
HAL Id: hal-02132880
https://hal.science/hal-02132880v1

Submitted on 17 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static analysis of communications for Erlang
Fabien Dagnat, Marc Pantel

To cite this version:
Fabien Dagnat, Marc Pantel. Static analysis of communications for Erlang. EUC 2002 (8th interna-
tional Erlang User Conference), Stockholm, November 19, Nov 2002, Stockholm, Suède. �hal-02132880�

https://hal.science/hal-02132880v1
https://hal.archives-ouvertes.fr

Static analysis of communications for Erlang

Fabien DagnatLaboratoire Informatique des T�el�eommuniationENST de Bretagne, Tehnopôle Brest Iroise, BP 83229285 Brest, Frane
Fabien.Dagnat@enst-bretagne.fr

Marc PantelInstitut de Reherhe en Informatique de ToulouseLIMA / ENSEEIHT, 2 rue Camihel31071 Toulouse, Frane
Marc.Pantel@enseeiht.fr

ABSTRACTIn this paper, we present an insight of the two major ontri-butions of works made to build a stati analyzer of Erlangprograms. First, we introdue a general framework basedon a proess alulus (the on�gurations). This formalismdesribes onurrent aspets and abstrats funtional ones.Obtaining the Erlang semantis is then just instantiatingthis framework with an adequate funtional setting. Theseond ontribution is a sophistiated type system for Er-lang. This type system infers types and subtyping on-straints for a program and ensures that the olleted on-straints have at least one solution. This system detets usualfuntional errors but also some of the ommuniation errors.More preisely, for eah proess, it umulates all reeivedmessages and all handled messages and ensures that the �rstis inluded in the seond. To do this, it borrows onepts tothe objet (or reord) usual typing in ML.
1. INTRODUCTIONThe development of teleommuniations industry and thegeneralization of network use bring onurrent, distributedand mobile omputing into the limelight. In that ontext,programming is a hard task and, generally, the resultingappliations ontain many more bugs than usual sequentialentralized software. Indeed, the indeterminism resultingfrom the unreliability of networks and the size of the odeof suh appliations makes it diÆult to validate any dis-tributed funtionality using informal approahes. Our workfouses on using stati analysis, a kind of formal methods toease development.As Erlang software are mainly used in teleommuniationequipment that do not tolerate failure, their developmentmust be erti�ed. More preisely every step toward the �nalappliation must be validated (ideally automatially). Ouraim is to partiipate to this hard task, by building statianalysis of ommuniations using type inferene tehniques.To give an abstrat model to Erlang programs, we use theator model developed by Agha in [1℄. It is based on a net-work of autonomous and ooperative agents (alled atorsand similar to Erlang proesses), whih enapsulate dataand programs. They ommuniate using an asynhronouspoint to point protool and store eah reeived message ina mailbox. When idle, an ator handles the �rst messageit an in its mailbox. Besides those onventions (whih arealso true for onurrent objets), an ator an dynamially(at run-time) hange its interfae. This property allows to

modify the set of messages an ator an handle, yielding amore aurate and widely usable programming model. Forexample, it an give an abstrat model to applets and dy-nami ode loading.In a �rst approah, we de�ned type systems for the Cap al-ulus desribed in [8℄, a primitive ator alulus derived fromasynhronous �-alulus and Cardelli's Calulus of Primi-tive Objets. Two type systems were developed. The �rstone [9℄, based on usual objet type abstrations, athes allusual funtional and ommuniation errors (erroneous pa-rameters) but only a subset of messages whih will neverbe handled. The seond [7℄, detets all (safety) messagesnot understood but requires a muh more omplex type ab-stration and a new programming disipline. These systemswere proved to be orret. In order to validate their prati-al use, the need for a programming language implementa-tion arose. In a �rst approah, we developed a lab languageML-At integrating �a la ML programming with ator prim-itives and inluding a sophistiated type system extendingthe previous work on Cap (see [11℄). Then, we studied Er-lang, as it appears that, thought its funtional aspets havea strongly di�erent semantis (and typing) than ML-Atone's, their onurrent semantis and typing were similar.Therefore, we developed a framework abstrating the partsof both languages having semantis (and typing) di�erenes(for example, funtional aspets or mailbox semantis). Itbeame possible to build systematially the semantis, thetyping and some properties about the typing, one providedthe funtional setting. Furthermore, this funtional settingan use a well known lassial one. For example, ML-Atuse the ML funtional semantis and typing.This artile gives an introdution to this abstration and itsappliation to Erlang. The �rst setion provides a betterinsight of the form of ommuniation errors we wish to de-tet and the ones our system aptures. Then, we introdue asimpli�ed version of Erlang and its formal semantis basedon on�gurations, an asynhronous �-alulus like proessalgebra. Then, we de�ne our type system and illustrate itsuse on examples. Finally, we disuss saling this system tothe full language and some possible extensions to our work.
2. COMMUNICATION ERRORSIn an usual onurrent setting, a proess P may reeive amessage m (P ! m, in Erlang). Supposing P is idle, thereare two possibilities, either P an handle m or it annot. Ourworks fous on the early detetion of requests that may not

be handled (the seond ase). This problem is related tothe method not understood errors of objet oriented pro-gramming. In the ator ontext, a message that may not beunderstood by its reeiver is alled an orphan.Typed objet oriented languages determine the set of meth-ods an objet P understands (typeof(P)) and ensures thateah method invoation P.m is orret by verifying that mis part of the type of P (m 2 typeof(P)). Furthermore, asthe type of an objet does not hange, the veri�ation anbe done when the method is invoked. Adapting this tehnito Erlang (P beoming a proess and P.m beoming P!m)raises two problems leading to a muh more omplex typ-ing: a) the omputation of the set of messages a proess anhandle is dynami and more omplex and b) as the timebetween sending a message and its reeption by its targetmay be important (the message may travel through largenetworks), the veri�ation must be done upon reeption.The usual approah for ator languages is to dynamiallyhek for message not understood errors. A proess knowsthe messages it an (immediately) handle and if a reeivedmessage does not onform to this interfae, it raises a mes-sage not understood error (see the initial ator model [1℄ orthe Vasonelos and Tokoro objet alulus [26℄). But thisapproah redues onsequently the set of programs that onemay build. In fat, the programmer must adopt a sort ofsynhronous programming disipline to be sure that mes-sages arrive in right states. We think that this strategy istoo restritive. For example, onsider a printer devie thathas two states: working (it aepts printing requests) andstopped (it waits for initialization). A lient must wait thatan initialization message has been sent to the printer beforeprinting. It would be muh more exible to enqueue all re-quests reeived when the printer is stopped and to proessall pending requests when it is initialized (possibly indepen-dently by another proess) whih is the usual behavior ofunies print spoolers.The seond and opposite approah never rejets a message.When a proess reeives a message that it annot handle, itsilently enqueues it. Notie that, in this ontext, a messagemay stay inde�nitely in a mailbox (their size is unbound).This semantis has been hosen by the blue alulus [4℄, thejoin alulus [14℄ and Erlang.We believe that a ombination of both approahes may bemuh more appropriate. Suh a system would rejet pro-grams that ontains message never understood and wouldaept all other messages warning the programmer that theymay never be handled. To ahieve this goal, we use a power-ful behavioral1 type system to enfore the rejetion of suhmessages. Our type system detets all messages that arenot in the set of messages the reeiver may handle dur-ing its exeution. This means that typeof(P) umulatesall the reeive that P ould exeute. To do this the sys-tem must follow the ow of funtions alled by P. It is learthat, in general, our analysis will answer > (top) to expressthe fat that a proess may assume an externally de�ned re-eive and therefore understands virtually everything. But,we think that the results are generally already helpful and1By opposition with a more usual lass name type systemas in C++ or Java.

we are working on extending our tehniques to those openprograms as will be disussed later.For example, a proess P exeuting the �rst funtion of theprogram below (ping) has a type ontaining ping, hangeand all messages aepted by all possible behaviors F. Thismeans that sending a message {hange, pong} to P addspong to the type of P.ping() -> reeive ping -> ping();{hange, F} -> apply(F,[℄)end.pong() -> reeive pong -> pong() end.
3. A SIMPLIFIED VERSION OF ERLANGFollowing a ommon use in the de�nition of stati and dy-nami semantis, we simplify the Erlang language by sup-pressing syntati sugar and ignoring onstrutions that aretyped orthogonally to our work (for example, exeptions,lists or reords). Furthermore, we do not address the seman-tis of the real time part of the language whih is omplexbut do not add any spei� problem to the type system. Ane�ort has been made to de�ne preisely a small (but still toobig) language named Core Erlang ([5℄ or [6℄). Therefore,we use a smaller version of the language named �Erlang:prg ::= ;:::;. j ;:::;. prg ::= s(p,:::,p) -> ep ::= j V j s j i j {p,:::,p}e ::= V j s j i j {e,:::,e} j (e) j e,e j e!ej e(e,:::,e) j ase e of f end j reeive f endf ::= p -> e j p -> e;fA �Erlang program is a set of funtion de�nitions inlud-ing a funtion named main. This main funtion is launhedto start the exeution of the program. The rest of the lan-guage is very lose to Erlang. Eah funtion is omposedof lauses separated by semi-olons and terminated by adot. All lauses (s(p,:::,p) -> e) must refer to the samefuntion name s and have the same arity. Notie that thislanguage does inlude guards to simplify the semantis andthe type system for this paper. A pattern may be a joker(always sueeding), a variable V (always sueeding andbinding the variable2), an atom s, an integer i or a tuple.An expression may be any of those values and add paren-theses, sequening (,), message sending (!), funtion all,hoie (ase) and message handling operation (reeive).The hoie (resp. the reeive operation) mathes an ex-pression (resp. the mailbox of the urrent proess) using aset of �lters omposed of a pattern and an expression (f isnamed interfae). Finally, some atoms represents built-infuntions, as for example, spawn and self.Notie that as Core Erlang, we adopt lexial soping ofvariables to ease the presentation. Our prototype uses Er-lang strategy mixing dynami and lexial soping. There-fore, the real system uses systematially an input and anoutput environment for eah expression. Again for sake ofsimpliity, �Erlang does not inlude lists that are replaedin appliation and spawning by tuples.2This is not true for Erlang, but our system an easilyadopt Erlang poliy.

4. FORMAL SEMANTICS OF ERLANGOur work fouses on stati analysis and more preisely ontyping. In order to prove the orretness of our type system,we need a formal semantis of Erlang. To our knowledge,few works have addressed suh a hard task. Indeed, as Er-lang is a full edge funtional, onurrent, distributed andmobile language, its semantis is omplex. Some e�orts havebeen made to give an informal, but lear and systemati de-sription of its semantis ([3℄ and [6℄). But, this is not suÆ-ient to build and prove some stati veri�ation system. Itseems that only two papers ([12℄ and [15℄) try to build suha formal semantis. These two papers de�ne two LabeledTransition System that does not suit our need (proving theorretness of a type system). Inspired by those approahesand our previous works on semantis for ators, we built ourown formal semantis by instaniating a general frameworkalled on�gurations previously build on a lab language ex-tending ML to ators (ML-At). This framework de�nesa general syntax for onurrent ations and abstrats (inthe sense of taking as parameter) the funtional part of thestudied language. With this approah, we an reuse exist-ing semantis and typing from the funtional world. The�Erlang semantis is obtained by instantiating this frame-work with an adequate funtional semantis.We are not going to give all the formal de�nitions and jus-ti�ations of this model that may be found in [10℄. We areonly going to give insights on on�gurations to dedue the�Erlang semantis. Most rules are given in appendix for theinterested reader.
ConfigurationA on�guration is a term that represents a onurrent sys-tem at a given time. Its de�nition is parameterized by threesets : the name set a 2 A , the message set m 2 Mess andthe expression set e 2 Exp with A � Exp and Mess � Exp.The set of on�gurations notedW is built from the followinggrammar:w ::= � j Err j �a:w j w k w j a / m j � . e� ::= ? j ha j emiA on�guration looks like a �-alulus term with a sendoperation, noted a/m (a is the reeiver andm the message),and a proess, noted � . e (� is the identity and e is theexeuted expression). The identity of a proess is eitherunspei�ed ? to model toplevel omputations3 or, ha j emi apair omposed of a name (pid in Erlang tradition) and amailbox (the tilde notation denotes sequene). As it is usualin proess aluli, we use a name binder � to simulate thename reation and suppose that the orresponding notion offree names and substitution are de�ned.In the ontext of �Erlang, Exp represents the syntax intro-dued in the previous setion, addresses are built automat-ially when the built-in funtion spawn is alled and a mes-sage an be any value (atom, integer or tuple).A ongruene is de�ned to state whih on�gurations areequivalents:� (W; k; �) is a ommutative monoid, the order of sub-on�gurations is not important and we an suppress3Those expressions annot aess reeive or self.

all ourrene of �.� w k Err � Err and �.Err � Err, errors are propagateduntil the program evaluation stops.� �a:w � w if a is not free in w, �a:w � �b:[b=a℄w if b isnot free in w and �a1:�a2:w � �a2:�a1:w ; those threeusual properties allow to forget the bindings of unusednames, to rename a bounded name and to modify theorder of restritions.� the restrition rule, �a:w1 k w2 � �a:(w1 k w2) if ais not free in w2, allows to enlarge the soping of aname. Combined with the previous rule, it enables(up to a renaming of a in w1) to extend the sopingand to simulate name propagation in the medium.� ?.v � � and �a:(ha j?i.v) � � if v is a value (it annotbe redued) ; therefore, a global omputation (or aproess) whih redue to a value an be destroyed bya garbage olletor. Notie that the proess must havean empty mailbox and be inaessible to the outsideworld.Notie that it is possible to add a rule to express the fatthat a stopped proess waiting for a message, that do notunderstand any of its mailbox messages and is no more a-essible from outside is an error. But, as our type systemannot apture all suh messages (for example in a deadlokase), we annot prove its orretness with this rule.The appendix ontains all the on�guration redution rules.Let us disuss only original rules.As introdued in the seond setion of this paper, we try todetet ommuniation errors. To de�ne those errors morepreisely, they are introdued in the semantis of on�gura-tions. Therefore, when a proess reeives a message, it anaept it (and put it in its mailbox) or rejet it by raisingan error:ha j emi . e k a / m �! �ha jm emi . e if P(m;e)Err elseTo abstrat the hoie of reation, a (ommuniation) po-tential P(m; e) is de�ned. This prediate approximates eto determine whether m may be understood or not. Thisallows the semantis of our framework to behave di�erentlytoward suh messages. It is possible, for example, to odeusual Erlang semantis with a prediate always true. Inthe next setion on typing, we will disuss more deeply thissubjet.Our general semantis inludes a rule to speify the intera-tion between funtional and onurrent redution:a =2 FN (� . e) a ` �; e w�!e �0; e0� . e �! �a:(�0 . e0 k w)Where, we suppose that the funtional redution have thegiven shape with a being a fresh name (a =2 FN (� . e))that may be used during the expression evaluation and wbeing a on�guration desribing the onurrent e�et of thefuntional redution step. In the rest of the paper, if thelabel of suh a redution is �, it is omitted. Notie that ifa is unused, the third ongruene rule enable to forget itsbinding.

Functional reductionA �Erlang program is a set of funtion de�nitions and itsexeution orresponds to the redution of the body of themain funtion in a ontext where all the other funtions arede�ned. By onsequene, the �rst step of the funtional se-mantis builds the funtion environment (noted F). Thisproess will not be desribed here, its result is an environ-ment assoiating an atom and an arity to the body (all thepattern mathing onverted to a tuple mathing) of the or-responding funtion. For example:�f(p1,p2) -> e1;f(p3,p4) -> e2. produes (f; 2) 7! �{p1,p2} -> e1;{p3,p4} -> e2.�To simplify our presentation this set is abstrated and sup-posed to be aessible in all rules. This ould be done bytagging eah expression with this environment: eF and bypropagating it during redution.Funtional redution uses the lassi notion of evaluationontext. A ontext noted C[℄ is an expression with a holemarking the sub-expression subjet of the urrent redutionstep. The redution C[e1℄ �!e C[e2℄ redue the expressione1 and replae it by the result e2. The evaluation ontextgrammar is also given in the appendix, it expresses the fatthat the order of evaluation is unde�ned when evaluatinga tuple, a message sending or an appliation. On the on-trary, evaluation of a sequene (resp. a hoie) starts withthe �rst expression (resp. the tested value). In additionwe suppose that an error ause the end of the evaluationproess: C[Err℄ , Err.Variables one de�ned have their values propagated by asubstitution noted � that we will not desribe here. Themathing operator = uses a funtion math to ompare apattern and a value and build the substitution of the vari-ables in the pattern by their orresponding values. Thisfuntion either returns a substitution or fails. It tries tomath the �rst �lter p! e. If math(p; v) returns �, = re-turns �(e). Else, if it did not mathed, the proess ontinuewith the remaining �lters. At the end, if none of the �lterhave mathed, we get an error.Purely funtional evaluation is lassi. The most originalrules onerns appliation:a ` �; C[v(v1; :::; vn)℄ �!e �; �Err if (v; n) 62 dom(F)C[fv1; :::; vng=F(v; n)℄The alled funtion must be in the urrent funtion envi-ronment (F). The result orresponds to the mathing of itsbody with the tuple of atual arguments. This rule supposethat the expression desribing the funtion must redue toa valid atom and therefore, it extends slightly Erlang se-mantis.The funtional ations that are onneted with onurrentbehavior have an original form and must be explained:� Sending a message impose that the �rst argument isa name, returns the sent value and is labeled by theon�guration sending term:a ` �; C[v1 ! v2℄ v1/ v2����!e �; �Err if v1 62 AC[v2℄

� Spawning impose that its seond argument is a tuple,returns the name (guaranteed to be fresh by onur-rent redution) of the future proess and is labeledby the on�guration desribing the newly reated pro-ess.This is only rules where the fresh name is used.a ` �; C[spawn(v; v1; :::; vn)℄ ha j?i.v(v1;:::;vn)������������!e �; C[a℄� A all to the built-in funtion self must be done ina proess and is replaed by the name of the urrentproess:a ` ha0 j emi; C[self()℄ �!e ha0 j emi; C[a0℄� Aessing the mailbox is similar to the hoie exeptthat the order of mathing is di�erent. The proess try�rst to math eah message with the �rst pattern andtry next patterns only if none of the mailbox messagessuessfully mathed the �rst pattern. For this we usea funtion mathmailbox that returns the resultingmailbox and the reation. Notie that if the mailboxis empty no redution an take plae and by onse-quene the proess is stopped (until a message reahesits mailbox).a ` ha0 j emi; C[reeive f end℄ �!e ha0 j em0i; C[e℄wheremathmailbox(f; em) = em0; e
5. TYPING �ErlangWhen building a type system to statially detet errors inprograms. The �rst thing to do is to de�ne preisely whatkind of errors, we want to avoid. In a onurrent setting,two families of errors arise: funtional errors and onurrenterrors. The former family is usual in the sequential worldand orrespond to the erroneous use of a value (for example,using an unde�ned variable or using 1 as a funtion). Thelatter is rather unusual and has been desribed in details inthe setion 2.A type system an provide several level of preision. Twoprototypes have already been built for Erlang (see [17℄ and[16℄) that onentrates on typing purely funtional ompu-tation by simplifying the language semantis. Our ambitionis to build a more useful system for Erlang programs thatalso analyzes onurrent parts. As we use similar tehnisfor olleting and solving onstraints, our work may be on-sidered as an extension of those systems.
Type inference and ConstraintsOur system allows the synthesis of the types of every pro-gram entity without requiring any type annotation from theprogrammer. To do this, a fresh type variable is assoiatedwith eah node of the syntati tree of the program and on-straints between those variables are olleted. At the end ofthis ollet phase, a resolution tool determines whether theonstraint set has solutions. If this is the ase, the programis delared well-typed. The shema of �gure 1 desribes thisproess.To type funtions and give them widely usable types, MLuses parametri polymorphism. For example, map has thetype 8�; � (� ! �) ! � list ! � list meaning that itan be used with any type � and �. We advoate that in

types + contraints safety error(s)

<< readable >> types

Program

types + solved contraints

Solver

Printer

Analyser

Figure 1: The analyzer shemathe onurrent ontext, this form of polymorphism beomestoo restriting. Our system adopts inlusion polymorphismthat intuitively means that the system ensures the orret-ness only for all values used in the program as real arguments(that is �nite intersetions rather than in�nite ones). There-fore, in our ontext, we use the subtyping relation. A typet1 being a subtype of a type t2 (t1 v t2) if a value of typet1 may be used (safely) where a value of type t2 is required.For Erlang, the main use of subtyping is on proess type:a proess that understands more messages and sends itselfless messages than another proess, an replae this one.Typing an expression e under assumptions A will produe atype t and a subtyping onstraint set C: A ` e : t; C, thisdedution being valid only if C has at least one solution.Notie that usual ML type system suh as SML or Oamlan be viewed as following the same proess olleting equal-ity onstraints. But, when subtyping is needed (as for Er-lang), the onstraints beome omplex and their resolutionmust use sophistiated and powerful graph algorithm. Werefer the interested reader to the works of Pottier [19℄ orF�anhdrih [13℄. Indeed, a onstraint set is viewed as a graphwhere type variables are nodes (with their upper and lowerbounds) and subtyping relation de�nes the edges.The type of map beomes (� ! �) ! � list ! � list andeah appliation with an argument of type t1 and anotherof type t2 produes the onstraint set ft1 v � ! �; t2 v� list ; � list v trg where tr is the resulting type. This strat-egy ollets all possible argument types and ensures thatthey an all be used safely:fGi ti1 v �! �; Gi ti2 v � list ; � list vli tirg
Potential and ErrorsBefore going on, let us look at the example below to preisesome voabulary:state1(V) ->reeive{add,V1} -> state1(V1 + V);{hange,V1} -> state2(V,V1)end.state2(V1,V2) ->reeive{add,V3,V4} -> state2(V1 + V3, V2 + V4);{mute,F} -> F()end.state3() ->

reeivekill -> trueend.main() ->ase (spawn(state1,1)) ofP -> P ! {add,1,3}, P ! kill,P ! {hange,11}, P ! {mute,state3}end.A funtion may ontain two forms of interfaes (the �ltersf of a reeive f end). One alled immediate that is presentin the body of the funtion or in the body of another alledfuntion ignoring reeived datas (in messages). And theseond ategory orresponds to interfaes reeived via mes-sages. This notion is extended to proesses, the set of im-mediate interfaes of a proess being the set of immediateinterfaes of its initializing funtion. In the example, state1alls state2 and itself and state2 only alls itself. By on-sequenes, the immediate interfaes set of P is:f{add,V1} {hange,V1} {add,V3,V4} {mute,F}gThe immediate interfaes may be viewed as the stati au-tomaton desribing our proess and the others as some dy-nami part (in the exemple, kill).Our type system aptures all orphans that leads to error (inthe semantis) using the potential introdued in the previ-ous setion. It is possible to give a prediate that olletsall immediate interfaes (we refer the interested reader to[10℄). Suh a potential would approximates the previous set(keeping only labels) and would be de�ned by:P(m;e) , (label(m) 2 fadd hange muteg) (�)Furthermore, as we do not want to raise an error and forbidthe sending of the message kill, the potential of a proessealling a reeived funtion aepts anything. The real po-tential of P is then an open potential : P(m; e) , true . Infat, the potential de�ned in (�) would orrespond to thesame proess if we hange state2's seond �lter body (themute reation) to any ode not alling F.Building the rules for suh a system is already omplex anddoes not apture all errors that our type system detets.Indeed, if in the example, we send a message sub to P, it isnot rejeted beause the potential of P is opened. Building amore preise prediate (with respet to the aptured errors)is hard and in fat orresponds to a slight simpli�ation ofthe type inferene. By onsequene, we will not give preise

de�nition of the potential prediate and one an view it as asimpli�ation of the type. Eah atom sent in mute messageis olleted and its potential is added to the potential of Pwhih beomes:P(m; e) , (label(m) 2 fadd hange mute killg)The message kill is not delared orphan but the messagesub auses a type error (it raises a dynami error if notrejeted).We are urrently devising a new de�nition of errors based ona dediated arboresent temporal logi (see [25℄). However,this approah urrently only handle immediate interfaes.
Message and Process TypesAn automati analysis of the Erlang ompiler ode, itsstandard libraries and programs freely available on internet4revealed that sent messages and reeive interfaes are mainlytuples where one element is an atom. This atom plays therole of a label for messages. Furthermore rule 5.7 from [27℄states that all messages should be tagged. Following thepioneer work of [17℄, we impose to all programs this preept.Notie that the only (less rare) exeptions are the use ofjokers or variables to delegate the treatment of the messageto a hoie instrution or to another proess. These twouses do not go against our preept sine they just serve asforwarder. Finally, a program not following this priniplemay easily be adapted manually.Those labels play a role similar to those of reord label in MLor of method names in objets (for example). We borrowthe row tehnology, used to type reords, to approximateinterfaes. Rows are now frequently used for stati anal-ysis in ML world (see for example, exeption analysis [18℄or objet typing in Oaml [20℄). In our ontext, a proesstype is a row, whih is a partial funtion from labels to pairof types desribing arguments the message ontains. The�rst one desribes reeived messages ontent and the seondhandled messages ontent. Indeed, the originality of ourtypes is the fat that they ontain both reeived and han-dled messages in the type of a proess. A proess reeivingmessages labeled m1 ontaining datas of type T1 and han-dling it with values of type T2 will have the following type:�fm1 : (T1; T2); ig. The (row) variable i expresses the fatthat the type of the proess is only partially known. Theonversion from a tuple type T to a message type bT (if itis sent) or T (if it is handled) is done in a lazy way and isde�ned in the appendix. Either the system knows the formof the type and onverts it, or its struture is unknown andthe system waits. A message redued to an atom s has thetype s and orrespond to the message type fs : (unit ; >)gor to fs : (?; unit)g. Meaning respetively that it is a sentmessage (the handling part is meaningless5) or a handledmessage (the reeived part is meaningless). The onversionof tuple message is similar. In the paper [17℄, the onver-sion was done for all tuples but we think that this is notreally neessary. Bak to our example, the proess P has the4This represent 200 000 ode lines.5The sens of the > or ? will beome lear when subtypingwill be de�ned. The intuition is that it is nothing.

following type if � and i are variables:TP , �fadd : (1�3; int t (int�int)); hange : (11; int);mute : (state3; T); kill : (unit ; �); igWhere T is the type of the funtion F taken as parameter.Notie that the unknown part i is related to the type T .The orretness of the system is ensured by generating foreah spawn proess a fresh interfae type i verifying �i. Thisprediate is true if eah reeived message is understood andis mathematially de�ned by:�fmi : (Ti; T 0i)gi2I , 8i 2 I Ti v T 0iApplied on previous type TP, we get:f1�3 v int t (int�int); 11 v int ; state3 v T; unit v �gWe have not yet de�ned subtyping but intuitively, one ansee that the two �rst onstraints are trivial. The ompleteis disussed resolution after the presentation of types andsubtyping.
Types and SubtypingIn Erlang, one of the diÆulties, is that being untyped, anexpression may evaluate to values of really di�erent stru-tures (for example, a boolean and a funtion). Therefore,the type language must inlude a notion of union t1 t t2meaning that a value of this type may be of type t1 or t2.Moreover to get suÆient preision, eah onstant has itsown type (for example, 1 is of type 1 subtype of the integerint).In Erlang, any expression an exeute a reeive (i.e, a-ess the mailbox of the urrent proess). Therefore, the sys-tem use an indiret e�et alulus inspired by [24℄ to ollet,in the type of self, all interfaes mathed against the mail-box. This e�et is then inluded in the type of a funtion.When a proess is spawned the e�et of its initial funtion isadded to the proess type. In our example, state3 has thefollowing funtion type where the e�et is the supersript ofthe arrow: unit fkill : (?;unit)g����������! trueThe language of types needed for �Erlang is built by thefollowing grammar:T ::= ? j > j t j T t T j T u Tj i j int integersj s j atom atomsj unit j T�:::�T j tuple tuplesj T I�! T funtionsj �I proessesI ::= fg j >I j i j fm : (T; T); Ig interfaes typeSubtyping is de�ned in the formula appendix, only threerules are unusual:� Proess types are ontravariant beause a proess mayreplae another one only if its interfae is larger, �I v�I 0 is equivalent to I 0 v I.� Funtion types are ontravariant on arguments as usualand ovariant on e�et and on result. Indeed, if a fun-tion must replae another one, it must have a smaller

onurrent e�et: T1 I�! T2 v T 01 I0�! T 02 () T 01 vT1 ^ I v I 0 ^ T2 v T 02� Interfae subtyping is ovariant on reeived type, on-travariant on handled type and ompose ovariantly.fm : (T1; T2); Ig v fm : (T 01; T 02); I 0g() T1 v T 01 ^ T 02 v T2 ^ I v I 0The intuition behind this rule is that the system mustkeep the largest type Tr of reeived messages and thelowest type Tu of handled messages. The orretnessprediate � leads to Tr v Tu and any reeived on-tent of type T is guaranteed to be understood by anyreeiver state T 0 beause T v Tr v Tu v T 0.Attentive readers may have remarked that the subtypingon interfaes is de�ned only for rows beginning by the samemessage label. A omplete algebrai theory exists and provesthat it is the only needed rule. If one label of the left siderow is absent from right side row, the subtyping is learlyfalse and one all left side labels are treated, the systemredues to fg v I whih is an axiom.
Another exampleBefore going into further disussion on this type system,onsider a funtion that realizes a timer waiting for a mes-sage anel or the end of a time spei�ed at its reation tothrow an alarm:timer({Pid, Time, Alarm}) ->reeive {anel,Pid} -> trueafter Time -> Pid ! Alarmend.A timeout funtion spawns suh a timer proess using thepid of the urrent proess and returns the pid of the timer.The same proess may anel this timer using the returnedpid :timeout({Time, Alarm}) ->spawn(timer, {self(),Time,Alarm}).anel(Timer) ->Timer ! {anel,self()}.Supposing arguments of after (Time) are integers, our sys-tem infers:timer : b��int�� fanel:(?;�b�)g����������! true t �timeout : int�� b��! �fanel : (?; �b�)ganel : �fanel : (��; >)g ��! anel���meaning that:� The timer funtion takes three arguments: an address(reeiving the third argument), an integer and a value(a message). The result is either true or this value andthe urrent proess reeives a anel message ontain-ing (an address of) a proess that reeives the thirdargument.� Alarm (of type �) must be a legal message (tuple be-ginning by an atom).� The proess alling timeout reeives the alarm (it ap-pears in timeout e�et).

� The result of this funtion is the name of a proessunderstanding anel messages ontaining an addressthat reeives the alarm message.� A all to anel must inludes an argument that re-eives a anellation message ontaining the address ofthe urrent proess and returns this anellation mes-sage.Those types are omplex but very informative about thebehavior of these funtions. For example, the system anensure that the pid returned by a all to timeout does notreeive messages other than anellation. It an also ensurethat the proess alling this funtion is able to reeive thealarm message.
Functional TypingPattern mathing annot be treated in the usual ML way:(�1 ! �1) t (�2 ! �2) annot be equal to (�1 u �2) !(�1 t �2). In fat, the type system must inlude patternmathing, to do this [2℄ introdued the notion of onditionaltype t1?t2. This type means t1 (if t2 is di�erent from ?) or?. For example, if e : te, ase e of true -> 1; false -> foois of type (int?(te u true)) t (foo?(te u false)). Our sys-tem does not use this onditional type whih enjoys goodalgebrai properties but is not really readable and leads tothe loss of the pattern mathing struture. Instead, we usea onditional onstraint 1) 2 meaning that if 1 is veri-�ed then the system must also ensure 2. This onstraint,generated to approximate pattern mathing, allows to keepa high level of preision on the link between mathed valuesand results. Typing previous hoie lead to the following setof onstraints: C = fte v true) int v tr; te v false)foo v tr; te v true t falseg where tr is the result type.Either the system knows the struture of te and C an besimpli�ed, or it is deomposed in two sub-systems (beausethe mathing is omposed of two branhes):� One, in whih, te is subtype of true and therefore C =fte v true; int v trg� Otherwise (due to third onstraint), te is a subtype offalse and C = fte v false; foo v trgAs, in general, we do not know preisely the mathed value,all those deomposed sub-systems must have a solution.This means that a n branh pattern mathing �res the res-olution of n sub-systems. However, the pratie have shownthat this is not a real problem. Indeed, when applying apattern mathing to a value, we often know more or less itsstruture and many of the sub-systems are trivial.The typing judgments have the following shape:Environment ` Expression : Type ; ConstraintSetAs, many typing rules are lassi, we limit our explainationsto sends, hoies, reeives and alls:� Typing e1! e2 returns the seond sub-expression typeand the onstraint set ontaining all onstraints pro-dued by the typing of e1 and e2, plus a onstraintspeifying that e1 must evaluate to a proess that re-eives the value of e2:E ` e1 : t1; C1 E ` e2 : t2; C2E ` e1! e2 : t2; C1 [C2 [ft1 v �bt2g

� Typing a hoie onsists in typing the tested value andall patterns and assoiated expressions of the �lter. Areation expression must be typed after adding to theurrent environment the environment resulting fromtyping of the orresponding pattern:E ` e : te; Ce E ` pi : tpi ; Ei E [Ei ` ei : ti; CiE ` ase e of p1 ! e1; ::: : t; Ce [[i Ci [Cwhere the resulting onstraints umulate all alreadyalulated onstraints and those due to the hoie (C).C spei�es that the tested value must be taken intoaount by one of the patterns and add all already ex-plained onditional onstraints (one for eah branh):C = fte vGi tpi g [[i (fte v tpi) ti v tg)This means that the result type t will be the union ofthe type of eah pattern that may math the testedvalue.� Typing the message handling may result in any possi-ble branh type (hene the union) and adds all patterntypes to the urrent self type:E ` pi : tpi ; EiE [Ei ` ei : ti; Ci C0i = fE(self) v �tpi gE ` reeive p1 ! e1; ::: :Gi ti; [i (Ci [C0i)� Typing an appliation is muh more omplex. First,one must type the funtion expression and eah argu-ment expression.E ` e : te; Ce E ` ei : ti; CiE ` e(e1; :::; en) : t; Ce [[i Ci [Cwhere C is omposed of te v dom(TF), E(self) v �I,Fun(TF ; te; n) v (t1�:::�tn) I�! t meaning that:{ The funtion must be de�ned.{ Its e�et I is added to the urrent proess e�et.{ All possible funtions are subtype of a funtiontype aepting the n atual arguments ti, havingan e�et I and resulting in t (it is the result of theappliation). To get the set of possible funtions,we use a funtion Fun whih applied to (TF ; te; n)returns the union of all funtion types assoiatedto an atom (and the arity n) of te in TF . Like thetransformation from tuple type to message type,this funtion is lazy and waits to know the valueof te to perform its ation.For eah possible funtions of type � I0�! �, the last on-straint ensures that all appliations are legals beause bysubstyping it leads to ft1� :::� tn v �; I 0 v I; � v tg.Furthermore, all e�ets (resp. results) are umulated in theglobal e�et I (resp. result t).The funtion typing environment TF results from the typ-ing of all funtions in F . A mapping (s; n) 7! f in F addsa mapping (s; n) 7! tf if the typing of f by the rule be-low results in tf . And, We suppose that all onstraints it

may produe are added to the global onstraint set beforeresolution. E ` pi : ti; Ei E [Ei ` ei : t0i; CiE ` p1 ! e1; ::: :Gi (ti �! t0i); [i CiGoing bak to our example, the appliation of F leads to:�state3 v T; unit v �; T v fstate1; state2; state3g;TP v �I; Fun(TF ; T; 0) v unit I�!t �The �rst onstraint ombined with the �fth leads to:unit fkill : (?;unit)g����������! true v unit I�!tThis imply that TP v �I v �fkill : (?; unit)g andtrue v t. The �rst onstraint simulates (in the type sys-tem) the reeption of unit message: (?; unit) v (unit ; �)equivalent to f? v unit ; � v unitg. Adding this to the ini-tial onstraint set leads to a solvable onstraint set (where� = unit). This allows the system to guarantee the orret-ness.
6. SCALING TO ERLANG TYPINGThe simpli�ed system presented here does not orrespond tothe real prototype implementation. To sale to this system,we have to:� extend the types by lists, haraters, oating pointnumbers and all other basi types (orresponding toErlang basi values). This extension and the de�ni-tion of built-in funtion is straightforward but need toadd a lot of rules.� hange soping rule poliy. Our system needs to havean input and an output environment for eah expres-sion. This is also boring routine.� add guards to the pattern mathing (again routine ex-tension). Notie that in the prototype, it is one of theonstrutions that ontains a lot of type informations.� take are of dynami patterns. Indeed, in Erlang, avariable in a pattern is a de�nition only if the vari-able is not already de�ned. This small modi�ation ofthe semantis and more preisely of the semantis ofpatterns needs important hanges in the type systemsummarized just below.One of the biggest problem that we faed when typing Er-lang is dynami pattern mathing. Indeed, in the patterns,a variable is not always a binding ourrene, that is, if thevariable is already bound, its value replaes the variable be-fore pattern mathing is realized. For example, onsider:g(X) -> ase 1 of X -> ok; _ -> no end.The term {g(1),g(2)} redues to:{ase 1 of 1 -> ... , ase 1 of 2 -> ...}and then to {ok,no}. Usual typing of this funtion gives�! t with the onstraints:f1 v �) ok v t; 1 v (>n�)) no v tg

Therefore, the appliation has type (okt no)�(okt no) be-ause the two appliations gives 1t2 v � meaning that bothbranhes may be used. The problem omes from the fat,that the usual funtion typing impose to all possible realargument types to be simultaneously ompatibles with alltheir potential use in the body of the funtion. For this,when typing the body of the funtion, the system olletsonstraints of the form � v t where � is the type of an argu-ment. And eah all to the funtion produes onstraints ofthe form t0 v � whih enable by transitivity to ensure thatt0 v t. But, in the body of a funtion, if a pattern inludesan argument, the system generates a onstraint t v � inom-parable with t0 v �. This means that we annot guaranteethat the argument respet one of the onstraints requiredby the funtion.The type obtained for {g(1),g(2)} is not very preise (usingusual strategy) but above all, if the joker branh is not in thehoie, the program ause an error that annot be detetedby the type system. To solve this problem, the system isgoing to type eah appliation of a funtion using a freshinstane of its type. With this strategy no harmful ow (ofinformation) may happen between two appliation sites asbefore. Indeed, the intuition behind this problem is thatwhen a funtion use one of its arguments in a pattern, eahappliation produes a new (and di�erent) version of thebody (of the funtion). Therefore, the onstraints it imposesare not the same and the return type are di�erent too.The typing of a funtion leads to a type � ! � and a on-straint set C. Its alling on an argument of type t will usetype t! �0 (where �0 is fresh) and add [t=�; �0=�℄C to theglobal onstraint set. Therefore, typing:g(X) -> ase 1 of X -> ok end.gives � ! t with f1 v �; ok v tg. Therefore, the type of{g(1),g(2)} is t1�t2 with f1 v 1; ok v t1; 1 v 2 ; ok vt2g where the boxed onstraint is false. The error is nowdeteted!The drawbak of this strategy is that the number of typevariables and onstraints grow more rapidly. To solve thisproblem, in pratie, the system apply this strategy only toa subset of funtions. More preisely, this strategy is appliedto the arguments of funtions using one of their argumentsin a pattern. As this situation is not the most usual, the ostto pay (for this strategy) is not too expensive (in general).
7. DISCUSSIONIn this paper, we have proposed a formalization of the Er-lang semantis using a two level redution system. A �rstlevel onentrates on onurrent aspets of the language us-ing a formalism inspired by the �-alulus, the on�gura-tions. And a seond expressing the funtional semantis(and its potential onurrent e�ets) using a more lassisetting. Finally, we have introdued a type system for Er-lang insisting in the original parts of our works: messagetyping and the fat that the system try to stay lose to thelanguage. The versions presented in this artile representonly insight of the omplex system developed and the pro-totype of stati analyzer realized.
Formal semantics of Erlang

This work though not omplete an be a good beginning toreah a good formalization of the semantis of Erlang. Aomplete formalization of the whole language would requirea lot of work beause one would have to:� add the node (site) notion. For this, on�gurationsmust be extended by a set of node names and by aonstrution hn j win meaning that w is exeuted onnode n. A on�guration desribing a two nodes ouldthen be �n1; n2:(hn1 j w1i k hn2 j w2i).� implement dynami ode replaement. Eah sitemust inlude the environment of de�ned funtions andthe values of those funtions ould hange: hn j E j wi.� allow sending message between sites. The targetof the message may be loal keeping the same syntaxor remote on node n and the transit message ould bea�n / m.� integrate the time notion. In Erlang, the messagehandling operation has a lause after that allows tostop the exeution of this instrution after a spei�eddelay. One solution ould be to add a notion of ounterto eah node.� add a notion of symboli names and a ditio-nary. A servie an be abstrated by assoiating itwith a name. This delared name represent a proess(that an hange). Eah node needs to maintain di-tionary: hn j Ef j En j wi.� add signals. Erlang use signals to propagate exep-tions among proesses. For example, we ould add aag to the message making it possible for the reeiverto distinguish a signal from a message.Some reent work on distributed proess aluli like D� (see[21℄) or the join alulus (see [14℄) an also help in suh aprojet of formalization of the semantis of Erlang. Notiethat those points are not all the problems that needed tobe solved, we refer the interested reader to the hapter 10,11 and 12 of [3℄. Those three hapters does not inlude aformal semantis but their informal systemati desriptionof Erlang semantis enable to view all possibilities.
Complete Erlang TypingTo beome a omplete and widely usable tool our systemneeds some extensions.First, the Erlang messages does not ontain label so thetype of proess must be retailored. The works on XM� (atyped funtional language used to manipulate XML dou-ments) of [23℄ an be a good basis. Indeed, to type or-retly the hoies of XML, they build a typed �-alulusinluding a notion of reord without label. For example,(1) + ("test") + (�x:if x then 1 else 0) is typed byfint ; string ; bool ! intg. This adaptation does not seemto be straightforward beause the type system of XM� useequality onstraints and is based upon a notion of on-straint impliation. Therefore, its integration with the sub-typing needed for Erlang needs studies about subtypingonstraint impliation and to our knowledge, none of thework made in this area have really ahieved that goal yet.

In the ontext of teleommuniation systems, exeptions arevery important to reah a ertain level of quality for pro-grams. Indeed, the reliability of suh appliations needs apreise treatment of every possible exeptions. A type sys-tem helping the programmer in this task would be a realaid. It ould estimate the set of potential exeption ausedby every expressions of the program and ensure that theyare treated. An extension of [18℄ may be a good start pointtoward suh a stati analyzer.Finally, the most diÆult point with Erlang is that theapproximation made by this ideal type system should haveto be ompatible with hot ode swapping. Indeed, in Er-lang, a module is used by hundreds or thousands of nodesthat annot be stopped or restarted. An evolution of suha module use dynami ode replaement and therefore, theold version and the new one have to be exeuted simulta-neously and must ooperate safely (at least for a temporaryperiod). Suh a task is totally out of reah at the moment,but a �rst step to its resolution ould start from [22℄.
8. REFERENCES[1℄ G. Agha. Ators: A Model of Conurrent Computationin Distributed Systems. Series in Arti�ial Intelligene.The MIT Press, Cambridge, MA, USA, 1986.[2℄ A. Aiken, E. Wimmers, and T. Lakshman. Soft typingwith onditional types. In Pro. of POPL, pages163{173, Portland, USA, Jan. 1994. ACM Press.[3℄ J. Barklund and R. Virding. Erlang 4.7.3 RefereneManual, February 1999. downloadable fromwww.erlang.org.[4℄ G. Boudol. The �-alulus in diret style. In Pro. ofPOPL, pages 228{241. ACM, Jan. 1997.[5℄ R. Carlsson. An introdution to ore erlang. ErlangWorkshop. Priniples, Logis, and Implementations ofHigh-level Programming Languages. Florene, 2001.[6℄ R. Carlsson, B. Gustavsson, E. Johansson,T. Lindgren, S.-O. Nystr�om, M. Pettersson, andR. Virding. Core Erlang 1.0.2, language spei�ation,Ot. 2001.[7℄ J.-L. Cola�o, M. Pantel, F. Dagnat, and P. Sall�e.Stati safety analysis for non-uniform servieavailability in ators. In Pro. of FMOODS, pages371{386, Florene, Italy, Feb. 1999. Kluwer.[8℄ J.-L. Cola�o, M. Pantel, and P. Sall�e. Cap: An atordediated proess alulus. In Pro. of Proof Theory ofConurrent Objet-Oriented Programming, May 1996.[9℄ J.-L. Cola�o, M. Pantel, and P. Sall�e. A set-onstraintbased analysis of ators. In Pro. of FMOODS,Canterbury, UK, July 1997. Chapman & Hall.[10℄ F. Dagnat. A framework for typing ators andonurrent objets. Ongoing report, available fromperso-info.enst-bretagne.fr/~fdagnat, 2002.[11℄ F. Dagnat, M. Pantel, M. Colin, and P. Sall�e. Typingonurrent objets and ators. L'Objet { M�ethodesformelles pour les objets, Volume 6(1/2000):pages83{106, May 2000.

[12℄ M. Dam and L. Fredlund. On the veri�ation of opendistributed systems. In Pro. of the ACM Symposiumon Applied Computing, volume 28, pages 532{540.ACM, June 1998.[13℄ M. Fahndrih. BANE: A library for SalableConstraint-Based Program Analysis. PhD thesis,University of California at Berkley, 1999.[14℄ C. Fournet, G. Gonthier, J.-J. L�evy, L. Maranget, andD. Remy. A alulus of mobile agents. In Pro. ofCONCUR, Pisa, Italy, volume 1119 of LNCS, pages406{421. Springer-Verlag, 1996.[15℄ F. Huh. Veri�ation of Erlang programs usingabstrat interpretation and model heking.Proeedings of ICFP '99, 34(9):261{272, Sept. 1999.[16℄ A. Lindgren. A prototype of a soft type system forerlang. Master's thesis, Computing SieneDepartement, Uppsala University, 1996.[17℄ S. Marlow and P. Wadler. A pratial subtypingsystem for Erlang. In Pro. of InternationalConferene on Funtionnal Programming, June 1997.[18℄ F. Pessaux and X. Leroy. Type-based analysis ofunaught exeptions. ACM Transations onProgramming Languages and Systems, 22(2):340{377,2000.[19℄ F. Pottier. Simplifying subtyping onstraints: atheory. Information & Computation, 170(2):153{183,Nov. 2001.[20℄ D. R�emy and J. Vouillon. Objetive ML: An e�etiveobjet-oriented extension to ML. Theory And Pratieof Objet Systems, 4(1):27{50, 1998.[21℄ P. Sewell. Global/loal subtyping and apabilityinferene for a distributed �-alulus. In Pro. ofICALP '98. LNCS 1443, pages 695{706.Spinger-Verlag, July 1998.[22℄ P. Sewell. Modules, abstrat types, and distributedversioning. In Pro. of POPL, pages 236{247, London,UK, Jan. 2001.[23℄ M. Shields and E. Meijer. Type-indexed rows. In Pro.of POPL, pages 261 { 275, London, UK, Jan. 2001.[24℄ J.-P. Talpin and P. Jouvelot. The type and e�etdisipline. Information and Computation,111(2):245{296, June 1994.[25℄ X. Thirioux, M. Pantel, and M. Colin. Multi-setabstration of non-uniform behavior onurrentobjets. Work in progress, Nov. 2002.[26℄ V. T. Vasonelos and M. Tokoro. A typing system fora alulus of objets. In Pro. of OTAS, Kanazawa,Japan, volume 742 of LNCS, pages 460{474, NewYork, USA, 1993. Springer-Verlag.[27℄ M. Williams and J. Armstrong. Program DevelopmentUsing Erlang - Programming Rules and Conventions.ERICSSON, mar 1996. Do. EPK/NP 95:035.

APPENDIXCon�gurations redution rules:Congruene :w1 � w01 w01 �! w02 w02 � w2w1 �! w2 Parallel :w1 �! w2w jjw1 �! w jjw2 Restrition :w1 �! w2�a:w1 �! �a:w2 Aept : P(m;e)ha j emi . e k a / m �! ha jm emi . eRejet :not(P(m; e))ha j emi . e k a / m �! Err Expression :a =2 FN (� . e) a ` �; e w�!e �0; e0� . e �! �a:(�0 . e0 k w)Evaluation ontext grammar:C ::= [℄ j (C) j {A} j C,e j C ! e j e !C j C(e,:::,e) j e(A) j ase C of f endA ::= [℄ j e,A j A,eMathing semantis: 8<:v=[℄ , Errv=(p when g ! e) :: f , �v=f if math(p; v) = fail�(e) if math(p; v) = �Funtional redution rules:Variable Error :a ` �; C[x℄ �!e �; Err Sequene :a ` �; C[v; e℄ �!e �; C[e℄ Appliation Error :(v; n) 62 dom(F)a ` �; C[v(v1; :::; vn)℄ �!e �; ErrAppliation :a ` �; C[v(v1; :::; vn)℄ �!e �; C[fv1; :::; vng=F(v; n)℄ Case :a ` �; C[ase v of f end℄ �!e �; C[v=f ℄Send Error :v1 62 Aa ` �; C[v1 ! v2℄ �!e �; Err Send : v1 2 Aa ` �; C[v1 ! v2℄ v1/ v2����!e �; C[v2℄ Spawn Error :v0 is not a tuplea ` �; C[spawn(v; v0)℄ �!e �; ErrSpawn :a ` �; C[spawn(v; v1; :::; vn)℄ ha j?i.v(v1;:::;vn)������������!e �; C[a℄ Self Error :a ` ?; C[self()℄ �!e ?; ErrSelf :a ` ha0 j emi; C[self()℄ �!e ha0 j emi; C[a0℄ Reeive Error :a ` ?; C[reeive f end℄ �!e ?; ErrReeive :mathmailbox(f; em) = em0; ea ` ha0 j emi; C[reeive f end℄ �!e ha0 j em0i; C[e℄Mailbox semantis:9j (8i < j mi=f1 = Err) mj=f1 = emathmailbox(f1 :: ; (mi)i2J) = (mi)i2Jnfjg; e (8i 2 J mi=f1 = Err)mathmailbox(f1 :: ; (mi)i2J) =mathmailbox(; (mi)i2J)Type Conversion:8>>>>>>>>><>>>>>>>>>:
bs , fs : (unit ; >)g\s�T1�:::�Tn , fs : (T1�:::�Tn; >)gb> , >I[Fi Ti , Fi bTi[di Ti , di bTib� , b� if � is a type variablebT , Err otherwise

8>>>>>>>>><>>>>>>>>>:
s , fs : (?; unit)gs�T1�:::�Tn , fs : (?; T1�:::�Tn)g> , >IFi Ti , Fi Tidi Ti , di Ti� , � if � is a type variableT , Err otherwise

Subtyping Dedution System:? v T T v > fg v I I v >I T v T1 T v T2T v T1 u T2 T v T1T v T1 t T2 T v T2T v T1 t T2 i 2 Ni v int s 2 A ts v atomT1�:::�Tn v tuple 8i Ti v T 0iT1�:::�Tn v T 01�:::�T 0n I 0 v I�I v �I 0 T 01 v T1 I v I 0 T2 v T 02T1 I�! T2 v T 01 I0�! T 02T1 v T 01 T 02 v T2 I v I 0fm : (T1; T2); Ig v fm : (T 01; T 02); I 0gTyping Dedution System:VarV 2 dom(E)E ` V : E(V); fg ConstantE ` : ; fg Tuple E ` ei : ti; CiE ` fe1; :::; eng : t1�:::�tn; [i Ci ParenE ` e : t; CE ` (e) : t; C SequeneE ` e1 : t1; C1 E ` e2 : t2; C2E ` e1; e2 : t2; C1 [C2SendE ` e1 : t1; C1 E ` e2 : t2; C2E ` e1! e2 : t2; C1 [C2 [ft1 v �bt2g Case E ` e : te; Ce E ` pi : tpi ; Ei E [Ei ` ei : ti; CiE ` ase e of p1 ! e1; ::: : t; Ce [[i Ci [fte vGi tpi g [[i (fte v tpi) ti v tg)Appliation E ` e : te; Ce E ` ei : ti; CiE ` e(e1; :::; en) : t; Ce [[i Ci [fte v dom(TF); E(self) v �I; Fun(TF ; te; n) v (t1�:::�tn) I�! tgReeive E ` pi : tpi ; Ei E [Ei ` ei : ti; CiE ` reeive p1 ! e1; ::: :Gi ti;[i (Ci [fE(self) v �tpi g)

