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AN INTRODUCTION TO NONPARAMETRIC ADAPTIVE ESTIMATION
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LMRS, UMR CNRS 6085, UNIVERSITÉ DE ROUEN NORMANDIE, FRANCE.
GAELLE.CHAGNY@UNIV-ROUEN.FR

Abstract. Statistical estimation aims at building procedures to recover unknown parameters
by analysing some measured data sampled from a large population. This note deals with the case
of infinite dimensional parameters, that is functions, through the example of probability density
estimation. After discussing how to quantify the performances of estimation methods, we discuss
the limits of accuracy of any estimator for the density (minimax point of view) and present
the main two methods of nonparametric estimation: projection and kernel estimators. Upper-
bounds on the accuracy of the defined estimators for a fixed amount of data are derived. They
highly depend on smoothing parameters (the model dimension and the bandwidth, respectively
for the two methods), which should be carefully chosen. The second part of the text is devoted
to data-driven estimator selection, for which we provide a brief review: both the model selection
and the bandwidth choice issues are addressed. We describe two methods that permit to obtain
so-called oracle-type inequalities while being adaptive: the selection does not depend on the
unknown smoothness of the target density. A large list of references is provided, and numerical
experiments illustrate the theoretical results.

1. Introduction

1.1. Statistical inference. Statistical inference is the use of probability theory to deduce prop-
erties or characteristics of a population which is only partially observed.

The general process can be described as follows. An observed data set X = {x1, x2, . . . , xn},
assumed to be sampled from a large population, is available. Typically, the xi’s are assumed to be
realisations of independent and identically distributed (i.i.d. in the sequel) random variables (or
random vectors) {X1, . . . , Xn} on a measurable space (Ω,A). The first step is to choose a model,
that is a set of probability distributions P = {Pθ, θ ∈ Θ} on (Ω,A), which should adequatly
describe the data, in the following sense: the "true" underlying probability distribution of the
Xi’s is supposed to be not too far from this set, or ideally, is supposed to be an element Pθ0 of
the model. Then, the goal is to propose some methods to recover from X the features of this
probability distribution which describes at best the data in the model. This can be done through
the estimation of the parameter θ0, which is the problem considered in this note, and even if
statistical inference cannot be reduced to estimation (it also includes tests, classification...). The
next step is thus naturally to check the performance of the proposed estimation methods.

1.2. Parametric versus nonparametric statistics. In many situations, there is sufficient
motivation for using models that are described by a finite number of finite dimensional parameters
(for example if the statistician has prior information about the studied population). This is
parametric statistics. In such a framework, the assumption is that Θ is a part of an euclidean
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2 G. CHAGNY

space, typically Θ ⊂ Rd. For example, setting Θ = R × R+, and P(µ,σ2) = N (µ, σ2) for any
(µ, σ2) ∈ Θ, permits to parametrise the Gaussian family of distribution. If a data set is supposed
to come from this model, estimating the two parameters (the mean µ0 and the variance σ2

0) of the
"true" underlying distribution is sufficient to recover it entirely. On the opposite, if for whatever
reason a parametric model is not forthcoming (when, for example, there is no prior opinion about
the data or when a parametrised distribution cannot easily fit the data), it can be interesting
to choose nonparametric statistics. The idea is to make as few assumptions as possible on the
underlying probability distribution of the observations, to leave it essentially free: the number
of parameters may not be fixed and may grow with the amount of data, or a distribution-free
approach can be used (all the possible probability measures are permitted)... The set Θ is thus
an infinite dimensional space, e.g. a functional space: the space of all densities, the space of
all cumulative distribution functions... The objective is thus to estimate a function. The only
constraint concerns the smoothness of the target function: we will restrict Θ to a ball of a
functional space (Hölder spaces...). Specific methods are required to deal with a nonparametric
estimation problem. It should be kept in mind that, since few assumptions are required, the
applicability of nonparametric methods is much wider than parametric ones, and they are more
robust. In particular, we will consider adaptive estimation, which aims at building totally data-
driven functional estimators, that do not depend on the unknown smoothness of the function
to recover. However, when the choice of the model is correct, parametric methods will produce
more accurate and precise estimates: to obtain similar results (similar "convergence rates", see
definition in Section 2.2.2 below), a nonparametric estimator requires a larger data set.

1.3. Overview of the note. Nonparametric methods in statistical inference are now widely
developed for estimation (as presented above) but also for testing and we cannot reasonably
make an exhaustive review of the literature in this note. We refer the reader to the monographies
of Conover (1980); Wasserman (2006), and Bosq (2012). Our aim is to briefly present the two
main classes of functional estimators (kernel and projection methods) in the simple framework
of univariate density estimation, and their nonasymptotic theoretical study. The framework and
the notations are introduced in Section 2. Section 3 permits to define the estimators and to
discuss the theoretical results which can be expected. We then explain how the procedure can
be "tuned" to adapt automatically to the unknown smoothness of the function to be estimated,
which constitutes the main goal of adaptive estimation (Section 4): a brief overview of adaptive
methods is proposed, and two of them are developed with more details (model selection via
penalisation and Goldenshluger-Lepski method). Numerical experiments illustrate the methods
throughout the text. The exposition is based on the monographies of Tsybakov (2009) and Comte
(2015), where most of the results and proofs can be found.

2. Statistical framework

2.1. Estimation problem and motivation. In this note, we consider the basic problem of
univariate density estimation. Let X = {X1, . . . , Xn} be an i.i.d. sample of a real random
variable X on (Ω,A), with probability density function f with respect to the Lebesgue measure.
The function f is considered completely unknown, and the aim is to recover it from the data
X1, . . . , Xn on an interval I ⊂ R (for simplifying, we confuse the realisations of the random
variables with the random variables themselves, compared to what has been described in the
introduction). The model is thus for the moment P = {Pf , f ∈ F}, where F is the set of the
nonnegative functions on R which integrate to one, and Pf the probability measure with density
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f . We will define some estimators f̂(X) for the true f , that is some measurable functions of
the data (we denote by f and not by f0 the true density). Any estimator is thus a function:
f̂(X) : I → R. For the sake of simplicity we denote it only by f̂ .

Estimating a density is a very classical but important question: this enables to visualise a data
set or to recover geometrical properties of a probability distribution (like the number of modes) for
example. Applications are obviously various. The distributions of most of quantitative variables
(wages, height in a population...) can be represented by density estimators. Let us quote two
more specific examples: Wasserman (2006) uses it for galaxy cluster detection purpose (Chapter
4), Efromovich (2008) proposes to analyse a lottery (daily numbers game) with density estimation
(Chapter 1)... However simple as the model may seem, it raises numerous questions. Moreover,
density estimation is also a starting point to propose new estimation methods which can be then
developed for other objectives. This is thus a current research topic. We will not explore a "real"
data set in this note, which is devoted to a theoretical point of view. However, all the methods
will be illustrated through simulations. We will mainly focus on one example: the estimation of
the density fSimul of a mixture of two Gaussian distributions 0.5N (−2, 0.4)+0.5N (2, 0.4), which
can be expressed as

(1) fSimul(x) =
0.5√
0.8π

(
exp

(
−(x+ 2)2

0.8

)
+ exp

(
−(x− 2)2

0.8

))
.

2.2. Evaluation of a functional estimation method.

2.2.1. Quadratic risk. Technically, any measurable function f̂ of the data X is an estimator for
f . Thus, any estimation procedure has two steps: a step of definition of an estimator, and a
step of evaluation of the performances of the estimator. The second step involves being able to
compare two functions. Classically, Lp-distances are considered, mostly with p = 1, 2 or ∞. We
choose p = 2 in the sequel: this choice is motivated by the Hilbertian method we will consider,
and can be also seen as a compromise between the L1-norm (natural for density estimation: a
density is an L1−function) and the L∞-norm (which can be easily affected by peaks). Thus, we
assume that F is the set of probability densities which are squared integrable on I (with respect
to the Lebesgue measure): F = L2(I). The distance is called the loss function, and we define
the associated risk of an estimate f̂ for the estimation of f by

(2) R(f̂ , f) = Ef
[∥∥∥f̂ − f∥∥∥2

]
, with

∥∥∥f̂ − f∥∥∥2
=

∫
I

(
f̂(x)− f(x)

)2
dx,

where Ef is the expectation under the distribution Pf . This risk is the Mean Integrated Squared
Error (M.I.S.E.) or quadratic risk. We could also consider the Mean Squared Error (M.S.E.),
based on the pointwise loss, and defined by Ef [(f̂(x0) − f(x0))2], for any fixed x0 ∈ I (most of
the following results have their analogous versions for the M.S.E.), or other risks based on intrisic
probability measures (such as the Hellinger distance or the Kullback divergence).

2.2.2. Minimax point of view. What can be expected for the risk of an estimator? A primary
requirement is that it is as small as possible: it should go to zero when the number n of obser-
vations in the data sample goes to infinity. An estimator f̂ reaches the convergence rate ψn over
a functional class F if the following upper-bound holds:

(3) sup
f∈F
R(f̂ , f) ≤ Cψ2

n,
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where (ψn)n∈N\{0} is a decreasing sequence which goes to zero, C a positive constant, and where
supf∈F R(f̂ , f) is called the maximal risk over F . To assess the optimality of an estimator, such
an upper-bound could be compared to the minimax risk, defined by

inf
f̃

sup
f∈F
R(f̃ , f),

where the infimum is over all possible estimators f̃ for f that can be computed from X. This
smallest maximum risk among all estimators measures what happens in the worst case allowed
in the problem (what happens when estimating the most difficult function f of the class F). If,
for a sequence (ψn)n like above,

(4) inf
f̃

sup
f∈F
R(f̃ , f) ≥ cψ2

n,

then ψn is called a minimax rate of convergence for the estimation of f over F . If the upper-
bound (3) is completed by a lower bound of the form (4), with the same sequence (ψn)n (that is
if the upper-bound matches with the lower-bound), then f̂ satisfying (3) is said to be minimax
optimal.

Such convergence rates generally depend on the smoothness of the function f : we restrict
ourselves to an (infinite dimensional) subset Fα of F , where α > 0 is an index that quantifies the
smoothness of f . The statisticians consider general spaces, typically Hölder or Nikol’skĭı space
when dealing with kernel estimators, Sobolev or Besov spaces for projection methods. In this
note we will not give precise definitions: see Tsybakov (2009) for the first ones and DeVore and
Lorentz (1993) for the seconds. Heuristically, Fα = Cα(I), the space of α−times differentiable
functions on I: the larger α, the faster the convergence rates. For the considered univariate
density estimation problem, the minimax quadratic risk can be expressed as

(5) ψn = n−
α

2α+1

for Hölder spaces (Juditsky and Lambert-Lacroix, 2004), Nikol’skĭı and Sobolev spaces (Ibragi-
mov and Has′minskĭı, 1980; Hasminskii and Ibragimov, 1990), Besov spaces (Kerkyacharian and
Picard, 1992; Donoho et al., 1996; Reynaud-Bouret et al., 2011). As expected, the rate is slower
than the one classically obtained for parametric estimation, which is ψn = 1/

√
n. The compu-

tations of the lower bounds are based on general reduction schemes. A clear account is provided
by Tsybakov (2009), chapter 2. The present work addresses the problem of building estimators
that reach the minimax risk (5), without using the unknown smoothness index α: since f is
unknown, α is probably unknown too and should not be used to build estimators. This is what
we call adaptive estimation.

Notice finally that the accuracy/optimality of an estimation procedure can be measured
through other quality criteria: efficiency is for example an additional feature that can be con-
sidered (see Efromovich 2008 or Tsybakov 2009). The maxiset approach has been introduced
by Cohen et al. (2001) as an alternative point of view less pessimistic than the minimax one to
assess optimality.

3. Two classical estimation methods

In this section, we introduce the two main methods which are used to estimate some functions:
minimum of contrast methods, based on projection on linear subspaces and kernel methods based
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on convolution arguments. The M.I.S.E. of the estimators are evaluated, and the results for the
two methods compared.

3.1. Projection estimators.

3.1.1. Approximation and minimum contrast estimators. Projection method is heavily based
on the assumption that the true density f to estimate belongs to the Hilbert space F =
(L2(I), ‖.‖, 〈·, ·〉). The main idea is to approximate f by its orthogonal projection onto finite
dimensional subspaces, called the sieves or the models. This specific terminology and the method
described here have been developed by Birgé and Massart (1993, 1998). Let SΛ = Span{ϕλ, λ ∈
Λ} be a linear subset of L2(I), with 1 ≤ |Λ| < ∞, and {ϕλ, λ ∈ Λ} a family of linearly
independent functions on I. Then the orthogonal projection ΠSΛ

f can be written

ΠSΛ
f =

∑
λ∈Λ

aλϕλ, with aλ = 〈f, ϕλ〉 =

∫
I
f(x)ϕλ(x)dx.

Instead of recovering f , one can rather first estimate ΠSΛ
f , which amounts to estimate the finite

family of coefficients (aλ)λ∈Λ. This momentarily reduces the problem to a parametric one! Recall
that ΠSΛ

f is also defined by

(6) ΠSΛ
f = arg min

t∈SΛ

‖f − t‖2 = arg min
t∈SΛ

‖t‖2 − 2〈t, f〉,

and we use this definition to estimate it. Since 〈t, f〉 = Ef [t(X1)], an empirical counterpart1 for
this quantity is n−1

∑n
i=1 t(Xi). We thus define

(7) γn(t) = ‖t‖2 − 2

n

n∑
i=1

t(Xi), t ∈ L2(I),

The function γn is called a contrast function (see Birgé and Massart 1993, p.117 or Birgé and
Massart 1998, p.318) or a least-squares contrast function (by analogy with the least-squares
contrat function that permits to estimate a regression function). We check that

Ef [γn(t)] = ‖t‖2 − 2〈t, s〉 = ‖t− s‖2 − ‖s‖2.

Thus, by comparing this with (6), γn suits well to estimate ΠSΛ
f : minimising it over the linear

subspace SΛ leads to a minimum contrast estimator (a kind of M−estimator2) for f :

(8) f̂Λ = arg min
t∈SΛ

γn(t).

The estimator f̂Λ is uniquely defined: we compute

f̂Λ =
∑
λ∈Λ

âλϕλ, with âλ = n−1
n∑
i=1

ϕλ(Xi).

Moreover, it is an unbiased estimator for ΠSΛ
f in the sense that Ef [f̂Λ] = ΠSΛ

f .

1When an unknown quantity appears, the statistician replaces it by an estimator, build from the available data.
Here, n−1 ∑n

i=1 t(Xi) is an unbiased estimator of Ef [t(X1)] (this means that Ef [n−1 ∑n
i=1 t(Xi)] = Ef [t(X1)]

which is also consistent (it converges almost surely to Ef [t(X1)]).
2M-estimators is a broad class of estimates, which are obtained as the minima of functions of the data. It

covers the minimum contrast estimators, like here, but also the maximum likelihood estimators.
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3.1.2. Models. The method raises the question of the definition of the model SΛ ⊂ (L2(I), ‖.‖),
that is the definition of its basis (ϕλ)λ∈Λ. The choice falls to the statistician, and we consider
the following assumptions.

(M1): dim(SΛ) = |Λ| ≤ n.
(M2): {ϕλ λ ∈ Λ} is an orthonormal family of functions.
(M3): SΛ ⊂ (L∞(I), ‖.‖∞), the space of essentially bounded measurable functions on I

and

∃Φ2
0 > 0,

∥∥∥∥∥∑
λ∈Λ

ϕλ

∥∥∥∥∥
2

∞

≤ Φ2
0|Λ|,

Assumption (M1) is reasonable. It states that the dimension of the model is bounded by the
number of observations: |Λ| is indeed the number of coefficients of the orthogonal projection to
recover (see its development in the basis (ϕλ)λ∈Λ above), and one cannot hope to have a good
estimate if it is larger than the number of data3. We only assume (M2) for technical purpose:
it can be relaxed by only assuming that (ϕλ)λ∈Λ is a Riesz basis, which means

∃c, C > 0, ∀(aλ)λ∈Λ, c
∑
λ∈Λ

a2
λ ≤

∥∥∥∥∥∑
λ∈Λ

aλϕλ

∥∥∥∥∥
2

≤ C
∑
λ∈Λ

a2
λ.

(see Härdle et al. 1998, definition 6.1). Assumption (M3) is a connection between the L2− and
the L∞−structures of the models, since it is equivalent to

∀t ∈ SΛ, ‖t‖2∞ ≤ Φ2
0|Λ|‖t‖2,

see Birgé and Massart (1998), Lemma 1.
In the litterature, there exist benchmark models which satisfy these three assumptions: mod-

els based on the Fourier basis, on regular piecewise polynomials with dyadic partition, or on
compactly supported wavelets. The last two models have an additional property of "localisa-
tion", which is sometimes helpful. If Riesz bases are allowed, B-spline can also be considered.
For details, we refer to Birgé and Massart (1998) for general points, Härdle et al. (1998) for
wavelets and DeVore and Lorentz (1993) for spline bases. The Laguerre basis is sometimes used
for estimation over I = R+, see Belomestny et al. (2016) e.g. For illustration, we only consider
here the trigonometric model, defined on I = [a, b] by Λ = Λm = {1, . . . , Dm} with Dm = 2m+1,
m ≥ 0 and ϕ1(x) =

√
b− a−1

1I(x),

ϕ2j(x) =
1√
b− a

1I(x)
√

2 cos

(
2πj

x− a
b− a

)
ϕ2j+1(x) =

1√
b− a

1I(x)
√

2 sin

(
2πj

x− a
b− a

)
,

for j = 1, . . . ,m. The models spanned by this basis are nested: if m ≤ m′, SΛm ⊂ SΛm′ .
The crucial point for projection estimators is that the model has good approximation proper-

ties: it is clear that the estimation method fails if ΠSΛ
f is far from f . Lemma 12 from Barron

et al. (1999) established that for reasonable wavelets, piecewise polynomials and for the trigono-
metric basis defined above,

(9) ‖f −ΠSΛ
f‖ ≤ C|Λ|−α

3In this paper, we do not consider the framework of high dimensional statistics ("big data" analysis), which
deal with the special case |Λ| >> n in this context and required specific methods.



AN INTRODUCTION TO NONPARAMETRIC ADAPTIVE ESTIMATION 7

if f belongs to a ball of the Besov space Bα2,∞(I). As explained in Section 2.2.2, we do not give a
detailed definition of such functional spaces (that are interpolation spaces lying between Sobolev
spaces): the reader should just keep in mind that α > 0 is a measure of the smoothness of f .
Analogous results exist for spline and Laguerre bases.

3.1.3. Upper-bound for the risk. We have heuristically explained the definition of the projection
estimator f̂Λ for f , see (8). Let us study its risk. Thanks to the Pythagoras theorem, the M.I.S.E.
is splitted into two terms

(10) R
(
f̂Λ, f

)
= Ef

[∥∥∥f̂Λ − f
∥∥∥2
]

= ‖f −ΠSΛ
f‖2 + Ef

[∥∥∥f̂Λ −ΠSΛ
f
∥∥∥2
]
.

The first term is the squared-bias term or the approximation error. The second one is the variance
term of the risk or the stochastic error, and can be bounded as follows

Ef
[∥∥∥f̂Λ −ΠSΛ

f
∥∥∥2
]

= Ef

∥∥∥∥∥∑
λ∈Λ

(âλ − aλ)ϕλ

∥∥∥∥∥
2
 ,

=
∑
λ∈Λ

Varf (âλ) =
1

n

∑
λ∈Λ

Varf (ϕλ(X1))

≤ 1

n

∑
λ∈Λ

Ef
[
ϕ2
λ(X1)

]
≤ Φ2

0

|Λ|
n
,

thanks to assumptions (M2) and (M3). This leads to

(11) R
(
f̂Λ, f

)
≤ ‖f −ΠSΛ

f‖2 + Φ2
0

|Λ|
n
.

The bias and the variance terms of the risk have thus opposite behaviours with respect to the
dimension |Λ| of the model: the bias term decreases when |Λ| increases (the larger the model,
the better the approximation) while the variance term increases with |Λ| (since the number of
estimated coefficients grows with |Λ|): in this case, SΛ is likely to overfit. A compromise is
thus required to minimise the risk: the largest model is not the best one for estimation purpose!
It is the so-called bias-variance trade-off, which is illustrated in Figure 1. To implement the
estimator, we calibrate the estimation interval I = [a; b] with the data a = min{Xi, i = 1, . . . , n}
and b = max{Xi, i = 1, . . . , n}.

3.1.4. Towards model selection. The upper-bound (11) for the risk of a projection estimate shows
that the model SΛ, and precisely its dimension dim(SΛ) = |Λ| play a crucial role in the procedure.
It is thus natural to consider a collection of models (SΛm)m∈Mn with Mn ⊂ N\{0} a finite
collection of indices (which cardinality may depend on the data sample size n, see the assumptions
of Theorem 1). Thus, there are a collection (f̂Λm)m∈Mn of estimates for f . For our simulation
example (see (1)), they are plotted in Figure 2. The statistician has to choose the "best" one in
the collection ("best", in the sense of the quality criterion chosen, here the M.I.S.E.). To simplify
the notations and exposition, from now on, we assume that the model collection includes only
one model per dimension. For any m ∈ Mn SΛm is thus be denoted by Sm, f̂Λm = f̂m, and we
set |Λm| := Dm.
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|Λ| = 7 |Λ| = 16 |Λ| = 51

Figure 1. Projection estimators (in the Fourier basis) for fSimu, computed with n =

500 observations, for three choices of model dimensionDΛm
. Bold blue line: true function

fSimu. Green line: estimator.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Figure 2. Collection of projection estimators (in the Fourier basis) for fSimu, computed
with n = 500 observations, for different model dimensions. Bold blue line: true function
fSimu. Thin lines: estimators f̂m, m = 1, 3, 5, . . . , 51.

The best model in the collection has index m∗ satisfying

(12) m∗ = arg min
m∈Mn

R(f̂m, f)

It is called the oracle (an "oracle" who knows in advance the collection of the risks - the ter-
minology has been introduced by Donoho and Johnstone 1994), and is not available, since it
depends on the true function f to recover: it is not an estimator.

If the density f belongs to a ball of the Besov space Bα2,∞(I), then the bias term in Equation
(11) is upper-bounded by D−2α

m , see (9). If the index α is known, model selection is easy to
perform: we choose the model Sm(α) such that m(α) = arg minm∈Mn{D−2α

m + Φ2
0Dm/n}. This

leads to a dimensionDm(α) of order n1/(2α+1), and a convergence rate n−2α/(2α+1) for the maximal
risk of f̂m(α) in the sense defined above (see Section 2.2.2). This proves that projection estimates
might have good behaviour, since this rate is the minimax one for density estimation from an
i.i.d. sample (see again Section 2.2.2) However, if f is unknown, α is probably unknown too.
The challenge of adaptive estimation is to perform model selection in a data-driven way, this is
the goal of Section 4.
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3.2. Kernel estimators. Kernel estimators is the second family of function estimators. For
simplicity, we consider I = R in this section (if this is not the case, one can replace f by f1I).

3.2.1. Kernel and approximation. A kernel is an integrable function K : R → R which satisfies∫
RK(u)du = 1. For any real-number h > 0, let Kh : u ∈ R 7→ K(u/h)/h. The basic
property which makes kernel interesting for estimation purpose is the following: the family
(Kh)h≥0 is an approximate identity for the convolution product. This means that the convolution
Kh?f : x 7→

∫
RKh(x−x′)f(x′)dx′ goes to f (in L2(R)) when h goes to zero, and the convergence

rate is all the faster that f is smooth: if f belongs to a ball of a Nikol’skĭı spaceNα
2 (R) (Nikol′skĭı,

1975) then, for any h > 0,

(13) ‖Kh ? f − f‖2 ≤ Chα,

for a constant C > 0 which does not depend on the parameter h, as soon as the kernel K
satisfies

∫
R |x|

α|K(x)|dx < +∞ and has order l = bαc (bαc is the greatest integer strictly less
than α): this means that for any j = 0, . . . , l, the functions x 7→ xjK(x) are integrable and∫
R x

jK(x)dx = 0. A proof of (13) can be found in Proposition 1.5 of Tsybakov (2009).

The true density f can thus be approximated by Kh?f , which satisfies Kh?f(x) = Ef [Kh(x−
X1)]. The kernel estimator for f with fixed parameter h > 0 is thus the empirical counterpart
of the expectation

(14) f̂h(x) =
1

n

n∑
i=1

Kh(x−Xi), x ∈ R.

It has been introduced by Rosenblatt (1956), for the "rectangular" kernel K = 1]−1;1[/2: in this
case, it can be seen has a kind of "derivative" of the empirical cumulative distribution function
(see Tsybakov 2009 for details). Then Parzen (1962) has generalised the definition for any kernel
function. Tsybakov (2009) has listed six usual kernels that are plotted in Figure 3. Beta kernels
can also be considered, see Bertin and Klutchnikoff (2011).

Figure 4 shows the functions Kh when h is getting smaller (close to 0), for the rectangular
kernel and the Gaussian one. The parameter h in Definition (14) is a smoothing parameter
called the bandwidth: the main challenge is to choose a good value for it (see sections 3.2.2 and
4.3). Notice also that kernels of a given order l, as defined above, can be built with at least
two methods. A first construction is proposed by Kerkyacharian et al. (2001) (see also Comte
2015, p.53) and a second way to build them is to take advantage of the Legendre polynomials,
see Tsybakov (2009), p.10.

3.2.2. Risk and bandwidth selection problem. The decomposition of the M.I.S.E. of the kernel
estimate is similar to that of projection estimator. Keeping in mind that Ef [f̂h] = Kh ? f , the
analogous of (10) is

R
(
f̂h, f

)
= Ef

[∥∥∥f̂h − f∥∥∥2
]

= ‖f −Kh ? f‖2 + Ef
[∥∥∥f̂h −Kh ? f

∥∥∥2
]
.

Since ‖Kh‖2 = ‖K‖2/h, we obtain for the variance term of the risk

Ef
[∥∥∥f̂h −Kh ? f

∥∥∥2
]

=

∫
R
Varf (f̂h(x))dx ≤ 1

n

∫
R
Ef
[
K2
h(x−X1)

]
dx ≤ ‖K‖

2

nh
,
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Figure 3. Usual kernels in statistics. (a) rectangular kernel, (b) triangular ker-
nel, (c) Epanechnikov kernel, (d) "biweight" kernel, (e) Gaussian kernel, (f) Sil-
verman kernel.
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Figure 4. Examples of functions (Kh)h>0, which form an approximate identity for the
convolution product when h goes to zero.

which leads to

(15) R
(
f̂h, f

)
≤ ‖f −Kh ? f‖2 + ‖K‖2 1

nh
.

Here again the two terms of the upper-bound must be balanced, to minimise the risk: the
bias term goes to zero with the bandwidth h (and thus is too large if h is large), while the
variance term explodes when h is too small (overfitting), see Figures 5 and 6. In the last one,
the M.I.S.E., defined as an expectation (see (2)), is approximated by a Monte-Carlo method. It
is obtained by averaging the following approximations ISEj of the Integrated Squared Error, for
j ∈ {1 . . . , J = 100}, computed with J = 100 replications:
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Figure 5. Kernel estimators (Gaussian kernel) for fSimu (defined by (1)), computed
with n = 500 observations, for three choices of bandwidth h. Bold blue line: true function
fSimu. Green line: estimator.
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Figure 6. (a) Collection of kernel estimators (Gaussian kernel) for fSimu, computed
with n = 500 observations, for different bandwidths. Bold blue line: true function fSimu.
Thin lines: estimators f̂h, h = 1/30, 2/30, . . . , 1. (b) Plot of the M.I.S.E. R(f̂h, fSimu),
with f̂h computed from n = 500 observations, as a function of the bandwidth h.

(16) ISEj =
b− a
N

N∑
k=1

(
f̂

(j)
h (xk)− fSimu(xk)

)2
,

where the (xk)k are a regular grid of N = 50 points over [a, b], where a = min{X(j)
i , i = 1, . . . , n}

and b = max{X(j)
i , i = 1, . . . , n} for the j−th simulated sample (X

(j)
i )i=1,...,n.

Notice that the choice of the kernel may also be discussed: the Epanechnikov kernel has
been shown to be an optimal choice in some cases (minimisation of the asymptotic M.I.S.E.
over nonnegative kernels) but can also be considered as "inadmissible" for other criteria and the
requirement K ≥ 0 might be dropped (a clear discussion can be found in Sections 1.2 and 1.3
of Tsybakov 2009). We would not address this issue here: for an introduction, we may say that
the choice of K is less crucial for the quality of f̂h as an estimator of f than the choice of h.

Thus, the kernel estimator might be a good estimator, if its bandwidth is carefully chosen:
the M.I.S.E. is small only if both the variance and the squared bias term are small. Given a
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finite collection Hn of possible bandwidths, an oracle can be defined, like above for the model,
but cannot be computed from the data.

If f belongs to a ball of a Nikol’skĭı space Nα
2 (R) and if the kernel has order l = bαc (with∫

R |x|
α|K(x)|dx < +∞), gathering (13) and (15) permits to deduce that

R
(
f̂h(α), f

)
:= min

h∈Hn
R
(
f̂h, f

)
≤ C min

h∈Hn

{
h−2α +

1

nh

}
= Cn

−2α
α+1 .

The rate of decrease of kernel estimators can thus be the minimax one. However, the optimal
h(α) is not an estimator, since α is unknown. Like model selection, the problem is to derive a
data-driven procedure which permits to automatically choose h in the collection.

4. Adaptive methods

4.1. Introduction to adaptation.

4.1.1. Main issue. Projection and kernel methods for density estimation have now been intro-
duced. Both of the methods provide estimates which depends on a smoothing parameter. The
role of the model dimension for projection estimators can be compared to the role of (the inverse
of) the bandwidth for kernel estimates. The framework can thus be summed up as follows: in
any case, we have defined a finite collection (f̂b)b∈Bn of estimators for f which depends on a
smoothing parameter b, b = Dm for projection estimators, b = 1/h for kernel estimators. For
any estimator of the two collections, we have proved that

(17) R(f̂b, f) ≤
∥∥∥Ef [f̂b]− f

∥∥∥2
+ c

b

n
, b ∈ Bn,

see (11) and (15). The best function (for the M.I.S.E.) in the collection is not an estimator, it is
the so-called oracle (see also (12)),

(18) b∗ = arg min
b∈Bn
R
(
f̂b, f

)
.

We have shown that the minimax rate n−2α/(2α+1) for the estimation of a density with smoothness
index α can be achieved for one of the function of each collection, by choosing a parameter b
which depends on α, see the end of sections 3.1.4 and 3.2.2.

The problem that we now want to address is the following. Starting from the collection
(f̂b)b∈Bn , how can we build an estimator that achieves the same optimal rate for functions of
smoothness α, but in a data-driven way? Its definition should not depend on the smoothness
index α of the target function f to estimate. Such an estimator is said to be adaptive. It realizes
the best bias-variance compromise. Moreover, it makes possible adaptation to the unknown α.
We focus below (sections 4.2 and 4.3 on methods for which nonasymptotic theoretical results
can be provided: we do not assume that the sample size n tends to infinity while all other
parameters of the problem stay fixed. Thus, the family (f̂b)b∈Bn may vary with n: when more
data are available, it can be reasonable to assume that more estimators can be considered. While
asymptotic results sometimes hide inside o(·) some terms that can modify the behaviour of the
methods in practice, in the nonasymptotic approach, all parameters can appear explicitely in
the bounds, even if the idea is not to analyse very small samples.
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4.1.2. Expected results. A distinction may be drawn between two kinds of methods that are
proved (or that will be proved) to be adaptive: aggregation or estimator selection.

The aim of aggregation, initiated by Nemirovski (2000), is to combine the estimators (f̂b)b∈Bn
of the collection, called a dictionnary, to define a new estimator. Typically, the new estimator is
a linear combination of the previous ones with form f̃ =

∑
b∈Bn θbf̂b, and the coefficients (θb)b

are selected from the data (optimisation of constraint problems). Comprehensive descriptions of
the method can be found in Rigollet and Tsybakov (2007); Tsybakov (2008).

When the estimators of the collection (f̂b)b∈Bn are all similar (all kernel estimates, or all
projection estimates for example), the objective is to choose "the best" of them, that is to select
b̂ ∈ Bn such that R(f̂b̂, f) is as small as possible: f̂b̂ should mimic the oracle f̂b∗ , which means
that it should satisfy an oracle inequality4

R
(
f̂b̂, f

)
≤ C inf

b∈Bn
R
(
f̂b, f

)
+Rn.

The leading constant is C ≥ 1, and Rn is a remainder term, negligible in front of infb∈Bn R(f̂b, f).
The closer to 1 the constant C, the better the inequality: the inequality is said to be sharp if
C = 1+δn, with δn → 0 as n→∞. With the methods described below, we prove slightly weaker
results, called oracle-type inequality,

(19) R
(
f̂b̂, f

)
≤ C inf

b∈Bn

{∥∥∥Ef [f̂b]− f∥∥∥2
+ c

b

n

}
+Rn,

where c is the constant involved in (17). An estimator which satisfies an oracle-type inequality
is an estimator that achieves the best bias-variance trade-off. It avoids both overfitting (large
variance term in the risk, estimators which follow the data too closely) and underfitting (large
bias term, too simple estimators) that can occur if the model is not well chosen, as it can be
seen in Figures 1 and 5. This is the main challenge of estimator selection, and this permits
to build minimax adaptive estimators, provided the family (f̂b)b∈Bn is well-chosen, which is the
case here (for kernel and projection methods): in a second step, by assuming that f belongs to
a functional space of smooth functions, one obtain the best convergence rate in the collection
(f̂b)b∈Bn by computing the right-hand-side of (19). This best rate is the minimax one if the
collection is the kernel or the projection ones described above.

4.1.3. Brief overview of the methods. Several methods of estimator selection have been investi-
gated, from practical and/or theoretical purposes: coefficient thresholding for wavelet projection
estimators, cross-validation, model selection via penalisation, Lepski’s methods for bandwidth
selection... For wavelet thresholding, we refer to Donoho and Johnstone (1994) or Härdle et al.
(1998): starting from a collection of projection estimates (in a wavelet basis), it is about finding
the coefficients that are interesting to keep to define the final estimates: too small coefficients are
suppressed by introducing a threshold. The last three methods are based on the same following
principle. The ideal selection would be the oracle (18), which depends on the unknown underly-
ing distribution, through the computation of the risk involved in (18). Validation, penalisation

4Here, we consider oracle inequalities which hold in expectation. An other possibility is to prove oracle
inequalities of form ‖f̂b̂−f‖2 ≤ C infb∈Bn ‖f̂b−f‖2 +Rn, which holds with large probability (that is, a probability
larger than 1− ε(n), with limn→+∞ ε(n) = 0).
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and Lepski’s method replace this unknown risk by an empirical criterion denoted by Crit in the
sequel, and propose to select

(20) b̂ ∈ arg min
b∈Bn

Crit(b).

Cross-validation is a classical method introduced by Allen (1974); Stone (1974); Geisser (1975).
The idea is to split the data in two subsets, a training set (Xi)i∈E from which the different
estimators of the collection are computed, and a validation set (Xi)i∈Ec (where E ⊂ {1, . . . , n}
and Ec = {1, . . . , n}\E), which permits to define Crit and estimates the risk of each of the
estimators. A collection E of training sets E is generally used to repeat the procedure: depending
on E , we refer to hold-out, leave-p-out, Monte-Carlo or V-fold cross-validation estimators. A
comprehensive overview has been written by Arlot and Celisse (2010). Although the asymptotic
properties of cross-validation estimators have been widely studied, very few nonasymptotic results
exist in the litterature: earlier bounds have been obtained by Arlot (2008), recently extended by
Arlot and Lerasle (2016) and Arlot et al. (2015). The following two sections focus on penalisation
and Lespki’s methods.

4.2. Model selection for projection estimators. Model selection theory originates in the
works of Akaike (1973) and Mallows (1973), and has been formalised by Birgé and Massart
(1997) and Barron et al. (1999) (see also Massart 2007).

Considering the family of estimators (f̂m)m∈Mn defined by (8), the issue is the choice of m
from the data. The optimal m is the oracle m∗ that minimises R(f̂m, f) = Ef [‖f̂m − f‖2], see
(18). Since the contrast γn introduced in (7) is an empirical equivalent for the loss function
‖ · ‖ involved in the risk R, one can be tempted to select m̂ that minimises γn(f̂m) over all
possible m. However, one can see that the quantity Ef [γn(f̂m)] = Ef [−‖f̂m‖2] underestimates
the loss ‖f − f̂m‖2, and need to be corrected. Assume for a moment that the models are nested:
m ≤ m′ ⇒ Sm ⊂ Sm′ . Then, if m ≤ m′, f̂m ∈ Sm′ , and γn(f̂m) ≤ γn(f̂m′). In this case,
m 7→ γn(f̂m) decreases with m, and thus with the dimension |Λm|. Coming back to the general
framework, this justifies the introduction of a penalty function pen :Mn → R+ which measures
the complexity of the model Sm, and the selection

(21) m̂ = arg min
m∈Mn

CritBM (m), with CritBM (m) = γn(f̂m) + pen(m).

Here, the penalty only depends on the dimension of each model, since there is a uniq model per
dimension: an appropriate choice is

(22) pen(m) = κΦ2
0

Dm

n
,

for a constant κ > 0. If the model collection is more complicated, the penalty should depend on
a measure of the ”complexity” of the collection. The order of magnitude of the penalty is also
heuristically justified as follows: the criterion to minimise, CritBM (m), estimates the risk which
is splitted in a bias term and a variance term. A (biased) estimator for the bias ‖ΠSmf − f‖2
is −‖f̂m‖2 = γn(f̂m). Indeed, ‖f − ΠSmf‖2 = ‖f‖2 − ‖ΠSmf‖2, with ‖f‖ independent on m,
and ΠSmf is estimated by f̂m. Thus, the penalty should estimate the variance term of the risk,
and has thus its order (see(11)). The following result can be proved for the penalised contrast
estimator f̂m̂, see e.g. Theorem 5.2 in Comte (2015).
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Figure 7. Plot of the M.I.S.E. R(f̂m̂, f) (averaged over 100 samples) (labeling
on the left of each graph) and the selected model dimension Dm̂ (labeling on
the right), computed from n = 1000 observations, with respect to the value of
the constant κ (axis label). (a) f density of the standard Gaussian distribution
N (0, 1). (b) f = fSimu defined in (1). Bold blue line: M.I.S.E. Green thin line:
selected model dimension.

Theorem 1. Suppose that the cardinality of the collection Mn is bounded by n, and that the
models Sm, m ∈ Mn satisfy Assumptions (Ml), l = 1, 2, 3, and are nested. Assume also that
the true density f is bounded. Then, there exists some constant κ > 0 such that

R
(
f̂m̂, f

)
≤ C inf

m∈Mn

{∥∥∥Ef [f̂m]− f∥∥∥2
+ pen(m)

}
+
C ′

n
,

for C,C ′ > 0, C a numerical constant and C ′ depending on f and Φ2
0.

This is the oracle type inequality announced in (19): f̂m̂ performs as well as the best estimator
in the collection, up to the multiplicative constant C, and up to a remainding term of order 1/n,
which is negligible. The implementation of the method raises the question of the tuning of the
constant κ involved in (22). From the theoretical point of view, this is a universal constant in
the sense that it does not depend on the model parameters or on the estimation parameters.
A lower bound is obtained in the proof: it is unfortunately very rough and useless in practice.
However, the choice is crucial for the quality of estimation. If κ is too small, the most influencial
term in (21) is γn(f̂m), and large models are selected. If κ is too large, the reverse occurs:
models with too low dimension are selected. The problem of optimal/minimal calibration of
the penalties has aroused considerable interest: the first results were obtained by Birgé and
Massart (2007). A data-driven procedure, the slope heuristic, exists, and has been implemented
by Baudry et al. (2012) in a package called C.A.P.U.S.HE (both for MatLab and R). We can also
decide to calibrate κ once and for all: the risk of the selected estimator (obtained from simulated
data) can be plotted with respect to the value of the constants, and a value leading to reasonable
risk and complexity of the selected model can be chosen. Examples are plotted in Figure 7. We
choose κ = 0.25. It should be kept in mind that is more secure to choose the constant too large
than too small, since small penalties lead to explosive risks. Figure 8 displays a collection of
estimators (f̂m)m∈Mn and the selected one f̂m̂.
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Figure 8. Collection of projection estimators (in the Fourier basis) for fSimu, computed
with n = 500 observations, for different model dimensions and selected estimator f̂m̂
obtained with the penalisation method. Bold blue line: true function fSimu. Thin lines:
estimators f̂m, m = 1, 3, 5, . . . , 51. Bold pink line: f̂m̂.

Model selection via penalisation is specifically designed for estimation by contrast minimisation
and for the study of quadratic risks. The proof of Theorem 1 is based on the study of the
concentration of the supremum of the squared of an empirical process around its mean, and
required an order between the indices m of the collection. This makes the method sometimes
difficult to extend for multivariate function estimation: dealing with anisotropic functions would
necessitate different indices of the models in the different directions, e.g. models indexed by two
indices m = (m1,m2) when estimating a function with two variables. But an order between
such m and m′ is not easily defined. This is a motivation to describe the Goldenshluger-Lepski
method.

4.3. The Goldenshluger-Lepski method. Lepski’s methods have been introduced to select
among kernel estimators with different bandwidths. The main idea is to estimate the bias term
of the risk of the estimators by pairwise comparison of the estimators with fixed bandwidths.
The procedure originates in earlier works of Lepskĭı (1991, 1992a,b). We focus on a recent
version, which aims at handling the possible anisotropy of multivariate functions. It was first
used in the white noise model (Goldenshluger and Lepski, 2008, 2009), then for multivariate
density estimation (Goldenshluger and Lepski, 2011) and general frameworks (Goldenshluger
and Lepski, 2013).

We present it in our simpler problem of univariate density estimation with quadratic risk
to select an estimator among (f̂h)h∈Hn (see (14)), keeping in mind that it can be used in many
models and for various risks (pointwise, Lp...). Moreover, contrary to (Goldenshluger and Lepski,
2011), we do not consider the case where Hn is an interval and restrict ourselves to a finite
collection, which is more reasonable from the practical point of view. These constraints permit
to derive theoretical results for the Goldenshluger-Lepski method we describe below (Section 4.3)
through the usual tools of model selection (mainly concentration of empirical processes).

The starting point is the same as for model selection: we want to automatically choose a
bandwidth ĥ ∈ Hn such that f̂ĥ mimics the oracle. Since the oracle minimises the risk over all
possible estimators (see (18)), and since the risk is upper-bounded by the sum of the stochastic
and the approximation errors (see (15)), one can define empirical counterparts for these two
terms, and select the bandwidth which minimises the sum of the two empirical terms. This leads
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to

(23) ĥ = arg min
h∈Hn

CritGL(h), with CritGL(h) = A(h) + V (h),

where V is the analogous of the penalty term (22) above, which estimates the stochastic error,
and A is the counterpart for the bias term in (15). The definitions, in the spirit of Goldenshluger
and Lepski (2011), are the following:

(24) V (h) = κ′
‖K‖21‖K‖2

nh
, A(h) = max

h′∈Hn

(∥∥∥f̂h′ − f̂h,h′∥∥∥2
− V (h′)

)
+

,

where ‖K‖21 =
∫
R |K(u)|du, κ′ > 0 is a constant to be calibrated (like κ in (22)), x+ = max(x, 0)

is the positive part of x, and f̂h,h′ are oversmoothed auxiliary estimators. For density estimation,
one can choose f̂h,h′ = Kh ? f̂h′ , but in other frameworks, f̂h,h′ = f̂h suph′ can be more suitable.
The specific feature of the method is the estimation of the bias ‖Ef [f̂h] − f‖2 by A(h). Let
us give a short heuristic: since the bias ‖Ef [f̂h] − f‖2 is equal to ‖Kh ? f − f‖2, where f is
unknown, we replace it by an estimator with fixed bandwidth f̂h′ . But such a method introduces
variability, which can be canceled by substracting V (h′). We thus obtain (‖f̂h′− f̂h,h′‖2−V (h′))+

(since the bias is nonnegative). The last step is to remark that we have no reason to choose a
h′ or another: this justifies the "max" in (24). Obviously, a full proof is required to show that
A(h) ≤ C‖Ef [f̂h] − f‖2 + C/n for a constant C. The reader may refer to Comte (2015), p.60.
The complete result, also proved p.60, can now be stated.

Theorem 2. Suppose that the cardinality of Hn is bounded by n, that for any h ∈ Hn, h ≥ 1/n,
and that

∑
h∈Hn h

−1 ≤ c0n, for a constant c0. Assume also that the true density f is bounded.
Then, there exists some constant κ′ > 0 such that

R
(
f̂ĥ, f

)
≤ C inf

h∈Hn

{∥∥∥Ef [f̂h]− f∥∥∥2
+ V (h)

}
+
C ′

n
,

for C,C ′ > 0, C depending only on
∫
R |K(u)|du, and C ′ depending on f ,

∫
R |K(u)|du, and ‖K‖.

The assumptions on the bandwidth collection Hn are very mild. For example, there are
satisfied by the following two collections:

Hn,1 =
{

2−k, k = 1, . . . , [log2(n)]
}
, Hn,2 =

{
k−1, k = 1, . . . , [

√
n]
}
,

with c0 = 2 and c0 = 1 respectively. Until recently, no systematic study had been undertaken
to tune the constant κ′ involved in the penalty term V . We proceed as for the constant κ of the
penalisation method above, see Section 4.2, and choose κ′ = 1. A recent study of Lacour and
Massart (2016) is devoted to the problem. It is shown that the procedure fails if κ′ is chosen
smaller than some critical value which leads to a minimal penalty, like for model selection. A
numerical result of the selection method is plotted in Figure 9.

4.4. Comparison of the methods. The strength of Lepski-type methods is based on their
ability to be applied for several risks and several estimation problems (references can be founded
in the introduction of Lacour and Massart 2016, for example), while projection methods are
mainly specific to the quadratic risk. The idea of using pairwise comparison of estimators is not
only worthwile for bandwidth selection purpose but also for model selection: earlier references are
Laurent et al. (2008) who proposed an adaptation of the penalisation method for linear functional,



18 G. CHAGNY

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

(a) (b)

Figure 9. (a) Collection of kernel estimators (Gaussian) for fSimu, computed with
n = 500 observations, for different bandwidth, and selected estimator f̂ĥ obtained with
the Goldenshluger-Lepski method. Bold blue line: true function fSimu. Thin lines:
estimators f̂h, h = 1/30, 2/30, . . . , 1. Bold pink line: f̂ĥ. (b) Beams of estimators f̂ĥ,
computed from independent samples of size n = 500. Bold blue line: true function fSimu.
Thin green lines: estimators f̂ĥ.

and Plancade (2009) whose objective is pointwise model selection. More recent examples are
Comte and Johannes (2012); Chagny (2013); Bertin et al. (2016), who adapted the last version
of the Goldenshluger-Lepski method to select the dimension of projection space for various
estimation problems. For density estimation, the alternative is to choose the estimator f̂

m̂b

in the collection (f̂m)m∈Mn defined in (8) by

m̂b = arg min
m∈Mn

CritGL,b(m), with CritGL,b(m) =
{
Ab(m) + V b(m)

}
,

with

V b(m) = κbΦ2
0

Dm

n
, Ab(m) = max

m′∈Mn

(∥∥∥f̂m′ − f̂m∧m′∥∥∥2
− V (m′)

)
+

.

The term V b(m) estimates the variance term of the risk of the projection estimator, and is the
same as the penalty (22) in classical model selection. The second term Ab of CritGL,b(m) is in
the spirit of bandwidth selection with Lepski’s method. Details can be found in the references
above. We conclude with a practical comparison of the method. We plot in Figure 10, Part (a),
an example of selected projection estimators f̂m̂ (see (21)) and f̂

m̂b
. Beams of selected estimators,

computed from independent samples are plotted on parts (b) and (c).
We also compare the risks of the three methods in Figure 11: projection estimation with

model selection via penalisation or via the method in the spirit of Goldenshluger-Lepski, and
kernel estimation with Goldenshluger and Lepski bandwidth selection. To that aim, boxplots of
the Integrated Squared Errors, computed like in (16) are plotted. The result, obtained here to
recover fSimu defined in (1) is quite representative of what could be obtain for other simulation
settings.
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Figure 10. (a) Collection of projection estimators (in the Fourier basis) for fSimu, com-
puted with n = 500 observations, for different model dimension, and selected estimators
f̂m̂ (penalisation method) and f̂m̂b (method in the spirit of Goldenshluger and Lepski).
Bold blue line: true function fSimu. Thin lines: estimators f̂m, m = 1, 3, 5, . . . , 51. (b)
and (c) Beams of estimators f̂m̂ and f̂m̂b respectively, computed from independent sam-
ples of size n = 500. Bold blue line: true function fSimu. Thin green lines: selected
estimators f̂m̂ and f̂m̂b .
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Figure 11. Boxplots of the Integrated Squared Error ‖f̂−fSimu‖2, approximated like in
(16) for (i) f̂ = f̂ĥ (kernel estimates with Goldenshluger and Lepski bandwidth selection)
(ii) f̂ = f̂m̂ (penalised projection estimators) (iii) f̂ = f̂m̂b (projection estimators with
Goldenshluger-Lepski type model selection). Same setting as before (Gaussian kernel,
Fourier basis, n = 500).

5. Perspective for adaptive nonparametric estimation

The aim of the note was to introduce adaptive nonparametric estimation, from a theoretical
point of view. For the sake of simplicity, we focus on the simple but important problem of
univariate density estimation. This should not make one lose sight of the importance of such
methods in very various applied problems. Let us quote in no particular order: regression
estimation, inference from dependent data, from censored data, functional data analysis...

We have presented the two main classes of nonparametric estimators for the density of a
real random variable, built from a sample of independent data. We have also explained how the
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selection of the smoothness parameters (the model for projection estimates and the bandwidth for
kernel estimators) can be performed in a data-driven way, to obtain final estimators that mimic
the unknown oracle (that is the best function of the collection for the quadratic risk), and that
reach the minimax optimal risk. We have not provided the proofs of the main results, Theorems
2 and 1, this was not the purpose of the note. Let us point out that they extensively involve
a probabilistic tool, concentration of measure. Concentration inequalities play a crucial role to
prove oracle bounds: it can be simple Bernstein inequality (Birgé and Massart, 1998, p.366), or
less well known results, like the Talagrand inequality (see Klein and Rio 2005). Our aim was also
to stress the links between projection and kernel density estimated: we have already remarked
that the bandwidth of kernel estimators plays the role of the inverse of the model dimension for
projection method, and the two selection rules we studied could be compared and modified by
drawing inspiration from each other (see references at the end of Section 4.3). This is in the spirit
that research is ongoing in the aera of adaptive nonparametric estimation, and we conclude this
note by quoting three recent studies that show that estimator selection is still a dynamic topic!

• The first one goes further in the comparison between the methods: it is in fact possible
to classify under the term of linear estimator both of the methods: each estimate can be
written

f̂b(x) =
1

n

n∑
i=1

mb(Xi, x), x ∈ I

for a given functionmb : I2 → R (b = Dm andmb(x, y) =
∑Dm

j=1 ϕj(x)ϕj(y) for projection
methods, and b = h−1 and mb(x, y) = Kh(x − y) for kernel estimation). The class also
includes weighted estimators (like Pinsker’s estimators, see Efrŏımovich 1985). Linear
estimators were introduced under the name of delta-sequences by Walter and Blum (1979)
and called additive estimators by Devroye and Lugosi (2001). The study we have in mind
is the one of Lerasle et al. (2016), who address the problem of optimal selection among
linear estimators: the question of optimal and minimal penalty (in the sense of the tuning
of the constant κ, see the end of Section 4.2, and of the proof of sharp oracle inequalities)
is solved in a very general way.
• Then, Lacour et al. (2016) deepen the link between model selection and Goldenshluger-
Lepski methods by defining a new selection rule that seems very promising.
• Lepski (2016) proposes to use his methodology to solve new problems: the objective is to
find hypotheses under which some elements of the solution of a statistical problem could
be used to define minimax adaptive estimators for another more difficult problem. He
tackles the question of smoothness parameter selection in the new problem by using the
one selected in the (simpler) first problem. Conditions which ensure that the substitution
is reasonable are established.

These recent references permit to conjecture that lots of theroretical studies, both on adaptive
nonparametric statistics and on density estimation, will be developed in future years.
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