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Abstract: The noise generated in the contact zone can be amplified by the horns
made by the surfaces of the tire and the road. Previous researches on the horn
effect have only investigated smooth tires and roads. In this work we take into
account the tire treads in the calculation of the horn effect. The air resonances
and horn effects are studied in the same model. A model of flanged networks
is established for the tire/road system, and multi-domain coupling methods are
developed for the calculation of the acoustic fields around the flanged networks.
With this model the reductions of the amplifications of the horn effect by the
networks can be estimated. The model of the flanged networks are also proved to
be effective by the experiments. Wooden pipes between a wooden cylinder and a
sheet of plywood are built for the validation. A real tire on a sheet of plywood is
also measured and calculated with the proposed methods.
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1 Introduction

Road traffic noise is a part of the community noise which also includes other traffic,
industries, construction, public work and so on see Berglund et al (1999). Among these
noise sources, the road traffic noise is a dominant source. About 40% of the Europeans are
exposed to levels of road traffic noise exceeding 55dBA daytime, and 20% are exposed to
levels exceeding 65dBA according to the study by Lambert and Vallet (1994). Nowadays,
this problem is even worse due to the population growth, urbanization and the enlargements
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of the highway systems. The traffic noise is very annoying and has many adverse health
effects. It can cause population annoyance, interference with communication and intended
activities, disturbance of sleep, hearing impairment and so on. It also has large economic
effects. From the EU Green Paper by the European commission (1996) we know that the
cost of traffic noise in 17 European countries is about 0.65% of GDP.

The traffic noise emitted to the environment includes the tire/road noise, powertrain
noise and the aerodynamic noise, see Qatu et al (2009); Qatu (2012). The contribution
of the tire/road noise in the total noise level is the largest for cars travelling faster than
50km/h and trucks travelling faster than 80km/h see Bernhard et al (2005); Gagen (1999).
The tire/road system can be seen as a horn-like structure. The surfaces of the tire and the
road constitute horns in front of and behind the contact zone. The noise generated in the
contact zone is amplified by the horn-like structures. This horn effect was studied by several
authors. Two-dimensional computations of the horn effect were done by Anfosso-Ledee et
al (2000b) and compared to three-dimensional results in Anfosso-Ledee et al (2000a). A
detailed analytical, numerical and experimental analysis of the horn effect was done by Graf
et al (2002); Kuo et al (2002). The analytical model of a sphere on an absorbing ground
was used by Bravo and de la Colina (2015); Bravo (2017) and compared to measurements
to estimate the horn effect on a finite impedance ground. While other studies were in the
frequency domain, Zhang et al (2017) used efficient computations in the time domain to
predict the horn effect. All these studies assume a smooth surface for the tire and the road.

The acoustic fields around the tire/road system can be influenced by the network
resonances in the contact zone. These come from the sculpture of the tread and the irregular
level of the road which creates cavities in the contact zone. It is known that this generates
air-pumping but this can also have influence on the horn effect itself since this horn effect
is rather sensible to the true geometry of the horn. This effect will be studied in the present
work. Horn-like structures with networks inside can be considered as bodies with macro
porosities, which can be seen in the analysis of porous walls, horn effects of road/tire and
so on. Such problems include the acoustic transmission-radiation problems. The porosities
could be made of networks, several parallel pipes or a mixture of them. In such systems the
networks to be analysed have small cross sections. However, the cross sections are neither
as small as the arbitrary microscopic holes in many porous materials nor potentially as
complicated as some pipes in mufflers. Mufflers can have complicated internal structures
such as inlet/outlet tubes, thin baffles, perforated tubes, and sound absorbing materials. So
it is not suitable to use the same methods to calculate the sound pressure fields. Besides, in
porous materials acoustic energy is dissipated as heat because of viscosity, so noise could
be reduced by porous materials. But for the networks considered in this work the main
mechanisms of noise reduction by networks are the pipe resonances. However, the methods
for mufflers could give some inspirations. There are several methods for the analysis of
mufflers summarized in Park et al (2009). The multi-domain boundary element method
(BEM) and BEM with the transfer matrix could be used for the calculation of the flanged
network, but some changes should be made.

A brief introduction of the applications of multi-domain BEM can be seen in Wu (2008).
It was first used to analyze the potential problem and elasticity by Brebbia and Walker
(1980). Then it was introduced to solve acoustic problems. An important application of
multi-domain BEM to acoustics is the coupled interior/exterior problems of Cheng (1988)
where the interior boundary integral equation is used for a finite internal domain and the
exterior boundary integral equation is used for an infinite external domain. The solution at
the interface between the two domains is coupled by the continuity constraint equations.
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So the problem can be solved as a continuous field problem to get a solution at any point
in the whole domain. The multi-domain BEM is also used to deal with problems with
several acoustic media in Utsuno et al (1990). Another common application is the problem
about thin bodies considered by Cheng et al (1991); Wang et al (1993) before using the
hypersingular integral equation.

Concerning the interior network, transfer matrix techniques have been applied to the
analysis of connected pipes with many changes of sectional area in Munjal (1987). The
advantage is that only two-by-two matrices are needed and it is possible to work on a
desktop computer, but only using the transfer matrix is not easy to apply to networks with
complicated junctions. In Craggs and Stredulinsky (1990) a different form of transfer matrix
is used, together with matrices derived for two-dimensional junctions by the finite element
method, to describe a complete network. In Lou et al (2003) the transfer matrix is used to
combine the impedance matrix of each substructure of a silencer. The transfer matrix can
easily connect two substructures and describes the relation in the pressures and particle
velocities between them. But an assumption should be true to get the transfer matrix, which
is the plane wave propagation in the connected parts.

For the network analysed in this paper, BEM of one computational domain is available,
but only for very simple cases, as BEM needs fine mesh around the resonant frequency of
the air in the network to get converged solutions. Substructuring techniques can reduce the
matrix size and the total computational time for complex structures. Dividing the whole
acoustic domain into several subdomains is the main idea of the multi-domain coupling
method. Each subdomain, which could be an exterior or an interior one, has a well-defined
boundary and the same material property. The exterior boundary integral equation is used
for the infinite external subdomain. For the interior subdomain, as the networks studied
here will remain simple, transfer matrices with 2D analytical relations will be used. The
solutions at the interfaces between the subdomains are coupled by the continuity constraints
of the sound pressure and normal particle velocity.

First the model of flanged networks and the computational methods are introduced. Then
simulations and experiments are compared to check the accuracy of the proposed methods
in the following section. Next the model and the computational methods are applied to a
real tire. Last some conclusions are drawn.

2 Modelling of network resonators in horn-like structures

Our main objective is to understand the influence of cavities in the contact zone on the sound
radiation and the horn effect for tire/road noise. The structures that will be studied looks
like that of Fig.1a and consists in a body diffracting a sound pressure created by sources
in air. In contrary to the classical case where for instance a velocity boundary condition is
applied on the whole surface of the body, here the body has an internal structure made by a
network of waveguides such that different points at the surface of the body can be connected
by this network. The network constituting the porosities could have any connection pattern:
an arbitrary network, parallel pipes or a mixture of them. The pipes here have small cross
sections. The purpose of the present work is to estimate the influence of such a network on
the diffraction of sound by the body compared to the case where there is no network and to
apply this to the case of a tire on a road.
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2.1 Problem specification

Fig.1a represents a three dimensional network inside a body with arbitrary flanges. A point
sourceS is put near the flange. The acoustic wave at the receiver pointR includes three parts
(see Fig.1a): a wave directly from the source, a wave reflected from the flanged without
network (see Fig.1b) and a wave radiating from the network with flange (see Fig.1c).

(a) (b)

(c)

Figure 1: (a) Total pressure; (b) Pressure directly from the source and reflected by the
flange; (c) Pressure radiating from the network

The wave from the source arrives at ends of pipes and then propagates in the network.
The straight parts of the network are very thin compared with the wavelength to be analyzed.
The frequencies of the source are below the cut off frequencies of straight parts. So there is
only a plane wave motion in the straight parts that consists of a forward travelling wave and
a backward reflected wave. The waves in the junctions of the network have higher order
modes generated by the geometrical discontinuities, but they don’t propagate in the straight
parts where they are quickly attenuated outside the immediate proximity of the junctions.

In Fig.1b, imaginary pipe ends are used instead of the real ends. The imaginary ends are
inside the network but close to the real ones. The imaginary surfaces Simag are assumed
to be perpendicular to pipes walls to simplify but any surface not to close to the opening
could be used. Thus, at Simag the wave is uniform and the velocity is perpendicular to
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the imaginary end, which is useful in the method proposed in this paper. However, it is
not uniform at the real ends, even if the real ends are perpendicular to the network walls,
because the cross sections change suddenly. This is why imaginary surfaces Simag are used.

Concerning the boundary conditions, we assume here that the surface of the body is
rigid, except at the pipe ends Simag where the pressure and the velocity are continuous
between the pipe ends and the body surface. All other surfaces such that the network walls
and the surface of the road, if there is one, are also rigid. It would not be too difficult to
consider impedance boundary conditions but to simplify this is not done in this work.

2.2 Multi-domain coupling methods

The network to be analyzed consists of cylindrical or rectangular pipes with small cross
sections. The calculation of the total acoustic pressure ptot at a point R in the exterior
domain in Fig.1a by multi-domain coupling methods is introduced in this section.

In boundary element methods, see Brebbia and Walker (1980); Ciskowski and Brebbia
(1991); Chen and Zhou (1992); Bonnet (1999), for a problem with an unbounded domain,
the integral equation to be solved is given by

ce(x)p(x) =

∫
Γ

p(y)
∂G

∂ny
(x, y)dy−

∫
Γ

∂p

∂ny
(y)G(x, y)dy + pinc(x) (1)

Γ includes the flange and the imaginary network ends (see Fig.1b). y is a point on the
boundary Γ and x can be a point on the boundary or in the fluid domain. pinc(x) is the
incident pressure from the source without the structure.G is the Green function such that in
free fieldG = eikr

4πr with k the wavenumber and r = |x− y| the distance between the point
source and the receiver. In case of a rigid road, the contribution of the image source relative
to the road should be included in the Green function to avoid the mesh of the ground. n is
the unit normal vector pointing into the fluid domain. To get the total pressure ptot in the

exterior domain, let ce(x) = 1, and the pressure p(y) and its derivative
∂p

∂ny
on the surface

Γ should be calculated first.
To get the pressure p(y) and its derivative

∂p

∂ny
on the surface Γ of a complex

network with flange, the computational domain in Fig.1a should be divided into an exterior
subdomain and an interior subdomain by creating imaginary ends for the network. The
exterior subdomain is solved by BEM to get BEM system matrices and an excitation vector.
The interior subdomain is solved by analytical methods (transfer matrix) to get the relation

between p and q =
∂p

∂n
at these ends. Then the exterior and interior subdomains are coupled

at the interfaces. Finally, by solving the overall equation system, one has p(y) and
∂p

∂ny
on

the surface Γ. The process is described in detail in the following.

2.2.1 Exterior subdomain

In Eq. (1), for a point x on Γ, ce(x) equals 1/2 if the surface Γ is regular at this point. The
discretization of Eq. (1) is obtained from a mesh of the surface of the domain. Then a linear
system (2) can be obtained whose solution gives an approximation of the solution on the
surface Γ. More information can be found in Duhamel (1995, 1994).

AP + BQ = Pinc (2)
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P, Q and Pinc are vectors of pressure, derivative of pressure and incident pressure,
respectively. A and B are BEM system matrices.

For the exterior subdomain in Fig.1b, dividing the vectors in Eq. (2) into vectors of
imaginary ends and vectors of flange, one has

AE
[

PEep
PEf

]
+ BE

[
QE
ep

QE
f

]
=

[
Pepinc
Pfinc

]
(3)

The subscripts and superscripts ep and f mean the imaginary ends of the pipes and flange,
respectively, and E means exterior. Matrices AE and BE can be obtained by solving the
problem in Fig.1b with BEM software. In the BEM software, using the rigid boundary
condition on the surface Γ, one can get AE . Using the soft boundary condition, one can get
BE . The incident pressure pinc can be obtained in either of the two computations above.

2.2.2 Interior subdomain

One dimension without loss

The straight pipe through the flange or the straight part of a network between the flange and
a junction or two junctions in Fig.1c, whose central axis is labelled as z, is thin compared to
the wavelength to be analyzed. There is only plane wave consisting of a forward travelling
wave and a backward reflected wave. Pressure p and its derivated q are constant on a plane
perpendicular to z. So one has the wave equation (4) and its solution (5) and (6).

∂2p

∂z2
+ k2p = 0 (4)

k = ω
c is the wave number, ω the angular frequency and c the speed of sound.

Suppose that the solution of equation (4) is

p(z) = a cos kz + b sin kz (5)

The convention e−iωt is adopted, where i2 = −1 and ρ is the density of air. The velocity
is given as

v(z) =
1

iρω

∂p

∂z
(6)

Surfaces Sr and Sl in Fig.1c have different normal directions. For one node on Sr
(z = zr), p and q can be written as, see Fig.2

pr = a cos kzr + b sin kzr

qr = ka sin kzr − kb cos kzr (7)

On Sl (z = zl)

pl = a cos kzl + b sin kzl

ql = −ka sin kzl + kb cos kzl (8)
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Figure 2: Straight pipe with the pressure and its derivative at the extremities

One gets a and b from equation (7), and then substitute them into (8). From this relation
one has to define a link between the values of pressure and its normal derivative for the
nodes at both ends of the pipe to complete relation (3). The relation of p and q between one
node on Sr and another node on Sl can be obtained as

[
qr
ql

]
=

[
t11 t12

t21 t22

] [
pr
pl

]
(9)

Taking the pressure as the primary variable and expressing the normal derivative in term
of the pressure, in (9), p can be expressed as the mean value of the pressure at nodes in a
section because the pressure should be constant at each pipe end. So q of any node i on Sr
and q of any node j on Sl becomes

[
qri
qlj

]
=

[
t11 t12

t21 t22

]


1

nr

i=nr∑
i=1

pri

1

nl

j=nl∑
j=1

plj

 (10)

Here nr and nl are the node numbers at each end. Thus, the relation between the p vector
Pe and q vector Qe at the two ends can be written as

Qe = SPe (11)

where the transfer matrix

S =

 t11

nr
Jnr,nr

t12

nl
Jnr,nl

t21

nr
Jnl,nr

t22

nl
Jnl,nl

 (12)

Ji,j is a matrix with i lines and j columns, where each element equals one.
For a body with parallel pipes, one has the system equations (3) for the exterior

subdomain and the analytical relation (11) for the two ends of each straight pipe. Therefore
the overall system can be obtained. After applying the boundary conditions to the flange
and tube walls and solving the overall system, the values of p and q for each node on the
whole surface Γ can be obtained.
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One dimension with losses

According to the study by Kinsler et al (1999), there are viscous losses at rigid walls of
thin pipes. In this case, the equation of motion is

−∂p
∂z

= −iρωv̄ +Rv̄ (13)

with the average velocity v̄ at the pipe cross-section, and the damping coefficient of the thin
pipe

R =
1

r

√
2ηρω (14)

where r is the radius of the circular pipe, and η is the coefficient of shear viscosity.
The equation of continuity and equation of state do not change, then the wave equation

(15) can be obtained

∂2p

∂z2
+ k2p+

iωRp

ρc2
= 0 (15)

The solution of equation (15) can be given as

p(z) = a cos k′z + b sin k′z (16)

with k′ = k + iα, where α is the absorption coefficient for the viscous losses

α =
1

rc

√
ηω

2ρ
(17)

The average velocity can be obtained from equation (13)

v̄ =
1

iρω −R
∂p

∂z
(18)

Equations, which are similar to equations (7)-(12), can be obtained, in which k should be
replaced by k′. So an equation similar to equation (11), describing the relation between the
p vector Pe and q vector Qe at the two ends, can be written as

Qe = S′Pe (19)

where in matrix S′, wave number k is replaced by k′.
The impedance of the pipe with viscous losses is

Zv =
l

πr3

√
2ηωρ− ρl

πr2
ωi (20)

where l is the pipe length.
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Thermal conduction losses should also be taken into account in thin pipes besides
viscous losses according to Kinsler’s measurements. The coefficient of shear viscosity η
used above should be replaced by an effective coefficient ηe. The latter is defined by

ηe = η[1 +
γ − 1√
Pr

]2 (21)

where γ is the ratio of specific heats of air and Pr is the Prandtl number.
The overall system can be obtained from equations (3) for the exterior subdomain, from

(19) for the pipes which includes the viscous and thermal conduction losses and then solved
as previously.

Two dimensions

In this part, all the pipes and junctions constituting a network are in the same plane and
have the same width. Only rectangular pipes and three types of junctions will be considered,
which are L shaped, T shaped and cross junctions. The straight pipes have sufficiently small
transverse dimensions compared to the wave length under consideration, so the higher order
waves can not propagate. However, the higher order modes are required in order to satisfy
the boundary conditions imposed by the junctions.

Miles first introduced the transmission line and impedance analogies for plane
discontinuities in the articles Miles (1946a) and Miles (1946b). Then Miles (1947) gave the
relations between pressures and velocities of right-angled joint ends in rectangular pipes,
which can be used to get the boundary conditions at the junction ends. In Miles theory the
propagation of the principal wave is represented by the voltage and current on a transmission
line. An impedance element of the equivalent circuit for the junctions is calculated to give
the effect of the high order modes on the principal wave.

The junction under consideration is shown in Fig.3. There are n straight pipes and one
has n = 2 for the L junction, n = 3 for the T junction and n = 4 for the cross junction. The
problem is considered as 2D, for the incident waves are assumed to be plane and the depth
of the pipes is irrelevant. The voltages and currents are respectively denoted byU0 and I0 at
the junction ends. They are assumed related through the admittance matrix (Yij) such that

Ii0 =

n∑
j=1

YijU
j
0 i = 1, 2, ..., n (n = 2, 3 or 4) (22)

The equivalent circuits of the junctions and the calculation ofYij can be seen in Miles (1947)
where one can see the terms of high order modes of Yij . Here only the first approximations
of Yij are given.

Y12 = Y21 = Y23 = Y32 = Y34 = Y43 = Y14 = Y41 = iY0θ
−1

Y13 = Y31 = Y24 = Y42 = iY0 csc θ

Y11 = Y22 = Y33 = Y44 = iY0 cot θ (23)

With Y0 = ρc/S and θ = ka. S = a2 is the straight pipe cross section area.
At the junction ends, one has the relations

p =
√
SI0 (24)
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Figure 3: Junction

v =
√
S
−1
U0 (25)

Thus, one has the relations between pressures and velocities at the junction ends.
For a body with a 2D network, one has equations (22), (24) and (25) for each junction,

the analytical relation (11) or (19) for the two ends of each straight pipe and the system
equations (3) for the exterior subdomain. All this can then be solved as previously.

3 Simulation and experimental validation

3.1 Simulations

In this section, we calculate the acoustic fields of pipes between a round surface and a plane
surface as in Fig.4a. The round surface in this section is a smooth cylinder. Its radius is
0.27m and its width is 0.15m. The contact zone between the cylinder and the plane surface
is 0.15m× 0.1m.

3.1.1 Straight pipe

In the contact zone in Fig.4a, we first study the case where there is a longitudinal straight
pipe at the center. The pipe cross-section is 0.005m× 0.01m. Since the pipe is very simple,
for this case, we can use BEM directly to get the acoustic fields by meshing the cylinder and
the straight pipe first. The meshes can be seen in Fig.5a. Since the cylinder has a symmetric
plane, half of the cylinder is meshed.

The source is at (0.1m, 0m, 0.005m). From the reference system of Fig.4b, the source
is thus at 0.1m on the right of the center of the contact zone and at 5mm above the ground.
The results at (1m, 0m, 0.06m) can be seen in Fig.6. The solid line, dash line and dot line
are results for no pipe, one straight pipe without losses and one straight pipe with viscous
losses respectively. The viscous losses are taken into account in the BEM calculations by
an impedance which is given by equation (20). The difference of SPL between the solid
line and the dot line is 5.5dB at the resonant frequency 1430Hz, and is 6.8dB between the
solid line and dash line at the resonant frequency 1460Hz. The resonant frequency has a
small shift of 30Hz. By using the viscous losses, the differences become smaller.
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(a)

(b)

Figure 4: (a) Network between a round surface and a rigid plane surface; (b) The network
with open ends.

The numerical results of this example will be compared with measurements in section
3.2.3.

3.1.2 Network

In the contact zone in Fig.4a, there is a network at the center which can be seen in Fig.4b. In
the network, there are two longitudinal (x direction in Fig.4b) and three transverse branches
(y direction). The network has symmetric planes xz and yz. The plane surface is in the plane
xy. The pipe width is 0.009m. Since the cylinder has a symmetric plane xz, half of the
cylinder without network is meshed with 2D elements. The source is at (0.1m, 0m, 0.005m).
Since this case is more complex than the precedent straight pipe, the coupling between the
BEM and the analytical 2D computations of section 2 is used in this case.

The results at (1m, 0m, 0.06m) are shown in Fig.7a where we can see two obvious
variations of SPL around the resonant frequencies compared to the solid line. The first
variations are reductions around 1220Hz, and the second variations are reductions and
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(a)

(b)

Figure 5: (a) Meshes of half a cylinder with half of a straight pipe at the center of the contact
zone; (b) Details of meshes of the contact zone.

amplifications around 1850Hz. From table 1 we can see the influences of viscous and thermal
conduction losses on the SPL. At the frequencies of three SPL extrema, the more losses we
take into account, the smaller the SPL differences between the case without network and
the case with one network are.

Table 1 Differences of SPL in Fig.7a between the case without network and the case with a
network around the resonant frequencies

Frequencies No losses Viscous losses VT losses
1220 Hz 3.30dB 2.98dB 2.85dB
1800 Hz 6.89dB 5.41dB 4.88dB
1880 Hz 3.13dB 2.65dB 2.44dB

Note: Viscous and thermal conduction losses (VT losses)
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Figure 6: Predicted results for a straight pipe between a cylinder and a plane surface

The influence of the network on the acoustic fields mainly results from the pipe
resonances. The viscous and thermal conductivity losses can give small corrections. If no
viscous and thermal conductivity losses are taken into account, the multi-domain coupling
methods can still be applied to the estimation of the tendencies of the acoustic pressure and
the resonant frequencies.

3.2 Experimental validation

The flange-network interaction model has been established. In this section, experiments
will be carried out to validate the numerical simulations of this model. The radius and width
of the cylinder in Fig.9b are 0.27m and 0.15m. Its location can be seen in Fig.8 where the
sketch of the experimental setup is shown. The locations of the source and receiver are
exchanged in Fig.9a thanks to the reciprocity principle. The experiments are performed in
a large hall to avoid a too large influence of the reflections from the wall. The plywood
on the floor in Fig.9a is used to simulate a rigid plane surface. Sweep signals from 1Hz to
2000Hz are generated by a generator. The center of the speaker is at (1m, 0m, 0.06m). The
microphone is at (0.1m, 0m, 0.005m).

First we present the acoustic source used in our experiments. Then the acoustic fields
of a cylinder on a plane surface are computed and measured. In this comparison, there is no
pipe between the cylinder and the plane surface. Next a straight pipe between the cylinder
and the plane surface are measured. Last a network between the cylinder and the plane
surface is measured.

3.2.1 Point source

In our simulations, a dimensionless point source is used, and it has been assumed omni-
directional. Typical sources used in previous researches are audio speakers Yu (2009), audio
speakers coupled with circular pipe Jin et al (2001) and electrostatic spark sources Jolibois
(2013). In our study the predicted results will not be compared directly with the measured
results. Instead, the general tendencies and frequency-dependant variations of the sound
pressure will be compared between the predicted and measured results. Such comparisons
are very common and widely used in previous studies such as in Cummings (1992) and Yu
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Figure 7: Predicted results for a network between a cylinder and a plane surface: (a) 200−
2000Hz; (b) Around the resonant frequencies

Figure 8: Sketch of the experimental setup

(2009). So, it is not necessary to use a omni-directional source in our experiments. A real
loudspeaker, whose signal is digitally generated, is used as source in the experiments. Its
dimensions are 0.12m× 0.12m× 0.12m.



Horn effect of tire/road noise 15

(a) (b)

Figure 9: (a) The experimental set-up; (b) flange used in the calculations and experiments

3.2.2 Plane surface with or without a cylinder

Since the measurements are performed in a large hall with walls not fully anechoic, it is
essential to know if the influence of reflections from walls and roof can be ignored or not.
In this section, two measurements are done for this purpose. In the first case, a cylinder is
located on a plane surface, but there is no pipe between the cylinder and the plane surface.
In the second case, we move the cylinder away from the plane surface.

The acoustic field of the first case can be calculated by BEM. In the second case the
plane surface is rigid, so it can be considered as a symmetric plane. An image source is
created in Fig.10b. Thus, the second case can be solved by equations (26) and (27). The
predicted results can be seen in Fig.11a. The measured results of SPL are shown in Fig.11b.

p =
eikd1

4πd1
+
eikd2

4πd2
(26)

where d1 and d2 are the distances from the source and the image source to the receiver in
Fig.10b.

SPL = 10 log10

|p|2

4× 10−10
(27)

When we compare the predicted results in Fig.11a and the measured results in Fig.11b,
similar tendencies of SPL can be found. The maximum difference of predicted SPL between
the case with the cylinder and the case without the cylinder is about 15dB around 1250Hz
in Fig.11a. The maximum difference between these two cases of the measured SPL is about
14.5dB around 1300Hz in Fig.11b. The predicted results agree well with the measured
results. We can conclude that the reflections from the walls and the roof can be ignored in
our experiments.
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(a)

(b)

Figure 10: (a) A cylinder on a plane surface (no pipe between the cylinder and the plane
surface); (b) A rigid plane surface between a source and an image source.

3.2.3 Straight pipe

The example calculated in section 3.1.1 is measured in this section, which can be seen in
Fig.12. We measured the case with a straight pipe and the case without pipe. In the case
without pipe, we close the pipe ends with woods.

The results are shown in Fig.13, where we can see a reduction of SPL of 3.5dB around
the resonant frequency 1460Hz. The reduction of numerical results with viscous losses in
Fig.6 is 5.5dB at the resonant frequency 1430Hz. The difference of reduction at the resonant
frequency between measurement and simulation is 2dB. In this example the tendencies of
numerical SPL are similar to the measurements, and the resonant frequency is estimated
correctly.

3.2.4 Network

The network calculated in section 3.1.2 is measured in this part to validate the multi-domain
coupling methods proposed in this work. When we measure the case without network, we
close the pipe ends in Fig.14 with woods.

Table 2 Measured results

Measured f Measured differences
1200Hz 4dB
1800Hz 3.5dB
1900Hz 3.2dB

The experiment is shown in Fig.14. The results can be seen in Fig.15. There are three
SPL extrema around the two resonant frequencies. Around the first resonant frequency, we
can see a reduction. Around the second resonant frequency, there are a reduction and an
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Figure 11: (a) Predicted results; (b) Measured results.

Figure 12: A straight pipe between a cylinder and a plane surface

amplification. The measured frequencies of these three extrema and the differences between
the case with pipes and the case without pipe are shown in table 2. This is to be compared
with the predicted results of table 1.

At the second extremum at the frequency 1800Hz, the SPL reduction of experimental
results between the solid line and the dash line is about 3.5dB. The SPL reduction 4.88dB of
numerical results with viscous and thermal conduction losses is closer to the measurements.
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Figure 13: Measured results of flange with a straight pipe

Figure 14: A network between a cylinder and a plane surface
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Figure 15: Measured results of flange with a network

So for a thin pipe in this work, the viscous and thermal conduction losses should be taken
into account. Otherwise, the difference of reductions between experimental and numerical
results for the second extremum is too large. For the two other resonance frequencies
the differences are smaller and of the order of the measurement error. Compared with
simulations, the frequencies of these three extrema, which are about 1200Hz, 1800Hz and
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1900Hz, are estimated correctly, and the variations of these three extrema are also very
close. The errors are 1.15dB, 1.38dB and 0.76dB. Besides, we can see similar tendencies
of SPL between experiments and simulations.

4 Application to horn effect of tire/road noise

In order to know whether the tire treads in the contact zone have influences on the acoustic
radiation of the tire and road system, measurements of the acoustic fields for a real Michelin
165/65 R13 tire are performed. Then the calculations of the sound pressures are done by the
methods proposed in the previous sections. The tire treads in Fig.16a are very complex. There

(a)

(b)

Figure 16: (a) Tire with an open network; (b) Tire with a closed network.

are three longitudinal pipes (pipe 1, 2 and 3) with large cross-sections, two longitudinal
pipes (pipe 4 and 5) with very small cross-sections and many transverse pipes with different
cross-sections. For the sake of simplicity, we only investigate the network in the middle
of the contact zone. The network consists of the longitudinal pipes 1 and 2 and the large
transverse pipes between them in Fig.16a. But there are also many small pipes connecting
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to the network to be studied, so we fill them with silicone. We also fill the longitudinal pipe
3 to make sure that there is no other longitudinal pipe except the pipe 1 and 2 in the network
to be investigated.

Two tests are performed. In the first test, the network is open. In the second test, we fill
the network with silicone in the contact zone (see Fig.16b). We can see that the ends of the
pipes 1 and 2 are closed in Fig.16b. These two tests are compared to study the influence of
the treads on the acoustic radiation. We use five concrete cylinders (Fig.17a) as a load of
approximately 74kg to get the flat contact zone (Fig.17b). The purpose is not to simulate the
real contact zone of a tire of a wheel mounted on a car but to get a simple experiment with
this sort of tire. In order to obtain the dimensions of the network in the contact zone, first
we put the tire on the flour for several minutes. Next we move the tire on a clean surface.
Then we lay the tire flat on the surface. In Fig.17c we can see the elliptical contact zone
which is given by the lumps of flour on the tire or on the road. When we compare the tire
with and without the lumps of flour in Fig.18, we can see clearly the shape of the contact
zone. The length of the contact zone is 0.161m. The experimental setup is the same as the
wooden cylinder case, which is shown in Fig.8. The source is at (1m, 0m, 0.06m), and the
receiver is at (0.15m,−0.005m, 0.005m).

In order to predict the influence of the tire treads on the acoustic fields of our tire and
road systems, the network is modeled as the one in Fig.19a. The BEM meshes of the tire
can be seen in Fig.19b. We ignore the transverse grooves on the tire surface except the
ones in the network to be studied. We only take into account the two large longitudinal
pipes 1 and 2. The other longitudinal pipes are not modeled and the lateral surface in the
model is a flat surface. The model is mainly used to compare the cases with and without the
network and estimate the influence of the network on the acoustic fields so all the geometric
details are not taken into account. In the calculations of these two cases, the network to be
investigated will be changed from open ends to closed ends, but the other parts keep the
same. The tire width and radius are 0.165m and 0.27m, respectively. The contact zone is
0.161m× 0.165m. This is a little larger than the real contact zone of a rolling tire but the
purpose here is to estimate the physical phenomenon and not to make precise predictions for
a rolling tire. Two calculations are done. In the first calculation, the ends of the network are
open. We use the multi-domain methods given before to solve the problem. In the second
calculation, the ends of the network are closed. We use the BEM to do the calculations.

Sound pressures with and without network are presented in Fig.20a for the simulation
and the measurement at receiver (0.15m,−0.005m, 0.005m). Note that the scales are
different between the computed and measured sound pressures but the purpose is only to
compared the difference between the cases with and without network and not to adjust
the global levels. From the measured sound pressures in Fig.20a we can see only one
resonant frequency around 1734Hz. There is no variation of SPL around 868Hz which
should be another resonance as seen in Fig.20b. Maybe because the tire is not pressed
firmly in the whole contact zone. When we did the tests of wooden networks, we found
that if the woods are not glued firmly no resonant frequency can be found. The general
tendencies of the predicted SPL are not quite similar to the measured results. The reason
is that the BEM model in Fig.19b is not exactly the same as the real tire, for example the
lateral surface. But the influence of the network on the acoustic fields around 1734Hz are
estimated approximately. Around the resonant frequency 1734Hz of the network, we can
see the variations of SPL in Fig.20b. In Fig.20a, we can see the similar variations around
1734Hz. But errors of reductions and amplifications between the measured and predicted
results can be seen. These errors are due to the differences between the real tire and the
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(a)

(b)

(c)

Figure 17: (a) The load of five concrete cylinders; (b) The contact zone between the tire
and the road; (c) The contact area given by the flour.

simplified model that we use. Although above 1000Hz the agreement between the measured
and predicted results in our case of real tire is not as perfect as the agreement in the case
of the wooden cylinder and the wooden networks, we can still use our proposed model and
methods to get an estimate of the influence of the tire treads on the acoustic fields and on
the ways it can change the horn effect.
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Figure 18: The tire with the lumps of flour

(a) (b)

Figure 19: (a) The simplified network; (b) The meshes of the BEM model of the tire used
in the multi-domain coupling methods.

5 Conclusions

The tire/road system and the networks in the contact zone can be considered as flanged
networks. Multi-domain coupling methods are developed for the computation. We use
wooden pipes to compare the predicted results and the measured results. The availability and
effectiveness of the methods are shown by a reasonable agreement between the computations
and the measurements. For a thin pipe in this work, the viscous and thermal conduction
losses should be taken into account. Then a real tire is measured and calculated. Since it
is difficult to estimate the dimension of the network in the contact zone, the agreement
between the predicted and measured results is not as perfect as the agreement in the wooden
cases. However, we can see the influence of the tire treads on the acoustic fields from the
experimental results, and our proposed network can be used for the estimation of the tread
of the tire on the horn effect.



Horn effect of tire/road noise 23

200 400 600 800 1000 1200 1400 1600 1800 2000
40

42

44

46

48

50

52

54

56

58

60

62

SP
L 

(d
B)

frequency (Hz)

 no_pipe
 network

3dB2.5dB

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000

78

80

82

84

86

88

90

92

94

SP
L 

(d
B)

frequency (Hz)

 no_pipe
 network

4dB6dB

(b)

Figure 20: (a) Measured results of the network between a tire and a plane surface; (b)
Predicted results of the network between a tire and a plane surface.
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