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. The data-driven selection of the (best) space is done with two strategies: we use both a penalization version of a "warped contrast", and a model selection device in the spirit of Goldenshluger and Lepski [21]. We propose by these methods two functions, ĥl (l = 1, 2), easier to compute than least-squares estimators. We establish nonasymptotic mean-squared integrated risk bounds for the resulting estimators, fl = ĥl • G if G is known, or fl = ĥl • Ĝ (l = 1, 2) otherwise, where Ĝ is the empirical distribution function. We study also adaptive properties, in case the regression function belongs to a Besov or Sobolev space, and compare the theoretical and practical performances of the two selection rules.

Y i = f (X i ) + ε i , 1 ≤ i ≤ n,
where f : (a; b) ⊂ R → R is the unknown function that we aim at recovering. The random variables (ε i ) i∈{1,...,n} are unobserved, centered, admitting a nite variance σ 2 , and independent of the design (X i ) i∈{1,...,n} . We assume that the latter are distributed with a density g > 0 with respect to the Lebesgue measure, supported on an interval (a; b), -∞ ≤ a < b ≤ +∞. We denote by G the associated cumulative distribution function (c.d.f. in the sequel), and G -1 its inverse, which exists thanks to the assumption g > 0.

The aim of this paper is twofold: rst, taking advantage of warped bases, we want to provide an adaptive non parametric strategy to recover the regression function f . Secondly, considering a new development of model selection theory, we are interested in the comparison of two selection strategies, from both theoretical and practical points of view: a classical penalization method and a recent selection device in the spirit of [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] (shortened by "GL method" in the sequel), applied in an original way to a projection estimator. 1.2. Motivation. Adaptive estimation of the regression function is a well-developed problem, and several procedures have been set. Historical methods are kernel strategies, initiated by [START_REF] Nadaraya | On estimating regression[END_REF] [START_REF] Nadaraya | On estimating regression[END_REF] and [START_REF] Watson | Smooth regression analysis[END_REF] [START_REF] Watson | Smooth regression analysis[END_REF] who proposed kernel-type estimators, built as the ratio of an estimator of the product f g divided by an estimator of the density g. The data-driven choice of the bandwidth, leading to adaptive estimators, is studied more accurately for example by [START_REF] Fan | Variable bandwidth and local linear regression smoothers[END_REF] [START_REF] Fan | Variable bandwidth and local linear regression smoothers[END_REF] and [START_REF] Hardle | Local polynomial estimators of the volatility function in nonparametric autoregression[END_REF] [START_REF] Hardle | Local polynomial estimators of the volatility function in nonparametric autoregression[END_REF], who provide asymptotic results (for methods also involving local polynomials). Nevertheless, estimators resulting of this strategy have the drawback of involving a ratio, with a denominator that can be small: this implies diculties to study the risk and to implement the method. In a dierent direction, estimators based on the expansion of the target function into bases, especially orthogonal-bases, have been proposed: spline bases (Golubev and Nussbaum (1992) [START_REF] Golubev | Adaptive spline estimates in a nonparametric regression model[END_REF]), wavelet bases [START_REF] Donoho | Wavelet shrinkage: asymptopia? With discussion and a reply by the authors[END_REF] [START_REF] Donoho | Wavelet shrinkage: asymptopia? With discussion and a reply by the authors[END_REF], [START_REF] Cai | Wavelet shrinkage for nonequispaced samples[END_REF] [START_REF] Cai | Wavelet shrinkage for nonequispaced samples[END_REF] in the xed design case, [START_REF] Antoniadis | Random design wavelet curve smoothing[END_REF] [START_REF] Antoniadis | Random design wavelet curve smoothing[END_REF] in the random-design case), and also trigonometric bases (Efromovich [START_REF] Efromovich | Nonparametric curve estimation. Methods, theory, and applications[END_REF] (1999)). Wavelet thresholding strategies oer a degree of localization leading to almost minimax but asymptotic rate of convergence. To obtain non-asymptotic risk bounds, all these estimators can be studied from the model selection point of view, initiated among others by [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. The problem is to select a "best" estimator among a collection of projection estimators, for example least-squares estimators, to prove oracle inequalities for the risk. The selection is standardly done by the minimization of a penalized criterion (see for example Kohler and Krzyzack (2001) [START_REF] Kohler | Nonparametric regression estimation using penalized least squares[END_REF], [START_REF] Wegkamp | Model selection in nonparametric regression[END_REF] [START_REF] Wegkamp | Model selection in nonparametric regression[END_REF], [START_REF] Birgé | Model selection for Gaussian regression with random design[END_REF] [START_REF] Birgé | Model selection for Gaussian regression with random design[END_REF], and [START_REF] Baraud | Model selection for regression on a random design[END_REF] [START_REF] Baraud | Model selection for regression on a random design[END_REF]). But procedures based on the minimization of a least-squares contrast do not provide explicit estimators without matrix invertibility requirements (most of the time implicitly). 1.3. Estimation strategy. Adopting this model selection point of view, and using warped bases developed for building wavelet thresholding estimators by [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF], we provide in this paper adaptive estimators. These estimates still satisfy non asymptotic oraclebounds and reach the exact optimal rate under mild assumptions while being easier to compute and more stable, even in case the amount of data can vary in the estimation domain. More precisely, denoting by u • v the composition of functions u and v, we dene (2)

h = f • G -1 = f G -1 .
We assume that h is squared integrable, we provide estimators for h of the form ĥD = D j=1 âj ϕ j , for a collection of possible D, with (ϕ j ) j a classical orthonormal family, and âj estimator of scalar product h, ϕ j . Then we dene fD = ĥD • G or fD = ĥD • Ĝ, as estimators of f , depending on whether we assume that G is known or not (in this last case, Ĝ is the empirical distribution function). We get thus a development of the estimator in warped bases, that is, The warping strategy brings a procedure computationally simple, without any matrix inversion (which are costly from practical point of view). The selection of "best" index D among all possible D is done in a second time with two strategies. First, we use a penalized version of a "warped contrast". Next, recent works of [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF], in case of density estimation can be explored to propose a new selection strategy. Thus we have at hand two data-driven estimators of the unknown function. We prove that they both automatically realize the usual squared-bias/variance compromise, provide non asymptotic oracle-inequalities for each estimator. We give also asymptotic rate of convergence on functional spaces, of Besov or Sobolev type. We nd the classical non-parametric estimation rate, that is n -2α/(2α+1) where α is the regularity index. Thus, the equivalence between the two adaptive estimators -one based on penalization, the other on GL methodis obtained from theoretical point of view. However, on our practical examples, the new GL strategy outperforms the penalization device.

1.4. Organization of the paper. We begin with the case of known design c.d.f in Section 2.

In this simpler framework, we can easily explain how the estimators are built and state their adaptivity, while the general case of unknown design distribution is the subject of Section 3: it requires further technicalities, but similar results are proved. They are illustrated via simulations in Section 4. The proofs are gathered in Section 5.

Case of known design c.d.f.

To have a better understanding of the denition and properties of the estimators in the general case, we rst focus on the simpler situation of known design distribution. This "toy-case", used also by other authors (see for example Pham Ngoc [START_REF] Ngoc | Regression in random design and Bayesian warped wavelets estimators[END_REF]) allows us to derive very simple results, with few assumptions and short proofs. We deal rst with the estimation of the function h dened by [START_REF] Audibert | Robust linear least squares regression[END_REF]. We consider a family of approximation spaces. In a rst step, we estimate h or more precisely its projection on these spaces. The second step is to ensure an automatic selection of the space, without any knowledge on f . Finally, we warp the function to estimate f (and not h).

2.1. Assumptions on the models. The models are linear spaces of functions included in L 2 ([0; 1]), the set of square-integrable real-valued functions on the interval [0; 1]. We denote the collection {S m , m ∈ M n }, where M n is a nite set of indexes, with cardinality depending on the number of observations n. The assumptions and notations are the following:

[M 1 ] All the linear spaces S m are nite-dimensional. For all m ∈ M n , we denote by D m the dimension of the space S m and assume

1 ≤ D m ≤ n. [M 2 ] The models are nested, that is, for all (m 1 , m 2 ) ∈ M 2 n , such that D m 1 ≤ D m 2 , S m 1 ⊂ S m 2 .
We denote by (ϕ j ) j∈{1,...,Dm} an orthonormal basis which spans S m (m ∈ M n ), and by m max the index of the largest model in the collection. [M 3 ] There exists a positive constant φ 0 such that for all indexes m ∈ M n and all function

t ∈ S m , t ∞ ≤ φ 0 √ D m t .
This useful link between the L 2 norm and the innite norm is equivalent to a property of the basis (ϕ j ) j∈{1,...,Dm} :

Dm j=1 ϕ 2 j ∞ ≤ φ 2 0 D m .
See Birgé and Massart [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] for the proof of the equivalence. The above assumptions are not too restrictive. Indeed, they are veried by the spaces spanned by usual bases: trigonometric basis, regular compactly supported wavelet basis, regular histogram basis and regular polynomial basis (with dyadic subdivisions in the last two examples). We refer to section 3.2.1 for a description of trigonometric models, and to Barron et al. [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], and Brunel and Comte [START_REF] Brunel | Penalized contrast estimation of density and hazard rate with censored data[END_REF] for the other examples.

2.2. Estimation on a xed model.

2.2.1.

Contrast and estimator on one model. We dene the contrast function:

(3) ∀t ∈ L 2 ([0; 1]) → γ n (t, G) := t 2 - 2 n n i=1 Y i (t • G(X i )) ,
where . is the usual Hilbert norm on the space L 2 ([0; 1]), associated to the scalar-product denoted by ., . . Notice that γ n (., G) represents an empirical counterpart for the quadratic risk: for all t ∈ L 2 ([0; 1]),

E [γ n (t, G)] -E [γ n (h, G)] = t 2 -h 2 -2E [f (X 1 ) {(t -h) • G} (X 1 )] , = t 2 -h 2 -2 [a;b] f (x) {(t -h) • G} (x)g(x)dx, = t 2 -h 2 -2 [0;1] h(u)(t -h)(u)du, = t 2 -h 2 -2 h, t -h , = t -h 2 , so that h minimizes t → E[γ n (t, G)] over L 2 ([0; 1]).
This explains why a relevant strategy to estimate h consists in minimizing γ n (., G) over each set S m :

(4)

ĥG m = arg min t∈Sm γ n (t, G).
The unique resulting estimator (for each index m) has a particularly simple expression,

ĥG m = Dm j=1 âG j ϕ j , with ∀j ∈ {1, . . . , D m }, âG j = 1 n n i=1 Y i ϕ j (G(X i )). (5) 
Finally, we set

f G,G m = ĥG m • G
as an estimator of f . The explicit formula ( 5) is an unbiased estimator of the orthogonal projection of h onto S m . Compare for example to the classical least-squares estimator, which involves a matrix inversion (see Baraud [4] and Section 4 for details). Notice also that our notation for the estimator involves two super-indexes G to underline the dependence on the c.d.f. G through both the coecient âG j and the composition by G. 2.2.2. Risk on one model. In this section, we x a model S m and briey study the quadratic risk of the estimator f G,G m . As for all the results stated in the sequel, we evaluate the risk with respect to the norm . g naturally associated to our estimation procedure:

v 2 g = (a;b) v 2 (x)g(x)dx, v, w g = (a;b) v(x)w(x)g(x)dx,
for any functions v, w ∈ L 2 ((a; b), g), the space of squared-integrable functions on (a; b) with respect to the Lebesgue measure weighted by the density g. However, it is also possible to control the classical L 2 norm on (a; b), under the assumption that g is bounded from below by a strictly positive constant: if, for any x ∈ (a; b), g(x) > g 0 > 0, then

v 2 g ≥ g 0 (a;b) v 2 (x)dx.
Notice besides that the following links hold between this weighted norm and the classical norm on L 2 ([0; 1]) previously dened: for t, s ∈ L 2 ([0; 1]), we compute, using G = g,

t • G g = t , t • G, s • G g = t, s .
Thus, the quadratic risk of f G,G m is given by

E f G,G m -f 2 g = f -f G m 2 g + E f G m -f G,G m 2 g , = h -h m 2 + E h m -ĥG m 2 , (6) 
where [START_REF] Birgé | Model selection for Gaussian regression with random design[END_REF] f G m = h m • G and h m is the orthogonal projection of h onto S m , with respect to ., . . Hence, we recover the usual decomposition into two terms: a squared bias term, which decreases when the dimension of the model S m grows (roughly, it is at most of order D -2α m , where α is the index of smoothness of h), and a variance term, proportional to the dimension of the model S m :

(8) E f G m -f G,G m 2 g = Dm j=1
Var

âG j = Dm j=1 1 n Var (Y 1 (ϕ j • G) (X 1 )) ≤ E Y 2 1 φ 2 0 D m n ,
where φ 2 0 is dened in Assumption [M 3 ] (see section 2.1). Consequently, the best estimator among the family ( f G,G m ) m∈Mn (in the sense that it achieves the smallest risk among the collection) is the one which realizes the trade-o between the two terms, without any knowledge of the index of smoothness α.

Selection rules and main results.

2.3.1. Selection rules. The aim is to realize a data-driven selection of the space S m . For that purpose, we give a strategy to choose an estimator among the collection ( f G,G m ) m∈Mn . We propose two dierent strategies and build consequently two estimators. First, the selection can be standardly done by

m(1),G = arg min m∈Mn γ n ( ĥG m , G) + pen G (m) ,
with pen G (.) a function to be properly chosen. As, γ n ( ĥG

m , G) = -ĥG m 2 = -f G,G m 2
g , and

h -h m 2 = h 2 -h m 2
, we can say that γ n ( ĥG m , G) estimates the bias term, up to an additive constant. This explains why the order of the penalty can be the upper bound on the variance term, that is [START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF] pen

G : m → c 1 φ 2 0 E[Y 2 1 ] D m n ,
with c 1 a purely numerical constant. In practice, we use a method inspired by the slope heuristic to nd the value of this constant (see Section 4).

The second method follows the scheme developed by Goldenshluger and Lepski [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] for density estimation. The adaptive index is also chosen as the value which minimizes a sum of two terms:

m(2),G = arg min m∈Mn A G (m) + V G (m) ,
where V G is also the order of the variance term:

(10)

V G : m → c 2 φ 2 0 E[Y 2 1 ] D m n ,
where c 2 is a purely numerical constant (adjusted in practice by simulations). Here the function A G does not depend on the contrast: it is rather based on the comparison of the estimators built in the rst stage:

A G (m) = max m ∈Mn ĥG m -ĥG m∧m 2 -V G (m ) + ,
where x + = max(x, 0), x ∈ R. We will prove besides that A G (m) has the order of the bias term (see Lemma 6). Thus we get two estimators, explicitly expressed in a warped basis:

f G 1 = ĥG m(1),G • G, f G 2 = ĥG m(2),G • G.
We stress out the fact that these estimators are simple to compute: their coecients âG j are empirical means, and even if the "penalties" (pen G and V G ) contain the unknown expectation

E[Y 2
1 ], this term can be easily replaced in practice or theory by the empirical mean Brunel and Comte [10], proof of Theorem 3.4 p.465). In addition to the advantage of the warped basis, the comparison of these two estimators, from both theoretical and practical point of view is new, and is of interest also for other statistical estimation problems.

(1/n) n i=1 Y 2 i (see

Oracle-inequality.

The rst theorem provides non-asymptotic bounds for the risk of each estimator.

Theorem 1. We assume that the regression function f is bounded on the interval [a; b]. We consider models satisfying properties [M 1 ], [M 2 ] and [M 3 ], and nally suppose that there exists a real-number p > 4 such that

E |ε 1 | 2+p < ∞.
Then, the following inequality holds:

E f G i -f 2 g ≤ min m∈Mn k i f -f G m 2 g + k i φ 2 0 E Y 2 1 D m n + C i n , i = 1, 2, (11) 
where f G m is dened by [START_REF] Birgé | Model selection for Gaussian regression with random design[END_REF], k i and k i , (i = 1, 2) are numerical constants, and C i i = 1, 2 are constants independent of n and m, but depending on

E[Y 2 1 ], φ 2 0 , σ 2 , E[|ε 1 | 2+p ] and f ∞ , where f ∞ = sup (a;b) |f (x)|.
Let us comment this result.

• These non-asymptotic risk bounds, also called oracle-inequalities prove that both estimators automatically realize the squared bias/variance trade-o under few weak assumptions, up to some multiplicative constants (which are precised in the proof). This enhances the interest of warped bases: the risk of the estimators is smaller (up to the constant) than the risk of the best estimator in the family ( f G,G m ) m . Moreover, the two estimators (the one selected by the GL method and the one selected by penalization) are theoretically equivalent in this context.

• Note that the assumptions for this result are particularly weak, compared to usual hypotheses in other statistical framework (D m in only supposed bounded by n). Moreover the proof is short, following the general setting of model selection methods (see for example [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF]): it is mainly based on a concentration inequality due to Talagrand. The details can be found in Section 5. Remark also that the choice of p = 4 for the integrability of ε 1 (instead of p > 4) leads to the same inequality with a remainder of order ln 4 (n)/n (instead of 1/n). We can still relax this assumption: a moment of order 2+p, p > 2 for ε 1 is enough, if we suppose in compensation D m = O( √ n). These moment conditions may probably be improved, but we do not go further in this direction, to avoid additional technicalities. We also point out the fact that other results in regression model hold under weak conditions on the noise term (in the sense that no exponential moment for the ε i are required, contrary to the conditions in [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]): see for example recent works of Audibert and Catoni [START_REF] Audibert | Robust linear least squares regression[END_REF] and [START_REF] Audibert | Robust linear regression through PAC-Bayesian truncation[END_REF], in a prediction framework, and works of Wegkamp [START_REF] Wegkamp | Model selection in nonparametric regression[END_REF] or Baraud [4] for model selection point of view. 2.3.3. Rate of convergence for the risk. Even if the novelty of our results is their non-asymptotic characters (compared to other warped-bases estimators in this framework, see for example Kerkyacharian and Picard [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] and Pham Ngoc [START_REF] Ngoc | Regression in random design and Bayesian warped wavelets estimators[END_REF]), we can also deduce from Theorem 1 the rate of convergence of the risk. For that purpose, assume that h = f • G -1 belongs to the Besov space B α 2,∞ , for α a positive number. Let us recall the denition of this space. First, for r a positive integer and v a positive number, the r-th order dierence of a real-valued function t on the interval [0; 1] is dened by

∆ r v t(x) = r k=0 r k (-1) r-k t(x + kv),
where x is such that the x + kv belongs to [0; 1], k ∈ {0, . . . r}. Next, for u > 0, the modulus of smoothness is given by ω r (t, u) 2 = sup 0<v≤u ∆ r v t . We say that the function t belongs to the Besov space B α 2,∞ if t belongs to the space L 2 ([0; 1]) and if, for

r = [α] + 1 ([.] is the integer part function), |t| B α 2,∞ = sup u>0 u -α ω r (t, u) 2 < ∞.
We refer to DeVore and Lorentz [START_REF] Devore | Constructive approximation. Grundlehren der Mathematischen Wissenschaften[END_REF] for general denitions and properties of this space. Finally, for all L > 0, we denote by B α 2,∞ (L) the space of functions t which satises:

|t| B α 2,∞ ≤ L.
It is well known that for all collections of models described in section 2.1 (trigonometric models, regular polynomial bases, regular and compactly supported wavelet bases), the projection h m of h on the subspace S m achieves the rate of approximation for the Besov class of functions B α 2,∞ (L) (see Lemma 12 from Barron et al. [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]): [START_REF] Chagny | Régression: bases déformées et sélection de modèles par pénalisation et méthode de Lepski[END_REF] 

h -h m 2 ≤ C(α)L 2 D -2α m ,
where C(α) is a constant depending on α and also on the basis. Therefore, the minimization of the left side of inequality [START_REF] Brunel | Nonparametric density estimation in presence of bias and censoring[END_REF] leads to the following corollary:

Corollary 1. We suppose that the function

h = f • G -1 belongs to the Besov space B α 2,∞ (L),
for some xed α > 0 and L > 0. We assume also that h is bounded over the interval [0; 1]. We consider one of the models dened in Section 2.1: trigonometric model, dyadic piecewise polynomials (with a regularity r such that r ≥ α -1) or compactly supported regular wavelets. Then, under the assumptions of Theorem 1,

E f G i -f 2 g ≤ C(L, α)n -2α 2α+1 , i = 1, 2,
with C(L, α) a numerical constant which depends only on L and α.

Thus, the model selection procedure leads not only to a non-asymptotic squared bias/variance trade-o but also to an adaptive estimator: indeed, it automatically reaches the asymptotic rate of order n -2α/(2α+1) , the minimax rate, in regression setting. Theorem 2 in Kerkyacharian and Picard [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] states a rate (n/ ln(n)) -2α/(2α+1) for an estimator obtained in the same framework (G known, warped basis) by a thresholding algorithm on wavelet coecients: thus, the rate we get does not suer from a loss of a ln(n) factor. Therefore, our method provides an improvement. Moreover, Theorem 1 and Corollary 1 are valid for several models (wavelets models, but also trigonometric models...) and, contrary to [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF], for a noise ε 1 not necessarily gaussian (only weak integrability assumptions are required). [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF]. Proper regularity conditions on function f can also be used to get the same asymptotic result, by dening "weighted" Besov spaces. We refer to Section 4.3 in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] in which such spaces are precisely described and their properties stated.

Notice also that the assumptions in Corollary 1 are set on function

h = f • G -1 , like Proposition 2 of
3. Case of unknown design c.d.f. 3.1. The estimators. The obvious question resulting of Section 2 is: what is to be done if the c.d.f. is not known? To adapt the previous estimation procedure, we replace G by its empirical counterpart. But instead of estimating G over the whole sample, we assume that we observe (X -i ) i∈{1,...,n} , a sample of random variables distributed as the (X i ) i , and independent of them, and we dene,

Ĝn : x → 1 n n i=1 1 X -i ≤x .
The aim is to simplify the proofs. We just set a simple "plug-in" strategy to dene the estimators. First, for each index m ∈ M n , we set ( 13)

ĥ Ĝ m = Dm j=1 â Ĝ j ϕ j , with ∀j ∈ {1, . . . , D m }, â Ĝ j = 1 n n i=1 Y i ϕ j Ĝn (X i ) ,
which is the minimizer of the contrast function t → γ n (t, Ĝn ) on S m (see ( 3)). Note that the ĥ Ĝ m , m ∈ M n , are still easily available for the statistician, like the estimators of f :

f Ĝ, Ĝ m = ĥ Ĝ m • Ĝn .
Then, the selection rules follow exactly the same scheme as previously, and allow us to build two estimators. Dene, for each m ∈ M n , [START_REF] Comte | A new algorithm for xed design regression and denoising[END_REF] pen

: m → c 1 φ 2 0 E[Y 2 1 ]D m /n, V : m → c 2 φ 2 0 E[Y 2 1 ]D m /n, A(m) = max m ∈Mn ĥ Ĝ m - ĥ Ĝ m∧m 2 -V (m ) + ,
with c 1 and c 2 purely numerical constants (adjusted in practice, see Section 4), and set

(15) m(1) = arg min m∈Mn γ n ( ĥ Ĝ m , Ĝn ) + pen(m) , m(2) = arg min m∈Mn [A(m) + 2V (m)] .
Finally, the selected estimators are ( 16)

f Ĝ 1 = ĥ Ĝ m(1) • Ĝn , f Ĝ 2 = ĥ Ĝ m(2) • Ĝn .
3.2. Main results.

3.2.1. Framework. The goal of this section is to establish adaptive properties for both estimators

f Ĝ i , i = 1, 2.
As already said, they depend on the empirical c.d.f. Ĝn at two stages, which leads to complexity in the proof. For instance, it requires control of terms of the form ϕ j ( Ĝn ) -ϕ j (G). That is why we select one of the bases only, and not any of the ones used in Section 2. Following the example of Efromovich [START_REF] Efromovich | Nonparametric curve estimation. Methods, theory, and applications[END_REF], we use models based on the trigonometric basis, that is

S m = Span{ϕ 1 , . . . , ϕ Dm }, with D m = 2m + 1, m ∈ M n = {1, . . . , [n/2] -1},
and for all j ∈ {1, . . . , m} and all x ∈ [0; 1],

ϕ 1 (x) = 1, ϕ 2j (x) = √ 2 cos(2πjx), ϕ 2j+1 (x) = √ 2 sin(2πjx).
Notice that the assumption [M 3 ] is satised with φ 0 = 1. This choice is guided among other things by the following property: let h be a function continuously derivable on the interval [0; 1], such that h(0) = h(1). The orthogonal projection of the derivative h of h onto S m coincides with the derivative of the projection of h onto S m . Formally, if we denote by Π Sm the operator of orthogonal projection onto S m , Π Sm (h ) = (Π Sm (h)) .

In this framework, we get a similar result to the one obtained when G was supposed to be known.

Theorem 2. We assume that the regression function f and the density g admit both continuous derivative on [a; b] (respectively [0; 1]). We assume also that f g ≤ L (L > 0) and that f (a) = f (b). We consider the trigonometric models, and suppose that there exists a real-number p > 8/3 such that E |ε 1 | 2+p < ∞, and that for any

m ∈ M n , D m = O(n 1/3 / ln(n)).
Then, the following inequality holds: for all n ≥ n 0 = exp( h 2 ),

E f Ĝ i -f 2 g ≤ min m∈Mn k i f -f G m 2 g + k i φ 2 0 E Y 2 1 D m n + C i ln(n) n , i = 1, 2, (17) 
where f G m is dened by ( 7), k i and k i , (i = 1, 2) are numerical constants, and C i (i = 1, 2) are constants independent on n and m, but depending on

ϕ (l) 2 (l = 1, 3), h , h , and E[Y 2 1 ].
The theorem proves that warped-bases selected estimators have exactly the same behaviour as least-squares estimator (see for instance Inequality [START_REF] Donoho | Wavelet shrinkage: asymptopia? With discussion and a reply by the authors[END_REF], in Baraud [START_REF] Baraud | Model selection for regression on a random design[END_REF]): both estimators realize the squared bias/variance compromise. Consequently, a model selection strategy with warpedbases has the advantage of providing estimators easier to compute than least-squares estimators and with analogous theoretical properties. Notice that the upper bound we provide for the risk holds for any n ≥ n 0 so it can still be considered as a non-asymptotic result. This is an advantage compared to other procedures based on the thresholding of the estimated coecients in wavelet bases, even if the bases are also warped (see for example Kerkyacharian and Picard [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF]).

3.2.2. Rate of convergence for the risk. As a consequence of the choice of trigonometric models, it is natural to consider spaces of periodic functions, that is Sobolev spaces. Following Tsybakov [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF], we dene rst, for α a positive integer and L a positive number, the space W α 2 (L) of real-valued functions h on the interval [0; 1] such that h (α-1) is absolutely continuous and

h (α) 2 = 1 0 h (α) (x) 2 dx ≤ L 2 .
Then, we say that a function h belongs to the space W 2,α per (L) if it belongs to W α 2 (L) and

∀j = 0, 1, . . . , α -1, h (j) (0) = h (j) (1).
This denition can be extended to positive real-number α (see [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF] for details). The standard rate of convergence is then achieved if smoothness properties are supposed for h.

In fact, the approximation error orders can also be bounded in the case of Sobolev spaces. If h belongs to the space W 2,α per (L) for α ≥ 1 and L > 0, and if we denote by h m its orthogonal projection (for the usal sclar product of L 2 ([0; 1])) on the trigonometric model S m , then Tsybakov [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF] (see Lemma A.3 [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF]) proves the following inequality:

h -h m 2 ≤ L 2 π 2α D -2α m .
Consequently, we state the following result, which is similar to Corollary 1:

Corollary 2. We suppose that the function

h = f • G -1 belongs to the Sobolev space W 2,α per (L),
for some xed α ≥ 1 and L > 0. Then, under the assumptions of Theorem 2,

E f Ĝ i -f 2 g ≤ C(L, α)n -2α 2α+1 , i = 1, 2,
where C(L, α) is a constant which depends on L and α.

Most of the comments following Corollary 1 also apply to this result. The order of the rate, n (-2α)/(2α+1) in place of the rate (n/ ln(n)) (-2α)/(2α+1) achieved by the estimator f @ in Kerkyacharian and Picard [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] is a consequence of model selection strategy, by penalization or GL method. But the assumptions for their result are dierent of ours. We decide to concentrate on the trigonometric models (instead of the wavelet setting of [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF]). Consequently, the estimators are adaptive for Sobolev regularities. This, and the fact that the index α of regularity has to be larger than 1 can seem to be a little more restrictive than the assumptions of Theorem 2 in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF]: h is there assumed to belong to a Besov space with index α ≥ 1/2, and to a Hölder space (with regularity 1/2), and these spaces are larger than the one we use. But contrary to them, and in addition to the convergence rate improvement (no additional ln(n)), our methods allow general noise and not only Gaussian noise. Moreover, trigonometric basis enables us to consider other regularities, and to get faster rates. For example, if h belongs to an analytic space, its Fourier's coecients decrease with exponential rate: h -h m ≤ C exp(-D m ), for some > 0 and C a positive constant, leading to the rate ln(n)/n. Finally, let us notice that assumptions can probably be stated with regularity conditions directly on f instead of h, by dening "weighted" spaces. But, as our main contribution is to provide non asymptotic results which do not require the control of the bias term (and thus, the regularity assumption), this construction is be beyond the scope of the paper. 4. Simulations 4.1. Implementation. The simulation study is mainly conducted in order to compare from practical point of view the penalized estimator f Ĝ 1 and the one dened with the GL method f Ĝ 2 , when using the trigonometric basis (ϕ j ) j . This comparison is new and beyond the classical regression setting: the study would be of interest in many other contexts. We also compute the adaptive least-squares estimator, denoted by f LS , to investigate the dierence between classical orthonormal bases and warped-bases. Let us recall briey its denition. First, we set, for t ∈ L 2 ([0; 1]), and m ∈ M n : (18)

γ LS n (t) = 1 n n i=1 (Y i -t(X i )) 2 and pen LS (m) = Cσ 2 D m n ,
with C a numerical constant. We set for each m, f LS m = arg min t∈Sm γ LS n (t), and select mLS = arg min t∈Sm γ LS n (t) + pen LS (m). Then we have f LS mLS = D mLS j=1 âLS j ϕ j , where âLS = (â LS j ) j is computed by inverting the matrix

M m = (M m,j,k ) j,k∈{1,...,D m} , that is âLS = M -1 m b, with (19) 
M m,j,k = 1 n n i=1 ϕ j (X i )ϕ k (X i ), and b = (b j ) j∈{1,...,Dm} , b j = 1 n n i=1 Y i ϕ j (X i ).
We refer to Baraud [4] for theory and to Comte and Rozenholc [START_REF] Comte | A new algorithm for xed design regression and denoising[END_REF] for practical computation.

We have thus three estimators to compute, from data (X i , Y i ) i∈{1,...,n} . We rst notice that their common expression is:

f m = D m j=1 âj ψ j ,
with, for f 13) and ψ j = ϕ j • Ĝn , and for f LS , âj = âLS j and ψ j = ϕ j . In the rst case, we generate another sample (X -i ) i∈{1,...,n} , to nd the empirical c.d.f Ĝn , and to compute the coecients â Ĝ j . Concretely, choosing m max = 8, we use the following steps:

• For each m ∈ {1, . . . , m max }, compute crit(m), for the three following denitions:

• crit(m) = γ n ( ĥ Ĝ m , Ĝn ) + pen(m) in the warped-bases case, with penalization. Notice that

γ n ( ĥ Ĝ m ) = -Dm j=1 (â Ĝ j ) 2 . • crit(m) = A(m) + 2V (m)
in the warped-bases case, with the GL method. Notice that

A(m) = max m >m { D m j=Dm+1 (a Ĝ j ) 2 -V (m )} + . • crit(m) = γ LS n ( f LS m ) + pen LS (m)
in the least-squares case. The least-squares contrast is computed like the warped-bases criterion. The penalty dened by ( 18) is implemented, with σ 2 replaced by the unbiased estimator,

σ2 = 1 n -(2mm + 1) n i=1 (Y i -f LS mm (X i )) 2 , with mm = [ √ n].
• In the three cases, select m (that is m = m(1) , m(2) , mLS ) such that crit(m) is minimum.

• Compute then the three estimators fl =

D m(l) j=1 â Ĝ j (ϕ j • Ĝn ), l = 1, 2 and f LS = D mLS j=1 âLS j ϕ j , at a sequence of equispaced points in [a; b].
Remark: To implement crit(m), the numerical constants c 1 (of pen), C (of pen LS ), and c 2 (of V ) have to be calibrated. The constant C is chosen equal to 2.5, which is a value often found in the literature (constants of the C p criterion of Mallows, for example). We decide to concentrate on the data-driven calibration of the constants involved in the denition of the new estimators, that is c 1 and c 2 . The constant c 1 is useful for the penalized warped bases estimator f Ĝ 1 : it can thus be carried out for each simulated sample using a method inspired by the slope heuristic (developed rst by Birgé and Massart [START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF]). But this data-driven solution can not be used for the recent method of GL, leading to the estimator f Ĝ 2 . So, to compare in the same way the two estimators, we choose to experiment it with xed constants, previously stated. The constant c 1 is adjusted prior to the comparison, using however the slope heuristic: we use the graphical interface CAPUSHE developed by Baudry et al. [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF], to conduct an experimentation over 100 samples (see our examples, Section 4.2), with the so-called "dimension-jump" method. We choose then the largest constant over all attempts proposed by the software, that is c 1 = 4 (recall that in penality calibration, it is more secure to overpenalize). For the constant of the GL method, we looked at the quadratic risk with respect to its value c 2 , and chose one of the rst values leading to reasonable risk and complexity of the selected model, c 2 = 0.5 (for the computation of the risk, see Section 4.2 below). Notice nally that the specic factor 2 involved in the denition of m (2) (see denition [START_REF] Donoho | Wavelet shrinkage: asymptopia? With discussion and a reply by the authors[END_REF]) could be also adjusted: it plays a technical role in the proof but might have been replaced by any other constant larger than 1.

4.2.

Examples. The procedure is applied for dierent regression functions, design and noise. To concentrate on the comparison of the three methods, we decide to present the estimation results for two very smooth functions, on the interval [0; 1]: a polynomial function, f 1 : x → x(x -1)(x -0.6), and an exponential function, f 2 : x → -exp(-200(x -0.1) 2 ) -exp(-200(x -0.9) 2 ). The sensibility of the method to the underlying design is tested with the following densities, all supported by [0; 1]. In the denitions, c is a constant adjusted to obtain density function in each case:

-U [0;1] , the classical uniform distribution, -DU [0;1] , probability distribution with density x → cx1 [0;1] , -E c (1), a truncated exponential distribution with mean 1 that is with density x → ce -x 1 [0;1] , -N c (0.5, 0.01), a truncated Gaussian distribution with density x → c exp(-(x-0.5) 2 /0.02)1 [0;1] (x), -N BM t , a truncated bimodal Gaussian distribution, with density x → c(exp(-200(x-0.05

) 2 )+ exp(-200(x -0.95) 2 ))1 [0;1] (x),
-CM, a distribution with piecewise constant density 2.4851 [0;0.2] + 0.011 ]0.1;0.8] + 2.4851 ]0.8;1] , Finally, the variables ε i are generated following either a Gaussian distribution, or a Laplace distribution, with mean 0. They are denoted respectively by N (0, v) (v the variance) and by L(0, b) (b a positive real such that the Laplace density is x → 1/(2b) exp(-|x|/b)). The parameters b and v are adjusted for each of the functions f 1 and f 2 : it is natural to choose cases in which there is a little more signal than noise. Precisely, the values are chosen such that the ratio of the variance of the signal (Var(f(X 1 ))) over the variance of the noise (Var(ε 1 )) belongs to [1.6; 2.4], whatever the design distribution. This ratio, denoted by "s2n", will be precised in Tables 1 and2.

We compare rst the visual quality of the reconstruction, for the three estimators. Figure 1 shows beams of estimated functions versus true functions in four cases. Precisely, for each gure, we plot 20 estimators of each kind, built from i.i.d samples of data of size n = 500. The three rst plots show that the results are quite good for all the estimators. The noise distribution does not seem to aect signicantly the results. Notice that the computation of the estimators f LS requires much more time than the others. It is due to the computation of the inverse of the matrix M m, while the warped-bases methods are simpler. So one can easily use warped bases for estimation problems with large data samples sizes (see for example domains as uorescence, physics, neuronal models...). The last plot of Figure 1 shows that the warped-bases estimators behave still correctly if the design density is very inhomogeneous (we obtain the same type of plots when the X i is distributed with CM). In fact, if we implement the least-squares method without taking additionnal precautions and without numerical approximation for the computation of M -1 m , the estimator can not adapt to a design density which nearly vanishes on a long interval. This highlights the interest for warping the bases: this method seems to be very stable, whatever the design distribution, and even if it is very inhomogeneous: it tends to detect better the hole which can occur in the design density. Let us notice that specic methods exist, taking into account the inhomogeneity of the data to obtain upper bounds for the quadratic pointwise risk, see for example Gaïas [START_REF] Gaïas | On pointwise adaptive curve estimation based on inhomogeneous data[END_REF]. The beams of estimators seem to enhance the equivalence we found in the theory between the GL method and the penalization method. For more precise results concerning these selection rules, we compare L 2 risk, in the dierent models (the two functions estimated, the possible design and noise). The ISE (Integrated Squared Error) for one estimator is computed as follows:

f is ISE = b a (f (x) -f (x)) 2 dx. It X ∼ U [0;1] , ε ∼ N (0, 0.01) X ∼ U [0;1] , ε ∼ L(0, √ 2/20) X ∼ E t (1), ε ∼ N (0, 0.01) X ∼ N BM t , ε ∼ N (0, 0.01)
ISE = b -a K K k=0 f a + k b -a K -f a + k b -a K 2 ,
where K is an integer (we choose K = 1000). The mean ISE (MISE) is the mean of those values over N = 100 independent simulated samples. The risks (multiplied by 1000) displayed in Table 1 (estimation of f 1 ) and 2 (estimation of f 2 ) for the estimators f Ĝ 1 (WB1) and f Ĝ 2 (WB2) are computed for dierent sample sizes going from n = 100 to 2000. Notice rst that the dierence of order of size between the values of the two tabulars is explained by the dierence of amplitude between the two functions (f 1 takes its values in the interval [-0.04; 0.07] and f 2 in [-1; 0]). As expected, the values of MISE get smaller when the sample size increases, and they are similar for both estimators, in most cases. The GL method gives slightly smaller risks in 59% of the cases (in bold-blue in the tables). But it seems that the values are better than those of the penalized estimator in 76% of the cases for the large sample sizes (n = 500 to 2000). We have to put this result into perspective: larger classes of functions and models would have to be studied to conrm this and we keep in mind that the methods are equivalent from the theoretical point of view.

Proofs of the main results

5.1.

A key result. One of the main argument of the proof of Theorem 1 and Theorem 2 is the control of the centered empirical process dened by (20)

ν n (t) = 1 n n i=1 Y i (t • G) (X i ) -(t • G) , f g , t ∈ L 2 ([0; 1]),
on the unit sphere

S(m) = {t ∈ S m , t = 1}
of a xed model S m . Let us rst state the following result, which we use for both theorems.

Proposition 3. Under the assumptions of Theorem 1, with p(m

) = 6(1 + 2δ)φ 2 0 E[Y 2 1 ] D m n ,
(δ > 0) for any m ∈ M n , there exists a constant C depending on 

φ 2 0 , f ∞ , E[f 2 (X 1 )], σ
(ν n (t)) 2 -p(m ) +   ≤ C n .

Proof of Proposition 3

We split the process ν n into three parts, writing ν n = ν (1) n + ν

(2,1) n + ν (2,2) n
, with

ν (1) n (t) = 1 n n i=1 f (X i ) (t • G) (X i ) -(t • G) , f g , ν (2,1) n (t) = 1 n n i=1 ε i 1 |ε i |≤κn (t • G) (X i ) -E ε i 1 |ε i |≤κn (t • G) (X i ) , ν (2,2) n (t) = 1 n n i=1 ε i 1 |ε i |>κn (t • G) (X i ) -E ε i 1 |ε i |>κn (t • G) (X i ) ,
with c a constant depending on the collection of models and where we dene ( 21)

κ n = c √ n ln(n)
.

We obtain,

sup t∈S(m ) ν n (t) 2 -p(m ) + ≤ 3 sup t∈S(m ) ν (1) n (t) 2 - p 1 (m ) 3 + (22) 
+ sup 

t∈S(m ) ν (2,1) n (t) 2 - p 2 (m ) 3 + + sup t∈S(m ) ν (2,
(r) = 1 n n i=1 r(ξ i ) -E[r(ξ i )],
for r belonging to a countable class R of real-valued measurable functions. Then, for ε > 0, Inequality ( 23) is a classical consequence of Talagrand's inequality given in Klein and Rio [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF], see for example Lemma 5 (page 812) in Lacour [START_REF] Lacour | Adaptive estimation of the transition density of a particular hidden Markov chain[END_REF]. Standard density arguments allow to apply it to the unit sphere of a nite dimensional linear space. We apply Inequality [START_REF] Hardle | Local polynomial estimators of the volatility function in nonparametric autoregression[END_REF] to the rst term of equation [START_REF] Golubev | Adaptive spline estimates in a nonparametric regression model[END_REF], with function r replaced by r t :

E sup r∈R (ν n (r)) 2 -2(1 + 2ε)H 2 + ≤ 4 K 1 v n exp -K 1 ε nH 2 v ( 23 
)
+ 49M 2 1 K 1 C 2 (ε)n 2 exp - √ 2K 1 C(ε) √ ε 7 nH M 1 , with C(ε) = ( √ 1 + ε -1) ∧ 1, K 1 = 1/
x → f (x)(t • G)(x), t ∈ R = S m
, and ξ i = X i . Let us rst compute the constants M (1) 1 , H (1) , and v (1) . We observe rst that r t ∞ ≤ f ∞ t ∞ and we use assumption

[M 3 ] to get r t ∞ ≤ φ 0 √ D m t f ∞ = φ 0 √ D m f ∞ := M (1)
1 . Then, noting that t ∈ S(m ) can be written t = D m j=1 b j ϕ j with j b 2 j = 1, we apply Cauchy-Schwarz's inequality to get sup t∈S(m ) ν (1) 

n (t) 2 ≤ D m j=1 ν (1) n (ϕ j ) 2 . Since assumptions [M 2 ] and [M 3 ] hold, we obtain E sup t∈S(m ) ν (1) n (t) 2 ≤ D m j=1 1 n Var(f(X 1 ) (ϕ j • G) (X 1 )) ≤ φ 2 0 E f 2 (X 1 ) D m n := H (1) 2 .
Finally, Var(r t (X 1 )) (1) . Replacing the quantities M (1) 1 , H (1) and v (1) by the values derived above, Inequality [START_REF] Hardle | Local polynomial estimators of the volatility function in nonparametric autoregression[END_REF] becomes

≤ E[f 2 t (X 1 )] ≤ f 2 ∞ := v
m ∈Mn E sup t∈S(m ) ν (1) n (t) 2 - p 1 (m ) 3 + ≤ 4 K 1 f ∞    1 n m ∈Mn exp -kD m + 49φ 2 0 f ∞ K 1 C 2 (δ) 1 n 2 m ∈Mn D m exp - k√ n    ,
with k and k two constants (independent of m and n) and p 1 (m ) = 3 × 2(1 + 2δ) H (1) 2 . Therefore, using that the cardinality of M n is bounded by n and also that D m ≤ n , the following upper bound holds, for

C 1 a constant, (24) 
m ∈Mn

E sup t∈S(m ) ν (1) n (t) 2 - p 1 (m ) 3 + ≤ C 1 n .
Similarly, we apply Inequality [START_REF] Hardle | Local polynomial estimators of the volatility function in nonparametric autoregression[END_REF] to the second process ν (2,1) n . We replace r by r t : (ε, x) → ε1 ε≤κn t • G(x), and ξ i = (ε i , X i ). Thus we compute

M (2) 1 = κ n φ 0 D m , H (2) = φ 0 σ D m n , v (2) = σ 2 . With p 2 (m ) = 3 × 2(1 + 2δ) H (2) 2 , we get (25) 
E sup t∈S(m ) ν (2,1) n (t) 2 - p 2 (m ) 3 + ≤ C 2 n ,
for C 2 a constant. Finally, we look for an upper bound for the process ν (2,2) n . We can not apply the concentration inequality, because it is not bounded. However, following the same line as in computations above, we write

(26) E sup t∈S(m ) ν (2,2) n (t) 2 ≤ D m j=1 E ν (2,2) n (ϕ j ) 2 ≤ 1 n E |ε 1 | 2+p 1 |ε 1 |>κn φ 2 0 κ -p n D m n ≤ C 3 n ,
since κ n is dened by [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] and p > 4.

We conclude the proof of Proposition 3 by gathering in the equation ( 22) the three inequalities ( 24), [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF], and (26).

2

We also set the following technical lemma, which will be useful several times, with ν an empirical process. Lemma 5. Let ν : L 2 ([0; 1]) → R be a linear functional. Let also m be an index of the collection

M n . Then, sup t∈S(m) ν 2 (t) = Dm j=1 ν 2 (ϕ j ).
Proof of Lemma 5.

If t belongs to S(m), it can be written t = Dm j=1 b j ϕ j , with Dm j=1 b 2 j = 1. Thus, by the linearity of ν and the Cauchy-Schwarz Inequality,

ν 2 (t) =   Dm j=1 b j ν(ϕ j )   2 ≤ Dm j=1 ν 2 (ϕ j ).
This leads to sup t∈S(m) ν 2 (t) ≤ Dm j=1 ν 2 (ϕ j ). The equality is obtained by choosing

t = Dm j=1 b j ϕ j ∈ L 2 ([0; 1]), with b j = ν(ϕ j )/( Dm k=1 ν 2 (ϕ k )). 2 
5.2. Proof of Theorem 1. We only study the estimator selected with the new GL method, that is f G 2 . However, the following proof gives all the ingredients to deal with the other estimator, f G 1 (see a typical sketch in Brunel et al. [START_REF] Brunel | Nonparametric density estimation in presence of bias and censoring[END_REF], proof of Theorem 3.1 page 185). Moreover, one can refer to [START_REF] Chagny | Régression: bases déformées et sélection de modèles par pénalisation et méthode de Lepski[END_REF] to get all the details. 5.2.1. Main part of the proof. In all the proofs, the letter C denotes a nonnegative real that may change from line to line. For the sake of simplicity, we denote in this section by

V = V G , A = A G , m = m(2),G
. Let S m be a xed model in the collection indexed by M n . We decompose the loss of the estimator as follows:

f G 2 -f 2 g = ĥG m -h 2 , ≤ 3 ĥG m -ĥG m∧ m 2 + 3 ĥG m∧ m -ĥG m 2 + 3 ĥG m -h 2 .
By denition of A and m,

f G 2 -f 2 g ≤ 3 (A(m) + V ( m)) + 3 (A( m) + V (m)) + 3 ĥG m -h 2 , ≤ 6 (A(m) + V (m)) + 3 ĥG m -h 2 .
We have already bounded the risk of the estimator on a xed model (see Section 2.2.2, Inequalities ( 6) and ( 8)

): E[ ĥG m -h 2 ] ≤ φ 2 0 E[Y 2 1 ]D m /n + h m -h 2 . Therefore we get E f G 2 -f 2 g ≤ 6E [A(m)] + 6V (m) + 3φ 2 0 E Y 2 1 D m n + 3 h m -h 2 .
Next, we have to control the term A(m): we use the following lemma, proved just below, to conclude.

Lemma 6. Under the assumptions of Theorem 1, there exists a constant C > 0 depending on

φ 2 0 , f ∞ , E[f 2 (X 1 )], σ 2 , E[|ε 1 | p ] such that, for each index m ∈ M n , E [A(m)] ≤ C n + 12 h m -h 2 . 2 5.2.2. Proof of Lemma 6. For each index m ∈ M n , we decompose, ĥG m -ĥG m∧m 2 ≤ 3 ĥG m -h m 2 + 3 h m -h m∧m 2 + 3 h m∧m -ĥG m∧m 2 .
Thus we have

A(m) ≤ 3 max m ∈Mn ĥG m -h m 2 - V (m ) 6 + + 3 max m ∈Mn h m∧m -ĥG m∧m 2 - V (m ) 6 + +3 max m ∈Mn h m -h m∧m 2 , := 3 (T a + T m b + T m c ) , (27) 
and study the terms of the above decomposition.

Upper-bound for T a

We simplify roughly the problem by writing rst

E [T a ] ≤ m ∈Mn E ĥG m -h m 2 - V (m ) 6 + .
Let us notice that ( 28)

ĥG m -h m 2 = D m j=1 (â G j -a j ) 2 = D m j=1 ν 2 n (ϕ j ),
with ν n the empirical process dened by [START_REF] Gaïas | On pointwise adaptive curve estimation based on inhomogeneous data[END_REF]. By Lemma 5, this last quantity is equal to

sup t∈S(m ) ν 2 n (t). Consequently, E[T a ] ≤ m ∈Mn E[{sup t∈S(m ) ν 2 n (t) -V (m ) 6 } + ].
We apply then Proposition 3: the latter is bounded by C/n, for the choice V (m ) = 6 × p(m ), which means the choice of c 2 = 36(1 + 2δ) in the denition [START_REF] Brunel | Penalized contrast estimation of density and hazard rate with censored data[END_REF].

Upper-bound for T m b

To study this term, we write, distinguish whether m ≤ m or m > m, 

T m b = max   max m ∈Mn m ≤m h m -ĥG m 2 - V (m ) 6 + , max m ∈Mn m >m h m -ĥG m 2 - V (m ) 6 +   , ≤ max T a , h m -ĥG m 2 - V (m) 6 + ≤ T a + h m -ĥG m 2 - V (m) 6 + , using -V (m ) ≤ -V ( 

Upper-bound for T m c

This term is a bias term. We notice that

T m c = max m ∈Mn m≤m h m -h m 2 ≤ 2 max m ∈Mn m≤m h m -h 2 + 2 h -h m 2 .
But assuming m ≤ m , we have S m ⊂ S m , thus, the orthogonal projections h m and h m of h onto S m and S m satisfy h m -h 2 ≤ h m -h 2 . So we have T m c ≤ 4 h m -h 2 , which conclude the proof. 

Ûn : u → 1 n n i=1 1 U -i ≤u .
The following equality holds for any coecient â Ĝ j of our estimator (see equation ( 5)):

(30)

E â Ĝ j |(X -l ) l = 1 0 f • G -1 (u) ϕ j • Ûn (u)du.
Moreover, we will use several inequalities to control the deviations of the empirical c.d.f. Ûn or Ĝn . Recall that the random variable Ĝn -G ∞ has the same probability distribution as the norm Ûn -id ∞ where we denote by Ûn -id ∞ = sup u∈R | Ûn (u) -u|. The rst inequality is the one of Dvoretzky-Kiefer-Wolfowitz (see Dvoretzky et al. [START_REF] Dvoretzky | Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator[END_REF]):

(31)

P Ûn -id ∞ ≥ λ ≤ K exp -2nλ 2 ,
for any λ > 0 and a constant K.

By integration, we deduce the following bounds:

• for any integer p > 0, there exists a constant C p > 0 such that (32)

E Ûn -id p ∞ ≤ C p n p/2 ,
• for any κ > 0, for any integer p ≥ 2, there exists a constant C such that (33)

E Ûn -id p ∞ -κ ln p/2 (n) n p/2 + ≤ Cn -c(p,κ) , with c(p, κ) = 2 2-p p κ 2/p . Moreover, (34) 
E Ûn -id 2 ∞ -κ ln(n) n 2 ≤ Cn -2-2κ .
5.3.2. Preliminary lemmas. As we have done for Theorem 1, we prove the result for the most original estimator, that is f2 (the proof for the other estimator can be found in [START_REF] Chagny | Régression: bases déformées et sélection de modèles par pénalisation et méthode de Lepski[END_REF]). The proof follows almost the same line as the one of Theorem 1. However, further technicalities are required, consequence of the replacement of G by Ĝn . Let us introduce some useful notations. We denote by C a numerical constant, which may vary from line to line. In this section, we denote also the estimator by 2) in m), and coherently:

f Ĝ, Ĝ m = ĥ Ĝ m • Ĝn (with shortened m(
f Ĝ,G m = ĥ Ĝ m • G,
which is an intermediate between the two estimators

f Ĝ, Ĝ m and f G,G
m . We will also use this notation for xed index m ∈ M n . To bound the risk of the target estimator, the following quantities are useful, for any index m:

(35)

T m 0 = f -f G m 2 g + f G m -f G,G m 2 g , T m 1 = f G,G m - f Ĝ,G m -E f G,G m - f Ĝ,G m |(X -l ) l 2 g , T m 2 = f Ĝ,G m - f Ĝ, Ĝ m -E f Ĝ,G m - f Ĝ, Ĝ m |(X -l ) l 2 g , T m 3 = E f G,G m - f Ĝ,G m |(X -l ) l 2 g , T m 4 = E f Ĝ,G m - f Ĝ, Ĝ m |(X -l ) l 2 g . They are such that E[ f Ĝ, Ĝ m -f 2 g ] ≤ 4 l=0 T m l .
Let us remark that T m 0 is the bias-variance decomposition for the risk of an estimator f G,G m (on the xed model S m ). The bound for its expectation is given by Inequalities ( 6) and [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF]. The lemmas below give bounds for the other terms. Lemma 7. Assuming that the models are trigonometric, there exists a constant C > 0 (depending on ϕ 2 ∞ and E[Y 2 1 ]) such that

E max m ∈Mn T m 1 ≤ C D 3 mmax n 2 If D mmax = O(n 1/2 ) in particular, E max m ∈Mn T m 1 ≤ C D mmax n .
Lemma 8. Assuming that the models are trigonometric, that D mmax = O(n 1/3 ) and that there exists a real-number p > 8/3 such that

E |ε 1 | 2+p < ∞, there exists a constant C > 0 (depending on ϕ 2 ∞ and E[Y 2 1 ]) such that E max m ∈Mn T m 2 -V 2 (m ) + ≤ C ln(n) n , with V 2 (m ) = κκ D 4 m ln 2 (n)/n 2 , and κ = 7/3, κ = 96φ 2 0 E[Y 2 1 ] ϕ 2 2 ∞ . Assuming that D m = O((n/ ln(n) 2 ) 1/3 ), we get V 2 (m ) ≤ κκ D m n := V bis 2 (m ).
The result of Lemma 8 holds with V bis 2 in place of V 2 .

Lemma 9. Assuming that the models are trigonometric, that D mmax = O(n 1/3 / ln(n)), and that

h ∈ C 1 ([0; 1]), there exists a constant C > 0 (depending on ϕ 2 ∞ , ϕ (3) 2 ∞ , h , h , E[Y 2 1 ])
such that, for all m ∈ M n ,

E[T m 3 ] ≤ C D m n + D 4 m n 2 + D 7 m n 3 .
Moreover, the following inequality holds, for p m = m or p m = m ∧ m :

E max m ∈Mn T p m ,b 3 -V 3 (m ) + ≤ C n .
with V 3 (m ) = k 3 D m /n, and k 3 a numerical constant depending only (and linearly) on

E[Y 2 1 ].
In particular, if

D m = O(n 1/3 ), the rst inequality leads to E[T m 3 ] ≤ CD m /n.
Lemma 10. Assuming that the models are trigonometric, that D mmax = O(n 1/3 / ln(n)), and Notice that it is also possible to obtain the result for any n ∈ N. But the price to pay is a penalty V 4 depending on h 2 . 5.3.3. Main part of the proof. Let S m be a xed model in the collection indexed by M n . To recover the framework of the proof of Theorem 1, we begin with the decomposition

that h ∈ W 2,1 per (L) (L > 0), there exists a constant C > 0 (depending on ϕ 2 ∞ , ϕ (3) 2 ∞ , h , h , E[Y 2 1 ]) such that, for all m ∈ M n , n ≥ n 0 = exp h 2 , E max m ∈Mn T m 4 -V 4 (m ) + ≤ C ln(n) n , with V 4 (m ) = k 4 D m /n,
f Ĝ, Ĝ m -f 2 g ≤ 3 f Ĝ, Ĝ m - f Ĝ,G m -E f Ĝ, Ĝ m - f Ĝ,G m |(X -l ) l 2 g +3 E f Ĝ, Ĝ m - f Ĝ,G m |(X -l ) l 2 g + 3 f Ĝ,G m -f 2 g , = 3T m 2 + 3T m 4 + 3 ĥ Ĝ m -h 2 .
Thus, we can introduce A and V , in the last term, in a similar way as previously:

ĥ Ĝ m -h 2 ≤ 3 ĥ Ĝ m - ĥ Ĝ m∧ m 2 + 3 ĥ Ĝ m∧ m - ĥ Ĝ m 2 + 3 ĥ Ĝ m -h 2 , ≤ 3 (A(m) + V ( m)) + 3 (A ( m) + V ( m)) + 3 ĥ Ĝ m -h 2 , = 3 (A(m) + 2V (m)) + 3 (A ( m) + 2V ( m)) + 3 ĥ Ĝ m -h 2 -3V ( m) -3V (m) , ≤ 6 (A(m) + 2V (m)) -2V ( m) + 3 ĥ Ĝ m -h 2 ,
using the denition of m. The last term of this decomposition is bounded by:

ĥ Ĝ m -h 2 = f Ĝ,G m -f 2 g ≤ 3T m 1 + 3T m 3 + 3T m 0 ,
where T m l (l = 0, 1, 3) are dened by (35). As a result, we get

f Ĝ, Ĝ m -f 2 g ≤ 3T m 2 + 3T m 4 -3 × 2V ( m) + 3 × 6 (A(m) + V (m)) +3 × 3 × (3T m 1 + 3T m 3 + 3T m 0 ) .
Therefore, it follows from Inequalities ( 6) and ( 8) that

E f Ĝ, Ĝ m -f 2 g ≤ 18 (E [A(m)] + V (m)) + 3E T m 2 -V ( m) + + 3E T m 4 -V ( m) + +E [T m 1 ] + E [T m 3 ] + 27φ 2 0 E Y 2 1 D m n + 27 f -f G m 2 g .
A bound for A(m) is given by the following lemma, whose proof is deferred to Section 5.3.4.

Lemma 11. Under the assumptions of Theorem 1, there exists a constant C > 0 depending on

ϕ (l) 2 (l = 1, 3), h , h , and E[Y 2 1 ], such that, for each index m ∈ M n , E [A(m)] ≤ 12E max m ∈Mn T m 3 - V (m ) 48 + + 12E max m ∈Mn T m∧m 3 - V (m ) 48 + +12E max m ∈Mn T m 1 + 12E max m ∈Mn T m∧m 1 + 12 f G m -f 2 g + C n .
Then we get

E f Ĝ, Ĝ m -f 2 g ≤ C E max m ∈Mn T m 1 + E max m ∈Mn T m∧m 1 + E [T m 1 ] +E max m ∈Mn T m 3 - V (m ) 48 + + E max m ∈Mn T m∧m 3 - V (m ) 48 + +E [T m 3 ] + E T m 2 -V ( m) + + E T m 4 -V ( m) + +C φ 2 0 E Y 2 1 D m n + f -f G m 2 g + 1 n .
It remains to study the terms T m l , l = 1, . . . , 4. [START_REF] Baraud | Model selection for regression on a random design[END_REF], it is enough to apply Lemmas 7 to 10 to conclude: we have just to choose the constant in the denition of V larger than the ones of V l (l = 2, 3, 4). 

Bounding (T m l -V ( m)) + ≤ max m (T m l -V (m )) + (l = 2,
ĥ Ĝ m - ĥ Ĝ m∧m 2 ≤ 3 ĥ Ĝ m -h m 2 + 3 h m -h m∧m 2 + 3 h m∧m - ĥ Ĝ m∧m 2 .
Relation [START_REF] Nadaraya | On estimating regression[END_REF] still holds for an other empirical process, and by applying Lemma 5, we have, for

p = m or p = m ∧ m h p -ĥ Ĝ p 2 = sup t∈S(p) νn (t) 2 , with, for t ∈ L 2 ([0; 1]), νn (t) = 1 n n i=1 Y i t • Ĝn (X i ) -E [Y i (t • G) (X i )] .
We split νn into νn = ν n + R n , with

R n (t) = 1 n n i=1 Y i t( Ĝn (X i ) -G(X i )).

This yields to ν2

n ≤ 2ν 

R 2 n (t) = sup θ∈R p j θ 2 j =1   Dp j=1 θ j 1 n n i=1 Y i ϕ j ( Ĝn (X i ) -G(X i ))   2 , = sup θ∈R p j θ 2 j =1   Dp j=1 θ j â Ĝ j -âG j   2 = Dp j=1 â Ĝ j -âG j 2 ,
by using the same arguments as in the proof of Lemma and thus, substracting V (m ) and taking expectation, this yields

E [A(m)] ≤ 6E max m ∈Mn sup t∈S(m ) (ν n (t)) 2 - V (m ) 24 + + 6E max m ∈Mn sup t∈S(m∧m ) (ν n (t)) 2 - V (m ) 24 + +12E max m ∈Mn T m 3 - V (m ) 48 + + 12E max m ∈Mn T m∧m 3 - V (m ) 48 + +12E max m ∈Mn T m 1 + 12E max m ∈Mn T m∧m 1 + 3 max m ∈Mn h m -h m∧m 2 .
The last term is denoted by T m c in [START_REF] Lacour | Adaptive estimation of the transition density of a particular hidden Markov chain[END_REF] and proved to be bounded by 4 h m -h 2 (see the proof of Lemma 6). Moreover, applying Proposition 3 yields to

E max m ∈Mn sup t∈S(m ) (ν n (t)) 2 -p(m ) + ≤ C n , E max m ∈Mn sup t∈S(m∧m ) (ν n (t)) 2 -p(m ) + ≤ C n , using -p(m ) ≤ -p(m ∧ m ) (remember that p(m ) = Cφ 2 0 E Y 2 1 D m /n).
By gathering the last bounds, and noting that the constant c v (in the denition of V (m )) can be chosen larger than the one of p(m ), we obtain the result of Lemma 11. 35)). Recall that m max is the index of the largest model in the collection. Notice that D mmax ≥ m max , since we work with the trigonometric model. Recall also that we denote by a j the Fourier coecients of the function h, that is, h m = Dm j=1 a j ϕ j , where h m is the orthogonal projection on the space S m , m ∈ M n . The sketch of all the proof can be described by the following cases:

(A) Some of the terms are less than CD m /n, under the constraint D m ≤ Cn 1/3 / ln(n), and so we do not need to center them. For example, they involve expectations of form

E[ Dm j=1 (ϕ j (G(X 1 )) -ϕ j ( Ĝn (X 1 ))) 2 ]
. By using a Taylor formula, we come down to terms of form Dm j=1 (ϕ

(k) j ) 2 E[ Ûn -id 2k
∞ ] (k an integer), and bound them with Inequality [START_REF] Wegkamp | Model selection in nonparametric regression[END_REF]. This is the case for T m 1 (Lemma 7), T m 3 , rst inequality (rst part of Lemma 9), and for some terms of the decomposition of T m 4 (see proof of Lemma 10). (B) The other terms have to be centered to be negligible. There are then two possibilities:

(B 1 ) The rst one is to make emerge the supremum of an empirical process (with Lemma 5) and the to use the Talagrand Inequality [START_REF] Hardle | Local polynomial estimators of the volatility function in nonparametric autoregression[END_REF]. This is the case for a part of T m 2 and T m 3 (Lemmas 8 and 9, second inequality). (B 2 ) The second is to bound these terms by quantity of form C(D m ) Ûn -id k ∞ (k an integer, C(D m ) a constant depending on D m ), and to use Inequality (33) or (34).This is the case for the other parts of T m 2 and T m 3 (Lemmas 8 and 9, second inequality). For sake of conciseness, we do not detail all of the proofs, especially the ones which follow a line already described. However, the lector can nd all the details in [START_REF] Chagny | Régression: bases déformées et sélection de modèles par pénalisation et méthode de Lepski[END_REF].

• Proof of Lemma 7. Let us note that we can write

T m 1 = D m j=1 âG j - â Ĝ j -E[â G j - â Ĝ j |(X -l ) l ] (ϕ j • G) 2 g .
As the functions ϕ j are orthonormal, it becomes

T m 1 = D m j=1 âG j - â Ĝ j -E âG j - â Ĝ j |(X -l ) l 2 .
This shows that T m

1 ≤ T mmax 1 and E[max m T m 1 ] ≤ E[T mmax 1
]. Thus it is sucient to bound

E[T mmax 1 ]. Now, E[T mmax 1 |(X -l ) l ] = Dm max j=1 Var(â G j - â Ĝ j |(X -l ) l )
, where Var(.|(X -l ) l ) is the conditional variance with respect to the sample (X -l ) l∈{1,...,n} (we denote by a similar notation the conditional expectation in the sequel). We work out it, for any index j ∈ {1, . . . , D mmax },

Var âG j - â Ĝ j |(X -l ) l = 1 n Var Y 1 ϕ j (G(X 1 )) -ϕ j Ĝn (X 1 ) |(X -l ) l , ≤ 1 n E f (X 1 ) 2 ϕ j (G(X 1 )) -ϕ j Ĝn (X 1 ) 2 |(X -l ) l + σ 2 n E ϕ j (G(X 1 )) -ϕ j Ĝn (X 1 ) 2 |(X -l ) l .
We use the mean value theorem:

(ϕ j (G(X 1 )) -ϕ j ( Ĝn (X 1 ))) 2 ≤ ϕ j 2 ∞ G -Ĝn 2 
∞ . This leads to

E [T mmax 1 |(X -l ) l ] ≤ 1 n E f 2 (X 1 ) + σ 2 Dm max j=1 ϕ j 2 ∞ G -Ĝn 2 ∞ , = 1 n E Y 2 1 Dm max j=1 ϕ j 2 ∞ Ûn -id 2 ∞ .
The sum is bounded by D mmax × (D mmax ϕ 2 ∞ ) 2 , and we apply Inequality [START_REF] Wegkamp | Model selection in nonparametric regression[END_REF] 

with p = 2, to conclude E[T mmax 1 ] ≤ C 2 ϕ 2 2 ∞ E[Y 2 1 ]D 3 mmax /n 2 . 2 • Proof of Lemma 8. Begining with E[max m ∈Mn (T m 2 -V 2 (m )) + ] ≤ m ∈Mn E[(T m 2 - V 2 (m )) + ],
we have just to study this quantity for each index m . We write

T m 2 = [a;b] ĥ Ĝ m (G(x)) - ĥ Ĝ m Ĝn (x) -E ĥ Ĝ m (G(x)) - ĥ Ĝ m Ĝn (x) |(X -l ) l 2 g(x)dx, = [0;1]    D m j=1 â Ĝ j -E â Ĝ j |(X -l ) l ϕ j (u) -ϕ j Ûn (u)    2 du,
We use the Cauchy-Schwarz Inequality, and by computations analogous of those of Lemma 7, we get

T m 2 ≤ ϕ 2 2 ∞ D 3 m Ûn -id 2 ∞ D m j=1 â Ĝ j -E â Ĝ j |(X -l ) l 2 .
Thus, we have

E T m 2 -V 2 (m ) + ≤ D 3 m ϕ 2 2 ∞ E     D m j=1 â Ĝ j -E â Ĝ j |(X -l ) l 2 Ûn -id 2 ∞ - κκ ϕ 2 2 ∞ D m n 2 ln 2 (n) + , ≤ T m 2,a + T m 2,b ,
denoting by

T m 2,a = D 3 m ϕ 2 2 ∞ E   D m j=1 â Ĝ j -E â Ĝ j |(X -l ) l 2 Ûn -id 2 ∞ -κ ln(n) n +   , T m 2,b = D 3 m ϕ 2 2 ∞ κ ln(n) n E     D m j=1 â Ĝ j -E â Ĝ j |(X -l ) l 2 - κ ϕ 2 2 ∞ D m n ln(n)   +   .
For the term T m 2,a , we obtain rst

T m 2,a = D 3 m ϕ 2 2 ∞ D m j=1 E â Ĝ j -E â Ĝ j |(X -l ) l 4 1/2 E Ûn -id 2 ∞ -κ ln(n) n 2 1/2
, and bound roughly

D m j=1 E â Ĝ j -E â Ĝ j |(X -l ) l 4 ≤ 16φ 4 0 E Y 4 1 D m .
Gathering this bound with Inequality (33) leads to,

m ∈Mn T m 2,a ≤ C m ∈Mn D 4 m n -1-κ ≤ Cn 4/3-κ ≤ Cn -1
as soon as D m ≤ Cn 1/3 and for κ = 7/3. For the second term T m 2,b , thanks to Lemma 5, we notice rst that

D m j=1 â Ĝ j -E â Ĝ j |(X -l ) l 2 = sup t∈S(m ) ν2 n (t), with, for t ∈ L 2 ([0; 1]), νn (t) = 1 n n i=1 Y i t Ĝn (X i ) -E Y i t Ĝn (X i ) |(X -l ) l ,
a process which is centered conditionally to the sample (X -l ) l . We must now bound its deviations, exactly as we bound the one of the process ν n , in the proof of Proposition 3, but conditionally to the variables X -l . Let us just recall the sketch of the proof: we split νn in three parts, taking into account that Y i = f (X i ) + ε i (1 |ε|≤κn + 1 |ε|>κn ). We get thus three terms: the two main are bounded, and are hence controled with the Talagrand Inequality [START_REF] Hardle | Local polynomial estimators of the volatility function in nonparametric autoregression[END_REF]. We obtain nally,

m ∈Mn T m 2,b ≤ C ln(n) n ,
which completes the proof. 

= Dm j=1 { 1 0 f (G -1 (u))(ϕ j (u)-ϕ j ( Ûn (u)))du} 2 .
We apply Taylor formula with Lagrange form for the remainder rest: there exists a random number depending on j, αj,n,u , such that the following splitting holds:

T m 3 ≤ 3T m 3,1 + 3T m 3,2 + 3T m 3,3 , (36) 
with notations

T m 3,1 = Dm j=1 1 0 h(u) Ûn (u) -u ϕ j (u)du 2 , T m 3,2 = (1/4) Dm j=1 1 0 h(u) Ûn (u) -u 2 ϕ j (u)du 2 , T m 3,3 = (1/6) Dm j=1 1 0 h(u) Ûn (u) -u 3 ϕ (3) j (α j,n,u )du 2 .
Writing the denition of Ûn (u), and noting that u = E[1 U i ≤u ] (i = 1, . . . , n), we get for the rst term

T m 3,1 = Dm j=1 1 n n i=1 A i,j -E[A i,j ] 2 , with A i,j = 1 U i h(u)ϕ j (u)du.
An integration by parts so as to compute A i,j leads to

T m 3,1 ≤ 2T m 3,1,1 + 2T m 3,1,2 , (37) with notations 
(38)

T m 3,1,1 = Dm j=1 1 n n i=1 h(U i )ϕ j (U i ) -E [h(U i )ϕ j (U i )] 2 , T m 3,1,2 = Dm j=1 1 0 h (u) Ûn (u) -u ϕ j (u)du 2 .
The same study as the one done for T m 1 gives

E T m 3,1,1 ≤ 1 n Dm j=1 E (h(U 1 )ϕ j (U 1 )) 2 ≤ 1 n Dm j=1 ϕ 2 j ∞ 1 0 h(u) 2 du, = 1 0 h(u) 2 duφ 2 0 D m n = φ 2 0 E[f (X 1 ) 2 ] D m n ≤ φ 2 0 E[Y 2 1 ] D m n .
Besides, using denition and properties of the orthogonal projection on S m ,

T m 3,1,2 = Dm j=1 h ( Ûn -id), ϕ j 2 = Π Sm (h ( Ûn -id)) 2 ≤ h 2 Ûn -id 2 ∞ .
Concluding with Inequality (32), p = 2, we obtain

E[T m 3,1,2 ] ≤ C 2 h 2 /n. Hence, E T m 3,1 ≤ 2 C 2 h 2 1 n + φ 2 0 E[Y 2 1 ] D m n ≤ C D m n .
Let us deal with T m 3,2 . We notice that for any j ≥ 2, ϕ j = -(πµ j ) 2 ϕ j , with µ j = j for even j, and µ j = j -1 for odd j. Consequently,

E T m 3,2 = (π 4 /4)E   Dm j=1 1 0 h(u) Ûn (u) -u 2 µ 2 j ϕ j (u)du 2   , ≤ (π 4 /4)D 4 m E   Dm j=1 1 0 h(u) Ûn (u) -u 2 ϕ j (u)du 2   , = (π 4 /4)D 4 m E   Dm j=1 h Ûn -id 2 , ϕ j 2   .
Proceeding as in the term 

E T m 3,3 ≤ (1/6) Dm j=1 ϕ (3) j 2 ∞ h 2 E Ûn -id 6 ∞ ≤ C 6 6 ϕ (3) 2 2 ∞ h 2 D 7 m n 3 .
Finally, we gather the three bounds for E[T 3,l ], l = 1, 2, 3, to end the proof of the inequality. 

(p m ) ≤ V 3 (m ). Therefore E[max m ∈Mn (T p m ,b 3 -V 3 (m )) + ] ≤ E[max m ∈Mn (T p m ,b 3 -V 3 (p m )) + ].
In the sequel, we simplify the notations by setting p = p m . As previously, we get T p,b

3 ≤ 6T p 3,1,1 + 6T p 3,1,2 + 3T p 3,2 + 3T p 3,3 . Thus E max m ∈Mn T p,b 3 -V 3 (p) + ≤ E max m ∈Mn 6T p 3,1,1 -V 3 (p)/3 + + E max m ∈Mn 6T p 3,1,2 (39) 
+E max

m ∈Mn 3T p 3,2 -V 3 (p)/3 + +E max m ∈Mn 3T p 3,3 -V 3 (p)/3 + .
The term that we have not centered is directly negligible: its denition (see (38)) proves that

T p 3,1,2 ≤ T mmax 3,1,2 , thus we obtain (40) E max m ∈Mn 6T p 3,1,2 ≤ C n .
It remains to bound the three other terms. Let us distinguish T p 3,1,1 of the two others: Equality (28) and Lemma 5 lead to T p 3,1,1 = sup t∈S(p) (ν (1) n (t)) 2 , for the process dened by ν (1) n

(t) = 1 n n i=1 f (X i ) (t • G) (X i ) -E [f (X i ) (t • G) (X i )] .
Thus we apply Talagrand Inequality [START_REF] Hardle | Local polynomial estimators of the volatility function in nonparametric autoregression[END_REF], as in the proof of Proposition 3. The useful quantities are the following:

M (1) 1 = φ 0 f ∞ D p , H (1) 2 = D p n E f 2 (X 1 ) φ 2 0 , v (1) = f 2 ∞ .
We have again (41)

E max m ∈Mn 6T p 3,1,1 -V 3,1,1 (p) + ≤ C n , with V 3,1,1 (p) = 6 × 2(1 + 2δ)E f 2 (X 1 ) φ 2 0 D p /n. But as V 3,1,1 (p) ≤ 12(1 + 2δ)E Y 2 1 φ 2 0 D p n := V bis 3,1,1 (p),
the result holds with V bis 3,1,1 . For the two other terms, the strategy is the one described in (B 2 ) (beginning of this section). For example, using T p 

+ ≤ Cn × n 4/3 × n -κ 1/2 b 2 -1/2 .
The choice of κ = 50π 4 /3 h 2 leads successively to κ b ≥ 200/9, and to 7/3 -κ b /2 ≤ -1, so that the last upper-bound is O(1/n). If D p ≤ Cn 1/3 / ln(n), we have We show that the two terms which we have not centered are negligible (less than C ln(n)/n) if D mmax = O(n 1/3 ). For the three others we apply the strategy (B 2 ). Let us only detail how T m 4 is split, and the bounds for each T 4,l . First, Var Y 1 ϕ j Ĝn (X 1 ) | (X -l ) l ,

≤ 1 n ϕ j 2 ∞ E f 2 (X 1 ) + σ 2 = 1 n ϕ j 2 ∞ E Y 2 1 ,
we obtain (46) j=1 a j ϕ j (α j,n,u )) 2 du], we bound the Fourier's coecients of the function h. To that end, we introduce the real numbers µ j , for j ∈ {1, . . . , D m }, dened by µ j = j if j is even, µ j = j -1 otherwise. We obtain: The function h belongs to the Sobolev space W 2,1 per (L), because h(0) = h(1), h belongs to C 1 ([0; 1]), and h 2 = f 2 g ≤ L 2 . Thus we use Lemma A.3 (p. 162) from Tsybakov [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF]: the sequence (a j ) j belongs to the ellipsoid Θ(1, L 2 /π 2 ), so

T m 4,1,1 ≤ φ 2 0 E Y 2 1 D m n × D 3 m ϕ 2 2 ∞ Ûn -id 2 
T m 4,2,2 ≤ CE Ûn -id 4 ∞ D 3 m ≤ CE Ûn -id 2 ∞ D 3 mmax ≤ C D 3 mmax n 2 .
Following the same line of computations, we write, 

  j • G) , or fD = D j=1 âj ϕ j • Ĝ .

Ĝ 1 and f Ĝ 2 ,

 2 âj = â Ĝ j dened by equation (
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 112 Figure 1. Plots of 20 estimators f Ĝ 1 (Warped bases 1), f Ĝ 2 (Warped bases 2) and f LS (Least-squares) of function f 1 or f 2 , built from i.i.d. sample in trigonometric bases. Bold line: True function, Thin lines: Estimators.

  6, and sup r∈R r ∞ ≤ M 1 , E sup r∈R |ν n (r)| ≤ H, and sup r∈R Var (r (ξ 1 )) ≤ v.

  m) for m > m. The last computation proves that E[T a ] ≤ C/n and the same bound holds for the second term, as a consequence of Proposition 3. Finally, E[T m b ] ≤ C/n.
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 23 Proof of Theorem 2. 5.3.1. Notations, and properties of the empirical distribution function. Let us introduce some useful tools for the sequel. Denoting by U -i = G(X -i ) the uniform variable associated to X -i , for any i ∈ {1, . . . , n}, we dene the empirical distribution function[START_REF] Ngoc | Regression in random design and Bayesian warped wavelets estimators[END_REF] 

and k 4

 4 a numerical constant depending only (and linearly) on E[Y 2 1 ].

2 5. 3 . 4 .

 234 Proof of Lemma 11. The following proof is close to the proof of Lemma 6. Fix an index m ∈ M n . We split
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 235 Proof of Lemmas 7 to 10. In this section we state upper bounds for T m l , l = 1, . . . , 4 (see (

V 3 , 2 1 D p n := V bis 3 , 2 3 , 3 . 2 ∞ E Y 2 1 3 . 2 • 3 , 4 -V 4 m 4 , 2 , 3 -

 32132332232344423 (p) ≤ 50π 4 /3E Y 2 (p), which can also be used. We do not detail the control for the term T m D p /n. We conclude the proof of Lemma 9 by gathering Inequalities (40), (41), (42), and (43), in the bound (39), and choosing the constant k 3 such thatV 3 ≥ 3V bis 3,1,1 , V 3 ≥ 3V bis 3,2 , and V 3 ≥ 3V bis 3,Proof of Lemma 10. The sketch of the proof is the same as the proof of the second inequality of Lemma 9where the dierent terms are dened below, and thus, E max m ∈Mn T m V 4 (m )/3 + + E max m ∈Mn 2T m 4,2,1 + E max m ∈Mn 2T m 4,2,2 .
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∞, 3 +]and again by the mean value theorem T m 4 , 1 , 2 ≤ T m 3 D 3 m ϕ 2 2 ∞-id 2 ∞. 3 .≤ Ûn -id 2 ∞Π S m (h ) 2 ≤-id 2 ∞ h 2 , 1 0

 341222322221 which allows us to conclude that as announced,E[max m ∈Mn 4T m 4,1,1 -V 4 (m )/≤ C/n, by Inequality (33). The second term can be written Ûn We replace T m 3 by its detailed bound which we obtain by gathering Inequalities (36) and (37): This leads to T m 4,1,2 ≤ 4 l=1 T m 4,1,2,l , and then T m 4,1,2,l ≤ C Ûn -id p l ∞ (p l an integer), so that we can use the method (B 2 ), for each of this four terms. As announced, the terms T m 4,2,1 and T m 4,2,2 do not require to be centered: rst, Ûn (u)) 2 Π S m (h) (u) Ûn (u)) 2 Π S m (h )(u) 2 du, Ûn so that E[max m ∈Mn T m 4,2,1 ] ≤ C 2 h 2 /n. Then, notice that T m 4,2,2 = (1/4)E[ (u -Ûn (u)) 4 ( D m
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Consequently, T m 4 , 2 , 3 ≤ 2 m

 4232 follows, for u ∈ [0; 1] D m j=1 a j ϕ j (α j,n,u ) ≤ ϕ 2 ∞ E[ Ûn -id 3 ∞ D ],and we apply again the usual tools to end the proof.
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 1 Introduction 1.1. Statistical framework. Consider the observation sample (X i , Y i ) i∈{1,...,n} (n ∈ N\{0}) of couples of real random variables following the regression setting,

	(1)

Table 1 .

 1 Values of MISE ×1000 averaged over 100 samples, for the estimation of f 1

	ε	X	n=100 200	500	1000 1500 2000 Estimator
	N (0, 0.0006)	U [0;1]	0.238 0.116 0.058 0.029 0.017 0.017 WB1
		s2n=2.07	0.462 0.227 0.087 0.045 0.028 0.024 WB2
		DU [0;1] s2n=1.74	0.407 0.254 0.144 0.09 0.069 0.058 WB1 0.55 0.276 0.141 0.084 0.064 0.054 WB2
		E t (1)	0.231 0.152 0.052 0.032 0.021 0.018 WB1
		s2n=1.9	0.501 0.248 0.09 0.042 0.027 0.024 WB2
		N t (0.5, 0.1) 0.473 0.181 0.089 0.052 0.036 0.028 WB1 s2n=1.98 0.68 0.243 0.097 0.053 0.036 0.027 WB2
		N BM t s2n=1.94	0.957 0.788 0.561 0.448 0.436 0.395 WB1 1.037 0.785 0.537 0.436 0.433 0.393 WB2
		CM s2n=2.07	1.012 0.943 0.775 0.718 0.692 0.68 WB1 1.267 0.968 0.773 0.711 0.688 0.679 WB2
	L(0, 0.0173)	U [0;1]	0.235 0.102 0.051 0.026 0.02 0.016 WB1
			0.44 0.215 0.085 0.04 0.031 0.023 WB2
		DU [0;1]	0.352 0.268 0.13 0.084 0.069 0.059 WB1 0.494 0.28 0.122 0.074 0.062 0.054 WB2
		E t (1)	0.278 0.133 0.065 0.031 0.024 0.018 WB1
			0.576 0.244 0.099 0.043 0.033 0.023 WB2
		N t (0.5, 0.1) 0.338 0.539 0.254 0.101 0.052 0.036 0.028 WB2 0.2 0.092 0.05 0.036 0.03 WB1
		N BM t	1.104 0.699 0.562 0.453 0.425 0.412 WB1 1.221 0.662 0.532 0.442 0.418 0.406 WB2
		CM	1.078 0.889 0.801 0.716 0.688 0.683 WB1 1.207 0.919 0.797 0.707 0.686 0.682 WB2

Table 2 .

 2 Values of MISE ×1000 averaged over 100 samples, for the estimation of f 2

			
	E		sup
		m ∈Mn	t∈S(m )

E[|ε 1 | p ] and δ such that,

  Proof of Lemma 9, rst inequality. The term E[T m 3 ] requires more computations. Let us rst notice that T m

	3

•

  T 3,1,2 , we get E[T m 3,2 ] ≤ C 4 (π 4 /4) h 2 D 4

m /n 2 . Last, we bound roughly

  κ b = κ/(3π 4 /4) h 2 . Thus, if D p ≤ Cn 1/3 ,

			3,2 ≤ (π 4 /4) h 2 D 4 p Ûn -id	4 ∞	implies, for V 3,2 (p) = κD 4 p ln 2 (n)/n 2 ,
	E 3T p 3,2 -V 3,2 (p)	+					
		≤ (3π 4 /4) h 2 D 4 p E	Ûn -id	4 ∞	-	κ (3π 4 /4) h 2	ln 2 (n) n 2	+	,
	(42)	≤ CD 4 p n -κ 1/2 b 2 -1/2 ,				
			E max m ∈Mn	3T p 3,2 -V 3,2 (p)			

for
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