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Abstract: 3D X-ray Computed Tomography (CT) is used in medicine and non-destructive testing1

(NDT) for industry to visualize the interior of a volume and control its healthiness. Compared to2

analytical reconstruction methods, model-based iterative reconstruction (MBIR) methods obtain3

high-quality reconstructions while reducing the dose. Nevertheless, usual Maximum-A-Posteriori4

(MAP) estimation does not enable to quantify the uncertainties on the reconstruction, which can5

be useful for the control performed afterwards. Herein, we propose to estimate these uncertainties6

jointly with the reconstruction by computing Posterior Mean (PM) thanks to Variational Bayesian7

Approach (VBA). We present our reconstruction algorithm using a Gauss-Markov-Potts prior model8

on the volume to reconstruct. For PM calculation in VBA, the uncertainties on the reconstruction are9

given by the variances of the posterior distribution of the volume. To estimate these variances in our10

algorithm, we need to compute diagonal coefficients of the posterior covariance matrix. Since this11

matrix is not available in 3D X-ray CT, we propose an efficient solution to tackle this difficulty, based12

on the use of a matched pair of projector and backprojector. In our simulations using the Separable13

Footprint (SF) pair, we compare our PM estimation with MAP estimation. Perspectives for this work14

are applications to real data as improvement of our GPU implementation of SF pair.15

Keywords: Computed Tomography, Gauss-Markov-Potts, variational Bayesian approach, Separable16

Footprint17

1. Introduction18

In 3D X-ray CT, MBIR methods enforce a prior model on the volume to image, so the reconstruction19

quality is enhanced compared to filtered backprojection (FBP) methods [1], and the dose can be20

reduced [2]. Smoothing and edge-preserving priors, such as total variation regularization [3,4],21

Gauss-Markov-Potts prior model [5] or sparsity-inducing priors in a wavelet or learnt transform22

domain [6–8], have provided promising results for the development of MBIR methods in medicine23

and NDT for industry. Due to the high dimension and to the fact that the reconstruction problem24

is ill-posed [9], exact estimation of the unknown volume is not available [10]. As a consequence,25

uncertainties on the estimation are a desirable tool for the analysis of the reconstructed volume.26

After the reconstruction has been performed, an iterative method to estimate the uncertainties is27

proposed in [10]. Nevertheless, its high computational cost makes it only applicable to a few voxels28

of interest [10]. Since MBIR methods mostly estimate the maximum of the posterior distribution of29

the unknowns (MAP), confidence regions can be computed following the reconstruction [11] but this30

procedure is difficult to apply for discrete-continuous channels estimation, such as joint reconstruction31

and segmentation [5]. For this reason, in this paper, we propose to compute Posterior Mean (PM)32
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rather than MAP. For PM estimator, the uncertainties on the reconstruction correspond to the variances.33

Our algorithm estimates these variances jointly with the reconstruction based on variational Bayesian34

approach (VBA) [12,13].35

In the following, we first present our reconstruction algorithm based on VBA, applied with a36

Gauss-Markov-Potts prior model on the volume to reconstruct [5]. To implement this algorithm, the37

main difficulty is the computation of diagonal coefficients of the posterior covariance matrix, which38

are linked to projection and backprojection operators (P/BP) : we solve this problem thanks to the use39

of a matched pair which is here the Separable Footprint (SF) [14]. We present simulation results and40

compare the obtained reconstruction with the one given by joint maximization a posteriori (JMAP)41

[5,15]. To the best of our knowledge, this work is the first attempt to apply VBA to a very general 3D42

inverse problem such as 3D X-ray CT.43

2. Variational Bayesian approach44

We consider a cone-beam acquisition process : X-rays are sent from a source through the object to
control and hit a flat detector which measures the decrease of intensity they have undergone inside the
volume. Several perspectives of the volume are acquired by rotating the object around its vertical axis.
The M collected measurements g are called the projections and are connected to volume f , of size N,
by the linear forward model taking uncertainties into account [16]

g = Hf + ζ (1)

where H is called the projection operator. Its adjoint HT is the backprojection operator [14]. Since
both the data and the volume are huge, matrix H , which is size M× N, is not storable in memory.
Consequently, successive projections and backprojections in MBIR methods are computed on-the-fly
[14,15]. Uncertainties ζ are zero-mean Gaussian [16]

p(ζi|ρζi ) = N (ζi|0, ρ−1
ζi

), ∀i ∈ {1, . . . , M} . (2)

Precisions ρζ = (ρζi )i are assigned Gamma conjugate prior [5] :

p(ρζi |αζ0 , βζ0) = G(ρζi |αζ0 , βζ0), ∀i. (3)

The prior model on the volume is a Gauss-Markov-Potts prior which consists in labelling each
voxel j according to its material zj = k ∈ {1, . . . , K}, where K is the number of materials. Then, the
distribution of value f j of voxel j depends on its material zj :

f j ∼ N (mk, ρ−1
k ) if zj = k, ∀j ∈ {1, . . . , N} . (4)

Means m = (mk)k and inverses ρ = (ρk)k of variances of the classes have to be estimated and are
assigned conjugate priors [5] : {

p(mk|m0, v0) = N (mk|m0, v0)

p(ρk|α0, β0) = G(ρk|α0, β0)
, ∀k. (5)

A Potts model is assigned to labels z in order to favour compact regions in the volume [5] : denoting
by V(j) the neighbourhood of voxel j, we have, according to Hammersley-Clifford theorem [17],

p(z|α, γ0) ∝ exp

 N

∑
j=1

 K

∑
k=1

αkδ(zj − k) + γ0 ∑
i∈V(j)

δ(zj − zi)

 . (6)
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From our prior modelM, the posterior distribution of unknowns ψ = (f , z, ρζ ,m, ρ) is given by
Bayes’ rule [5]

p(f , z, ρζ ,m, ρ|g;M) ∝ p(g|f , ρζ)p(f |z,m, ρ)p(z|α, γ0)p(ρζ |αζ0 , βζ0)p(m|m0, v0)p(ρ|α0, β0), (7)

where α = (αk)k. Based on this distribution, JMAP can be performed [5] but does not provide
uncertainties on the result. MCMC methods for joint computation of the means and the variances of
the posterior distribution are too computationally costly for 3D applications [5,18]. For this reason, we
apply VBA which consists in approximating the true posterior distribution p by a simpler distribution
q on which posterior means and variances can be easily estimated. Approximating distribution q
minimizes Kullback-Leibler (KL) divergence KL(q||p) on a chosen set of simple distributions [12]. The
choice we make for q is a factorizable approximation, which only preserves a dependence between
value f j of voxel j and its label [19] :

q(f , z, ρζ ,m, ρ) =
N

∏
j=1

q f j
( f j|zj)×

N

∏
j=1

qzj(zj)×
M

∏
i=1

qρζi
(ρζi )×

K

∏
k=1

qmk (mk)×
K

∏
k=1

qρk (ρk). (8)

Minimizing KL divergence with respect to each factor while fixing the others leads to [13,19]

q f j
( f j|zj = k) = N ( f j|m̃jk, ṽjk)

qzj(k) ∝ exp
[
α̃jk + γ0 ∑i∈V(j) qzi (k)

]
, ∀k

qρζi
(ρζi ) = G(ρζi |α̃ζ0i

, β̃ζ0i
)

qmk (mk) = N (mk|m̃0k , ṽ0k )

qρk (ρk) = G(ρk|α̃0k , β̃0k )

(9)

The VBA algorithm turns into the iterative updating of the parameters of these distributions with
respect to the others. The updating formulae and the order of their applications are given in [13]. In
particular, at iteration t, the variances of the approximating distribution for the volume are updated by

ṽ(t)jk =

 α̃
(t−1)
0k

β̃
(t−1)
0k

+
[
HTṼ −1

ζ H
]

jj

−1

(10)

where Ṽζ = diag
[
ṽζ

]
and ṽζi =

β̃
(t−1)
ζ0i

α̃
(t−1)
ζ0i

, ∀i [13]. Moreover, the updating formula for intensity parameter

of the approximating Gamma distribution for ρζi is [13]

β̃
(t)
ζ0i

= βζ0 +
1
2

(
(gi − [Hm̃]i)

2 +
[
HṼ HT

]
ii

)
(11)

where Ṽ = diag [v] and 
m̃j = ∑K

k=1 m̃(t)
jk q(t)zj (k)

ṽj = ∑K
k=1

[
ṽ(t)jk +

(
m̃(t)

jk − m̃j

)2
]

q(t)zj (k)
. (12)

To compute approximate posterior variances, formula (10) needs the computation of diagonal45

coefficients of HTṼ −1
ζ H , while formula (11) needs diagonal coefficients of HṼ HT . Both of these46

matrices imply projector and backprojector which are not in memory, contrary to 2D applications [19].47

Therefore, in order to implement VBA for 3D X-ray CT, we need to find a way to compute diagonal48

coefficients in formulae (10) and (11) efficiently. We propose a strategy which is detailed in the next49

section.50
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(a) (b)
Figure 1. Diagonal coefficients of HTH (a) and HHT (b)

3. Computation of diagonal coefficients51

At one iteration of the algorithm, for any voxel j, diagonal coefficient used to compute vjk by (10)
is

dvj =
[
HTṼ −1

ζ H
]

jj
= ‖He(j)‖2

Ṽζ
(13)

where e(j)
i = δ(j− i), ∀i. As dv = (dvj)j has the size of a volume, formula (13) implies to compute N

projections, which is very long, even if the projector implemented on GPU is very fast. We calculated
that, if we have to reconstruct a volume of size N = 2563 voxels from 64 projections of size 2562 pixels,
and if one projection takes only 10 milliseconds, computing all dialgonal coefficients dvj , ∀j, for only
one iteration of proposed VBA algorithm [13], would require more than 40 hours. Due to this huge
computational cost, we prefer to consider the algebraic formula :

dvj =
[
HTṼ −1

ζ H
]

jj
=

M

∑
i=1

H2
ijṽ
−1
ζi

, ∀j. (14)

From this formula, diagonal coefficients dv appear to be similar to a backprojection of ṽ−1
ζ = (ṽ−1

ζi
)i,

except that coefficients Hij are replaced by their squares H2
ij, ∀i, j. Similarly, diagonal coefficients

dζi =
[
HṼ HT

]
ii
=

N

∑
j=1

H2
ijṽj, ∀i, (15)

appear like a projection of volume ṽ, with H2
ij instead of Hij. Given formulae (14) and (15), we52

implement a squared-projector H(2) such that H(2)
ij = H2

ij, ∀i, j, and a squared-backprojector (H(2))T . Both53

are implemented exactly like the projector and the backprojector respectively. In order to ensure the54

validity of formulae (14) and (15), and therefore the convergence of our algorithm, we use a matched55

P/BP pair, which is here the Separable Footprint (SF) pair [14]. This pair is implemented on GPU as56

described in [15]. The same implementation is used for H(2) and (H(2))T .57

Thanks to these new operators, in one iteration of our algorithm, diagonal coefficients dvj , ∀j,58

are simultaneously computed by applying (H(2))T , which is very fast because it takes exactly the59

same time as a backprojection, instead of N projections. Similarly, diagonal coefficients dζi , ∀i, are60

simultaneously computed by applying H(2), as fast as one projection, instead of M backprojections.61

Figure 1 shows diagonal coefficients of HHT and HTH , computed by H(2) and (H(2))T respectively.62

Diagonal coefficients of HHT have the size of projections and are shown as it in figure 1, while those63

of HTH are shown as a volume. We now apply our VBA algorithm to simulated data, and compare64
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Figure 2. Original phantom
Figure 3. Reconstruction by PDFW

the estimated PM with JMAP. JMAP algorithm is described in [5] and applied with SF pair as we did65

in [15].66

4. Results67

The simulated phantom is of size 2563 voxels and contains K = 5 classes. It is shown in figure 2.68

We reconstruct this volume from 64 projections of size 2562 pixels, uniformly distributed over [0, 2π].69

These projections are noisy with SNR equal to 20 db.70

Parameters (αζ0 , βζ0 , α0, β0) are fixed near Jeffreys’ prior as in [13,19]. The strategies to fix other71

parameters α, γ0, m0 and v0 are explained in [13]. The values of the parameters for VBA are given in72

table 1, excepted m0 and α which are fixed automatically as in [5]. For our comparison, the parameters73

are the same for JMAP. The initialization of approximating distributions for VBA is described in [13].

Parameters K γ0 v0 αζ0 βζ0 α0 β0
Values 5 6 1 10−4 10−2 10−6 10−2

Table 1. Parameters for JMAP and VBA algorithms

74

This initialization requires initial volume and segmentation, obtained as explained in [13]. The same75

initialization is used for JMAP.76

Figures 4 and 5 show the reconstructions obtained by JMAP and VBA respectively. They77

are compared with total-variation (TV) regularization. For TV, the reconstruction, shown in78

figure 3, is obtained thanks to Primal-Dual Frank-Wolfe algorithm (PDFW) [20]. Thanks to79

the use of Gauss-Markov-Potts prior model, JMAP and VBA reconstructions have compact and80

well-distinguishable regions, while contours are slightly blurred for TV. VBA reconstruction has81

smoother contours than JMAP.82

For each reconstruction, the L2-relative error with respect to the original phantom is shown83

in table 2. As we see in figure 5, details are lost by VBA because of the factorized approximating84

distribution. Consequently, VBA has the highest error, while it is roughly the same for PDFW and85

JMAP. The variances of the posterior distribution of the volume estimated by VBA are shown in figure86

9. Unsurprisingly, the highest variances are on the thinest part of the phantom which is the bone.87

Nevertheless, the loss of details in the reconstruction is not highlighted by posterior variances. Indeed,88

uncertainties are known to be under-estimated in VBA when considering divergence KL(q||p) [12].89

The stop criterion for PDFW is given in [20] and is minimized, while those for JMAP and VBA are90

maximized and given in [5,13] respectively. For each algorithm, the evolution of stop criterion is91

shown in figures 6, 7 and 8 respectively. One iteration of JMAP contains 20 sub-iterations and few92

sub-iterations for segmentation step [5], while VBA and PDFW do not have sub-iterations [13,20].93
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Figure 4. Reconstruction by JMAP Figure 5. Reconstruction by VBA

Figure 6. Convergence of PDFW Figure 7. Convergence of JMAP

Consequently, in table 2, the computation time of VBA is much less than the one of JMAP and quite94

similar to the one of PDFW. Furthermore, during our experiments, we have noticed that, compared95

to JMAP, VBA has a higher sensitivity to the choice of the parameters, as to the number of iterations.96

Indeed, for a too large number of iterations of VBA, the reconstruction is over-regularized. This is a97

drawback of VBA compared to JMAP.98

Moreover, the memory cost of VBA is much higher than the one of JMAP and PDFW. This makes99

VBA only applicable to small regions-of-interest (ROI), typically of size 2563. Based on a reconstruction100

of high quality (for instance, obtained by JMAP [5]), the reconstruction of ROI can be performed101

following the method of [21], as done for other MBIR methods [14]. This point will be covered in102

future works.103

Algorithm L2-relative error Computation time
PDFW 6.0 % 126.3 s
JMAP 9.1 % 751.6 s
VBA 13.5 % 150.0 s

Table 2. Comparaison of PDFW, JMAP and VBA algorithms

5. Conclusion and perspectives104

In this paper, we have presented an application for 3D X-ray CT of variational Bayesian approach105

(VBA) with Gauss-Markov-Potts prior model. By computing posterior mean (PM) thanks to VBA,106

we have been able to jointly perform the reconstruction and the estimation of the posterior variances,107

which give the uncertainties on the reconstruction. To compute these variances, we have seen that108
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Figure 8. Convergence of VBA
Figure 9. Variances (log) obtained by
VBA

the huge dimension in 3D X-ray CT hinders to easily get diagonal coefficients, due to the fact that109

projection and backprojection operators cannot be stored in memory. To tackle this problem, we have110

taken benefit from the use of a matched pair of projector and backprojector, which was the Separable111

Footprint (SF) one : based on this pair, we have implemented "squared" projector and backprojector112

which have enabled us to compute diagonal coefficients on-the-fly. The GPU implementation for these113

squared operators was the same we used for SF projector and backprojector.114

Our tests on simulated data and comparison with joint maximization a posteriori (JMAP) have115

shown that VBA obtains smoother contours than JMAP and converges faster. Although the memory116

cost of VBA is higher than the one of JMAP, we have underlined that the algorithm can be applied to117

estimate the uncertainties in a region-of-interest (ROI). Future works will focus on applications to real118

and bigger data, as on optimization of GPU implementation of SF pair [15]. Other variational Bayesian119

algorithms will also be worth to study in order to improve the estimation of uncertainties.120

Funding: This research was funded by CIFRE Grant 2016/0188 from French Agence Nationale de la Recherche et121

de la Technologie (ANRT).122
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