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ABSTRACT
In fair division of indivisible goods, using sequences of sincere

choices (or picking sequences) is a natural way to allocate the ob-

jects. The idea is as follows: at each stage, a designated agent picks

one object among those that remain. Another intuitive way to ob-

tain an allocation is to give objects to agents in the first place, and to

let agents exchange them as long as such “deals” are beneficial. This

paper investigates these notions, when agents have additive pref-

erences over objects, and unveils surprising connections between

them, and with other efficiency and fairness notions. In particular,

we show that an allocation is sequenceable if and only if it is opti-

mal for a certain type of deals, namely cycle deals involving a single

object. Furthermore, any Pareto-optimal allocation is sequenceable,

but not the converse. Regarding fairness, we show that an allocation

can be envy-free and non-sequenceable, but that every competitive

equilibrium with equal incomes is sequenceable. To complete the

picture, we show how some domain restrictions may affect the

relations between these notions. Finally, we experimentally explore

the links between the scales of efficiency and fairness.
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1 INTRODUCTION
In this paper, we investigate fair division of indivisible goods. In

this problem, a set of indivisible objects or goods has to be allocated

to a set of agents, taking into account the agents’ preferences about

the objects. This classical collective decision making problem has
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plenty of practical applications, among which the allocation of

space resources [9, 30], of tasks to workers in crowdsourcingmarket

systems [34], papers to reviewers [26] or courses to students [19].

This problem can be tackled from two different perspectives.

The first possibility is to resort to a benevolent entity in charge

of collecting in a centralized way the preferences of all the agents.

This entity then computes an allocation that takes into account

these preferences and satisfies some fairness (e.g. envy-freeness)
and efficiency (e.g. Pareto-optimality) criteria, or optimizes a well-

chosen social welfare ordering. The second possibility is to have a

distributed point of view, e.g. by starting from an initial allocation

and letting the agents negotiate to swap their objects [23, 35]. A

somewhat intermediate approach consists in allocating the objects

to the agents using a protocol, which allows to build an allocation

interactively by asking the agents a sequence of questions. Proto-

cols are at the heart of works mainly concerning the allocation of

divisible resources (cake-cutting) [16], but have also been studied

in the context of indivisible goods [14, 16].

In this paper, we focus on a particular allocation protocol: se-
quences of sincere choices (also known as picking sequences). This
very simple protocol works as follows. A central authority chooses

a sequence of agents before the protocol starts, having as many

agents as the number of objects (some agents may appear several

times in the sequence). Then, each agent appearing in the sequence

is asked to choose in turn one object among those that remain. For

instance, according to the sequence ⟨1, 2, 2, 1⟩, agent 1 will choose

first, then agent 2will pick two objects in a row, and agent 1will take

the last object. This protocol, used in a lot of everyday situations,

has been studied for the first time by Kohler and Chandrasekaran

[29]. Later, Brams and Taylor [17] have studied a particular ver-

sion of this protocol, namely alternating sequences, in which the

sequence of agents is restricted to a balanced (⟨1, 2, 2, 1...⟩) or strict

(⟨1, 2, 1, 2...⟩) alternation of agents. Bouveret and Lang [11] have

further formalized this protocol, whose properties (especially re-

lated to game theoretic aspects) have later been characterized by

Kalinowski et al. [27, 28]. Finally, Aziz et al. [4] have studied the

complexity of problems related to finding whether a particular as-

signment (or bundle) is achievable by a particular class of picking

sequences. Picking sequences have also been considered by Brams

and King [15], that focus on a situation where the agents have

ordinal preferences. They make an interesting link between this



protocol and Pareto-optimality, showing, among others, that pick-

ing sequences always result in a Pareto-optimal allocation, but also

that every Pareto-optimal allocation can be obtained in this way.

In this paper, we elaborate on these ideas and analyze the links

between sequences, certain types of deals among agents, and some

efficiency and fairness properties, in a more general model in which

the agents have numerical additive preferences on the objects. Our

main contributions are the following. We give a formalization of

the link between allocations and sequences of sincere choices, high-

lighting a simple characterization of the sequenceability of an allo-

cation (Section 3). Then, we show that in this slightly more general

framework than the one by Brams and King, Pareto-optimality and

sequenceability are not equivalent anymore (Section 4). By unveil-

ing the connection between sequenceability and cycle deals among

agents (Section 5), we obtain a rich “scale of efficiency” that allows

us to characterize the degree of efficiency of a given allocation.

Interestingly, some domain restrictions have significant effects on

this hierarchy (Section 6). We also highlight (Section 7) a link be-

tween sequenceability and another important economical concept:

the competitive equilibrium from equal income (CEEI). Another

contribution is the experimental exploration of the links between

the scale of efficiency and fairness properties (Section 8).

2 MODEL AND DEFINITIONS
The aim of the fair division of indivisible goods, also called Mul-

tiAgent Resource Allocation (MARA), is to allocate a finite set of

objects O = {o1, . . . ,om } to a finite set of agents N = {1, . . . ,n}.
A sub-allocation on O′ ⊆ O is a vector

−→π
|O′

= ⟨π
|O′

1
, . . . ,π

|O′

n ⟩

of bundles of objects, such that ∀i,∀j with i , j : π
|O′

i ∩ π
|O′

j = ∅

(a given object cannot be allocated to more than one agent) and⋃
i ∈N π

|O′

i = O′ (all the objects from O′ are allocated). π
|O′

i ⊆ O′

is called agent i’s share on O′. −→π |O
′′

is a sub-allocation of
−→π
|O′

when π
|O′′

i ⊆ π
|O′

i for each agent i . Any sub-allocation
−→π
|O

on

the entire set of objects will be written
−→π and just called allocation.

Any satisfactory allocation must take into account the agents’

preferences on the objects. Here, we will make the classical assump-

tion that these preferences are numerically additive. Each agent

i has a utility function ui : 2
O → R+ measuring her satisfaction

ui (π ) when she obtains share π , which is defined as follows:

ui (π )
def
=

∑
ok ∈π

w(i,ok ),

where w(i,ok ) is the weight given by agent i to object ok . This
assumption, as restrictive as it may seem, is made by a lot of authors

[8, 31, for instance] and is considered a good compromise between

expressivity and conciseness.

Definition 2.1. An instance of the additive multiagent resource
allocation problem (add-MARA instance) is a tuple I = ⟨N ,O,w⟩,
where N and O are as defined above and w : N × O → R+ is a

mapping. Here,w(i,ok ) is the weight given by agent i to object ok .

We say that the agents’ preferences are strict on objects if, for
each agent i and each pair of objects ok , ol , we have w(i,ok ) ,
w(i,ol ). Similarly, we say that the agents’ preferences are strict on
shares if, for each agent i and each pair of shares π , π ′, we have

ui (π ) , ui (π
′). Note that strict preferences on shares entail strict

preferences on objects; the converse is false.

We will denote by P(I ) the set of allocations for I . We will also

use the notation oioj ... as a shorthand for bundle {oi ,oj , ...}.

Definition 2.2. Given an agent i and a set of objects O′, we will

write best(O′, i) = argmaxok ∈O′ w(i,ok ) the objects from O
′
hav-

ing the highest weight for i (they will be called top objects of i).

A (sub-)allocation
−→π
|O′

is said frustrating if no agent receives

one of her top objects in
−→π
|O′

(formally: best(O′, i) ∩ −→π
|O′

i = ∅ for

each agent i), and non-frustrating otherwise.

In the following, we will consider a particular way of allocating

objects to agents: sequences of sincere choices.

Definition 2.3. Let I = ⟨N ,O,w⟩ be an add-MARA instance. A

sequence of sincere choices (or simply sequence when the context is

clear) is a vector of Nm
. We will denote by S(I ) the set of possible

sequences for the instance I .

Let
−→σ ∈ S(I ) be a sequence of agents and let σt be the t

th
agent

of the sequence.
−→σ is said to generate allocation −→π if and only if

−→π can be obtained as a possible result of the non-deterministic
1

Algorithm 1 on input I and −→σ .

Algorithm 1: Execution of a sequence

Input: an instance I = ⟨N ,O,w⟩ and a sequence
−→σ ∈ S(I )

Output: an allocation
−→π ∈ P(I )

1
−→π ← empty allocation (such that ∀i ∈ N : πi = ∅);

2 O1 ← O;

3 for t from 1 tom do
4 i ← σt ;

5 choose object ot ∈ best(Ot , i) ;
6 πi ← πi ∪ {ot } ;

7 Ot+1 ← Ot \ {ot }

Definition 2.4. An allocation
−→π is said to be sequenceable if there

exists a sequence
−→σ that generates

−→π , and non-sequenceable other-
wise. For a given instance I , we will write s(I ) the binary relation

defined by (
−→σ ,−→π ) ∈ s(I ) if and only if

−→π can be generated by
−→σ .

Example 2.5. Let I be the instance represented by the following

weight matrix:
2 (

8 2 1

5 1 5

)
For instance, sequence ⟨2, 1, 2⟩ generates two possible alloca-

tions: ⟨o1,o2o3⟩ and ⟨o2,o1o3⟩, depending onwhether agent 2 chooses
object o1 or o3 that she both prefers. Allocation ⟨o1o2,o3⟩ can be

generated by three sequences. Allocations ⟨o1o3,o2⟩ and ⟨o3,o1o2⟩
are non-sequenceable.

For any instance I , |S(I )| = |P(I )| = nm . Also note that the

number of objects allocated to an agent by a sequence is the number

of times the agent appears in the sequence.

1
The algorithm contains an instruction choose splitting the control flow into several

branches, building all the allocations generated by
−→σ .

2
In this example and the following ones, we represent instances by a matrix where

the value at row i and column ok represents the weightw (i, ok ).



The notion of frustrating allocation and sequenceability were

already implicitly present in the work by Brams and King [15], and

sequenceability has been extensively studied by Aziz et al. [4] with a
focus on sub-classes of sequences (e.g. alternating sequences). How-
ever, a fundamental difference is that in our setting, the preferences

might be non strict on objects, which entails that the same sequence

can yield different allocations (in the worst case, an exponential

number), as Example 2.5 shows.

3 SEQUENCEABLE ALLOCATIONS
We have seen in Example 2.5 that some allocations are non-sequen-

ceable. We will now formalize this and give a precise characteri-

zation of sequenceable allocations. That is, we will try to identify

under which conditions an allocation is achievable by the execution

of a sequence of sincere choices. We first start by noticing that in

every sequenceable allocation, the first agent of the sequence gets

a top object, so every frustrating allocation is non-sequenceable.

However, being non-frustrating is not a sufficient condition for an

allocation to be sequenceable, as the following example shows:

Example 3.1. Consider this instance:(
9 8 2 1

2 5 1 4

)
In allocation

−→π = ⟨o1o4,o2o3⟩, each agent receives her top object.
However, after o1 and o2 have been allocated (they must be allo-

cated first by all sequences generating
−→π ), the dotted sub-allocation

remains. This sub-allocation is obviously non-sequenceable because

it is frustrating. Hence
−→π is not sequenceable either.

This property of containing a frustrating sub-allocation exactly

characterizes the set of non-sequenceable allocations:

Proposition 1. Let I = ⟨N ,O,w⟩ be an instance and −→π be an al-
location of this instance. The two following statements are equivalent:

(A)
−→π is sequenceable.

(B) No sub-allocation of −→π is frustrating (in every sub-allocation,
at least one agent receives a top object).

Proof. (B)⇒ (A). Let us suppose that for all subsets of objects

O′ ⊆ O, at least one agent gets one of her top objects in
−→π
|O′

. We

will show that
−→π is sequenceable. Let

−→σ be a sequence of agents and

−→
O ∈

(
2
O
)m

be a sequence of bundles jointly defined as follows:

• O1 = O and σ1 is an agent that receives one of her top

objects in
−→π
|O1

;

• Ot+1 = Ot \{ot }, where ot ∈ best(Ot ,σt ) and σt is an agent

that receives one of her top objects in
−→π
|Ot

, for t ≥ 1.

From the assumption on
−→π , we can check that

−→σ is well-defined.

Moreover,
−→π is one of the allocations generated by

−→σ .

(A) ⇒ (B) by contraposition. Let
−→π be an allocation contain-

ing a frustrating sub-allocation
−→π
|O′

. Suppose that there exists a

sequence
−→σ generating

−→π . We can notice that in a sequence of

sincere choices, when an object is allocated to an agent, all the

objects that are strictly better for her have already been allocated at

a previous step. Let ok ∈ O
′
, and let i be the agent that receives ok

in
−→π . Since

−→π
|O′

is frustrating, there is another object ol ∈ O
′
such

thatw(i,ol ) > w(i,ok ). As we have seen, ol is necessarily allocated

before ok in the execution of
−→σ . Let j be the agent who receives

ol . Using the same argument for j and ol we find another object

op ∈ O
′
allocated before ol in the sequence. Iterating this argument,

since O′ is finite, we will eventually find an object which has been

encountered before. This creates a cycle in the precedence relation

of the objects in the execution of the sequence. Contradiction: no

sequence can thus generate
−→π . □

Besides characterizing a sequenceable allocation, the proof of

Proposition 1 gives a practical way of checking if an allocation is

sequenceable, and, if it is the case, of computing a sequence that

generates this allocation.

Proposition 2. Let I = ⟨N ,O,w⟩ be an instance and −→π be an
allocation of this instance. We can decide in time O(n ×m2) if −→π is
sequenceable.

The proof is based on the execution of Algorithm 2. This algo-

rithm is similar in spirit to the one proposed by Brams and King [15]

but is more general because (i) it can involve non-strict preferences

on objects, and (ii) it can conclude with non-sequenceability.

Algorithm 2: Sequencing an allocation

Input: I = ⟨N ,O,w⟩ and −→π ∈ P(I )
Output: a sequence −→σ generating

−→π or NonSeq
1 (
−→σ ,O′) ← (⟨⟩,O);

2 for t from 1 tom do
3 if ∃i such that best(O′, i) ∩ πi , ∅ then
4 Append i to −→σ ;

5 let ok ∈ best(O
′, i) ∩ πi ;

6 O′ ← O′ \ {ok };

7 else return NonSeq ;

8 return −→σ ;

Proof. We show that Algorithm 2 returns a sequence
−→σ gen-

erating the input allocation
−→π if and only if there is one. Suppose

that the algorithm returns a sequence
−→σ . Then, by definition of the

sequence (in the loop from line 2 to line 7), at each step t , i = σt can
choose an object in πi , that is one of her top objects. Conversely,

suppose the algorithm returns NonSeq. Then, at a given step t , ∀i ,
best(O′, i) ∩ πi = ∅. By definition,

−→π
|O′

is therefore, at this step, a

frustrating sub-allocation of
−→π . By Proposition 1,

−→π is thus non-

sequenceable. The loop from line 2 to line 7 runs in time O(n ×m),
because searching for the top objects in the preferences of each

agent can be completed in time O(m). This loop being executedm
times, the algorithm runs in O(n ×m2). □

4 PARETO-OPTIMALITY
An allocation is Pareto-optimal if no other allocation dominates

it. In our context, allocation
−→π
′
dominates allocation

−→π if for all

agent i , ui (π
′
i ) ≥ ui (πi ) and uj (π

′
j ) > uj (πj ) for at least one agent

j. When an allocation is generated from a sequence, in some sense,

a weak form of efficiency is applied to build the allocation: each

successive (picking) choice is “locally” optimal. This raises a natural

question: is every sequenceable allocation Pareto-optimal?



This question has already been extensively discussed indepen-

dently by Aziz et al. [3] and Bouveret and Lemaître [13]. We com-

plete the discussion here to give more insights about the implica-

tions of the previous results in our framework.

Brams and King [15, Proposition 1] prove the equivalence be-

tween sequenceability and Pareto-optimality. However, they have

a different notion of Pareto-optimality, because the agents’ prefer-

ences are given as linear orders over objects. To be able to compare

bundles, these preferences are lifted on subsets using the responsive
set extension ≻RS . This extension leaves many bundles incompa-

rable and leads to define possible and necessary Pareto-optimality.

Brams and King’s notion is possible Pareto-optimality. Aziz et al.
[2] show that, given a linear order ≻ on objects and two bundles π
and π ′, π ≻RS π ′ if and only if u(π ) > u(π ′) for all additive utility
functions u compatible with ≻ (that is, such that u(ok ) > u(ol ) if
and only if ok ≻ ol ). This characterization of responsive dominance

yields the following reinterpretation of Brams and King’s result: an

allocation
−→π is sequenceable if and only if for each other allocation

−→π
′
, there is a set u1, . . . ,un of additive utility functions, respec-

tively compatible with ≻1, . . . ,≻n such that ui (πi ) > ui (πi
′) for at

least one agent i .
The latter notion of Pareto-optimality is very weak, because

(unlike in our context) the set of additive utility functions is not fixed

— we just have to find one that works. Under our stronger notion,

the equivalence between sequenceability and Pareto-optimality no

longer holds.
3

Example 4.1. Let us consider the following instance:(
5 4 2

8 2 1

)
The sequence ⟨1, 2, 2⟩ generates allocation −→π = ⟨o1,o2o3⟩ giving

utilities ⟨5, 3⟩. −→π is then sequenceable but it is dominated by
−→π ′ =

⟨o2o3,o1⟩, giving utilities ⟨6, 8⟩ (and generated by ⟨2, 1, 1⟩). Observe
that, under ordinal linear preferences,

−→π ′ would not dominate
−→π ,

but they would be incomparable.

The last example shows that a sequence of sincere choices does

not necessarily generate a Pareto-optimal allocation. What about

the converse? We can see, as a trivial corollary of the reinterpreta-

tion of Brams and King’s result in our terminology, that the answer

is positive if the preferences are strict on shares. The following result
is more general, because it holds even without this assumption:

Proposition 3 ([3, 13]). Every Pareto-optimal allocation is se-
quenceable.

As already noticed by Aziz et al. [3], the proof follows from an

adaptation of Brams and King’s Proposition 1 (necessity part of the

proof) [15]. However, we find useful to give the proof, because it is

more general than the previous one, and will be reused in subse-

quent results of this paper. Before giving this proof, we illustrate it

on a concrete example [12, Example 5].

Example 4.2. Let us consider the following instance:

3
Actually, since it is known [1, 21] that testing Pareto-optimality with additive prefer-

ences in coNP-complete, and that testing sequenceability is in P (Proposition 2), they

cannot be equivalent unless P = coNP.

©«
† 12 15 †11 7 2

2 12 7 †15 † 11

15 † 20 9 2 1
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The circled allocation

−→π is not sequenceable: indeed, every se-

quence that could generate it should start with ⟨3, 1, . . . ⟩, leaving

the frustrating sub-allocation
−→ρ in a dotted box.

Let us consider agent 1 for instance. Since the suballocation is

frustrating, she does not receive o3 (which is her top object), but

agent 2 does. This latter agent, however, does not get her top object,

o4, because agent 1 receives it. Obviously, if agent 1 gives o4 to

agent 2 and receives o3 in return, we have built a cycle in which

each agent gives a regular object and receives a top one. Doing this,

we have built an allocation strictly dominating
−→π .

Proof. As stated in the example, we will now prove the contra-

position of the proposition: every non-sequenceable allocation is

dominated. Let
−→π be a non-sequenceable allocation. From Proposi-

tion 1, in a non-sequenceable allocation, there is at least one frustra-

tring sub-allocation. Let
−→ρ be such a sub-allocation (that can be

−→π
itself). We will, from

−→ρ , build another sub-allocation dominating it.

Let us choose an arbitrary agent i involved in −→ρ , receiving an object
not among her top ones in

−→ρ . Let oi be a top object of i in
−→ρ , and let

j (, i) be the unique agent receiving it in
−→ρ . Let oj be a top object

of j . We can notice that oj , oi (otherwise j would obtain one of her

top objects and
−→ρ would not be frustrating). Let k be the unique

agent receiving oj in
−→ρ , and so on. Using this argument iteratively,

we form a path starting from i and alternating agents and objects,

in which two successive agents and objects are distinct. Since the

number of agents and objects is finite, we will eventually encounter

an agent which has been encountered at a previous step of the path.

Let i be the first such agent and ok be the last object seen before her

in the sequence (i is the unique agent receiving ok ). We have built

a cycle i
ok
−→ k

ok−1
−→ k − 1 · · · i + 1

oi
−→ i in which all the agents and

objects are distinct, and that has at least two agents and two objects.

From this cycle, we can modify
−→ρ to build a new sub-allocation by

giving to each agent in the cycle a top object instead of another less

preferred object, all the agents not appearing in the cycle being left

unchanged. More formally, the following attributions in
−→ρ (and

hence in
−→π ): (i ← ok )(i + 1← oi ) · · · (k ← ok−1) are replaced by:

(i ← oi )(i + 1← oi+1) · · · (k ← ok ) where (i ← oi ) means that oi
is attributed to i . The same substitutions operated in

−→π yield an

allocation
−→π ′ that dominates

−→π . □

Corollary 4.3. No frustrating allocation can be Pareto-optimal
(equivalently, in every Pareto-optimal allocation, at least one agent
receives a top object).

Proposition 3 implies that there exists, for a given instance, three

classes of allocations: (1) non-sequenceable (therefore non Pareto-

optimal) allocations, (2) sequenceable but non Pareto-optimal al-

locations, and (3) Pareto-optimal (hence sequenceable) allocations.

These three classes define a “scale of efficiency” that can be used

to characterize the allocations. What is interesting and new here

is the intermediate level. We will see that this scale can be further

refined.



5 CYCLE DEALS-OPTIMALITY
Pareto-optimality can be thought as a reallocation of objects among

agents using improving deals [35, 37], as we have seen, to some

extent, in the proof of Proposition 3. Trading cycles or cycle deals
constitute a sub-class of deals, which is classical and used, e.g., by
Varian [39, page 79] and Lipton et al. [31, Lemma 2.2] in the context

of envy-freeness. Trying to link efficiency concepts with various

notions of deals is thus a natural idea.

Definition 5.1. Let ⟨N ,O,w⟩ be an add-MARA instance and
−→π

be an allocation of this instance. A (N ,M)-cycle deal of
−→π is a

sequence of transfers of items µ = ⟨(µ1,O1), . . . , (µN ,ON )⟩, where,

for each j ∈ {1, . . . ,N }, µ j denotes the j
th

agent involved in the

sequence and µ j ∈ N , Oj ⊆ πj , and |Oj | ≤ M . The allocation

−→π [← µ] resulting from the application of µ to
−→π is defined as

follows:

• π [← µ]µ j = πµ j \ Oj ∪ Oj−1 for j ∈ {2, . . . ,N };
• π [← µ]µ1 = πµ1 \ O1 ∪ ON ;

• π [← µ]i = πi if i < {µ1, . . . , µN }.

A cycle deal ⟨(µ1,O1), . . . , (µN ,ON )⟩ will be written

µ1
O1
−→ µ2 . . . µN−1

ON−1
−→ µN

ON
−→ µ1.

In other words, in a cycle deal (we omit N and M when they

are not necessary to understand the context), each agent gives a

subset of at mostM items from her share to the next agent in the

sequence and receives in return a subset from the previous agent.

(N , 1)-cycle deals will be denoted by N -cycle deals. 2-cycle deals

will be called swap-deals. Among these cycle deals, some are more

interesting: those where each agent improves her utility by trading

objects. More formally, a deal d will be called weakly improving if

ui (π [← d]i ) ≥ ui (πi ) ∀i ∈ N with at least one of these inequalities

being strict, and strictly improving if all these inequalities are strict.

Intuitively, if it is possible to improve an allocation by apply-

ing an improving cycle deal, then it means that this allocation is

inefficient. Reallocating the items according to the deal will make

everyone better-off. It is thus natural to derive a concept of effi-

ciency from this notion of cycle-deal.

Definition 5.2. An allocation is said to be >-(N ,M)-cycle optimal

(resp. ≥-(N ,M)-cycle optimal) if it does not admit any strictly (resp.

weakly) improving (K ,M)-cycle deal for any K ≤ N .

We begin with easy observations. First, ≥-cycle optimality im-

plies >-cycle optimality, and these two notions become equivalent

when the preferences are strict on shares. Moreover, restricting the

size of the cycles and the size of the bundles exchanged yield less

possible deals and hence lead to weaker optimality notions.

Note that for N ′ ≤ N andM ′ ≤ M (at least one of these inequal-

ities being strict), >-(N ,M)-cycle-optimality and ≥-(N ′,M ′)-cycle-
optimality are incomparable. These observations show that cycle-

deal optimality notions form a (non-linear) hierarchy of efficiency

concepts of diverse strengths. The natural question is whether

they can be related to sequenceability and Pareto-optimality. Ob-

viously, Pareto-optimality implies both >-cycle-optimality and ≥-

cycle-optimality. An easy adaptation of the proof of Proposition 3

leads to the following stronger result:

Proposition 4. An allocation −→π is sequenceable if and only if it
is >-n-cycle optimal (with n = |N |).

Proof. Let
−→π be a non-sequenceable allocation. Then by Propo-

sition 1, there is at least one frustrating sub-allocation in
−→π . Using

the same line of arguments as in the proof of Proposition 3 we

can build a strictly improving k-cycle. Hence −→π is not >-cycle

optimal. Conversely, suppose that
−→π admits a strictly improving

k-cycle deal. Then obviously this cycle yields a sub-allocation that

is frustrating. □

The scale of efficiency introduced in Section 4 can then be refined

with a hierarchy of >-cycle optimality notions below sequenceable

allocations: Pareto-optimal⇒ sequenceable⇔ >-n-cycle optimal

⇒ >-(n − 1)-cycle optimal⇒ ...⇒ >-swap optimal.

As for ≥-cycle optimality, it forms a parallel hierarchy between

Pareto-optimal and non-sequenceable allocations. Note that se-

quenceability does not involve any ≥-n-cycle-optimality. Thus, as

soon as k < n, ≥-k-cycle optimality and sequenceability become

incomparable notions.

For instance, for 3 agents, there exist allocations which are ≥-

swap optimal but not sequenceable and the other way around:

©«
2 †1 2 †3

† 3 3 1 2

1 2 †3 1

ª®¬
Here the circled allocation is ≥-swap optimal, but not sequenceable:

there exists a strictly improving 3-cycle. At the same time, the dag

allocation is sequenceable (by ⟨2, 3, 1, 1⟩), but not even ≥-swap

optimal, since 1 and 2 may agree on a weakly improving deal.

The observations previously made in this section suggest that,

in some situations, the most complex cycle deals could be required

to reach Pareto-optimal allocations. This is indeed the case–we

now make this claim more precise. Observe that to be involved in a

weakly improving cycle deal, each agent must pass at least one item,

thus for a (n,k)-cycle deal, we have that k ≤ m − (n − 1) (i.e. the
“largest bundle" circulating in this cycle deal can be at mostm−n+1).
The following generic example shows that it may be necessary to

implement a (n,m−n+1)-cycle to reach a Pareto-optimal allocation.

α1 α2 . . . αn−1 β1 . . . βm−n+1
1 1 0 0 0 1/(m− n+ 1) 1/(m− n+ 1) 1/(m− n+ 1)
2 1 1 0 0 0 0 0

3 0 1 1 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n 0 0 0 2 1/(m− n+ 1) 1/(m− n+ 1) 1/(m− n+ 1)

Initially, every agent i = 1, . . . ,n − 1 holds item αi , while agent
n holds β1, . . . , βm−n+1. Hence everyone enjoys utility 1. This allo-

cation is dominated by the allocation where each agent i = 2, . . . ,n
holds αi−1 while agent 1 holds β1, . . . , βm−n+1. In this allocation,

the utilities of agents are instead ⟨1, 1, . . . , 2⟩. But to obtain αn−1,
agent n must get it from n − 1 who would only release it if she gets

αi−2, etc. In the end, agent 1 will only release α1 if she gets the full
bundle β1, . . . , βm−n+1. Overall there are n agents involved in the

deal, exchanging up tom − n + 1 items. By construction, it is easy

to check that no simpler cycle deal (either in terms of number of

items or number of agents) would allow to reach this allocation.



Furthermore, there is clearly no other allocation Pareto-dominating

the initial allocation.

However, it is important to note that cycle-deals may not be

sufficient to reach Pareto-optimal outcomes when there are more

items than agents.

Example 5.3. Consider the following example:©«
3 6 †6 0 6 †4

†2 0 6 3 †7 0

0 †5 0 †4 6 3

ª®¬
Note that in the circled allocation, all agents enjoy the same

utility, ⟨9, 9, 9⟩, and that it is Pareto-dominated by the dag allocation

which induces the vector of utilities ⟨10, 9, 9⟩. We leave it to the

reader to check that no swap deal, nor 3-cycle, would be weakly

improving. In fact, the only way to reach the dag allocation from

this initial allocation would require to implement simultaneously
two (3, 1)-cycle deals (1 −→ 2 −→ 3 and 3 −→ 2 −→ 1).

Finally, a corollary of Propositions 2 and 4 is that checking

whether an allocation is >-n-cycle optimal can be made in polyno-

mial time (by checking whether it is sequenceable).

More generally, we can observe that checking whether an al-

location is (k,k ′)-cycle optimal can be done by iterating over all

k-uples of agents4, and for each one iterating over all possible

transfers involving less than k ′ objects. In total, there are k!
(n
k
)

k-uples of agents (which is upper-bounded by nk+1). For each k-

uple, there are at most

(∑k ′
k ′′=0

(m
k ′′
) )k

possible transfers, which

is again upper-bounded by (1 +m)kk
′

. Hence, in total, checking

whether an allocation is (k,k ′)-cycle optimal can be done in time

O(nk+1 × (1 +m)kk
′

). This is polynomial in n andm if both k and

k ′ are bounded (as for swap deals).

6 RESTRICTED DOMAINS
We now study the impact of several preference restrictions on the

hierarchy of efficiency notions introduced in Section 5.

Strict preferences on objects. When the preferences are strict on

objects, then obviously every sequence generates exactly one allo-

cation. The following proposition is stronger and shows that the

converse is also true:

Proposition 5. Preferences are strict on objects iff s(I ) is a map-
ping from S(I ) to P(I ).

Proof. If preferences are strict on objects, each agent has only

one possible choice at her turn in the sequence of sincere choices

and hence every sequence generates one and only one allocation.

Conversely, if preferences are not strict on objects, at least one

agent (suppose w.l.o.g. agent 1) gives the same weight to two differ-

ent objects ok , ol . Suppose that exactly t objects are ranked above

ok and ol . Then the sequence where agent 1 picks t + 1 items in a

row, and 2 picks them − t − 1 remaining ones obviously generates

two allocations, depending on agent 1’s choice at step t + 1. □

4
We do not need to also run through all cycles of strictly less than k agents: such a

cycle can be simulated just by appending at the end some agents whose role is just to

pass the objects they receive to the next agent.

Same order preferences. We say that the agents have same order
preferences [12] if there is a permutation η : O 7→ O such that for

each agent i and each pair of objects ok and ol , if η(ok ) < η(ol ) then
w(i,η(ok )) ≥ w(i,η(ol )).

Proposition 6. All the allocations of an instance with same or-
der preferences are sequenceable (and actually cycle-deal optimal).
Conversely, if all the allocations of an instance are sequenceable, then
this instance has same order preferences.

Proof. Suppose that the agents have same order preferences,

and let
−→π be an arbitrary allocation. In every sub-allocation of

−→π at

least one agent obtains a top object (because the preference order

is the same among agents) and hence cannot be frustrating. By

Proposition 1,
−→π is sequenceable.

Conversely, let us assume for contradiction that there are two

distinct objects ok and ol and two distinct agents i and j such
that w(i,ok ) > w(i,ol ) and w(j,ok ) < w(j,ol ). The sub-allocation
−→π
| {ok ,ol }

such that π
| {ok ,ol }
i = {ol } and π

| {ok ,ol }
j = {ok } is frus-

trating. By Proposition 1, every allocation
−→π containing this frus-

trating sub-allocation is non-sequenceable. □

Let us now characterize the instances for which s(I ) is a one-to-
one correspondence.

Proposition 7. For a given instance I , the following two state-
ments are equivalent.

(A) Preferences are strict on objects and in the same order.
(B) The relation s(I ) is a one-to-one correspondence.

The proof is a consequence of Propositions 5 and 6.

Single-peaked preferences. An interesting domain restriction are

single-peaked preferences [10, 22], which, beyond voting, is also

relevant in resource allocation settings [6, 20]. Formally, in this

context, single-peakness can be defined as follows.

There exists a linear order ▷ over the set of objects O. Let top(i)
be the preferred object of i . An agent i has single-peaked preferences
wrt. ▷ if, for any two objects (ok ,ol ) ∈ O such that either top(i) ▷
ol ▷ ok or ok ▷ ol ▷ top(i) (i.e. lying on the same “side” of the agent’s

peak), it is the case that i prefers ol over ok .
Interestingly, when preferences are single-peaked, the hierarchy

of n-cycle optimality collapses at the second level:

Proposition 8. If the preferences are single-peaked and additive,
then an allocation −→π is ≥-n-cycle optimal iff it is swap-optimal.

Proof. ([20, revisited]) First, note that ≥-n-cycle optimality triv-

ially implies swap-optimality. Let us now show the converse.

Let us consider for the sake of contradiction an allocation
−→π

that is swap-optimal and such that there exists a ≥-k-cycle µ,
with k ≤ n. Without loss of generality, let us suppose that µ =
⟨(µ1, {o1}) , . . . , (µk , {ok })⟩. We show by induction on k , the length
of µ, that such a cycle can not exist.

Base case: k = 2 A 1-cycle of length k = 2 is a swap-deal but

as
−→π is swap-optimal, no improving swap-deal exists in

−→π hence

the contradiction.

Induction step: Let us assume that for each k ′ such that 2 ≤

k ′ ≤ k − 1, no ≥-k ′-cycle exists in −→π and let us show that no cycle

of length k exists.



To exhibit a contradiction we will need to use the following

necessary condition [7]: to be single-peaked, a profileU needs to be

worst-restricted, i.e. for any triple of objects O = (oa ,ob ,oc ) ∈ O
3

there always exists an object oj ∈ O such that there exists an agent

i with oj < argminok ∈O w(i,ok ) [36].
Because µ is a ≥-k-cycle, for all agent µi , µ1 involved in µ

we have oi−1 ≻µi oi and ok ≻µ1 o1. As no ≥-k
′
-cycle exists, with

k ′ < k , for all agents µi , µ1 involved in µ and for all objects ol in
µ, ol , oi and ol , oi−1, we have oi ≻µi ol . Moreover for all objects

ol in µ, ol , o1 and ol , ok , we have o1 ≻µ1 ol . If the preferences
do not respect these conditions, a ≥-k ′-cycle exists with k ′ < k .

Because the profile is worst-restricted, for all the triple of objects

O in {o1, . . . ,ok }, at most two resources of O can be ranked last

among O by the agents. Let us call ow one of these objects ranked

last by agent µl and held by agent µw . Thanks to the previous

paragraph, we know that best(O, µw ) = ow−1 and so, because her

preferences are single-peaked, µw puts ow+1 in last position among

ow−1,ow ,ow+1. The same holds for agent µw+1 who ranks ow−1
in last position among ow−1,ow ,ow+1 (because top(µw+1) = ow ).
Therefore when we focus only on the three objects ow−1,ow ,ow+1,
each of them is ranked last among them by one agent which violates

the condition of worst-restriction. The contradiction is set, no ≥-k-
cycle exists in

−→π . □

Together with Proposition 4, Proposition 8 gives another inter-

pretation of sequenceability in this domain:

Corollary 6.1. If preferences are single-peaked (and additive),
then an allocation −→π is sequenceable if and only if it is swap-optimal.

Proposition 1 by Damamme et al. [20] is much stronger than our

Corollary 6.1, as it shows that swap-optimality is actually equiva-

lent to Pareto-efficiency when each agent receives a single resource.
Unfortunately, in our context where each agent can receive several

items, this is no longer the case, as the following example shows:

Example 6.2. Consider this instance, single-peaked with respect

to 1 ▷ · · · ▷ 6: ©«
† 1 2 3 4 5 †6

1 †3 4 5 †6 2

1 2 †4 †5 6 3

ª®¬
The circled allocation is swap-optimal, but Pareto-dominated by

the allocation marked with dags.

7 ENVY-FREENESS AND CEEI
The use of sequences of sincere choices can also be motivated by

the search for a fair allocation protocol. Here, we will focus on two

fairness properties and analyze their link with sequenceability.

The first of these notions is probably one of the most prominent

fairness properties: envy-freeness [25, 38, 39].

Definition 7.1. Let I be an add-MARA instance and
−→π be an

allocation.
−→π verifies the envy-freeness property (or is simply envy-

free), when ui (πi ) ≥ ui (πj ), ∀(i, j) ∈ N2
(no agent strictly prefers

the share of any other agent).

The notion of competitive equilibrium is an old and well-known

concept in economics [24, 40]. If equal incomes are imposed among

the stakeholders, this concept becomes the competitive equilibrium
from equal incomes [32], yielding a very strong fairness concept

that has been recently explored both in artificial intelligence and

in economics [12, 19, 33].

Definition 7.2. Let I = (N ,O,w) be an add-MARA instance,
−→π

an allocation, and
−→p ∈ [0, 1]m a vector of prices. A pair (

−→π ,−→p ) is
said to form a competitive equilibrium from equal incomes (CEEI) if

∀i ∈ N : πi ∈ argmaxπ ⊆O

{
ui (π ) :

∑
ok ∈π

pk ≤ 1

}
.

In other words, πi is one of the maximal shares that i can buy with

a budget of 1, given that the price of each object ok is pk .
We will say that allocation

−→π is a CEEI if there exists a vector

−→p such that (
−→π ,−→p ) forms a CEEI.

As Bouveret and Lemaître [12] and Brânzei et al. [18] have shown,
with additive preferences, every CEEI allocation is envy-free. In

this section, we investigate the question of whether an envy-free

or CEEI allocation is necessarily sequenceable. For envy-freeness,

the answer is negative.

Proposition 9. There exist non-sequenceable envy-free alloca-
tions, even if the agents’ preferences are strict on shares.

Proof. A counterexample with strict preferences on shares is

given in Example 4.2 above, for which we can check that the circled

allocation
−→π is envy-free and non-sequenceable. □

Concerning CEEI, it is already well known that any CEEI alloca-

tion is Pareto-optimal (hence sequenceable) if the preferences are

strict on shares [12]. This is also a consequence of the First Welfare

Theorem introduced by Babaioff et al. [5] for indivisible goods.
However, surprisingly, this result does not hold anymore if the

preferences are not strict on shares, as the following example shows:

©«
† 2 †3 3 2

2 3 † 4 1

0 4 2 †4

ª®¬
The circled allocation is CEEI (with prices 0.5, 1, 1, 0.5) but is ordi-

nally necessary (hence also additively) dominated by the allocation

marked with †.

In spite of this negative result, we can still guarantee a certain

level of efficiency for CEEI allocations:

Proposition 10. Every CEEI allocation is sequenceable.

Proof. We will show that no allocation can be at the same time

non-sequenceable and CEEI. Let
−→π be a non-sequenceable alloca-

tion. We can use the same terms and notations than in the proof of

Proposition 3, especially concerning the dominance cycle.

Let C be the set of agents concerned by the cycle.
−→π contains

the following shares:

πi = {ok } ∪ τi πi+1 = {oi } ∪ τi+1 .... πk = {ok−1} ∪ τk

whereas the allocation
−→π
′
that dominates it, contains:

π ′i = {oi } ∪ τi π ′i+1 = {oi+1} ∪ τi+1 .... π ′k = {ok } ∪ τk

the other shares being unchanged from
−→π to

−→π
′
.

Suppose that
−→π is CEEI. This allocation must satisfy two kinds

of constraints. First,
−→π must satisfy the price constraint. If we write

p(π )
def
=
∑
ok ∈π pk , we have, ∀i ∈ C, p(πi ) ≤ 1 (1).
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Figure 1: Distribution of the number of allocations by pair of (efficiency, fairness) criteria.

Next,
−→π must be optimal: every share having a higher utility for

an agent than her share in
−→π costs strictly more than 1. Provided

that ∀i ∈ C : ui (π
′
i ) > ui (πi ) (because

−→π
′
substitutes more pre-

ferred objects to less preferred objects in
−→π ), this constraint can be

written as ∀i ∈ C, p(π ′i ) > 1 (2).

By summing equations (1) and (2), provided that all shares are

disjoint, we obtain

p(
⋃
j ∈C

πj ) ≤ |C| and p(
⋃
j ∈C

π ′j ) > |C|

Yet,

⋃
j ∈C πj =

⋃
j ∈C π

′
j (because the allocation

−→π
′
is obtained

from
−→π by simply swapping objects between agents in C). The two

previous equations are contradictory. □

8 EXPERIMENTS
We have exhibited in Sections 4 and 5 a “hierarchy of allocation

efficiency” made of several steps: Pareto-optimal (PO), sequence-

able (Seq), {cycle-deal-optimal}, non-sequenceable (NS). A natural

question is to know, for a given instance, which proportion of alloca-

tions are located at each level of the scale. We give a first answer by

experimentally studying the distribution of allocations between the

different levels. For cycle-deal optimality, we focus on the simplest

type of deals, namely, >-swap-deals. We thus have a linear scale of

efficiency concepts, from the strongest to the weakest: PO→ Seq

→ Swap→ NS. We also analyze the relation between efficiency

and various notions of fairness by linking this latter scale with the

6-level scale of fairness introduced by Bouveret and Lemaître [12]:

CEEI→ Envy-Freeness (EF)→ min-max share (mMS)→ propor-

tionality (PFS)→ max-min share (MMS)→ NS. We generate 50

add-MARA instances involving 3 agents-8 objects, using two differ-

ent models. For both models, a set of weights are uniformly drawn

in the interval J0, 100K and the instances are then normalized. For

the second model, these weights are reordered afterwards to make

the preferences single-peaked. For each instance, we generate all

6561 allocations, and identify for each of them the highest level

of fairness and efficiency satisfied. The average number of alloca-

tions with min-max interval is plotted as a box for each level on a

logarithmic scale in Figure 1.

Note that some fairness and efficiency tests require to solve NP-
hard or coNP-hard problems (MMS, mMS, and PO tests). These

tests are delegated to an external ILP solver. This is especially

interesting for the CEEI test which is known to be NP-hard [18],

and for which, to the best of our knowledge, no practical method

had been described before. The implementation is available as a

fully documented and tested Free Python library.
5

We note several interesting facts. First, a majority of allocations

do not have any efficiency nor fairness property (first black bar on

the left). Second, the distribution of allocations on the efficiency

scale seems to be related to the fairness criteria: a higher propor-

tion of swap-optimal or sequenceable allocations are found among

envy-free allocations than among allocations that do not satisfy

any fairness property, and for CEEI allocations, there are even more

Pareto-optimal allocations than just sequenceable ones. Lastly, the

absence of vertical bar for swap-optimality in the experiments

concerning single-peaked preferences confirms the results of Corol-

lary 6.1: in this context, no allocation can be swap-optimal but not

Sequenceable; hence, all the allocations that are swap-optimal are

contained in the bars concerning sequenceable or Pareto-optimal

allocations. Similarly, the absence of bars for swap-optimality and

NS (non-sequenceable) in both graphs for the CEEI case confirms

the result of Proposition 10.

9 CONCLUSION
In this paper, we have shown that picking sequences and cycle-deals

can be reinterpreted to form a rich hierarchy of efficiency concepts.

Many interesting questions remain open, such as the complexity

of computing cycle-deals or the link between efficiency concepts

and social welfare. One could also think of further extending the

efficiency hierarchy by studying restrictions on possible sequences

(e.g. alternating) or extending the types of deals to non-cyclic ones.

5
Available at: https://gricad-gitlab.univ-grenoble-alpes.fr/bouveres/fairdiv.

https://gricad-gitlab.univ-grenoble-alpes.fr/bouveres/fairdiv
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