean diameter ds is given by:

ds =

[
2∑
i

xi
di

]−1
The Sauter mean diameter is one of the most important characteristic dimen-
sion for the bidisperse particle arrangement that is often used in the literature
[19].
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Fig. 22: FCC/FCC bidisperse arrangement of spheres for Re = 50 and αd = 0.3
- the particle shape is plotted in blue and the black lines are the streamlines.

Table 1: values of the parameters characterizing the bi-disperse flows simulated
in this work.

x1 x2 y1 y2 ds

0.88889 0.11111 1.11111 0.55556 0.0009m

We have performed simulations of FCC/FCC bidispersed arrangement of

spheres, for which
d1
d2

= 2, at Reynolds number Re = 50 and 100. The solid

volume fractions for the larger particles are α1 = 0.15 and 0.3. The correspond-
ing values of xi, yi and ds are reported in Table 1.

Our force calculation results are given in figure 23. They are compared to
Beetstra et al. [19] correlation that provides the drag force for the ith species
of particle as follows:

(FB)i = ((1− αd)yi + αdy
2
i + 0.0064(1− αd)y3i )FB

where FB is the Beetstra drag force for a mono-dispersed arrangement of
spheres given in equation (26). The values of forces obtained with our method
are also compared to Massol body fitted results [23]. It can be observed that for
all Reynolds and solid fractions, our drag forces are in better agreement with
Massol simulations than with Beetstra laws extracted from their simulations.
A possible explanations of the gap between Beetstra correlation and other
simulations is perhaps due to the accuracy and method for calculating forces
on the particles with their approach. The same kind of discrepancies have been
reported for Beelstra results in random arrangements of spheres.
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Fig. 23: Normalized drag force for a uniform flow past a FCC/FCC packed
spheres as function of the solid volume fraction αd (a) : (Re = 50, y1), (b) :
(Re = 50, y2), (c) : (Re = 100, y1), (d) : (Re = 100, y2), : ( ) Beetstra & al.
[19] , ( ) Massol [23], ( ) present work.

6 Conclusions and perspectives

A new method has been designed for estimating forces in finite-size particle
simulations. It is based on Lagrange extrapolation and Taylor interpolation of
third order. In our method, a Lagrangian mesh is used to describe the particle
shape over time on the Eulerian Cartesian mesh devoted to the flow motion.
One of the most original part of our approach is to upwind the interpolation
support in the normal direction to the fluid/particle interface in order to use
only fluid values to estimate forces. Various parameters of the method have
been tested such as effect of interpolation and extrapolation orders or the size
of the particle surface elements on the error observed on forces.

Based on a second order fictitious domain method using penalty techniques
and augmented Lagrangian procedures for the incompressibility constraint, we
have simulated various particulate flow motions ranging from incompressible
flows around an isolated particle at various Reynolds numbers to flows across
packed spheres under Faced-Centered Cubic, random and bi-disperse arrange-
ments. In all configuration, the drag forces have been compared to reference
results of the literature for various solid fractions and Reynolds numbers. The
general conclusion that we have obtained is that our force calculation method
fits always better to body fitted simulations of Massol et al. [23], that can be
considered as a reference, compared to other force estimates obtained with
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other IBM approaches. It has also been demonstrated that having at least
5 points in the boundary layer attached to a particle ensures to recover all
the physics of the interaction between the carrier fluid and particles without
using any force or interaction model. To our understanding, for obtaining a
correct force calculation in finite-size particle simulations, the most important
parameter is not the number of Eulerian cells along a particle diameter but
the number of mesh cells belonging to the boundary layer surrounding the
particle, whatever the particle diameter.

Future works and ongoing developments are devoted to extending our
method to heat flux calculation and extraction of heat transfer coefficients
in particulate flows. Another interesting way of possible improvement of the
accuracy of our approach is the use of Aslam extensions [50] to replace the
Taylor interpolation in our force calculation method. Other interesting issues
are the extension of the present force calculation to more complex and realistic
particle shapes such as spheroid or spherocylindrical particles.
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Appendix 1: Taylor Interpolation

Let us consider f : X ∈ R3 → R a n-differentiable function at a given point
E. The nth order Taylor Interpolation of f at point Cl is:

f(Cl) =

n−1∑
|α|=0

1

α!

∂αf

∂xα
(E)(Cl −E)α + O(||Cl −E||n)

where α = (α1, α2, α3) ∈ N3 is the sum multi-index. As described in figure 24,
E denotes the nearest point to the Lagrangian particle surface point Cl. Point
E belongs to the fluid domain and so is located on the fixed Eulerian mesh.

The four first order or Taylor interpolation are the following:

• First order:

f(Cl) = f(E) + O(||Cl −E||) (28)

• Second order:

f(Cl) = f(E) +
∂f

∂xi
(E)((Cl)i −Ei) + O(||Cl −E||2) (29)
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Fig. 24: Details of Lagrange extrapolation points for the drag force computa-
tion at point Cl of the surface Lagrangian mesh. E is the nearest fluid point to
the particle/fluid interface. The crosses represent the discrete compact support
of the fluid points required for a 3rd order Lagrange extrapolation.

• Third order:

f(Cl) = f(E) +
∂f

∂xi
(E)((Cl)i −Ei) +

1

2

∂2f

∂x2i
(E)((Cl)i −Ei)

2

+
∂2f

∂xi∂xj
(E)((Cl)i −Ei)((Cl)j −Ej) + O(||Cl −E||3)

(30)

• Fourth order:

f(Cl) = f(E) +
∂f

∂xi
(E)((Cl)i −Ei) +

1

2

∂2f

∂x2i
(E)((Cl)i −Ei)

2

+
∂2f

∂xi∂xj
(E)((Cl)i −Ei)((Cl)j −Ej) +

1

6

∂3f

∂x3i
(E)((Cl)i −Ei)

2

+
∑
i6=j

1

2

∂3f

∂x2i ∂xj
(E)((Cl)i −Ei)

2((Cl)j −Ej)

+
∂3f

∂x1∂x2∂x3
(E)((Cl)1 −E1)((Cl)2 −E2)((Cl)3 −E3)

+ O(||Cl −E||4)
(31)

For each order of interpolation, we have to discretize the partial derivative
used in it by considering the same order of discretization. To avoid using solid
point in the approximation of these derivatives, we choose to use, depending
on the sign of the outgoing normal vector nl, a forward (resp. a backward)
difference scheme if (nl)i > 0 (resp. (nl)i < 0). The forward difference scheme
for the derivatives used in (28), (29), (30), (31) is detailed below. The backward
difference scheme is straightforwardly obtained.
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Gradient approximation

∂f

∂xi
=

3fi − 4fi+1 + fi+2

−2∆xi
+ O(||∆x||2)

∂f

∂xi
=

11fi − 18fi+1 + 9fi+2 − 2fi+3

−6∆xi
+ O(||∆x||3)

∂f

∂xi
=

25fi − 48fi+1 + 36fi+2 − 16fi+3 + 3fi+4

−12∆xi
+ O(||∆x||4)

Hessian approximation

∂2f

∂x2i
=

35fi − 104fi+1 + 114fi+2 − 56fi+3 + 11fi+4

12∆x2i
+ O(||∆x||3)

∂2f

∂xi∂xj
=

539fi,j − 781fi+1,j + 297fi+2,j − 55fi+3,j − 781fi,j+1 + 1035fi+1,j+1

192∆xi∆xj
−303fi+2,j+1 + 49fi+3,j+1 + 297fi,j+2 − 303fi+1,j+2 + 3fi+2,j+2

192∆xi∆xj

+
3fi+3,j+2 − 55fi,j+3 + 49fi+1,j+3 + 3fi+2,j+3 + 3fi+3,j+3

192∆xi∆xj

+ O(||∆x||3)

∂2f

∂x2i
=

45fi − 154fi+1 + 214fi+2 − 156fi+3 + 61fi+4 − 10fi+5

12∆x2i
+ O(||∆x||4)

∂2f

∂xi∂xj
=

117fi,j − 73fi+1,j − 83fi+2,j + 42fi+3,j − 3fi+4,j − 73fi,j+1 − 243fi+1,j+1

60∆xi∆xj
477fi+2,j+1 − 173fi+3,j+1 + 12fi+4,j+1 − 83fi,j+2 + 477fi+1,j+2

60∆xi∆xj

+
−528fi+2,j+2 + 137fi+3,j+2 − 3fi+4,j+2 + 42fi,j+3 − 173fi+1,j+3

60∆xi∆xj

+
137fi+2,j+3 − 3fi+3,j+3 − 3fi+4,j+3 − 3fi,j+4 + 12fi+1,j+4 − 3fi+2,j+4

60∆xi∆xj

+
−3fi+3,j+4 − 3fi+4,j+4

60∆xi∆xj
+ O(||∆x||4)
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Third order derivative approximation

∂3f

∂x3i
=

49fi − 232fi+1 + 461fi+2 − 496fi+3 + 307fi+4 − 104fi+5 + 15fi+6

−8∆x3i

+ O(||∆x||4)

∂3f

∂x2i ∂xj
=

2775fi,j − 8725fi+1,j + 10895fi+2,j − 7105fi+3,j + 2550fi+4,j

−480∆x2i∆xj
−390fi+5,j − 4085fi,j+1 + 11931fi+1,j+1 − 13489fi+2,j+1

−480∆x2i∆xj

+
7911fi+3,j+1 − 2654fi+4,j+1 + 386fi+5,j+1 + 1675fi,j+2

−480∆x2i∆xj

+
−3889fi+1,j+2 + 2856fi+2,j+2 − 744fi+3,j+2 + 101fi+4,j+2

−480∆x2i∆xj

+
fi+5,j+2 − 385fi,j+3 + 711fi+1,j+3 − 264fi+2,j+3 − 64fi+3,j+3

−480∆x2i∆xj

+
fi+4,j+3 + fi+5,j+3 + 10fi,j+4 − 14fi+1,j+4 + fi+2,j+4 + fi+3,j+4

−480∆x2i∆xj

+
fi+4,j+4 + fi+5,j+4 + 10fi,j+5 − 14fi+1,j+5 + fi+2,j+5 + fi+3,j+5

−480∆x2i∆xj

+
fi+4,j+5 + fi+5,j+5

−480∆x2i∆xj
+ O(||∆x||4)
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∂3f

∂x1∂x2∂x3
=

4069fi,j,k − 13656fi+1,j,k − 6fi+2,j,k − 6fi+3,j,k − 6fi+4,j,k

−9000∆x1∆x2∆x3
12194fi,j+1,k − 23256fi+1,j+1,k + 10194fi+2,j+1,k + 444fi+3,j+1,k

−9000∆x1∆x2∆x3

+
−306fi+4,j+1,k − 16681fi,j+2,k + 77094fi+1,j+2,k − 19206fi+2,j+2,k

−9000∆x1∆x2∆x3

+
−456fi+3,j+2,k + 294fi+4,j+2,k − 6fi,j+3,k − 52956fi+1,j+3,k

−9000∆x1∆x2∆x3

+
11244fi+2,j+3,k + 244fi+3,j+3,k − 6fi+4,j+3,k − 6fi,j+4,k

−9000∆x1∆x2∆x3

+
13794fi+1,j+4,k − 3006fi+2,j+4,k − 6fi+3,j+4,k − 6fi+4,j+4,k

−9000∆x1∆x2∆x3

+
−6fi,j,k+1 + 18294fi+1,j,k+1 + 744fi+2,j,k+1 − 6fi+3,j,k+1

−9000∆x1∆x2∆x3

+
−6fi+4,j,k+1 + 59869fi,j+1,k+1 − 6fi+1,j+1,k+1 − 6fi+2,j+1,k+1

−9000∆x1∆x2∆x3

+
−6fi+3,j+1,k+1 − 6fi+4,j+1,k+1 − 177281fi,j+2,k+1 − 40506fi+1,j+2,k+1

−9000∆x1∆x2∆x3

+
−756fi+2,j+2,k+1 − 6fi+3,j+2,k+1 − 6fi+4,j+2,k+1 + 153019fi,j+3,k+1

−9000∆x1∆x2∆x3

+
26994fi+1,j+3,k+1 + 1494fi+2,j+3,k+1 − 6fi+3,j+3,k+1 − 6fi+4,j+3,k+1

−9000∆x1∆x2∆x3

+
−34281fi,j+4,k+1 − 7506fi+1,j+4,k+1 − 6fi+2,j+4,k+1 − 6fi+3,j+4,k+1

−9000∆x1∆x2∆x3

+
−6fi+4,j+4,k+1 − 7581fi,j,k+2 + 3444fi+1,j,k+2 − 4356fi+2,j,k+2

−9000∆x1∆x2∆x3

+
−606fi+3,j,k+2 + 144fi+4,j,k+2 − 136281fi,j+1,k+2

−9000∆x1∆x2∆x3

+
−4506fi+1,j+1,k+2 + 3744fi+2,j+1,k+2 − 6fi+3,j+1,k+2 − 6fi+4,j+1,k+2

−9000∆x1∆x2∆x3

+
348519fi,j+2,k+2 + 3744fi+1,j+2,k+2 − 6fi+2,j+2,k+2 − 6fi+3,j+2,k+2

−9000∆x1∆x2∆x3

+
−6fi+4,j+2,k+2 − 257481fi,j+3,k+2 − 6fi+1,j+3,k+2 − 6fi+2,j+3,k+2

−9000∆x1∆x2∆x3

+
−6fi+3,j+3,k+2 − 6fi+4,j+3,k+2 + 51294fi,j+4,k+2 − 6fi+1,j+4,k+2

−9000∆x1∆x2∆x3

+
−6fi+2,j+4,k+2 − 6fi+3,j+4,k+2 − 6fi+4,j+4,k+2 − 6fi,j,k+3

−9000∆x1∆x2∆x3

+
−1206fi+1,j,k+3 − 6fi+2,j,k+3 + 494fi+3,j,k+3 − 6fi+4,j,k+3

−9000∆x1∆x2∆x3

+
97519fi,j+1,k+3 − 6fi+1,j+1,k+3 − 6fi+2,j+1,k+3 − 6fi+3,j+1,k+3

−9000∆x1∆x2∆x3

+
−6fi+4,j+1,k+3 − 212981fi,j+2,k+3 − 6fi+1,j+2,k+3 − 6fi+2,j+2,k+3

−9000∆x1∆x2∆x3

+
−6fi+3,j+2,k+3 − 6fi+4,j+2,k+3 + 136469fi,j+3,k+3 − 6fi+1,j+3,k+3

−9000∆x1∆x2∆x3

+
−6fi+2,j+3,k+3 − 6fi+3,j+3,k+3 − 6fi+4,j+3,k+3 − 20181fi,j+4,k+3

−9000∆x1∆x2∆x3
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+
−6fi+1,j+4,k+3 − 6fi+2,j+4,k+3 − 6fi+3,j+4,k+3 − 6fi+4,j+4,k+3

−9000∆x1∆x2∆x3

+
−6fi,j,k+3 + 294fi+1,j,k+3 − 6fi+2,j,k+3 − 6fi+3,j,k+3 − 6fi+4,j,k+3

−9000∆x1∆x2∆x3

+
−19531fi,j+1,k+3 − 6fi+1,j+1,k+3 − 6fi+2,j+1,k+3 − 6fi+3,j+1,k+3

−9000∆x1∆x2∆x3

+
−6fi+4,j+1,k+3 + 38294fi,j+2,k+3 − 6fi+1,j+2,k+3 − 6fi+2,j+2,k+3

−9000∆x1∆x2∆x3

+
−6fi+3,j+2,k+3 − 6fi+4,j+2,k+3 − 18931fi,j+3,k+3 − 6fi+1,j+3,k+3

−9000∆x1∆x2∆x3

+
−6fi+2,j+3,k+3 − 6fi+3,j+3,k+3 − 6fi+4,j+3,k+3 − 6fi,j+4,k+3

−9000∆x1∆x2∆x3

+
−6fi+1,j+4,k+3 − 6fi+2,j+4,k+3 − 6fi+3,j+4,k+3 − 6fi+4,j+4,k+3

−9000∆x1∆x2∆x3

+ O(||∆x||4)
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