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ABSTRACT

In hyperspectral imagery, unmixing methods are often used to
analyse the composition of the pixels. Such methods usually sup-
posed that a single spectral signature, called an endmember, can be
associated with each pure material present in the scene. Such an as-
sumption is no more valid for materials that exhibit spectral variabil-
ity due to illumination conditions, weathering, slight variations of
the composition, etc. In this paper, we proposed a new method based
on the assumptions of a linear mixing model, that deals with within
intra-class spectral variability. A new formulation of the linear mix-
ing is proposed. It introduces not only a scaling factor but a complete
representation of the spectral variability in the pure spectrum repre-
sentation. In our model a pure material cannot be described by a
single spectrum in the image but it can in a pixel. A method is pre-
sented to process this new model. It is based on a pixel-by-pixel
Non-negative Matrix Factorization (NMF) method. The method is
tested on a semi-synthetic set of data built with spectra extracted
from a real hyperspectral image and mixtures of these spectra. Thus
we demonstrate the interest of our method on realistic intra-class
variabilities.

Index Terms— Hyperspectral unmixing, intra-class variability,
pixel-by-pixel Non-negative Matrix Factorisation (NMF), real data
set.

1. PROBLEM STATEMENT

In the framework of remote sensing the unmixing is a common way
to deal with mixed pixels in hyperspectral images. This technique
extracts subpixel information in hyperspectral images which are usu-
ally less spatially resolved than panchromatic or multispectral im-
ages. Unmixing aims at extracting the reflectance spectra of pure
materials and the associated proportions in each pixel. An exten-
sive review of unmixing is available in [1]. A common approach of
unmixing problems assumes that the spectrum in a pixel is a linear
mixture of pure reflectance spectra. Under this assumption, each ob-
served reflectance spectrum, xp ∈ RL×1, can be written as follows:

xp =

M∑
m=1

cp,mrm ∀p ∈ {1, . . . , P} (1)

where p is the pixel index and P the number of pixels,m the index of
one of theM pure materials present “in the data”, rm ∈ RL×1 is the
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reflectance spectrum of the mth material and cp,m is the associated
coefficient. Reflectance spectra and coefficients are assumed to be
nonnegative. Beside, the coefficients corresponding to all materials
m are most often assumed to sum to one in each pixel p [2]. This
sum-to-one condition leads to:

M∑
m=1

cp,m = 1 ∀p ∈ {1, . . . , P} (2)

The above model is based on strong assumptions. Two of them can
be singled out. First of all, the pure material spectra definition, in-
deed at macroscopic scale the spectrum of a same pure material ex-
tracted in two different locations of the image can vary. This can be
due to illumination variations. Material can also be weathered, hav-
ing mineral slight composition variations or being variously used [3].
This phenomenon, the so-called intra-class variability [4], then leads
to reconsider the sum-to-one constraint as it is formulated in the lin-
ear mixing model. The unmixing as it is currently performed con-
siders that all observed spectra can be reconstructed by the weighted
sum of a single spectrum per class. And yet it was just pointed out
that a single spectrum cannot describe all variations of a class of ma-
terials. However, from a physical point of view, each pixel spectrum
can actually be decomposed in a set of component spectra. We pro-
vide a solution to this problem by introducing in (1) a dependency
of rm to p, the associated pixel. This means that each pure material
is no longer described by only one spectrum but by a set of spectra
(one per pixel). So the mixing model (1) can be rewritten as:

xp =

M∑
m=1

cp,mrm(p) ∀p ∈ {1, . . . , P} (3)

where rm(p) is the reflectance spectrum associated with the material
m and the pixel p. The coefficients cp,m still verify the sum to one,
so (2) is still verified.

This new model is an ill-posed problem. The features of the
spectral variation inside the classes (sets of pure spectra associated
with a same material) might bring additional information to further
constrain the problem. If intra-class variability was only due to illu-
mination variations, spectral variation could be modelled by a mul-
tiplying factor [5]. However in real data intra-class variability has a
more complex structure.

To achieve an accurate unmixing in real data the intra-class vari-
ability has to be taken into account. The method proposed here-
after achieves unmixing by extractingM sets of endmember spectra.
The Nonnegative Matrix Factorization has been extended and con-
strained to solve (3) under (2). Sec. 2 overviews three NMF unmix-



ing methods from the classical to the above-mentioned one. Sec. 3
presents experimental results and the conclusions are given in Sec. 4.

2. UNMIXING METHODS

Let X = [x1, . . . ,xP]
T denote the hyperspectral data matrix, R =

[r1, . . . , rM]T the pure spectral reflectance matrix if only one spec-
trum per class is considered and C = [c1, . . . , cP]

T the coeffi-
cient matrix. For all pixels p, cp = [cp,1, . . . , cp,M]T is an M -
dimensional vector, containing the set of coefficients associated with
the pixel p. The number of pure spectra, M , is assumed to be known
in the rest of the paper. The linear mixing model (1) can then be
written as follows:

X = CR. (4)

To obtain a similar expression of the model (3), let R(p) =
[r1(p), . . . , rM(p)]T be the set of M constituent material spectra

associated with the pixel p, RP =

R(1)
...

R(P )

 the matrix containing

all the pure spectra. Then Eq. (3) may be rewritten as follows:

xp
T = cp

TR(p). (5)

Let CP ∈ RP×PM be a block diagonal matrix, denoting the new
coefficient matrix:

CP =


c1

T 0 . . . 0 . . . 0 . . . 0
0 . . . 0 c2

T . . . 0 . . . 0
. . .

0 . . . 0 0 . . . 0 . . . cP
T

 (6)

So Eq. (4) yields matrix writing of the mixing model (3):

X = CPRP. (7)

The sum-to-one constraint, (2), is kept, so is the nonnegativity con-
straint. In each method hereafter develops the normalisation of cp
or Cp is performed after each update. Even with these constraints
the equations (5) and (7) remain non-convex problems.

2.1. NMF

Nonnegative Matrix Factorization (NMF) has been adapted to solve
remote sensing unmixing problems [6]. NMF aims at decomposing
a matrix in a product of two nonnegative matrices, in our case the co-
efficient matrix, CP and the reflectance matrix, RP. The necessary
assumption of this method is the nonnegativity of the two searched
matrices. The sum-to-one constraint can be added to NMF. The
method then can be applied to the observation matrix X. To perform
NMF a cost function, the reconstruction error (RE), is minimised,
however the obtained minima may be local ones. This point can be
overcome with a good initialisation. This will be discussed in a later
part (Sec. 3).

2.2. Unconstrained Pixel-by-pixel NMF (UP-NMF)

The classical way to carry out NMF to unmix data does not allow
to extract one set of pure reflectance spectra per pixel. We therefore
developed an extended version of Lin’s standard NMF algorithm [7],
so as to decompose each observed spectrum into pure spectra which
are specific to the considered pixel. This extended version aims at

minimising J1(p) = 1
2
‖xp

T − cp
TR(p)‖22. We will show else-

where that the resulting update of the estimated cp and R(p) can be
expressed as follows before their projection onto R+:

cp
T ←− cp

T + αcp(xp
T − cp

TR(p))R(p)T

R(p)←− R(p) + αR(p)cp(xp
T − cp

TR(p))

where αcp and αR(p) are respectively the coefficient update step and
the reflectance spectra one for the pixel p. From now, let us call this
method Unconstrained Pixel-by-pixel NMF (UP-NMF). This update
before the projection can also be written by using the estimated ma-
trices Rp and Cp. It yields to a similar writing to classical NMF:

CP ←− CP + αCP (X−CPRP)RP
T

RP ←− RP + αRP CP
T (X−CPRP)

except that the required entries of Cp are fixed to zero according to
Eq. (6).

Matrices are initialized by the same set of spectra for all
pixels:R(p) = R(0). On the contrary, the initialisation of cp
can be different for each pixel, by performing a full constraint least
square unmixing on the previously found R(0) for instance. Both
R(p) and cp initializations will be discussed below (Sec. 3.3).

We can note that the coefficient and reflectance matrices are ob-
tained with a scaling factor. Indeed xp can be rewritten as :

xp =

M∑
m=1

1

km(p)
cp,m × km(p)rm(p) ∀p ∈ {1, . . . , P} (8)

with km(p) a scaling factor. This point will be discussed in Sec. 3.
Indeed it has to be taken into account during the result evaluation.

Due to the high under-determinacy of the optimisation problem,
the behavior of UP-NMF is not accurate enough. Spectra rm(p)
from a same class m may evolve so differently that they tend to
define several classes of materials. To limit this spreading of spectra
from a same class, constraints are required. Such a constraint is
proposed hereafter.

2.3. Inertia-constrained Pixel-by-pixel NMF (IP-NMF)

Our extended method is based on limiting class inertia to reduce
the risk for an estimated pure spectrum to go out of its own class.
This limitation is introduced in the optimisation problem by adding
a penalty term in the cost function. The function J2 to be minimised
becomes:

J2 =
1

2
‖X−CpRp‖2F + µ

M∑
m=1

Tr(Cov(RCm)) (9)

where RCm ∈ RP×L denotes the set of reflectance spectra of the
mth pure material extracted in the P pixels, µ the constraint param-
eter and Cov(RCm) the RCm covariance matrix. Our calculations
show that the resulting update of UP-NMF under this added con-
straint and before the R+ projection and zero forcing in Cp is:

CP ←− CP + αCP .(X−CPRP)RP
T

RP ←− RP + αRP .(CP
T (X−CPRP)

− 2µ

P
(IdPM −

1

P
U)RP)



with IdPM the identity matrix of size PM and U ∈ RPM×PM the
“spectrum selection” matrix,

U =

IdM · · · IdM

...
. . .

...
IdM · · · IdM


3. TEST RESULTS

3.1. Test description

The image used to extract pure spectra was taken above Toulouse,
France. The city center architecture led us to choose three pure ma-
terial classes which well describe the scene: tile, vegetation (mainly
plane trees) and asphalt. Due to its 1.8 m resolution, this image
contains many pure spectra. Hence we were able to extract a large
number of spectra to take into account various phenomena respon-
sible for intra-class variability: illumination variation, various mate-
rial weatherings... Some of these spectra are shown in Fig. 1, where
atmospheric absorption bands were removed.

Fig. 1. Reflectance spectra of three pure material classes: Tile (blue),
Vegetation (red) and Asphalt (green) illustrating the intra-class vari-
ability.

The tested data are semi-synthetic. The pure spectra used to
create the mixed data (hereafter call reference spectra) are extracted
from the above urban area image. Thus they describe realistic intra-
class variabilities. Coefficients are randomly chosen while respect-
ing the sum-to-one constraint. The mixing model is Eq. (3)’s one.

Tests were performed to evaluate the benefits of the developed
method. They also allowed us to analyse the impact of initialisation
on results. Various initial spectral matrices, R(0) (cf. Sec. 2.3) were
tested: (i) M spectra are randomly selected from observed data, (ii)
the M purest spectra are extracted with a standard method [1] (N-
FINDR, VCA, ...). The initial coefficient matrix is obtained in two
different ways: (a) by giving the same constant, 1

M
to all coefficients,

(b) by extracting coefficients associated with initialised spectra with
a full constraint least square (FCLS) method.

3.2. Evaluation criteria

Evaluation criteria were chosen to assess the benefits of our method.
A major point to be evaluated is the correspondence between esti-
mated pure material reflectance spectra and spectra really present in
the pixel. To this end we computed, in each pixel, the spectral angles

between these two sets of spectra. Two other criteria were also com-
puted. The first one is the reconstruction error (RE), that shows the
effects of our method on the global reconstruction of the image. The
second one is the mean square error computed on the coefficients.
Computing these errors is possible for semi-synthetic data for which
all the mixing parameters are known. Other criteria must be used if
real data are considered, particularly if no accurate ground truth is
available.

3.3. Results

In the evaluation of the results, we focused on two points: (i) the
results of IP-NMF compared with standard and UP-NMF, (ii) the
impact of the initialisation on the results.

Fig. 2. Projection onto the first two PCA axes of initialisation spec-
tra (red, green, blue stars), standard NMF spectra (red, green, blue
circles) and UP-NMF spectra (cyan, yellow and black stars).

To analyse the general contribution of the IP-NMF, the initiali-
sation parameters are fixed. R(0) is built with the reflectance spectra
extracted from the mixed data with the N-FINDR algorithm. As ex-
plained in Sec. 2.2, all the pixels are initialized with the same set
of spectra. Initialisation of coefficients is carried out by setting all
of them to the same value, 1

M
. The constraint parameter, µ, var-

ied from 0 (spectra spreading) to 200 (convergence toward a single
spectrum). The corresponding results are illustrated in Fig. 3 and
Fig. 4. Fig. 2 shows the result of UP-NMF. As mentioned in Sec-
tion 2.2 the main risk is the spectra spreading. It partly occur in
Fig.2: the variabilities of the retrieved spectra are a bit high regard-
ing the variability of the spectra used in the mixing. It reinforces
our idea to limit the classes inertia. Results in Table. 1 confirms this
observation. The average SAM of this method is the highest due to
the poor reconstruction of some spectra. In this case (as for stan-
dard NMF) the close to 0 reconstruction error (RE) signification is
relative. Indeed reconstruction error minimisation is what UP-NMF
and standard NMF look for. The IP-NMF leads to Fig. 3 and Fig. 4.
In the first one, the constraint parameter µ was fixed to 30, and to
100 in the second one. Dots localisation evolution shows the impact
of the inertia constraint. If µ is too high, the method gets closer to
standard NMF since it yields very compact sets of spectra for each
class. In the case when µ is suitable, the widths of the scatter plots
formed by the extracted spectra are comparable to those of the scat-
ter plots formed by the reference spectra. It has to be noted that
the spectra resulting from constrained method are somewhat shifted



with respect to the initialisation spectra scatter plots. Indeed as ex-
plained in Sec. 2.2, by Eq. (8) scaling factors are contained in the
spectra. And hence dots can move onto the axes passing through
the origin. Thus the dot position onto its class principal axis is con-
tained in the scale factor. That is why we are µ = 30 is a suitable
parameter value: it allows to retrieve the variation orthogonal to the
principal axis of the class. Since scaling factor does not affect SAM,
computing these SAM allow to confirm this point. Table 1 shows
improvements brought by IP-NMF.

Fig. 3. Projection onto the first two PCA axes of initialisation spec-
tra (red, green, blue stars), standard NMF spectra (red, green, blue
circles) and IP-NMF spectra (cyan, yellow and black stars) with
µ = 30.

N-FINDR Standard
NMF UP-NMF IP-NMF

(µ = 30)

RE 17.5 0.60 2× 10−5 2.94

SAM 7.72 7.73 9.44 5.47

Coefficient
error (in %) 4.0 4.7 3.8 3.8

Times (in sec) 0.03 0.02 4.40 4.44

Table 1. Results of various unmixing methods.

The second point consists in analysing the impact of initialisa-
tion. We fixed µ parameter at 30 for IP-NMF. Scenarios described
in Sec. 3.1 were carried out. Results of UP-NMF and IP-NMF were
compared to standard NMF and a classical unmixing method (N-
FINDR + FCLSU). It appears that a poor initialization leads to poor
results for both the standard NMF UP-NMF and IP-NMF. Yet, com-
pared with standard NMF, IP-NMF improves the average spectral
angle error in every initialisation case. We also noted that if both the
spectra and the coefficient are initialised too close to a local mini-
mum the results of our method are close to this initialisation.

4. CONCLUSION

We have developed two new hyperspectral unmixing methods to ad-
dress intra-class variability. This investigation is a first step in the
development of a more robust method. Indeed the dependency on
the initialisation is too strong. Besides the constraint can also be
improved to better take data spatial variability into account. The

Fig. 4. Projection onto the first two PCA axes of initialisation spec-
tra (red, green, blue stars), standard NMF spectra (red, green, blue
circles) and IP-NMF spectra (cyan, yellow and black stars) with
µ = 100.

inertia limitation constraint can be discussed. Current work aims at
developing an extended version of this approach both in terms of ini-
tialisation and constraint applied to the cost function. We also plan
to work on ground truth to obtain good qualities ones. Then we will
be able to carry out IP-NMF on real images and pertinently analyse
results.
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