N
N

N

HAL

open science

Static analysis of communications for Erlang

Fabien Dagnat, Marc Pantel

» To cite this version:

Fabien Dagnat, Marc Pantel. Static analysis of communications for Erlang. EUC 2002 (8th interna-
tional Erlang User Conference), Stockholm, November 19, Nov 2002, Stockholm, Suede. hal-02132880

HAL Id: hal-02132880
https://hal.science/hal-02132880v1
Submitted on 17 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02132880v1
https://hal.archives-ouvertes.fr

Static analysis of communications for Erlang

Fabien Dagnat
Laboratoire Informatique des Télécommunication
ENST de Bretagne, Technopole Brest Iroise, BP 832
29285 Brest, France

Fabien.Dagnat@enst-bretagne.fr

ABSTRACT

In this paper, we present an insight of the two major contri-
butions of works made to build a static analyzer of ERLANG
programs. First, we introduce a general framework based
on a process calculus (the configurations). This formalism
describes concurrent aspects and abstracts functional ones.
Obtaining the ERLANG semantics is then just instantiating
this framework with an adequate functional setting. The
second contribution is a sophisticated type system for ERr-
LANG. This type system infers types and subtyping con-
straints for a program and ensures that the collected con-
straints have at least one solution. This system detects usual
functional errors but also some of the communication errors.
More precisely, for each process, it cumulates all received
messages and all handled messages and ensures that the first
is included in the second. To do this, it borrows concepts to
the object (or record) usual typing in ML.

1. INTRODUCTION

The development of telecommunications industry and the
generalization of network use bring concurrent, distributed
and mobile computing into the limelight. In that context,
programming is a hard task and, generally, the resulting
applications contain many more bugs than usual sequential
centralized software. Indeed, the indeterminism resulting
from the unreliability of networks and the size of the code
of such applications makes it difficult to validate any dis-
tributed functionality using informal approaches. Our work
focuses on using static analysis, a kind of formal methods to
ease development.

As Erlang software are mainly used in telecommunication
equipment that do not tolerate failure, their development
must be certified. More precisely every step toward the final
application must be walidated (ideally automatically). Our
aim is to participate to this hard task, by building static
analysis of communications using type inference techniques.

To give an abstract model to ERLANG programs, we use the
actor model developed by Agha in [1]. It is based on a net-
work of autonomous and cooperative agents (called actors
and similar to ERLANG processes), which encapsulate data
and programs. They communicate using an asynchronous
point to point protocol and store each received message in
a mailbox. When idle, an actor handles the first message
it can in its mailbox. Besides those conventions (which are
also true for concurrent objects), an actor can dynamically
(at run-time) change its interface. This property allows to
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modify the set of messages an actor can handle, yielding a
more accurate and widely usable programming model. For
example, it can give an abstract model to applets and dy-
namic code loading.

In a first approach, we defined type systems for the CAP cal-
culus described in [8], a primitive actor calculus derived from
asynchronous m-calculus and Cardelli’s Calculus of Primi-
tive Objects. Two type systems were developed. The first
one [9], based on usual object type abstractions, catches all
usual functional and communication errors (erroneous pa-
rameters) but only a subset of messages which will never
be handled. The second [7], detects all (safety) messages
not understood but requires a much more complex type ab-
straction and a new programming discipline. These systems
were proved to be correct. In order to validate their practi-
cal use, the need for a programming language implementa-
tion arose. In a first approach, we developed a lab language
ML-AcT integrating d¢ la ML programming with actor prim-
itives and including a sophisticated type system extending
the previous work on CAP (see [11]). Then, we studied ER-
LANG, as it appears that, thought its functional aspects have
a strongly different semantics (and typing) than ML-AcT
one’s, their concurrent semantics and typing were similar.
Therefore, we developed a framework abstracting the parts
of both languages having semantics (and typing) differences
(for example, functional aspects or mailbox semantics). It
became possible to build systematically the semantics, the
typing and some properties about the typing, once provided
the functional setting. Furthermore, this functional setting
can use a well known classical one. For example, ML-AcT
use the ML functional semantics and typing.

This article gives an introduction to this abstraction and its
application to ERLANG. The first section provides a better
insight of the form of communication errors we wish to de-
tect and the ones our system captures. Then, we introduce a
simplified version of ERLANG and its formal semantics based
on configurations, an asynchronous m-calculus like process
algebra. Then, we define our type system and illustrate its
use on examples. Finally, we discuss scaling this system to
the full language and some possible extensions to our work.

2. COMMUNICATION ERRORS

In an usual concurrent setting, a process P may receive a
message m (P ! m, in ERLANG). Supposing P is idle, there
are two possibilities, either P can handle m or it cannot. Our
works focus on the early detection of requests that may not



be handled (the second case). This problem is related to
the method not understood errors of object oriented pro-
gramming. In the actor context, a message that may not be
understood by its receiver is called an orphan.

Typed object oriented languages determine the set of meth-
ods an object P understands (typeof(P)) and ensures that
each method invocation P.m is correct by verifying that m
is part of the type of P (m € typeof(P)). Furthermore, as
the type of an object does not change, the verification can
be done when the method is invoked. Adapting this technic
to ERLANG (P becoming a process and P.m becoming P!m)
raises two problems leading to a much more complex typ-
ing: a) the computation of the set of messages a process can
handle is dynamic and more complex and b) as the time
between sending a message and its reception by its target
may be important (the message may travel through large
networks), the verification must be done upon reception.

The usual approach for actor languages is to dynamically
check for message not understood errors. A process knows
the messages it can (immediately) handle and if a received
message does not conform to this interface, it raises a mes-
sage not understood error (see the initial actor model [1] or
the Vasconcelos and Tokoro object calculus [26]). But this
approach reduces consequently the set of programs that one
may build. In fact, the programmer must adopt a sort of
synchronous programming discipline to be sure that mes-
sages arrive in right states. We think that this strategy is
too restrictive. For example, consider a printer device that
has two states: working (it accepts printing requests) and
stopped (it waits for initialization). A client must wait that
an initialization message has been sent to the printer before
printing. It would be much more flexible to enqueue all re-
quests received when the printer is stopped and to process
all pending requests when it is initialized (possibly indepen-
dently by another process) which is the usual behavior of
unices print spoolers.

The second and opposite approach never rejects a message.
When a process receives a message that it cannot handle, it
silently enqueues it. Notice that, in this context, a message
may stay indefinitely in a mailbox (their size is unbound).
This semantics has been chosen by the blue calculus [4], the
join calculus [14] and ERLANG.

We believe that a combination of both approaches may be
much more appropriate. Such a system would reject pro-
grams that contains message never understood and would
accept all other messages warning the programmer that they
may never be handled. To achieve this goal, we use a power-
ful behavioral! type system to enforce the rejection of such
messages. Our type system detects all messages that are
not in the set of messages the receiver may handle dur-
ing its execution. This means that typeof(P) cumulates
all the receive that P could execute. To do this the sys-
tem must follow the flow of functions called by P. It is clear
that, in general, our analysis will answer T (top) to express
the fact that a process may assume an externally defined re-
ceive and therefore understands virtually everything. But,
we think that the results are generally already helpful and

!By opposition with a more usual class name type system
as in C++ or Java.

we are working on extending our techniques to those open
programs as will be discussed later.

For example, a process P executing the first function of the
program below (ping) has a type containing ping, change
and all messages accepted by all possible behaviors F. This
means that sending a message {change, pong} to P adds
pong to the type of P.

ping() -> receive ping -> ping();
{change, F} -> apply(F,[])
end.
pong() -> receive pong -> pong() end.

3. ASIMPLIFIED VERSION OF ERLANG

Following a common use in the definition of static and dy-
namic semantics, we simplify the ERLANG language by sup-
pressing syntactic sugar and ignoring constructions that are
typed orthogonally to our work (for example, exceptions,
lists or records). Furthermore, we do not address the seman-
tics of the real time part of the language which is complex
but do not add any specific problem to the type system. An
effort has been made to define precisely a small (but still too
big) language named CORE ERLANG ([5] or [6]). Therefore,
we use a smaller version of the language named pErlang:

prg i=cj...;c. | ¢;..;c. pry

¢ u=5(p,...,p) >e
w=_ | V | s | i | {p,....p}
e ==V | s | i | {e,..,e} | (e) | e,e | ele
| ele,...,e) | caseeof fend | receive f end
fosmpe | pveif

A pErlang program is a set of function definitions includ-
ing a function named main. This main function is launched
to start the execution of the program. The rest of the lan-
guage is very close to ERLANG. Each function is composed
of clauses separated by semi-colons and terminated by a
dot. All clauses (s(p,...,p) -> e) must refer to the same
function name s and have the same arity. Notice that this
language does include guards to simplify the semantics and
the type system for this paper. A pattern may be a joker
(always succeeding), a variable V' (always succeeding and
binding the variable?), an atom s, an integer i or a tuple.
An expression may be any of those values and add paren-
theses, sequencing (,), message sending (!), function call,
choice (case) and message handling operation (receive).
The choice (resp. the receive operation) matches an ex-
pression (resp. the mailbox of the current process) using a
set of filters composed of a pattern and an expression (f is
named interface). Finally, some atoms represents built-in
functions, as for example, spawn and self.

Notice that as CORE ERLANG, we adopt lexical scoping of
variables to ease the presentation. Qur prototype uses ER-
LANG strategy mixing dynamic and lexical scoping. There-
fore, the real system uses systematically an input and an
output environment for each expression. Again for sake of
simplicity, pErlang does not include lists that are replaced
in application and spawning by tuples.

2This is not true for ERLANG, but our system can easily
adopt ERLANG policy.



4. FORMAL SEMANTICSOF ERLANG

Our work focuses on static analysis and more precisely on
typing. In order to prove the correctness of our type system,
we need a formal semantics of ERLANG. To our knowledge,
few works have addressed such a hard task. Indeed, as ERr-
LANG is a full fledge functional, concurrent, distributed and
mobile language, its semantics is complex. Some efforts have
been made to give an informal, but clear and systematic de-
scription of its semantics ([3] and [6]). But, this is not suffi-
cient to build and prove some static verification system. It
seems that only two papers ([12] and [15]) try to build such
a formal semantics. These two papers define two Labeled
Transition System that does not suit our need (proving the
correctness of a type system). Inspired by those approaches
and our previous works on semantics for actors, we built our
own formal semantics by instanciating a general framework
called configurations previously build on a lab language ex-
tending ML to actors (ML-Act). This framework defines
a general syntax for concurrent actions and abstracts (in
the sense of taking as parameter) the functional part of the
studied language. With this approach, we can reuse exist-
ing semantics and typing from the functional world. The
pErlang semantics is obtained by instantiating this frame-
work with an adequate functional semantics.

We are not going to give all the formal definitions and jus-
tifications of this model that may be found in [10]. We are
only going to give insights on configurations to deduce the
pErlang semantics. Most rules are given in appendix for the
interested reader.

Configuration

A configuration is a term that represents a concurrent sys-
tem at a given time. Its definition is parameterized by three
sets : the name set a € A, the message set m € Mess and
the expression set e € &xp with A C Exp and Mess C Exp.
The set of configurations noted W is built from the following
grammar:

w = €|Err|vaw|w]|w|la<m]|a>e
a == *|{(a|m)

A configuration looks like a w-calculus term with a send
operation, noted a<m (a is the receiver and m the message),
and a process, noted a > e (« is the identity and e is the
executed expression). The identity of a process is either
unspecified * to model toplevel computations® or, {(a|m) a
pair composed of a name (pid in ERLANG tradition) and a
mailbox (the tilde notation denotes sequence). As it is usual
in process calculi, we use a name binder v to simulate the
name creation and suppose that the corresponding notion of
free names and substitution are defined.

In the context of pErlang, xp represents the syntax intro-
duced in the previous section, addresses are built automat-
ically when the built-in function spawn is called and a mes-
sage can be any value (atom, integer or tuple).

A congruence is defined to state which configurations are
equivalents:

o (W,]|,e) is a commutative monoid, the order of sub-
configurations is not important and we can suppress

3Those expressions cannot access receive or self.

all occurrence of e.

e w || Err = Err and abErr = Err, errors are propagated
until the program evaluation stops.

e va.w = w if a is not free in w, va.w = vb.[b/a]w if b is
not free in w and vai.vas.w = vaz.vai.w ; those three
usual properties allow to forget the bindings of unused
names, to rename a bounded name and to modify the
order of restrictions.

e the restriction rule, va.w; || w2 = va.(w; || w2) if a
is not free in w2, allows to enlarge the scoping of a
name. Combined with the previous rule, it enables
(up to a renaming of a in w1) to extend the scoping
and to simulate name propagation in the medium.

e x>v = e and va.({a|@)>v) = € if v is a value (it cannot
be reduced) ; therefore, a global computation (or a
process) which reduce to a value can be destroyed by
a garbage collector. Notice that the process must have
an empty mailbox and be inaccessible to the outside
world.

Notice that it is possible to add a rule to express the fact
that a stopped process waiting for a message, that do not
understand any of its mailbox messages and is no more ac-
cessible from outside is an error. But, as our type system
cannot capture all such messages (for example in a deadlock
case), we cannot prove its correctness with this rule.

The appendix contains all the configuration reduction rules.
Let us discuss only original rules.

As introduced in the second section of this paper, we try to
detect communication errors. To define those errors more
precisely, they are introduced in the semantics of configura-
tions. Therefore, when a process receives a message, it can
accept it (and put it in its mailbox) or reject it by raising
an error:

(a|lmm)y>e if P(m,e)

(a|m)l>e||a<1m—){E" else

To abstract the choice of reaction, a (communication) po-
tential P(m,e) is defined. This predicate approximates e
to determine whether m may be understood or not. This
allows the semantics of our framework to behave differently
toward such messages. It is possible, for example, to code
usual ERLANG semantics with a predicate always true. In
the next section on typing, we will discuss more deeply this
subject.

Our general semantics includes a rule to specify the interac-
tion between functional and concurrent reduction:

a¢ FN(ave)

ade — va.(a >e || w)

w ! 4
akFa, e —=ca,e

Where, we suppose that the functional reduction have the
given shape with a being a fresh name (a ¢ FN(a > e))
that may be used during the expression evaluation and w
being a configuration describing the concurrent effect of the
functional reduction step. In the rest of the paper, if the
label of such a reduction is €, it is omitted. Notice that if
a is unused, the third congruence rule enable to forget its
binding.



Functional reduction

A pErlang program is a set of function definitions and its
execution corresponds to the reduction of the body of the
main function in a context where all the other functions are
defined. By consequence, the first step of the functional se-
mantics builds the function environment (noted F). This
process will not be described here, its result is an environ-
ment associating an atom and an arity to the body (all the
pattern matching converted to a tuple matching) of the cor-
responding function. For example:

f(p1,p2) ->e1; {p1,p2} > e1;
d £,2) —
{f(ps,m) >y, PTOQUES (£,2) {ps,pa} > es.

To simplify our presentation this set is abstracted and sup-
posed to be accessible in all rules. This could be done by
tagging each expression with this environment: er and by
propagating it during reduction.

Functional reduction uses the classic notion of evaluation
context. A context noted C[] is an expression with a hole
marking the sub-expression subject of the current reduction
step. The reduction Cle;] — Clez] reduce the expression
e1 and replace it by the result e>. The evaluation context
grammar is also given in the appendix, it expresses the fact
that the order of evaluation is undefined when evaluating
a tuple, a message sending or an application. On the con-
trary, evaluation of a sequence (resp. a choice) starts with
the first expression (resp. the tested value). In addition
we suppose that an error cause the end of the evaluation
process: C[Err] 2 Err.

Variables once defined have their values propagated by a
substitution noted o that we will not describe here. The
matching operator / uses a function match to compare a
pattern and a value and build the substitution of the vari-
ables in the pattern by their corresponding values. This
function either returns a substitution or fails. It tries to
match the first filter p — e. If match(p,v) returns o, / re-
turns o(e). Else, if it did not matched, the process continue
with the remaining filters. At the end, if none of the filter
have matched, we get an error.

Purely functional evaluation is classic. The most original
rules concerns application:

Err if (’U,n) g d()m(]:)
C[{U1,~-~7Un}/]:(v:n)]

The called function must be in the current function envi-
ronment (F). The result corresponds to the matching of its
body with the tuple of actual arguments. This rule suppose
that the expression describing the function must reduce to
a valid atom and therefore, it extends slightly ERLANG se-
mantics.

at a, Clv(vy,...,n)] —e @, {

The functional actions that are connected with concurrent
behavior have an original form and must be explained:

e Sending a message impose that the first argument is
a name, returns the sent value and is labeled by the
configuration sending term:

| v1dvy Err ifv; € A
ak a, Clulv] — a, {C[v2]

e Spawning impose that its second argument is a tuple,
returns the name (guaranteed to be fresh by concur-
rent reduction) of the future process and is labeled
by the configuration describing the newly created pro-
cess.This is only rules where the fresh name is used.

a|2)pv(vy,..

a b a, Clspawn(v, v, ..., Up)] ( SN, a, Cla]

e A call to the built-in function self must be done in
a process and is replaced by the name of the current
process:

a 't {a'|m), C[self()] —. (a’|m), C[a’]

e Accessing the mailbox is similar to the choice except
that the order of matching is different. The process try
first to match each message with the first pattern and
try next patterns only if none of the mailbox messages
successfully matched the first pattern. For this we use
a function matchmailbox that returns the resulting
mailbox and the reaction. Notice that if the mailbox
is empty no reduction can take place and by conse-
quence the process is stopped (until a message reaches
its mailbox).

at (a'|m), Clreceive f end] — (a’|m'), C[e]

where matchmailbox(f, m) = m’', e

5. TYPING pErlang

When building a type system to statically detect errors in
programs. The first thing to do is to define precisely what
kind of errors, we want to avoid. In a concurrent setting,
two families of errors arise: functional errors and concurrent
errors. The former family is usual in the sequential world
and correspond to the erroneous use of a value (for example,
using an undefined variable or using 1 as a function). The
latter is rather unusual and has been described in details in
the section 2.

A type system can provide several level of precision. Two
prototypes have already been built for ERLANG (see [17] and
[16]) that concentrates on typing purely functional compu-
tation by simplifying the language semantics. Our ambition
is to build a more useful system for ERLANG programs that
also analyzes concurrent parts. As we use similar technics
for collecting and solving constraints, our work may be con-
sidered as an extension of those systems.

Type inference and Constraints

Our system allows the synthesis of the types of every pro-
gram entity without requiring any type annotation from the
programmer. To do this, a fresh type variable is associated
with each node of the syntactic tree of the program and con-
straints between those variables are collected. At the end of
this collect phase, a resolution tool determines whether the
constraint set has solutions. If this is the case, the program
is declared well-typed. The schema of figure 1 describes this
process.

To type functions and give them widely usable types, ML
uses parametric polymorphism. For example, map has the
type Vo, 8 (@ = B) — « list — (B list meaning that it
can be used with any type o and 5. We advocate that in
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Figure 1: The analyzer schema

the concurrent context, this form of polymorphism becomes
too restricting. Our system adopts inclusion polymorphism
that intuitively means that the system ensures the correct-
ness only for all values used in the program as real arguments
(that is finite intersections rather than infinite ones). There-
fore, in our context, we use the subtyping relation. A type
t1 being a subtype of a type t2 (t1 C t2) if a value of type
t1 may be used (safely) where a value of type t» is required.
For ERLANG, the main use of subtyping is on process type:
a process that understands more messages and sends itself
less messages than another process, can replace this one.
Typing an expression e under assumptions A will produce a
type t and a subtyping constraint set C: AF e : ¢, C, this
deduction being valid only if C has at least one solution.

Notice that usual ML type system such as SML or Ocaml
can be viewed as following the same process collecting equal-
ity constraints. But, when subtyping is needed (as for Er-
LANG), the constraints become complex and their resolution
must use sophisticated and powerful graph algorithm. We
refer the interested reader to the works of Pottier [19] or
Féanhdrich [13]. Indeed, a constraint set is viewed as a graph
where type variables are nodes (with their upper and lower
bounds) and subtyping relation defines the edges.

The type of map becomes (o« — ) — « list — [ list and
each application with an argument of type ¢; and another
of type t2 produces the constraint set {t1 C o — 8, t2 C
a list, B list C ¢, } where ¢, is the resulting type. This strat-
egy collects all possible argument types and ensures that
they can all be used safely:

{{[fiCa—8, | |tsCalist, Blist T |t}

Potential and Errors
Before going on, let us look at the example below to precise
some vocabulary:

statel (V) ->
receive
{add,V1} -> statel(V1l + V);
{change,V1} -> state2(V,V1)
end.
state2(V1,V2) ->
receive
{add,V3,V4} -> state2(V1 + V3, V2 + V4);
{mute,F} -> FQ
end.
state3() —>

receive
kill -> true
end.

main() ->
case (spawn(statel,1)) of
P ->P ! {add,1,3}, P ! kill,
P ! {change,11}, P ! {mute,state3}
end.

A function may contain two forms of interfaces (the filters
f of a receive f end). One called immediate that is present
in the body of the function or in the body of another called
function ignoring received datas (in messages). And the
second category corresponds to interfaces received via mes-
sages. This notion is extended to processes, the set of im-
mediate interfaces of a process being the set of immediate
interfaces of its initializing function. In the example, statel
calls state2 and itself and state2 only calls itself. By con-
sequences, the immediate interfaces set of P is:

{{add,V1} {change,V1} {add,V3,V4} {mute,F}}

The immediate interfaces may be viewed as the static au-
tomaton describing our process and the others as some dy-
namic part (in the exemple, kill).

Our type system captures all orphans that leads to error (in
the semantics) using the potential introduced in the previ-
ous section. It is possible to give a predicate that collects
all immediate interfaces (we refer the interested reader to
[10]). Such a potential would approximates the previous set
(keeping only labels) and would be defined by:

P(m,e) 2 (label(m) € {add change mute}) (%)

Furthermore, as we do not want to raise an error and forbid
the sending of the message kill, the potential of a processe
calling a received function accepts anything. The real po-
tential of P is then an open potential: P(m,e) 2 true. In
fact, the potential defined in (*) would correspond to the
same process if we change state2’s second filter body (the
mute reaction) to any code not calling F.

Building the rules for such a system is already complex and
does not capture all errors that our type system detects.
Indeed, if in the example, we send a message sub to P, it is
not rejected because the potential of P is opened. Building a
more precise predicate (with respect to the captured errors)
is hard and in fact corresponds to a slight simplification of
the type inference. By consequence, we will not give precise



definition of the potential predicate and one can view it as a
simplification of the type. Each atom sent in mute message
is collected and its potential is added to the potential of P
which becomes:

P(m,e) 2 (label(m) € {add change mute kill})

The message kill is not declared orphan but the message
sub causes a type error (it raises a dynamic error if not
rejected).

We are currently devising a new definition of errors based on
a dedicated arborescent temporal logic (see [25]). However,
this approach currently only handle immediate interfaces.

Message and Process Types

An automatic analysis of the ERLANG compiler code, its
standard libraries and programs freely available on internet?
revealed that sent messages and receive interfaces are mainly
tuples where one element is an atom. This atom plays the
role of a label for messages. Furthermore rule 5.7 from [27]
states that all messages should be tagged. Following the
pioneer work of [17], we impose to all programs this precept.
Notice that the only (less rare) exceptions are the use of
jokers or variables to delegate the treatment of the message
to a choice instruction or to another process. These two
uses do not go against our precept since they just serve as
forwarder. Finally, a program not following this principle
may easily be adapted manually.

Those labels play a role similar to those of record label in ML
or of method names in objects (for example). We borrow
the row technology, used to type records, to approximate
interfaces. Rows are now frequently used for static anal-
ysis in ML world (see for example, exception analysis [18]
or object typing in Ocaml [20]). In our context, a process
type is a row, which is a partial function from labels to pair
of types describing arguments the message contains. The
first one describes received messages content and the second
handled messages content. Indeed, the originality of our
types is the fact that they contain both received and han-
dled messages in the type of a process. A process receiving
messages labeled m; containing datas of type T and han-
dling it with values of type 7> will have the following type:
@{m; : (Th, T»), i}. The (row) variable i expresses the fact
that the type of the process is only partially known. The
conversion from a tuple type T' to a message type T (if it
is sent) or T (if it is handled) is done in a lazy way and is
defined in the appendix. Either the system knows the form
of the type and converts it, or its structure is unknown and
the system waits. A message reduced to an atom s has the
type s and correspond to the message type {s : (unit, T)}
or to {s: (L, unit)}. Meaning respectively that it is a sent
message (the handling part is meaningless®) or a handled
message (the received part is meaningless). The conversion
of tuple message is similar. In the paper [17], the conver-
sion was done for all tuples but we think that this is not
really necessary. Back to our example, the process P has the

“This represent 200 000 code lines.

5The sens of the T or L will become clear when subtyping
will be defined. The intuition is that it is nothing.

following type if @ and 4 are variables:

Ty £ @{add : (1x3, int U (intxint)), change : (11, int),
mute : (state3, T'), kill : (unit, o), i}

Where T is the type of the function F taken as parameter.
Notice that the unknown part ¢ is related to the type 7'.

The correctness of the system is ensured by generating for
each spawn process a fresh interface type ¢ verifying oi. This
predicate is true if each received message is understood and
is mathematically defined by:

ofmy: (T, T }ies 2VieI T, C T/
Applied on previous type Tp, we get:
{1x3 C int U (int x int), 11 C int, stated3 C T, unit C o}

We have not yet defined subtyping but intuitively, one can
see that the two first constraints are trivial. The complete
is discussed resolution after the presentation of types and
subtyping.

Types and Subtyping

In ERLANG, one of the difficulties, is that being untyped, an
expression may evaluate to values of really different struc-
tures (for example, a boolean and a function). Therefore,
the type language must include a notion of union ¢; U to
meaning that a value of this type may be of type ¢; or ta.
Moreover to get sufficient precision, each constant has its
own type (for example, 1 is of type 1 subtype of the integer
int).

In ERLANG, any expression can execute a receive (i.e, ac-
cess the mailbox of the current process). Therefore, the sys-
tem use an indirect effect calculus inspired by [24] to collect,
in the type of self, all interfaces matched against the mail-
box. This effect is then included in the type of a function.
When a process is spawned the effect of its initial function is
added to the process type. In our example, state3 has the
following function type where the effect is the superscript of
the arrow:

it {kill: (L, unit)}

uni true

The language of types needed for pErlang is built by the
following grammar:

T @:= L|T|t|TUuT|TNT
| i nt integers
| s| atom atoms
| wnit | Tx...xT | tuple tuples
| T LT functions
| ar processes
I == {}|Tr|é|{m:(T,T), I} interfaces type

Subtyping is defined in the formula appendix, only three
rules are unusual:

e Process types are contravariant because a process may
replace another one only if its interface is larger, @I C
@I’ is equivalent to I' C I.

e Function types are contravariant on arguments as usual
and covariant on effect and on result. Indeed, if a func-
tion must replace another one, it must have a smaller



concurrent effect: Ty > To CT] S5 T) «— T, C
TWANICT AT, C T4

e Interface subtyping is covariant on received type, con-
travariant on handled type and compose covariantly.

{’ITL : (T17T2): I} c {m : (T{7T2,)7 I’}
— TICTIANT,CTLAICT

The intuition behind this rule is that the system must
keep the largest type T of received messages and the
lowest type T, of handled messages. The correctness
predicate ¢ leads to T, C T, and any received con-
tent of type T is guaranteed to be understood by any
receiver state T’ because T C T, C T, CT".

Attentive readers may have remarked that the subtyping
on interfaces is defined only for rows beginning by the same
message label. A complete algebraic theory exists and proves
that it is the only needed rule. If one label of the left side
row is absent from right side row, the subtyping is clearly
false and once all left side labels are treated, the system
reduces to {} C I which is an axiom.

Another example

Before going into further discussion on this type system,
consider a function that realizes a timer waiting for a mes-
sage cancel or the end of a time specified at its creation to
throw an alarm:

timer ({Pid, Time, Alarm}) ->
receive {cancel,Pid} -> true
after Time -> Pid ! Alarm
end.

A timeout function spawns such a timer process using the
pid of the current process and returns the pid of the timer.
The same process may cancel this timer using the returned
pid:

timeout ({Time, Alarm}) —>

spawn (timer, {self(),Time,Alarm}).
cancel (Timer) ->

Timer ! {cancel,self()}.

Supposing arguments of after (Time) are integers, our sys-
tem infers:

A {cancel:(L,@a&)}
timer : _—

axint xo true U

timeout : intxoa - @{cancel : (L, @a)}

@{cancel : (Q¢, T)} 2, cancel X Q¢

cancel :
meaning that:

e The timer function takes three arguments: an address
(receiving the third argument), an integer and a value
(a message). The result is either true or this value and
the current process receives a cancel message contain-
ing (an address of) a process that receives the third
argument.

e Alarm (of type ) must be a legal message (tuple be-
ginning by an atom).

e The process calling timeout receives the alarm (it ap-
pears in timeout effect).

e The result of this function is the name of a process
understanding cancel messages containing an address
that receives the alarm message.

e A call to cancel must includes an argument that re-
ceives a cancellation message containing the address of
the current process and returns this cancellation mes-
sage.

Those types are complex but very informative about the
behavior of these functions. For example, the system can
ensure that the pid returned by a call to timeout does not
receive messages other than cancellation. It can also ensure
that the process calling this function is able to receive the
alarm message.

Functional Typing

Pattern matching cannot be treated in the usual ML way:
(a1 = B1) U (a2 — [B2) cannot be equal to (a1 M az) —
(B1 U B2). In fact, the type system must include pattern
matching, to do this [2] introduced the notion of conditional
type t17t2. This type means ¢1 (if ¢2 is different from L) or
L. For example, if e : t., case e of true -> 1; false -> foo
is of type (int?(te M true)) U (foo?(te M false)). Our sys-
tem does not use this conditional type which enjoys good
algebraic properties but is not really readable and leads to
the loss of the pattern matching structure. Instead, we use
a conditional constraint ¢y = ¢ meaning that if ¢; is veri-
fied then the system must also ensure c;. This constraint,
generated to approximate pattern matching, allows to keep
a high level of precision on the link between matched values
and results. Typing previous choice lead to the following set
of constraints: C = {t. C true = int C ¢,, t. C false =
foo C ¢,, t. C true U false} where ¢, is the result type.
Either the system knows the structure of ¢, and C can be
simplified, or it is decomposed in two sub-systems (because
the matching is composed of two branches):

e One, in which, t. is subtype of true and therefore C' =
{te C true, int Ct,}

e Otherwise (due to third constraint), ¢. is a subtype of
false and C = {t. C false, foo C ¢, }

As, in general, we do not know precisely the matched value,
all those decomposed sub-systems must have a solution.
This means that a n branch pattern matching fires the res-
olution of n sub-systems. However, the practice have shown
that this is not a real problem. Indeed, when applying a
pattern matching to a value, we often know more or less its
structure and many of the sub-systems are trivial.

The typing judgments have the following shape:

Environment + Expression : Type, ConstraintSet

As, many typing rules are classic, we limit our explainations
to sends, choices, receives and calls:

e Typing ei!es returns the second sub-expression type
and the constraint set containing all constraints pro-
duced by the typing of e; and e2, plus a constraint
specifying that e; must evaluate to a process that re-
ceives the value of es:

Sl—elztl,Cl g|—62:t2,02
g|—61!62:t2,C1UC2U{t1E@tE}




e Typing a choice consists in typing the tested value and
all patterns and associated expressions of the filter. A
reaction expression must be typed after adding to the
current environment the environment resulting from
typing of the corresponding pattern:

Eke:t., Ce gl—pi:tf,gi EU&itei:ti C;
EFcaseeof pp > eq; ...t CeUUCiUC

where the resulting constraints cumulate all already
calculated constraints and those due to the choice (C).
C specifies that the tested value must be taken into
account by one of the patterns and add all already ex-
plained conditional constraints (one for each branch):

C={t.C||yulJ{t. Ct? =t Ct})

This means that the result type ¢ will be the union of
the type of each pattern that may match the tested
value.

e Typing the message handling may result in any possi-
ble branch type (hence the union) and adds all pattern

types to the current self type:
EF pi: tf, 51 o
EU& ket C; CZ{ :{5(se1f) E@tf}

& receive p1 = e ...: |_|t¢7 U(Cl uc;)

i

e Typing an application is much more complex. First,
one must type the function expression and each argu-
ment expression.

(‘,’I—e:te,Ce Sl—ei:ti,Ci
Ekeler,..,en) : t, C.Ul JCiUC

where C' is composed of t. C dom(T'r), E(self) C QI,
Fun(Tr,te,n) C (t1 X...Xty) L, t meaning that:

— The function must be defined.

— Its effect I is added to the current process effect.

— All possible functions are subtype of a function
type accepting the n actual arguments ¢;, having
an effect I and resulting in ¢ (it is the result of the
application). To get the set of possible functions,
we use a function Fun which applied to (T'7, te,n)
returns the union of all function types associated
to an atom (and the arity n) of ¢t in T'r. Like the
transformation from tuple type to message type,
this function is lazy and waits to know the value
of t. to perform its action.

For each possible functions of type « L) B, the last con-
straint ensures that all applications are legals because by
substyping it leads to {t1 x...xt, C a, I' E I, 8 C t}.
Furthermore, all effects (resp. results) are cumulated in the
global effect I (resp. result t).

The function typing environment T'r results from the typ-
ing of all functions in F. A mapping (s,n) — f in F adds
a mapping (s,n) — t; if the typing of f by the rule be-
low results in t;. And, We suppose that all constraints it

may produce are added to the global constraint set before
resolution.

Ekpi:ti, & gUgiFEi:t’i:Ci
EFpL — e ...:|_|(ti—>t;), UCi
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Going back to our example, the application of F leads to:

state3 C T, unit C o, T C {statel,state2,state3},
Tp T QI, Fun(Tr,T,0) C unit St

The first constraint combined with the fifth leads to:

it {kill: (L, unit)}

T
uni true C unit —t

This imply that Tp T QI C @{kill (L, unit)} and
true C t. The first constraint simulates (in the type sys-
tem) the reception of unit message: (L, unit) C (unit, o)
equivalent to {L C unit, @ C unit}. Adding this to the ini-
tial constraint set leads to a solvable constraint set (where
a = unit). This allows the system to guarantee the correct-
ness.

6. SCALING TO ERLANG TYPING

The simplified system presented here does not correspond to
the real prototype implementation. To scale to this system,
we have to:

e extend the types by lists, characters, floating point
numbers and all other basic types (corresponding to
ERLANG basic values). This extension and the defini-
tion of built-in function is straightforward but need to
add a lot of rules.

e change scoping rule policy. Our system needs to have
an input and an output environment for each expres-
sion. This is also boring routine.

e add guards to the pattern matching (again routine ex-
tension). Notice that in the prototype, it is one of the
constructions that contains a lot of type informations.

e take care of dynamic patterns. Indeed, in ERLANG, a
variable in a pattern is a definition only if the vari-
able is not already defined. This small modification of
the semantics and more precisely of the semantics of
patterns needs important changes in the type system
summarized just below.

One of the biggest problem that we faced when typing ER-
LANG is dynamic pattern matching. Indeed, in the patterns,
a variable is not always a binding occurrence, that is, if the
variable is already bound, its value replaces the variable be-
fore pattern matching is realized. For example, consider:

g(X) -> case 1 of X -> ok; _ -> no end.
The term {g(1),g(2)} reduces to:
{case 1 of 1 -> ... , case 1 of 2 -> ...}

and then to {ok,no}. Usual typing of this function gives
o — t with the constraints:

{l1Ca=0okC# 1C(T\a)=noCt}



Therefore, the application has type (ok Lino) X (ok Lino) be-
cause the two applications gives 1112 C o meaning that both
branches may be used. The problem comes from the fact,
that the usual function typing impose to all possible real
argument types to be simultaneously compatibles with all
their potential use in the body of the function. For this,
when typing the body of the function, the system collects
constraints of the form « C t where « is the type of an argu-
ment. And each call to the function produces constraints of
the form ¢’ C « which enable by transitivity to ensure that
t' C t. But, in the body of a function, if a pattern includes
an argument, the system generates a constraint ¢ C « incom-
parable with ¢ C «. This means that we cannot guarantee
that the argument respect one of the constraints required
by the function.

The type obtained for {g(1) ,g(2)} is not very precise (using
usual strategy) but above all, if the joker branch is not in the
choice, the program cause an error that cannot be detected
by the type system. To solve this problem, the system is
going to type each application of a function using a fresh
instance of its type. With this strategy no harmful flow (of
information) may happen between two application sites as
before. Indeed, the intuition behind this problem is that
when a function use one of its arguments in a pattern, each
application produces a new (and different) version of the
body (of the function). Therefore, the constraints it imposes
are not the same and the return type are different too.

The typing of a function leads to a type @ — 3 and a con-
straint set C. Its calling on an argument of type ¢ will use
type t — 8’ (where 8’ is fresh) and add [t/«, 8'/8]C to the
global constraint set. Therefore, typing:

g(X) -> case 1 of X -> ok end.
gives a — t with {1 C «, ok C t}. Therefore, the type of

{g(1),g(2)} is t1 xts with {1 T 1, ok C ¢, , ok C

t2} where the boxed constraint is false. The error is now
detected!

The drawback of this strategy is that the number of type
variables and constraints grow more rapidly. To solve this
problem, in practice, the system apply this strategy only to
a subset of functions. More precisely, this strategy is applied
to the arguments of functions using one of their arguments
in a pattern. As this situation is not the most usual, the cost
to pay (for this strategy) is not too expensive (in general).

7. DISCUSSION

In this paper, we have proposed a formalization of the ER-
LANG semantics using a two level reduction system. A first
level concentrates on concurrent aspects of the language us-
ing a formalism inspired by the m-calculus, the configura-
tions. And a second expressing the functional semantics
(and its potential concurrent effects) using a more classic
setting. Finally, we have introduced a type system for ER-
LANG insisting in the original parts of our works: message
typing and the fact that the system try to stay close to the
language. The versions presented in this article represent
only insight of the complex system developed and the pro-
totype of static analyzer realized.

Formal semantics of Erlang

This work though not complete can be a good beginning to
reach a good formalization of the semantics of ERLANG. A
complete formalization of the whole language would require
a lot of work because one would have to:

¢ add the node (site) notion. For this, configurations
must be extended by a set of node names and by a
construction (n | w), meaning that w is executed on
node n. A configuration describing a two nodes could
then be vni,n2.((n1 | wi) || (n2 | w2)).

¢ implement dynamic code replacement. Each site
must include the environment of defined functions and
the values of those functions could change: (n | £ | w).

¢ allow sending message between sites. The target
of the message may be local keeping the same syntax
or remote on node n and the transit message could be
a@n < m.

e integrate the time notion. In ERLANG, the message
handling operation has a clause after that allows to
stop the execution of this instruction after a specified
delay. One solution could be to add a notion of counter
to each node.

e add a notion of symbolic names and a dictio-
nary. A service can be abstracted by associating it
with a name. This declared name represent a process
(that can change). Each node needs to maintain dic-
tionary: (n| & | En | w).

e add signals. ERLANG use signals to propagate excep-
tions among processes. For example, we could add a
flag to the message making it possible for the receiver
to distinguish a signal from a message.

Some recent work on distributed process calculi like D (see
[21]) or the join calculus (see [14]) can also help in such a
project of formalization of the semantics of ERLANG. Notice
that those points are not all the problems that needed to
be solved, we refer the interested reader to the chapter 10,
11 and 12 of [3]. Those three chapters does not include a
formal semantics but their informal systematic description
of ERLANG semantics enable to view all possibilities.

Complete Erlang Typing
To become a complete and widely usable tool our system
needs some extensions.

First, the ERLANG messages does not contain label so the
type of process must be retailored. The works on XM (a
typed functional language used to manipulate XML docu-
ments) of [23] can be a good basis. Indeed, to type cor-
rectly the choices of XML, they build a typed A-calculus
including a notion of record without label. For example,
(1) + ("test") + (Az.if = then 1 else 0) is typed by
{int; string; bool — int}. This adaptation does not seem
to be straightforward because the type system of XM use
equality constraints and is based upon a notion of con-
straint implication. Therefore, its integration with the sub-
typing needed for ERLANG needs studies about subtyping
constraint implication and to our knowledge, none of the
work made in this area have really achieved that goal yet.



In the context of telecommunication systems, exceptions are
very important to reach a certain level of quality for pro-
grams. Indeed, the reliability of such applications needs a
precise treatment of every possible exceptions. A type sys-
tem helping the programmer in this task would be a real
aid. It could estimate the set of potential exception caused
by every expressions of the program and ensure that they
are treated. An extension of [18] may be a good start point
toward such a static analyzer.

Finally, the most difficult point with ERLANG is that the
approximation made by this ideal type system should have
to be compatible with hot code swapping. Indeed, in ER-
LANG, a module is used by hundreds or thousands of nodes
that cannot be stopped or restarted. An evolution of such
a module use dynamic code replacement and therefore, the
old version and the new one have to be executed simulta-
neously and must cooperate safely (at least for a temporary
period). Such a task is totally out of reach at the moment,
but a first step to its resolution could start from [22].
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APPENDIX

Configurations reduction rules:

CONGRUENCE : PARALLEL : RESTRICTION : ACCEPT :
w) = w) wh — wh wh = wa w; — wo w; — wo P(m,e)
wyp — wa wl|wr — wl|ws va.ws — va.ws (alm)pellaam — (almm)>e
REJECT : EXPRESSION :
not(P(m,e)) a¢ FN(ave) akFa,eS.d, ¢

(a|m)>e || a<dm — Err

Evaluation context grammar:

Cu=[](C)|{AY|C,e|Ctle|e!C|CCle,..
Azx=]le,AlAe
Matching semantics:
v []éErr

Functional reduction rules:

VARIABLE ERROR :
at a, Clz] —. @, Err

SEQUENCE :

APPLICATION :
at a, Clu(v,...,on)] —e a, Cl{uv1, ..., vn }/F (v, n)]
SEND ERROR : SEND :

v1 € A vi €A

at a, Clv, e] — a, Cle]

ave —va.(a' be || w)

,€) | e(A) | case C of f end

if match(p,v) = fail
if match(p,v) =0o

APPLICATION ERROR :
(v,n) & dom(F)
at a, Clv(v,...,on)] —e @, Err

CASE :
at a, Clcase v of f end] —. a, Clv/f]

SPAWN ERROR :
v’ is not a tuple

at a, Clvilv2] —e @, Err

SPAWN :

at «, C[spawn(v,vi, ..., vn)] fel@ppvviy o),
SELF :
at (a'|m), C[self()] —. (a'|m), Cla']

RECEIVE :

matchmailbox(f, m

ata, Clvlvs] 2225, a, Clus]

e a, Cla]

a ' a, Cl[spawn(v,v')] —¢ a, Err

SELF ERROR :
a b x, C[self()] — *, Err

RECEIVE ERROR :
at %, Clreceive f end] —. , Err

)=, e

al(a

Mailbox semantics:

35 (Vi< j mi/f1 = Err) mi/fi=e

|m), Clreceive f end] —». {a’

'), Cle]

(VZ eJ mz/fl = Err)

matchmailbox(fi::_, (mi)ics) = (Mi)ien\ {5}, €

Type Conversion:

(52 {s: (unit, T)}
sle/xTxTn £ {s:(Thx..xT,, T)}
TAT,
0T 21, T
A7 20,7
a2 a if aisatype variable
\ T 2 Err  otherwise

matchmailbox(f1::fl, (m;)ics) =

matchmailbox(fl, (mi)ic.s)

(52 {s: (L, unit)}
SXT1 X ... XTIy 2 {s: (L, Ty x..xTy)}
T2T,
I_li T; £ |_| T
[ 7i 2 [ T:
a2a@ if ais a type variable
T £ Err  otherwise




Subtyping Deduction System:

TCT TCT, TCT TCT, 1 €N s € At
1CT TCT {}CI IC Ty —
TETlrsz TET1L|T2 TETll_ITg ZE’Lnt sgatom
Vi T; C T} I'cr T/ CT icr T, C T,
Ty x...xTy C tuple ; ; —_— -
TIX...XTn ETlx...XTn @IE@I Tl L)T2ET{ I_>T2/

nCTi TCT ICT
{m:(T1,T2), I} C {m: (T{,T3), I'}

Typing Deduction System:

Var Tuple Paren Sequence
V € dom(€) ginstant{} Etei:ti, Ci Ebe:t,C  EFe:t;,C, EFes:ty, Cs
_— c: e,
EFVEW) {} Erder, e} itixoxt, | JC: EF(e):t,C Eher,exity, CLUC
Send Case
Ekei:ti, Ch EFesity, O Eke:te, Ce Ebpi:th & EU& ket C;

Eteles:ts, C1UC, U {t; C Qiy)} €t caseeof py —ve1; ...t CquCiu{teQUtf}UU({te Ct =t Ct})

Application
Ere:te, Ce Ekeity, C;

EFeler,y..oen):t, CeU UCZ' U {te C dom(Tr), E(self) C QI, Fun(Tr,te,n) C (t1 X ... Xtp) EN t}

Receive
gl—piitf,&‘ EU&i ket C;

€ - receive p1 —e1; ...: |_|ti, U(C’ U {&(self) C @F})

i




