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ABSTRACTIn this paper, we present an insight of the two major 
ontri-butions of works made to build a stati
 analyzer of Erlangprograms. First, we introdu
e a general framework basedon a pro
ess 
al
ulus (the 
on�gurations). This formalismdes
ribes 
on
urrent aspe
ts and abstra
ts fun
tional ones.Obtaining the Erlang semanti
s is then just instantiatingthis framework with an adequate fun
tional setting. These
ond 
ontribution is a sophisti
ated type system for Er-lang. This type system infers types and subtyping 
on-straints for a program and ensures that the 
olle
ted 
on-straints have at least one solution. This system dete
ts usualfun
tional errors but also some of the 
ommuni
ation errors.More pre
isely, for ea
h pro
ess, it 
umulates all re
eivedmessages and all handled messages and ensures that the �rstis in
luded in the se
ond. To do this, it borrows 
on
epts tothe obje
t (or re
ord) usual typing in ML.
1. INTRODUCTIONThe development of tele
ommuni
ations industry and thegeneralization of network use bring 
on
urrent, distributedand mobile 
omputing into the limelight. In that 
ontext,programming is a hard task and, generally, the resultingappli
ations 
ontain many more bugs than usual sequential
entralized software. Indeed, the indeterminism resultingfrom the unreliability of networks and the size of the 
odeof su
h appli
ations makes it diÆ
ult to validate any dis-tributed fun
tionality using informal approa
hes. Our workfo
uses on using stati
 analysis, a kind of formal methods toease development.As Erlang software are mainly used in tele
ommuni
ationequipment that do not tolerate failure, their developmentmust be 
erti�ed. More pre
isely every step toward the �nalappli
ation must be validated (ideally automati
ally). Ouraim is to parti
ipate to this hard task, by building stati
analysis of 
ommuni
ations using type inferen
e te
hniques.To give an abstra
t model to Erlang programs, we use thea
tor model developed by Agha in [1℄. It is based on a net-work of autonomous and 
ooperative agents (
alled a
torsand similar to Erlang pro
esses), whi
h en
apsulate dataand programs. They 
ommuni
ate using an asyn
hronouspoint to point proto
ol and store ea
h re
eived message ina mailbox. When idle, an a
tor handles the �rst messageit 
an in its mailbox. Besides those 
onventions (whi
h arealso true for 
on
urrent obje
ts), an a
tor 
an dynami
ally(at run-time) 
hange its interfa
e. This property allows to

modify the set of messages an a
tor 
an handle, yielding amore a

urate and widely usable programming model. Forexample, it 
an give an abstra
t model to applets and dy-nami
 
ode loading.In a �rst approa
h, we de�ned type systems for the Cap 
al-
ulus des
ribed in [8℄, a primitive a
tor 
al
ulus derived fromasyn
hronous �-
al
ulus and Cardelli's Cal
ulus of Primi-tive Obje
ts. Two type systems were developed. The �rstone [9℄, based on usual obje
t type abstra
tions, 
at
hes allusual fun
tional and 
ommuni
ation errors (erroneous pa-rameters) but only a subset of messages whi
h will neverbe handled. The se
ond [7℄, dete
ts all (safety) messagesnot understood but requires a mu
h more 
omplex type ab-stra
tion and a new programming dis
ipline. These systemswere proved to be 
orre
t. In order to validate their pra
ti-
al use, the need for a programming language implementa-tion arose. In a �rst approa
h, we developed a lab languageML-A
t integrating �a la ML programming with a
tor prim-itives and in
luding a sophisti
ated type system extendingthe previous work on Cap (see [11℄). Then, we studied Er-lang, as it appears that, thought its fun
tional aspe
ts havea strongly di�erent semanti
s (and typing) than ML-A
tone's, their 
on
urrent semanti
s and typing were similar.Therefore, we developed a framework abstra
ting the partsof both languages having semanti
s (and typing) di�eren
es(for example, fun
tional aspe
ts or mailbox semanti
s). Itbe
ame possible to build systemati
ally the semanti
s, thetyping and some properties about the typing, on
e providedthe fun
tional setting. Furthermore, this fun
tional setting
an use a well known 
lassi
al one. For example, ML-A
tuse the ML fun
tional semanti
s and typing.This arti
le gives an introdu
tion to this abstra
tion and itsappli
ation to Erlang. The �rst se
tion provides a betterinsight of the form of 
ommuni
ation errors we wish to de-te
t and the ones our system 
aptures. Then, we introdu
e asimpli�ed version of Erlang and its formal semanti
s basedon 
on�gurations, an asyn
hronous �-
al
ulus like pro
essalgebra. Then, we de�ne our type system and illustrate itsuse on examples. Finally, we dis
uss s
aling this system tothe full language and some possible extensions to our work.
2. COMMUNICATION ERRORSIn an usual 
on
urrent setting, a pro
ess P may re
eive amessage m (P ! m, in Erlang). Supposing P is idle, thereare two possibilities, either P 
an handle m or it 
annot. Ourworks fo
us on the early dete
tion of requests that may not



be handled (the se
ond 
ase). This problem is related tothe method not understood errors of obje
t oriented pro-gramming. In the a
tor 
ontext, a message that may not beunderstood by its re
eiver is 
alled an orphan.Typed obje
t oriented languages determine the set of meth-ods an obje
t P understands (typeof(P)) and ensures thatea
h method invo
ation P.m is 
orre
t by verifying that mis part of the type of P (m 2 typeof(P)). Furthermore, asthe type of an obje
t does not 
hange, the veri�
ation 
anbe done when the method is invoked. Adapting this te
hni
to Erlang (P be
oming a pro
ess and P.m be
oming P!m)raises two problems leading to a mu
h more 
omplex typ-ing: a) the 
omputation of the set of messages a pro
ess 
anhandle is dynami
 and more 
omplex and b) as the timebetween sending a message and its re
eption by its targetmay be important (the message may travel through largenetworks), the veri�
ation must be done upon re
eption.The usual approa
h for a
tor languages is to dynami
ally
he
k for message not understood errors. A pro
ess knowsthe messages it 
an (immediately) handle and if a re
eivedmessage does not 
onform to this interfa
e, it raises a mes-sage not understood error (see the initial a
tor model [1℄ orthe Vas
on
elos and Tokoro obje
t 
al
ulus [26℄). But thisapproa
h redu
es 
onsequently the set of programs that onemay build. In fa
t, the programmer must adopt a sort ofsyn
hronous programming dis
ipline to be sure that mes-sages arrive in right states. We think that this strategy istoo restri
tive. For example, 
onsider a printer devi
e thathas two states: working (it a

epts printing requests) andstopped (it waits for initialization). A 
lient must wait thatan initialization message has been sent to the printer beforeprinting. It would be mu
h more 
exible to enqueue all re-quests re
eived when the printer is stopped and to pro
essall pending requests when it is initialized (possibly indepen-dently by another pro
ess) whi
h is the usual behavior ofuni
es print spoolers.The se
ond and opposite approa
h never reje
ts a message.When a pro
ess re
eives a message that it 
annot handle, itsilently enqueues it. Noti
e that, in this 
ontext, a messagemay stay inde�nitely in a mailbox (their size is unbound).This semanti
s has been 
hosen by the blue 
al
ulus [4℄, thejoin 
al
ulus [14℄ and Erlang.We believe that a 
ombination of both approa
hes may bemu
h more appropriate. Su
h a system would reje
t pro-grams that 
ontains message never understood and woulda

ept all other messages warning the programmer that theymay never be handled. To a
hieve this goal, we use a power-ful behavioral1 type system to enfor
e the reje
tion of su
hmessages. Our type system dete
ts all messages that arenot in the set of messages the re
eiver may handle dur-ing its exe
ution. This means that typeof(P) 
umulatesall the re
eive that P 
ould exe
ute. To do this the sys-tem must follow the 
ow of fun
tions 
alled by P. It is 
learthat, in general, our analysis will answer > (top) to expressthe fa
t that a pro
ess may assume an externally de�ned re-
eive and therefore understands virtually everything. But,we think that the results are generally already helpful and1By opposition with a more usual 
lass name type systemas in C++ or Java.

we are working on extending our te
hniques to those openprograms as will be dis
ussed later.For example, a pro
ess P exe
uting the �rst fun
tion of theprogram below (ping) has a type 
ontaining ping, 
hangeand all messages a

epted by all possible behaviors F. Thismeans that sending a message {
hange, pong} to P addspong to the type of P.ping() -> re
eive ping -> ping();{
hange, F} -> apply(F,[℄)end.pong() -> re
eive pong -> pong() end.
3. A SIMPLIFIED VERSION OF ERLANGFollowing a 
ommon use in the de�nition of stati
 and dy-nami
 semanti
s, we simplify the Erlang language by sup-pressing synta
ti
 sugar and ignoring 
onstru
tions that aretyped orthogonally to our work (for example, ex
eptions,lists or re
ords). Furthermore, we do not address the seman-ti
s of the real time part of the language whi
h is 
omplexbut do not add any spe
i�
 problem to the type system. Ane�ort has been made to de�ne pre
isely a small (but still toobig) language named Core Erlang ([5℄ or [6℄). Therefore,we use a smaller version of the language named �Erlang:prg ::= 
;:::;
. j 
;:::;
. prg
 ::= s(p,:::,p) -> ep ::= j V j s j i j {p,:::,p}e ::= V j s j i j {e,:::,e} j (e) j e,e j e!ej e(e,:::,e) j 
ase e of f end j re
eive f endf ::= p -> e j p -> e;fA �Erlang program is a set of fun
tion de�nitions in
lud-ing a fun
tion named main. This main fun
tion is laun
hedto start the exe
ution of the program. The rest of the lan-guage is very 
lose to Erlang. Ea
h fun
tion is 
omposedof 
lauses separated by semi-
olons and terminated by adot. All 
lauses (s(p,:::,p) -> e) must refer to the samefun
tion name s and have the same arity. Noti
e that thislanguage does in
lude guards to simplify the semanti
s andthe type system for this paper. A pattern may be a joker(always su

eeding), a variable V (always su

eeding andbinding the variable2), an atom s, an integer i or a tuple.An expression may be any of those values and add paren-theses, sequen
ing (,), message sending (!), fun
tion 
all,
hoi
e (
ase) and message handling operation (re
eive).The 
hoi
e (resp. the re
eive operation) mat
hes an ex-pression (resp. the mailbox of the 
urrent pro
ess) using aset of �lters 
omposed of a pattern and an expression (f isnamed interfa
e). Finally, some atoms represents built-infun
tions, as for example, spawn and self.Noti
e that as Core Erlang, we adopt lexi
al s
oping ofvariables to ease the presentation. Our prototype uses Er-lang strategy mixing dynami
 and lexi
al s
oping. There-fore, the real system uses systemati
ally an input and anoutput environment for ea
h expression. Again for sake ofsimpli
ity, �Erlang does not in
lude lists that are repla
edin appli
ation and spawning by tuples.2This is not true for Erlang, but our system 
an easilyadopt Erlang poli
y.



4. FORMAL SEMANTICS OF ERLANGOur work fo
uses on stati
 analysis and more pre
isely ontyping. In order to prove the 
orre
tness of our type system,we need a formal semanti
s of Erlang. To our knowledge,few works have addressed su
h a hard task. Indeed, as Er-lang is a full 
edge fun
tional, 
on
urrent, distributed andmobile language, its semanti
s is 
omplex. Some e�orts havebeen made to give an informal, but 
lear and systemati
 de-s
ription of its semanti
s ([3℄ and [6℄). But, this is not suÆ-
ient to build and prove some stati
 veri�
ation system. Itseems that only two papers ([12℄ and [15℄) try to build su
ha formal semanti
s. These two papers de�ne two LabeledTransition System that does not suit our need (proving the
orre
tness of a type system). Inspired by those approa
hesand our previous works on semanti
s for a
tors, we built ourown formal semanti
s by instan
iating a general framework
alled 
on�gurations previously build on a lab language ex-tending ML to a
tors (ML-A
t). This framework de�nesa general syntax for 
on
urrent a
tions and abstra
ts (inthe sense of taking as parameter) the fun
tional part of thestudied language. With this approa
h, we 
an reuse exist-ing semanti
s and typing from the fun
tional world. The�Erlang semanti
s is obtained by instantiating this frame-work with an adequate fun
tional semanti
s.We are not going to give all the formal de�nitions and jus-ti�
ations of this model that may be found in [10℄. We areonly going to give insights on 
on�gurations to dedu
e the�Erlang semanti
s. Most rules are given in appendix for theinterested reader.
ConfigurationA 
on�guration is a term that represents a 
on
urrent sys-tem at a given time. Its de�nition is parameterized by threesets : the name set a 2 A , the message set m 2 Mess andthe expression set e 2 Exp with A � Exp and Mess � Exp.The set of 
on�gurations notedW is built from the followinggrammar:w ::= � j Err j �a:w j w k w j a / m j � . e� ::= ? j ha j emiA 
on�guration looks like a �-
al
ulus term with a sendoperation, noted a/m (a is the re
eiver andm the message),and a pro
ess, noted � . e (� is the identity and e is theexe
uted expression). The identity of a pro
ess is eitherunspe
i�ed ? to model toplevel 
omputations3 or, ha j emi apair 
omposed of a name (pid in Erlang tradition) and amailbox (the tilde notation denotes sequen
e). As it is usualin pro
ess 
al
uli, we use a name binder � to simulate thename 
reation and suppose that the 
orresponding notion offree names and substitution are de�ned.In the 
ontext of �Erlang, Exp represents the syntax intro-du
ed in the previous se
tion, addresses are built automat-i
ally when the built-in fun
tion spawn is 
alled and a mes-sage 
an be any value (atom, integer or tuple).A 
ongruen
e is de�ned to state whi
h 
on�gurations areequivalents:� (W; k; �) is a 
ommutative monoid, the order of sub-
on�gurations is not important and we 
an suppress3Those expressions 
annot a

ess re
eive or self.

all o

urren
e of �.� w k Err � Err and �.Err � Err, errors are propagateduntil the program evaluation stops.� �a:w � w if a is not free in w, �a:w � �b:[b=a℄w if b isnot free in w and �a1:�a2:w � �a2:�a1:w ; those threeusual properties allow to forget the bindings of unusednames, to rename a bounded name and to modify theorder of restri
tions.� the restri
tion rule, �a:w1 k w2 � �a:(w1 k w2) if ais not free in w2, allows to enlarge the s
oping of aname. Combined with the previous rule, it enables(up to a renaming of a in w1) to extend the s
opingand to simulate name propagation in the medium.� ?.v � � and �a:(ha j?i.v) � � if v is a value (it 
annotbe redu
ed) ; therefore, a global 
omputation (or apro
ess) whi
h redu
e to a value 
an be destroyed bya garbage 
olle
tor. Noti
e that the pro
ess must havean empty mailbox and be ina

essible to the outsideworld.Noti
e that it is possible to add a rule to express the fa
tthat a stopped pro
ess waiting for a message, that do notunderstand any of its mailbox messages and is no more a
-
essible from outside is an error. But, as our type system
annot 
apture all su
h messages (for example in a deadlo
k
ase), we 
annot prove its 
orre
tness with this rule.The appendix 
ontains all the 
on�guration redu
tion rules.Let us dis
uss only original rules.As introdu
ed in the se
ond se
tion of this paper, we try todete
t 
ommuni
ation errors. To de�ne those errors morepre
isely, they are introdu
ed in the semanti
s of 
on�gura-tions. Therefore, when a pro
ess re
eives a message, it 
ana

ept it (and put it in its mailbox) or reje
t it by raisingan error:ha j emi . e k a / m �! �ha jm emi . e if P(m;e)Err elseTo abstra
t the 
hoi
e of rea
tion, a (
ommuni
ation) po-tential P(m; e) is de�ned. This predi
ate approximates eto determine whether m may be understood or not. Thisallows the semanti
s of our framework to behave di�erentlytoward su
h messages. It is possible, for example, to 
odeusual Erlang semanti
s with a predi
ate always true. Inthe next se
tion on typing, we will dis
uss more deeply thissubje
t.Our general semanti
s in
ludes a rule to spe
ify the intera
-tion between fun
tional and 
on
urrent redu
tion:a =2 FN (� . e) a ` �; e w�!e �0; e0� . e �! �a:(�0 . e0 k w)Where, we suppose that the fun
tional redu
tion have thegiven shape with a being a fresh name (a =2 FN (� . e))that may be used during the expression evaluation and wbeing a 
on�guration des
ribing the 
on
urrent e�e
t of thefun
tional redu
tion step. In the rest of the paper, if thelabel of su
h a redu
tion is �, it is omitted. Noti
e that ifa is unused, the third 
ongruen
e rule enable to forget itsbinding.



Functional reductionA �Erlang program is a set of fun
tion de�nitions and itsexe
ution 
orresponds to the redu
tion of the body of themain fun
tion in a 
ontext where all the other fun
tions arede�ned. By 
onsequen
e, the �rst step of the fun
tional se-manti
s builds the fun
tion environment (noted F). Thispro
ess will not be des
ribed here, its result is an environ-ment asso
iating an atom and an arity to the body (all thepattern mat
hing 
onverted to a tuple mat
hing) of the 
or-responding fun
tion. For example:�f(p1,p2) -> e1;f(p3,p4) -> e2. produ
es (f; 2) 7! �{p1,p2} -> e1;{p3,p4} -> e2.�To simplify our presentation this set is abstra
ted and sup-posed to be a

essible in all rules. This 
ould be done bytagging ea
h expression with this environment: eF and bypropagating it during redu
tion.Fun
tional redu
tion uses the 
lassi
 notion of evaluation
ontext. A 
ontext noted C[℄ is an expression with a holemarking the sub-expression subje
t of the 
urrent redu
tionstep. The redu
tion C[e1℄ �!e C[e2℄ redu
e the expressione1 and repla
e it by the result e2. The evaluation 
ontextgrammar is also given in the appendix, it expresses the fa
tthat the order of evaluation is unde�ned when evaluatinga tuple, a message sending or an appli
ation. On the 
on-trary, evaluation of a sequen
e (resp. a 
hoi
e) starts withthe �rst expression (resp. the tested value). In additionwe suppose that an error 
ause the end of the evaluationpro
ess: C[Err℄ , Err.Variables on
e de�ned have their values propagated by asubstitution noted � that we will not des
ribe here. Themat
hing operator = uses a fun
tion mat
h to 
ompare apattern and a value and build the substitution of the vari-ables in the pattern by their 
orresponding values. Thisfun
tion either returns a substitution or fails. It tries tomat
h the �rst �lter p! e. If mat
h(p; v) returns �, = re-turns �(e). Else, if it did not mat
hed, the pro
ess 
ontinuewith the remaining �lters. At the end, if none of the �lterhave mat
hed, we get an error.Purely fun
tional evaluation is 
lassi
. The most originalrules 
on
erns appli
ation:a ` �; C[v(v1; :::; vn)℄ �!e �; �Err if (v; n) 62 dom(F)C[fv1; :::; vng=F(v; n)℄The 
alled fun
tion must be in the 
urrent fun
tion envi-ronment (F). The result 
orresponds to the mat
hing of itsbody with the tuple of a
tual arguments. This rule supposethat the expression des
ribing the fun
tion must redu
e toa valid atom and therefore, it extends slightly Erlang se-manti
s.The fun
tional a
tions that are 
onne
ted with 
on
urrentbehavior have an original form and must be explained:� Sending a message impose that the �rst argument isa name, returns the sent value and is labeled by the
on�guration sending term:a ` �; C[v1 ! v2℄ v1/ v2����!e �; �Err if v1 62 AC[v2℄

� Spawning impose that its se
ond argument is a tuple,returns the name (guaranteed to be fresh by 
on
ur-rent redu
tion) of the future pro
ess and is labeledby the 
on�guration des
ribing the newly 
reated pro-
ess.This is only rules where the fresh name is used.a ` �; C[spawn(v; v1; :::; vn)℄ ha j?i.v(v1;:::;vn)������������!e �; C[a℄� A 
all to the built-in fun
tion self must be done ina pro
ess and is repla
ed by the name of the 
urrentpro
ess:a ` ha0 j emi; C[self()℄ �!e ha0 j emi; C[a0℄� A

essing the mailbox is similar to the 
hoi
e ex
eptthat the order of mat
hing is di�erent. The pro
ess try�rst to mat
h ea
h message with the �rst pattern andtry next patterns only if none of the mailbox messagessu

essfully mat
hed the �rst pattern. For this we usea fun
tion mat
hmailbox that returns the resultingmailbox and the rea
tion. Noti
e that if the mailboxis empty no redu
tion 
an take pla
e and by 
onse-quen
e the pro
ess is stopped (until a message rea
hesits mailbox).a ` ha0 j emi; C[re
eive f end℄ �!e ha0 j em0i; C[e℄wheremat
hmailbox(f; em) = em0; e
5. TYPING �ErlangWhen building a type system to stati
ally dete
t errors inprograms. The �rst thing to do is to de�ne pre
isely whatkind of errors, we want to avoid. In a 
on
urrent setting,two families of errors arise: fun
tional errors and 
on
urrenterrors. The former family is usual in the sequential worldand 
orrespond to the erroneous use of a value (for example,using an unde�ned variable or using 1 as a fun
tion). Thelatter is rather unusual and has been des
ribed in details inthe se
tion 2.A type system 
an provide several level of pre
ision. Twoprototypes have already been built for Erlang (see [17℄ and[16℄) that 
on
entrates on typing purely fun
tional 
ompu-tation by simplifying the language semanti
s. Our ambitionis to build a more useful system for Erlang programs thatalso analyzes 
on
urrent parts. As we use similar te
hni
sfor 
olle
ting and solving 
onstraints, our work may be 
on-sidered as an extension of those systems.
Type inference and ConstraintsOur system allows the synthesis of the types of every pro-gram entity without requiring any type annotation from theprogrammer. To do this, a fresh type variable is asso
iatedwith ea
h node of the synta
ti
 tree of the program and 
on-straints between those variables are 
olle
ted. At the end ofthis 
olle
t phase, a resolution tool determines whether the
onstraint set has solutions. If this is the 
ase, the programis de
lared well-typed. The s
hema of �gure 1 des
ribes thispro
ess.To type fun
tions and give them widely usable types, MLuses parametri
 polymorphism. For example, map has thetype 8�; � (� ! �) ! � list ! � list meaning that it
an be used with any type � and �. We advo
ate that in
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Figure 1: The analyzer s
hemathe 
on
urrent 
ontext, this form of polymorphism be
omestoo restri
ting. Our system adopts in
lusion polymorphismthat intuitively means that the system ensures the 
orre
t-ness only for all values used in the program as real arguments(that is �nite interse
tions rather than in�nite ones). There-fore, in our 
ontext, we use the subtyping relation. A typet1 being a subtype of a type t2 (t1 v t2) if a value of typet1 may be used (safely) where a value of type t2 is required.For Erlang, the main use of subtyping is on pro
ess type:a pro
ess that understands more messages and sends itselfless messages than another pro
ess, 
an repla
e this one.Typing an expression e under assumptions A will produ
e atype t and a subtyping 
onstraint set C: A ` e : t; C, thisdedu
tion being valid only if C has at least one solution.Noti
e that usual ML type system su
h as SML or O
aml
an be viewed as following the same pro
ess 
olle
ting equal-ity 
onstraints. But, when subtyping is needed (as for Er-lang), the 
onstraints be
ome 
omplex and their resolutionmust use sophisti
ated and powerful graph algorithm. Werefer the interested reader to the works of Pottier [19℄ orF�anhdri
h [13℄. Indeed, a 
onstraint set is viewed as a graphwhere type variables are nodes (with their upper and lowerbounds) and subtyping relation de�nes the edges.The type of map be
omes (� ! �) ! � list ! � list andea
h appli
ation with an argument of type t1 and anotherof type t2 produ
es the 
onstraint set ft1 v � ! �; t2 v� list ; � list v trg where tr is the resulting type. This strat-egy 
olle
ts all possible argument types and ensures thatthey 
an all be used safely:fGi ti1 v �! �; Gi ti2 v � list ; � list vli tirg
Potential and ErrorsBefore going on, let us look at the example below to pre
isesome vo
abulary:state1(V) ->re
eive{add,V1} -> state1(V1 + V);{
hange,V1} -> state2(V,V1)end.state2(V1,V2) ->re
eive{add,V3,V4} -> state2(V1 + V3, V2 + V4);{mute,F} -> F()end.state3() ->

re
eivekill -> trueend.main() ->
ase (spawn(state1,1)) ofP -> P ! {add,1,3}, P ! kill,P ! {
hange,11}, P ! {mute,state3}end.A fun
tion may 
ontain two forms of interfa
es (the �ltersf of a re
eive f end). One 
alled immediate that is presentin the body of the fun
tion or in the body of another 
alledfun
tion ignoring re
eived datas (in messages). And these
ond 
ategory 
orresponds to interfa
es re
eived via mes-sages. This notion is extended to pro
esses, the set of im-mediate interfa
es of a pro
ess being the set of immediateinterfa
es of its initializing fun
tion. In the example, state1
alls state2 and itself and state2 only 
alls itself. By 
on-sequen
es, the immediate interfa
es set of P is:f{add,V1} {
hange,V1} {add,V3,V4} {mute,F}gThe immediate interfa
es may be viewed as the stati
 au-tomaton des
ribing our pro
ess and the others as some dy-nami
 part (in the exemple, kill).Our type system 
aptures all orphans that leads to error (inthe semanti
s) using the potential introdu
ed in the previ-ous se
tion. It is possible to give a predi
ate that 
olle
tsall immediate interfa
es (we refer the interested reader to[10℄). Su
h a potential would approximates the previous set(keeping only labels) and would be de�ned by:P(m;e) , (label(m) 2 fadd 
hange muteg) (�)Furthermore, as we do not want to raise an error and forbidthe sending of the message kill, the potential of a pro
esse
alling a re
eived fun
tion a

epts anything. The real po-tential of P is then an open potential : P(m; e) , true . Infa
t, the potential de�ned in (�) would 
orrespond to thesame pro
ess if we 
hange state2's se
ond �lter body (themute rea
tion) to any 
ode not 
alling F.Building the rules for su
h a system is already 
omplex anddoes not 
apture all errors that our type system dete
ts.Indeed, if in the example, we send a message sub to P, it isnot reje
ted be
ause the potential of P is opened. Building amore pre
ise predi
ate (with respe
t to the 
aptured errors)is hard and in fa
t 
orresponds to a slight simpli�
ation ofthe type inferen
e. By 
onsequen
e, we will not give pre
ise



de�nition of the potential predi
ate and one 
an view it as asimpli�
ation of the type. Ea
h atom sent in mute messageis 
olle
ted and its potential is added to the potential of Pwhi
h be
omes:P(m; e) , (label(m) 2 fadd 
hange mute killg)The message kill is not de
lared orphan but the messagesub 
auses a type error (it raises a dynami
 error if notreje
ted).We are 
urrently devising a new de�nition of errors based ona dedi
ated arbores
ent temporal logi
 (see [25℄). However,this approa
h 
urrently only handle immediate interfa
es.
Message and Process TypesAn automati
 analysis of the Erlang 
ompiler 
ode, itsstandard libraries and programs freely available on internet4revealed that sent messages and re
eive interfa
es are mainlytuples where one element is an atom. This atom plays therole of a label for messages. Furthermore rule 5.7 from [27℄states that all messages should be tagged. Following thepioneer work of [17℄, we impose to all programs this pre
ept.Noti
e that the only (less rare) ex
eptions are the use ofjokers or variables to delegate the treatment of the messageto a 
hoi
e instru
tion or to another pro
ess. These twouses do not go against our pre
ept sin
e they just serve asforwarder. Finally, a program not following this prin
iplemay easily be adapted manually.Those labels play a role similar to those of re
ord label in MLor of method names in obje
ts (for example). We borrowthe row te
hnology, used to type re
ords, to approximateinterfa
es. Rows are now frequently used for stati
 anal-ysis in ML world (see for example, ex
eption analysis [18℄or obje
t typing in O
aml [20℄). In our 
ontext, a pro
esstype is a row, whi
h is a partial fun
tion from labels to pairof types des
ribing arguments the message 
ontains. The�rst one des
ribes re
eived messages 
ontent and the se
ondhandled messages 
ontent. Indeed, the originality of ourtypes is the fa
t that they 
ontain both re
eived and han-dled messages in the type of a pro
ess. A pro
ess re
eivingmessages labeled m1 
ontaining datas of type T1 and han-dling it with values of type T2 will have the following type:�fm1 : (T1; T2); ig. The (row) variable i expresses the fa
tthat the type of the pro
ess is only partially known. The
onversion from a tuple type T to a message type bT (if itis sent) or T (if it is handled) is done in a lazy way and isde�ned in the appendix. Either the system knows the formof the type and 
onverts it, or its stru
ture is unknown andthe system waits. A message redu
ed to an atom s has thetype s and 
orrespond to the message type fs : (unit ; >)gor to fs : (?; unit)g. Meaning respe
tively that it is a sentmessage (the handling part is meaningless5) or a handledmessage (the re
eived part is meaningless). The 
onversionof tuple message is similar. In the paper [17℄, the 
onver-sion was done for all tuples but we think that this is notreally ne
essary. Ba
k to our example, the pro
ess P has the4This represent 200 000 
ode lines.5The sens of the > or ? will be
ome 
lear when subtypingwill be de�ned. The intuition is that it is nothing.

following type if � and i are variables:TP , �fadd : (1�3; int t (int�int)); 
hange : (11; int);mute : (state3; T ); kill : (unit ; �); igWhere T is the type of the fun
tion F taken as parameter.Noti
e that the unknown part i is related to the type T .The 
orre
tness of the system is ensured by generating forea
h spawn pro
ess a fresh interfa
e type i verifying �i. Thispredi
ate is true if ea
h re
eived message is understood andis mathemati
ally de�ned by:�fmi : (Ti; T 0i )gi2I , 8i 2 I Ti v T 0iApplied on previous type TP, we get:f1�3 v int t (int�int); 11 v int ; state3 v T; unit v �gWe have not yet de�ned subtyping but intuitively, one 
ansee that the two �rst 
onstraints are trivial. The 
ompleteis dis
ussed resolution after the presentation of types andsubtyping.
Types and SubtypingIn Erlang, one of the diÆ
ulties, is that being untyped, anexpression may evaluate to values of really di�erent stru
-tures (for example, a boolean and a fun
tion). Therefore,the type language must in
lude a notion of union t1 t t2meaning that a value of this type may be of type t1 or t2.Moreover to get suÆ
ient pre
ision, ea
h 
onstant has itsown type (for example, 1 is of type 1 subtype of the integerint).In Erlang, any expression 
an exe
ute a re
eive (i.e, a
-
ess the mailbox of the 
urrent pro
ess). Therefore, the sys-tem use an indire
t e�e
t 
al
ulus inspired by [24℄ to 
olle
t,in the type of self, all interfa
es mat
hed against the mail-box. This e�e
t is then in
luded in the type of a fun
tion.When a pro
ess is spawned the e�e
t of its initial fun
tion isadded to the pro
ess type. In our example, state3 has thefollowing fun
tion type where the e�e
t is the supers
ript ofthe arrow: unit fkill : (?;unit)g����������! trueThe language of types needed for �Erlang is built by thefollowing grammar:T ::= ? j > j t j T t T j T u Tj i j int integersj s j atom atomsj unit j T�:::�T j tuple tuplesj T I�! T fun
tionsj �I pro
essesI ::= fg j >I j i j fm : (T; T ); Ig interfa
es typeSubtyping is de�ned in the formula appendix, only threerules are unusual:� Pro
ess types are 
ontravariant be
ause a pro
ess mayrepla
e another one only if its interfa
e is larger, �I v�I 0 is equivalent to I 0 v I.� Fun
tion types are 
ontravariant on arguments as usualand 
ovariant on e�e
t and on result. Indeed, if a fun
-tion must repla
e another one, it must have a smaller




on
urrent e�e
t: T1 I�! T2 v T 01 I0�! T 02 () T 01 vT1 ^ I v I 0 ^ T2 v T 02� Interfa
e subtyping is 
ovariant on re
eived type, 
on-travariant on handled type and 
ompose 
ovariantly.fm : (T1; T2); Ig v fm : (T 01; T 02); I 0g() T1 v T 01 ^ T 02 v T2 ^ I v I 0The intuition behind this rule is that the system mustkeep the largest type Tr of re
eived messages and thelowest type Tu of handled messages. The 
orre
tnesspredi
ate � leads to Tr v Tu and any re
eived 
on-tent of type T is guaranteed to be understood by anyre
eiver state T 0 be
ause T v Tr v Tu v T 0.Attentive readers may have remarked that the subtypingon interfa
es is de�ned only for rows beginning by the samemessage label. A 
omplete algebrai
 theory exists and provesthat it is the only needed rule. If one label of the left siderow is absent from right side row, the subtyping is 
learlyfalse and on
e all left side labels are treated, the systemredu
es to fg v I whi
h is an axiom.
Another exampleBefore going into further dis
ussion on this type system,
onsider a fun
tion that realizes a timer waiting for a mes-sage 
an
el or the end of a time spe
i�ed at its 
reation tothrow an alarm:timer({Pid, Time, Alarm}) ->re
eive {
an
el,Pid} -> trueafter Time -> Pid ! Alarmend.A timeout fun
tion spawns su
h a timer pro
ess using thepid of the 
urrent pro
ess and returns the pid of the timer.The same pro
ess may 
an
el this timer using the returnedpid :timeout({Time, Alarm}) ->spawn(timer, {self(),Time,Alarm}).
an
el(Timer) ->Timer ! {
an
el,self()}.Supposing arguments of after (Time) are integers, our sys-tem infers:timer : b��int�� f
an
el:(?;�b�)g����������! true t �timeout : int�� b��! �f
an
el : (?; �b�)g
an
el : �f
an
el : (��; >)g ��! 
an
el���meaning that:� The timer fun
tion takes three arguments: an address(re
eiving the third argument), an integer and a value(a message). The result is either true or this value andthe 
urrent pro
ess re
eives a 
an
el message 
ontain-ing (an address of) a pro
ess that re
eives the thirdargument.� Alarm (of type �) must be a legal message (tuple be-ginning by an atom).� The pro
ess 
alling timeout re
eives the alarm (it ap-pears in timeout e�e
t).

� The result of this fun
tion is the name of a pro
essunderstanding 
an
el messages 
ontaining an addressthat re
eives the alarm message.� A 
all to 
an
el must in
ludes an argument that re-
eives a 
an
ellation message 
ontaining the address ofthe 
urrent pro
ess and returns this 
an
ellation mes-sage.Those types are 
omplex but very informative about thebehavior of these fun
tions. For example, the system 
anensure that the pid returned by a 
all to timeout does notre
eive messages other than 
an
ellation. It 
an also ensurethat the pro
ess 
alling this fun
tion is able to re
eive thealarm message.
Functional TypingPattern mat
hing 
annot be treated in the usual ML way:(�1 ! �1) t (�2 ! �2) 
annot be equal to (�1 u �2) !(�1 t �2). In fa
t, the type system must in
lude patternmat
hing, to do this [2℄ introdu
ed the notion of 
onditionaltype t1?t2. This type means t1 (if t2 is di�erent from ?) or?. For example, if e : te, 
ase e of true -> 1; false -> foois of type (int?(te u true)) t (foo?(te u false)). Our sys-tem does not use this 
onditional type whi
h enjoys goodalgebrai
 properties but is not really readable and leads tothe loss of the pattern mat
hing stru
ture. Instead, we usea 
onditional 
onstraint 
1 ) 
2 meaning that if 
1 is veri-�ed then the system must also ensure 
2. This 
onstraint,generated to approximate pattern mat
hing, allows to keepa high level of pre
ision on the link between mat
hed valuesand results. Typing previous 
hoi
e lead to the following setof 
onstraints: C = fte v true ) int v tr; te v false )foo v tr; te v true t falseg where tr is the result type.Either the system knows the stru
ture of te and C 
an besimpli�ed, or it is de
omposed in two sub-systems (be
ausethe mat
hing is 
omposed of two bran
hes):� One, in whi
h, te is subtype of true and therefore C =fte v true; int v trg� Otherwise (due to third 
onstraint), te is a subtype offalse and C = fte v false; foo v trgAs, in general, we do not know pre
isely the mat
hed value,all those de
omposed sub-systems must have a solution.This means that a n bran
h pattern mat
hing �res the res-olution of n sub-systems. However, the pra
ti
e have shownthat this is not a real problem. Indeed, when applying apattern mat
hing to a value, we often know more or less itsstru
ture and many of the sub-systems are trivial.The typing judgments have the following shape:Environment ` Expression : Type ; ConstraintSetAs, many typing rules are 
lassi
, we limit our explainationsto sends, 
hoi
es, re
eives and 
alls:� Typing e1! e2 returns the se
ond sub-expression typeand the 
onstraint set 
ontaining all 
onstraints pro-du
ed by the typing of e1 and e2, plus a 
onstraintspe
ifying that e1 must evaluate to a pro
ess that re-
eives the value of e2:E ` e1 : t1; C1 E ` e2 : t2; C2E ` e1! e2 : t2; C1 [ C2 [ ft1 v �bt2g



� Typing a 
hoi
e 
onsists in typing the tested value andall patterns and asso
iated expressions of the �lter. Area
tion expression must be typed after adding to the
urrent environment the environment resulting fromtyping of the 
orresponding pattern:E ` e : te; Ce E ` pi : tpi ; Ei E [ Ei ` ei : ti; CiE ` 
ase e of p1 ! e1; ::: : t; Ce [[i Ci [ Cwhere the resulting 
onstraints 
umulate all already
al
ulated 
onstraints and those due to the 
hoi
e (C).C spe
i�es that the tested value must be taken intoa

ount by one of the patterns and add all already ex-plained 
onditional 
onstraints (one for ea
h bran
h):C = fte vGi tpi g [[i (fte v tpi ) ti v tg)This means that the result type t will be the union ofthe type of ea
h pattern that may mat
h the testedvalue.� Typing the message handling may result in any possi-ble bran
h type (hen
e the union) and adds all patterntypes to the 
urrent self type:E ` pi : tpi ; EiE [ Ei ` ei : ti; Ci C0i = fE(self) v �tpi gE ` re
eive p1 ! e1; ::: :Gi ti; [i (Ci [ C0i)� Typing an appli
ation is mu
h more 
omplex. First,one must type the fun
tion expression and ea
h argu-ment expression.E ` e : te; Ce E ` ei : ti; CiE ` e(e1; :::; en) : t; Ce [[i Ci [ Cwhere C is 
omposed of te v dom(TF), E(self) v �I,Fun(TF ; te; n) v (t1�:::�tn) I�! t meaning that:{ The fun
tion must be de�ned.{ Its e�e
t I is added to the 
urrent pro
ess e�e
t.{ All possible fun
tions are subtype of a fun
tiontype a

epting the n a
tual arguments ti, havingan e�e
t I and resulting in t (it is the result of theappli
ation). To get the set of possible fun
tions,we use a fun
tion Fun whi
h applied to (TF ; te; n)returns the union of all fun
tion types asso
iatedto an atom (and the arity n) of te in TF . Like thetransformation from tuple type to message type,this fun
tion is lazy and waits to know the valueof te to perform its a
tion.For ea
h possible fun
tions of type � I0�! �, the last 
on-straint ensures that all appli
ations are legals be
ause bysubstyping it leads to ft1� :::� tn v �; I 0 v I; � v tg.Furthermore, all e�e
ts (resp. results) are 
umulated in theglobal e�e
t I (resp. result t).The fun
tion typing environment TF results from the typ-ing of all fun
tions in F . A mapping (s; n) 7! f in F addsa mapping (s; n) 7! tf if the typing of f by the rule be-low results in tf . And, We suppose that all 
onstraints it

may produ
e are added to the global 
onstraint set beforeresolution. E ` pi : ti; Ei E [ Ei ` ei : t0i; CiE ` p1 ! e1; ::: :Gi (ti �! t0i); [i CiGoing ba
k to our example, the appli
ation of F leads to:�state3 v T; unit v �; T v fstate1; state2; state3g;TP v �I; Fun(TF ; T; 0) v unit I�!t �The �rst 
onstraint 
ombined with the �fth leads to:unit fkill : (?;unit)g����������! true v unit I�!tThis imply that TP v �I v �fkill : (?; unit)g andtrue v t. The �rst 
onstraint simulates (in the type sys-tem) the re
eption of unit message: (?; unit) v (unit ; �)equivalent to f? v unit ; � v unitg. Adding this to the ini-tial 
onstraint set leads to a solvable 
onstraint set (where� = unit). This allows the system to guarantee the 
orre
t-ness.
6. SCALING TO ERLANG TYPINGThe simpli�ed system presented here does not 
orrespond tothe real prototype implementation. To s
ale to this system,we have to:� extend the types by lists, 
hara
ters, 
oating pointnumbers and all other basi
 types (
orresponding toErlang basi
 values). This extension and the de�ni-tion of built-in fun
tion is straightforward but need toadd a lot of rules.� 
hange s
oping rule poli
y. Our system needs to havean input and an output environment for ea
h expres-sion. This is also boring routine.� add guards to the pattern mat
hing (again routine ex-tension). Noti
e that in the prototype, it is one of the
onstru
tions that 
ontains a lot of type informations.� take 
are of dynami
 patterns. Indeed, in Erlang, avariable in a pattern is a de�nition only if the vari-able is not already de�ned. This small modi�
ation ofthe semanti
s and more pre
isely of the semanti
s ofpatterns needs important 
hanges in the type systemsummarized just below.One of the biggest problem that we fa
ed when typing Er-lang is dynami
 pattern mat
hing. Indeed, in the patterns,a variable is not always a binding o

urren
e, that is, if thevariable is already bound, its value repla
es the variable be-fore pattern mat
hing is realized. For example, 
onsider:g(X) -> 
ase 1 of X -> ok; _ -> no end.The term {g(1),g(2)} redu
es to:{
ase 1 of 1 -> ... , 
ase 1 of 2 -> ...}and then to {ok,no}. Usual typing of this fun
tion gives�! t with the 
onstraints:f1 v �) ok v t; 1 v (>n�)) no v tg



Therefore, the appli
ation has type (okt no)�(okt no) be-
ause the two appli
ations gives 1t2 v � meaning that bothbran
hes may be used. The problem 
omes from the fa
t,that the usual fun
tion typing impose to all possible realargument types to be simultaneously 
ompatibles with alltheir potential use in the body of the fun
tion. For this,when typing the body of the fun
tion, the system 
olle
ts
onstraints of the form � v t where � is the type of an argu-ment. And ea
h 
all to the fun
tion produ
es 
onstraints ofthe form t0 v � whi
h enable by transitivity to ensure thatt0 v t. But, in the body of a fun
tion, if a pattern in
ludesan argument, the system generates a 
onstraint t v � in
om-parable with t0 v �. This means that we 
annot guaranteethat the argument respe
t one of the 
onstraints requiredby the fun
tion.The type obtained for {g(1),g(2)} is not very pre
ise (usingusual strategy) but above all, if the joker bran
h is not in the
hoi
e, the program 
ause an error that 
annot be dete
tedby the type system. To solve this problem, the system isgoing to type ea
h appli
ation of a fun
tion using a freshinstan
e of its type. With this strategy no harmful 
ow (ofinformation) may happen between two appli
ation sites asbefore. Indeed, the intuition behind this problem is thatwhen a fun
tion use one of its arguments in a pattern, ea
happli
ation produ
es a new (and di�erent) version of thebody (of the fun
tion). Therefore, the 
onstraints it imposesare not the same and the return type are di�erent too.The typing of a fun
tion leads to a type � ! � and a 
on-straint set C. Its 
alling on an argument of type t will usetype t! �0 (where �0 is fresh) and add [t=�; �0=�℄C to theglobal 
onstraint set. Therefore, typing:g(X) -> 
ase 1 of X -> ok end.gives � ! t with f1 v �; ok v tg. Therefore, the type of{g(1),g(2)} is t1�t2 with f1 v 1; ok v t1; 1 v 2 ; ok vt2g where the boxed 
onstraint is false. The error is nowdete
ted!The drawba
k of this strategy is that the number of typevariables and 
onstraints grow more rapidly. To solve thisproblem, in pra
ti
e, the system apply this strategy only toa subset of fun
tions. More pre
isely, this strategy is appliedto the arguments of fun
tions using one of their argumentsin a pattern. As this situation is not the most usual, the 
ostto pay (for this strategy) is not too expensive (in general).
7. DISCUSSIONIn this paper, we have proposed a formalization of the Er-lang semanti
s using a two level redu
tion system. A �rstlevel 
on
entrates on 
on
urrent aspe
ts of the language us-ing a formalism inspired by the �-
al
ulus, the 
on�gura-tions. And a se
ond expressing the fun
tional semanti
s(and its potential 
on
urrent e�e
ts) using a more 
lassi
setting. Finally, we have introdu
ed a type system for Er-lang insisting in the original parts of our works: messagetyping and the fa
t that the system try to stay 
lose to thelanguage. The versions presented in this arti
le representonly insight of the 
omplex system developed and the pro-totype of stati
 analyzer realized.
Formal semantics of Erlang

This work though not 
omplete 
an be a good beginning torea
h a good formalization of the semanti
s of Erlang. A
omplete formalization of the whole language would requirea lot of work be
ause one would have to:� add the node (site) notion. For this, 
on�gurationsmust be extended by a set of node names and by a
onstru
tion hn j win meaning that w is exe
uted onnode n. A 
on�guration des
ribing a two nodes 
ouldthen be �n1; n2:(hn1 j w1i k hn2 j w2i).� implement dynami
 
ode repla
ement. Ea
h sitemust in
lude the environment of de�ned fun
tions andthe values of those fun
tions 
ould 
hange: hn j E j wi.� allow sending message between sites. The targetof the message may be lo
al keeping the same syntaxor remote on node n and the transit message 
ould bea�n / m.� integrate the time notion. In Erlang, the messagehandling operation has a 
lause after that allows tostop the exe
ution of this instru
tion after a spe
i�eddelay. One solution 
ould be to add a notion of 
ounterto ea
h node.� add a notion of symboli
 names and a di
tio-nary. A servi
e 
an be abstra
ted by asso
iating itwith a name. This de
lared name represent a pro
ess(that 
an 
hange). Ea
h node needs to maintain di
-tionary: hn j Ef j En j wi.� add signals. Erlang use signals to propagate ex
ep-tions among pro
esses. For example, we 
ould add a
ag to the message making it possible for the re
eiverto distinguish a signal from a message.Some re
ent work on distributed pro
ess 
al
uli like D� (see[21℄) or the join 
al
ulus (see [14℄) 
an also help in su
h aproje
t of formalization of the semanti
s of Erlang. Noti
ethat those points are not all the problems that needed tobe solved, we refer the interested reader to the 
hapter 10,11 and 12 of [3℄. Those three 
hapters does not in
lude aformal semanti
s but their informal systemati
 des
riptionof Erlang semanti
s enable to view all possibilities.
Complete Erlang TypingTo be
ome a 
omplete and widely usable tool our systemneeds some extensions.First, the Erlang messages does not 
ontain label so thetype of pro
ess must be retailored. The works on XM� (atyped fun
tional language used to manipulate XML do
u-ments) of [23℄ 
an be a good basis. Indeed, to type 
or-re
tly the 
hoi
es of XML, they build a typed �-
al
ulusin
luding a notion of re
ord without label. For example,(1) + ("test") + (�x:if x then 1 else 0) is typed byfint ; string ; bool ! intg. This adaptation does not seemto be straightforward be
ause the type system of XM� useequality 
onstraints and is based upon a notion of 
on-straint impli
ation. Therefore, its integration with the sub-typing needed for Erlang needs studies about subtyping
onstraint impli
ation and to our knowledge, none of thework made in this area have really a
hieved that goal yet.



In the 
ontext of tele
ommuni
ation systems, ex
eptions arevery important to rea
h a 
ertain level of quality for pro-grams. Indeed, the reliability of su
h appli
ations needs apre
ise treatment of every possible ex
eptions. A type sys-tem helping the programmer in this task would be a realaid. It 
ould estimate the set of potential ex
eption 
ausedby every expressions of the program and ensure that theyare treated. An extension of [18℄ may be a good start pointtoward su
h a stati
 analyzer.Finally, the most diÆ
ult point with Erlang is that theapproximation made by this ideal type system should haveto be 
ompatible with hot 
ode swapping. Indeed, in Er-lang, a module is used by hundreds or thousands of nodesthat 
annot be stopped or restarted. An evolution of su
ha module use dynami
 
ode repla
ement and therefore, theold version and the new one have to be exe
uted simulta-neously and must 
ooperate safely (at least for a temporaryperiod). Su
h a task is totally out of rea
h at the moment,but a �rst step to its resolution 
ould start from [22℄.
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APPENDIXCon�gurations redu
tion rules:Congruen
e :w1 � w01 w01 �! w02 w02 � w2w1 �! w2 Parallel :w1 �! w2w jjw1 �! w jjw2 Restri
tion :w1 �! w2�a:w1 �! �a:w2 A

ept : P(m;e)ha j emi . e k a / m �! ha jm emi . eReje
t :not(P(m; e))ha j emi . e k a / m �! Err Expression :a =2 FN (� . e) a ` �; e w�!e �0; e0� . e �! �a:(�0 . e0 k w)Evaluation 
ontext grammar:C ::= [℄ j (C) j {A} j C,e j C ! e j e !C j C(e,:::,e) j e(A) j 
ase C of f endA ::= [℄ j e,A j A,eMat
hing semanti
s: 8<:v=[℄ , Errv=(p when g ! e) :: f , �v=f if mat
h(p; v) = fail�(e) if mat
h(p; v) = �Fun
tional redu
tion rules:Variable Error :a ` �; C[x℄ �!e �; Err Sequen
e :a ` �; C[v; e℄ �!e �; C[e℄ Appli
ation Error :(v; n) 62 dom(F)a ` �; C[v(v1; :::; vn)℄ �!e �; ErrAppli
ation :a ` �; C[v(v1; :::; vn)℄ �!e �; C[fv1; :::; vng=F(v; n)℄ Case :a ` �; C[
ase v of f end℄ �!e �; C[v=f ℄Send Error :v1 62 Aa ` �; C[v1 ! v2℄ �!e �; Err Send : v1 2 Aa ` �; C[v1 ! v2℄ v1/ v2����!e �; C[v2℄ Spawn Error :v0 is not a tuplea ` �; C[spawn(v; v0)℄ �!e �; ErrSpawn :a ` �; C[spawn(v; v1; :::; vn)℄ ha j?i.v(v1;:::;vn)������������!e �; C[a℄ Self Error :a ` ?; C[self()℄ �!e ?; ErrSelf :a ` ha0 j emi; C[self()℄ �!e ha0 j emi; C[a0℄ Re
eive Error :a ` ?; C[re
eive f end℄ �!e ?; ErrRe
eive :mat
hmailbox(f; em) = em0; ea ` ha0 j emi; C[re
eive f end℄ �!e ha0 j em0i; C[e℄Mailbox semanti
s:9j (8i < j mi=f1 = Err) mj=f1 = emat
hmailbox(f1 :: ; (mi)i2J) = (mi)i2Jnfjg; e (8i 2 J mi=f1 = Err)mat
hmailbox(f1 ::
 ; (mi)i2J) =mat
hmailbox(
 ; (mi)i2J)Type Conversion:8>>>>>>>>><>>>>>>>>>:
bs , fs : (unit ; >)g\s�T1�:::�Tn , fs : (T1�:::�Tn; >)gb> , >I[Fi Ti , Fi bTi[di Ti , di bTib� , b� if � is a type variablebT , Err otherwise

8>>>>>>>>><>>>>>>>>>:
s , fs : (?; unit)gs�T1�:::�Tn , fs : (?; T1�:::�Tn)g> , >IFi Ti , Fi Tidi Ti , di Ti� , � if � is a type variableT , Err otherwise



Subtyping Dedu
tion System:? v T T v > fg v I I v >I T v T1 T v T2T v T1 u T2 T v T1T v T1 t T2 T v T2T v T1 t T2 i 2 Ni v int s 2 A ts v atomT1�:::�Tn v tuple 8i Ti v T 0iT1�:::�Tn v T 01�:::�T 0n I 0 v I�I v �I 0 T 01 v T1 I v I 0 T2 v T 02T1 I�! T2 v T 01 I0�! T 02T1 v T 01 T 02 v T2 I v I 0fm : (T1; T2); Ig v fm : (T 01; T 02); I 0gTyping Dedu
tion System:VarV 2 dom(E)E ` V : E(V ); fg ConstantE ` 
 : 
; fg Tuple E ` ei : ti; CiE ` fe1; :::; eng : t1�:::�tn; [i Ci ParenE ` e : t; CE ` (e) : t; C Sequen
eE ` e1 : t1; C1 E ` e2 : t2; C2E ` e1; e2 : t2; C1 [ C2SendE ` e1 : t1; C1 E ` e2 : t2; C2E ` e1! e2 : t2; C1 [ C2 [ ft1 v �bt2g Case E ` e : te; Ce E ` pi : tpi ; Ei E [ Ei ` ei : ti; CiE ` 
ase e of p1 ! e1; ::: : t; Ce [[i Ci [ fte vGi tpi g [[i (fte v tpi ) ti v tg)Appli
ation E ` e : te; Ce E ` ei : ti; CiE ` e(e1; :::; en) : t; Ce [[i Ci [ fte v dom(TF); E(self) v �I; Fun(TF ; te; n) v (t1�:::�tn) I�! tgRe
eive E ` pi : tpi ; Ei E [ Ei ` ei : ti; CiE ` re
eive p1 ! e1; ::: :Gi ti;[i (Ci [ fE(self) v �tpi g)


