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Abstract: In terms of safety and environment, the reduction of noise generated
by tire vibrations on roads has a significant importance. In order to study the
vibration properties of a tire, various models have been presented in the literature.
The main purpose of the current study is a brief review of the characteristics of
some models. It is supposed that the tire is subjected to an excitation caused by
the contact between the tire and the road. Subsequently, the dynamic behaviour
of these models are studied and compared with each other. The effects of inflation
pressure and the tread patterns on the dynamic behaviour of the mentioned models
are examined. For verification, the dynamical behaviour of the tire is studied
experimentally. Application of the present study can be contemplated in the
prediction of rolling noise and rolling resistance.
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1 Introduction

Noise and vibrations are important problems in vehicles, see Qatu et al (2009); Qatu (2012)

for reviews on these subjects. In this field, noise coming from tyres is especially important.

So a lot of researches have been done on tyre noise generation during the last decades,

see for instance Kropp (1999) for an explanation of the different mechanisms of noise

generation and for an example of global modelling. The vibrations of tires are an important

mechanism leading to noise generation. So different models have been proposed in the past

to describe the vibration properties of vehicle tires. In this purpose, one of the simplest

methods is the model of a rotating ring on an elastic foundation. Due to its completeness and

simplicity, since the 1960s, this method has drawn the attractions of numerous researchers.

The development of the method was pioneered by Clark (1965), Tielking (1965), and Bohm

(1966) who presented a method for calculating the dynamic behaviour of a loaded pneumatic

tire modelled as an elastically supported cylindrical shell. In these works, the tire sidewall

effects were modelled by the radial springs. Pacejka (1971) modelled the tire as a circular

ring under pressure. By considering the circumferential springs for the elastic foundation,

he developed models for the lateral vibration. The effect of structural damping on the study

of the dynamic response of the classical ring on the foundation was considered for the first

time by Padovan (1976). Later, Potts et al. (1977) studied the vibration of a rotating ring

on an elastic foundation in terms of the material and geometric properties of the tire. In

order to study the free vibration of a circular ring tire located on an elastic foundation, a

finite element method was presented by Kung (1987). Huang and Soedel (1987a,b) and

Huang (1992) studied the response of a rotating ring subjected to harmonic and periodic

loadings. In Wei et al. (2008), the authors proposed an analytical approach to analyse the

forced transient response of tires modelled as a ring on an elastic foundation. The next

method to model the tire structure is the model of a Timoshenko beam. Pinnington and

Briscoe (2002) modelled the tire belt based on the tensioned Timoshenko beam in order

to derive arbitrary sidewall impedances. They developed a one-dimensional wave model

to describe the tire dynamics. The waves, which propagate along the tire, take shear and

rotational effects into account. Recently, Vu et al. (2017) presented a circular beam model

based on the timoshenko beam theory to study the dynamic behaviour of the tire around its

linear/nonlinear state. The validity of the circular ring models is limited to frequencies less

than 400Hz, when the wavelength is large enough compared to the width of the tire.

In order to study the vibrational tire properties for higher frequencies, Kropp (1989),

proposed the orthotropic plate model on a winkler foundation, where the tire belt is modelled

as a finite plate which has different tangential and lateral properties. The foundation

represents the effect of sidewalls as well as the inflation pressure. Also, the external tension

forces due to the inflation pressure are considered in this model. In Hamet (2001); Muggleton

et al (2003), the authors proposed an analytical approach to study the frequency or impulse

responses of a tire modelled by one or two thin orthotropic plate under tension supported

by an elastic foundation. Later, Larsson and Kropp (2002) developed a double-layer tire

model including the tangential motion and the local deformation of the tread. Their model is

appropriate for the modelling of radial and tangential vibrations in the high-frequency range
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and was compared to the circular ring model in Perisse and Hamet (2000a). However, the

model of the orthotropic plate is completely dependent on the results of experiments. In order

to estimate the structural properties of the orthotropic plate tire model, Perisse et al. (2000b);

Perisse (2002) presented a procedure for the experimental modal testing of a smooth tire

for low and medium frequencies. The case of circular rotating shells was described by Kim

and Bolton (2001, 2004) who mainly solved the analytical shell equations to estimate the

influence of rotation. Another curved plate model was developped by Pinnington (2006a,b)

It allows to take into account the effects of curvature, shear stiffness, rotary inertia, tension,

rotational speed and air pressure.

However, applying finite element (FE) approaches, one can model more accurately the

structural features of a tire. Thus, especially during the past decade, a considerable number

of studies have been focused to investigate the wave propagation in a model of a tire based

on FE techniques. Narasimha Rao and Kumar (2007) used dynamic finite element models

of tyres for simulating braking and corning. Richards (1991) considered finite elements for

low frequency cases but has included the air cavity. Lopez et al (2007, 2009) have computed

tire vibrations by the FE approach using a modal superposition around deformed tyres and

have included rotational effects. Their computations were limited to 500Hz. Brinkmeier et

al (2008, 2007) used the FE with an ALE approach to compute tyre vibrations up to 850Hz.

A similar FE model including nonlinearities was developed by Zhang et al (2004) for the

modal analysis of truck tyres.

Another possibility is to consider the tyre as a periodic structure. Brillouin (1953)

and Mead (1996) applied the Floquet’s principle or the transfer matrix to study the wave

propagation in a three-dimensional (3D) periodic structure. In Houillon et al. (2005) and

Mace et al. (2005), the authors developed a FE method to determine the propagation

constants and wave modes. Their works were focused on obtaining dispersion relations and

their application in energetic methods. Recently, Duhamel et al. (2006) employed a similar

method to calculate dispersion relations but for point force responses. Their approach was

called the Waveguide Finite Element (WFE). Furthermore, this technique was applied by

Waki et al. (2009) to predict the free wave propagation and the forced response of a tire.

The results obtained by using WFE methods is similar to those obtained with the classical

FE approach. But, the computational cost of the WFE method is very low compared to the

usual FE. To this end, one can easily use this model to analyse structures with complex

geometries and material distributions. In addition, applying a reduction technique, the

number of degrees of freedom (DOF) in a periodic element can be greatly reduced so that

it can significantly shorten the computation time.

In the current work, we mainly review the above mentioned models of tire with a focus

on their vibrational response. For this purpose, we calculate the dynamic behaviour of

these models, discuss their assumptions and limitations, and compare their results with the

experimental results. In case studies, the effect of inflation pressure in the tire is studied. In

order to verify the results given by the periodic 3D model, a full 3D tire model is analysed

numerically via a FE technique.

This paper is organized as follows. In the next section, a brief review of the characteristics

of tire models will be addressed. Section 3 devotes to estimate the structural and material

properties required in circular ring and orthotropic models. Some numerical results are

reported and discussed in section 4. Finally, section 5 includes concluding remarks.
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Figure 1 Single Degree of Freedom System

2 Brief review on tire models

In this section, we summarize the existing models of tire proposed in the literature and

discuss the assumptions, limitations, and drawbacks of each model. The models can be

classified into seven categories; a simple model based on a single degree of freedom (SDOF)

system, rotating ring model, Timoshenko circular beam model, orthotropic plate model,

periodic 3D model, full 3D model, and experimental model.

The properties of the above mentioned models are demonstrated in detail in the

following.

2.1 Single Degree of Freedom (SDOF) System

Figure 1 shows the basic model for the SDOF system. This model consists of a concentrated

mass, M , attached to a spring with stiffness K and a viscous dashpot, C. F (t) and u(t) are

general time-varying force and displacement responses. Considering an excitation of the

form f(t) = feiωt, and a solution of the form of u(t) = ueiωt, the equation of motion can

be rewritten as (see Ewins (1986))

(−ω2M + iωC +K)ueiωt = feiωt. (1)

Therefore, the receptance frequency response function is

G(ω) =
1

(−ω2M + iωC +K)
. (2)

As it is observed, mathematically, this model is very simple. For the tire model, M
represents the mass of the tire and the stiffness and inflation in the tire are considered by K .

As expected, the results obtained by this model are not as accurate as for the other models.

The SDOF model of tire can be utilized in fundamental studies or for dynamics at very low

frequencies. It can not really be used for noise predictions.
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2.2 Rotating Ring Model

The rotating ring model is one of the simplest methods used to model a tire. In this model,

it is supposed that the car tire is composed of two main parts; the belt band (tread) and

the sidewalls. Based on the inflation pressure of the tire, the sidewall moves along three

directions: radial, tangential, and lateral. Here, the tread is modelled as a rotating ring and

the elastic properties of sidewalls are modelled by the distributed springs, kr and kθ in radial

and circumferential directions, respectively, i.e. the lateral stiffness is ignored (Figure 2).

It is assumed that there is a punctual contact between the ring and the road (refer to Huang

and Soedel (1987b), distributed loads over the contact area can be approximated by a point

load). In addition, the slip between the ring and the road surface is ignored. Considering

ur and uθ as the displacements in the radial and tangential directions, respectively, for the

rotating tire with no contact, the equations of motion are written as (see Huang and Soedel

(1987b))

EI

R4
(u

′′′′

r − u
′′′

θ ) +
EA

R2
(ur + u

′

θ) +
pb

R
(ur + 2u

′

θ − u
′′

r )

+krur + ρAΩ2(2u′
θ − u′′

r ),+ρA(ür − 2Ωu̇θ) = qr
EI

R4
(u′′′

r − u′′
θ )−

EA

R2
(u′

r + u′′
θ ) +

pb

R
(uθ − 2u′

r − u′′
θ )

+kθuθ − ρAΩ2(2u′
r + u′′

θ ) + ρA(üθ + 2Ωu̇r) = qθ, (3)

where,R, b, h, and ρ are the mean radius, tread width, averaged thickness, and density of the

tire, respectively.EI andEA indicate the bending and the membrane stiffness, respectively.

I and A are the moment inertia and surface of the ring cross-section and E corresponds to

the Young’s modulus of the tire. p denotes the internal pressure andΩ indicates the rotational

velocity. q(qr, qθ) applies the external load of the system. In these equations, primes and

dots indicate the differentiations with respect to theta and t, respectively. By applying a

modal analysis, for each mode the displacements, ur and uθ, can be obtained as following

(see Huang and Soedel (1987b))

(ur, uθ) =

n=+∞
∑

n=−∞

(An, Bn)e
i(nθ+ωnt), (4)

where, ωn indicates the natural frequency of the system and An and Bn are constants.

During the rotation, the circular ring is subjected to the two external loadings; the first one is

corresponding to the weight of the vehicle and the other is the excitation due to the contact

between the ring and the road. In the current study, the weight of the vehicle is ignored.

Generally, the equation of motion in the time domain can be expressed as

Mü(t) + Cu̇(t) +Ku(t) = q(t), (5)

whereM , C, and K are the mass, damping and stiffness matrices, respectively, while u and

q denote the displacement and force vectors. In the frequency domain, we have

u(ω) = G(ω)q(ω), (6)
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where G is the Green’s function which can be approximated by a linear combination of N
modes as

G(ω) = [−ω2M + iωC +K]−1 =

N
∑

n=1

ϕnϕ
t
n

(−ω2 + 2iξnωnω + ω2
n)

, (7)

where ξn and ϕn indicate the damping and the mass-normalized mode shape for mode n,

respectively. In order to calculate the natural frequencies of the system, we can substitute

Eq. 4 into Eq. 3 and considering the harmonic function einθ so,

kn

[

An

Bn

]

=

[

0
0

]

, (8)

where,

kn =

[

−i(d1 − 2Ωωn) d2 − ω2
n

d3 − ω2
n i(d1 − 2Ωωn)

]

,

d1 =
1

ρA
[n3EI

R4
+ n

EA

R2
+ 2n

pb

R
+ 2nρAΩ2],

d2 =
1

ρA
[n2EI

R4
+

EA

R2
+

pb(n2 + 1)

R
+ ρAn2Ω2 + kθ],

d3 =
1

ρA
[n4EI

R4
+

EA

R2
+

pb(n2 + 1)

R
+ ρAn2Ω2 + kr]. (9)

If the determinant of kn equals zero, the natural frequencies of the system are easily

computed as the roots of this equation

ω4
n − (4Ω2 + d2 + d3)ω

2
n + 4d1Ωωn + d2d3 − d21 = 0. (10)

This model is interesting for low frequencies computations. It has some limitations as

it cannot take into account the non linear quasi-static deformation created by the contact

with the road but only the effect of pre-stress coming from the internal pressure. It allows

to consider the effect of rotation of the tire. Moreover this model makes the assumption that

the displacement is uniform along the width of the tire so that a beam model can be used.

2.3 Timoshenko Circular Beam Model

In the Timoshenko circular beam model, the belt is modelled as a Timoshenko beam to

accommodate bending, shear, and the rotary inertia effects that are significant at high

frequencies. Similar to the circular ring model presented in the previous section, the sidewall

of the tire is replaced by the radial and tangential springs, kr and kθ. Considering R as the

mean radius of the tire, in the linear case, one can obtain the equations of motion of the

Timoshenko circular beam as under the form of (see Vu et al. (2017))

(
GA

R
+

GI

R3
)(
u

′′

r − u
′

θ

R
+ α

′

)−
EA

R
(
ur + u

′

θ

R
)−

EI

R3
(
ur + u

′

θ

R
− α

′

) + p− krur

−ρAΩ2(−R+ u
′′

r − 2u
′

θ − ur) + qr = ρAür + 2ρΩA(u̇
′

r − u̇θ),
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Figure 2 Circular ring model

EA

R
(
u

′

r + u
′′

θ

R
) +

EI

R3
(
u

′

r + u
′′

θ

R
− α

′

) + (
GA

R
+

GI

R3
)(
u

′

r − uθ

R
+ α)

−kθuθ − ρAΩ2(u
′′

θ + 2u
′

r − uθ) + qθ = ρAüθ + 2ρΩA(u̇r + u̇
′

θ),

EI

R2
(−

u
′

r + u
′′

θ

R
+ α

′′

)− (GA +
GI

R
)(
u

′

r − uθ

R
+ α)− ρIΩ2α

′′

= ρIα̈+ 2ρΩIα̇
′

.

(11)

where, G and ν indicate the shear modulus and Poisson’s coefficient, respectively, and α
denotes the rotation along the z axis. The general form of the equation of motion in the

time domain is referred by Eq. 5. For the current model, in order to obtain the K matrix, a

numerical approach based on the finite difference approximation technique is applied. The

finite difference operators are defined as

u
′

(θi) =
u(θi+1)− u(θi−1)

2h
,

u
′′

(θi) =
u(θi+1)− 2u(θi) + u(θi−1)

h2
, (12)

where, θ = (θ1 = 0, θ2, . . . , θN = 2π(N−1)
N

), N is the number of points considered on the

circular beam. Note that u(0) = u(2π). After calculating the K matrix, we can determine

the frequency response function of the system by applying the modal analysis.

Compared with the circular ring model, the Timoshenko beam model allows a better

approach of beam deformation. Vu et al. (2017) have also shown that a non linear

Timoshenko beam model can take into account the non linear deformation created by

a contact with a soft road. Then linear vibrations can be computed as small dynamic

perturbations around this quasi-static non linear deformation.
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2.4 Orthotropic Plate Model

In this model, the tire is simulated by a three dimensional plate as the tire belt, which has

different tangential and lateral properties, and the sidewalls modelled by a thin plate under

tension on an elastic foundation (due to the inflation in the tire), see Figure 3. Based on the

Kirchhoff hypothesis for thin plates, the equation of motion can be written as (see Kropp

(1989))

[−T0x
∂2

∂x2
− T0y

∂2

∂y2
+Bx

∂4

∂x4
+ 2

√

Bxy

∂2

∂x2

∂2

∂y2
+By

∂4

∂y4

+s+m
∂2

∂t2
]u(x, y, t) = F (x, y, t), (13)

whereT0x andT0y are membrane tensions caused by the air inflation in the tire.Bx,By , and

Bxy are the longitudinal bending, transversal bending, and the cross stiffness of the belt,

respectively. For the orthotropic plates Bxy ≈ BxBy. s indicates the stiffness of the elastic

support of the belt. m and F are the mass of the plate and the acting force per unit area,

respectively. In the analysis, only harmonic motions are considered and the common factor

eiωt is omitted. Material losses are introduced by adding an imaginary part to the bending

stiffness, tensions and the stiffness of the foundation. Note that only the radial motion of the

tire (the vertical motion of the plate) is considered. The corresponding boundary conditions

are defined as u(x+ lx, y, t) = u(x, y, t), i.e. the belt is circular, u(x, y, t) = 0 at y = 0,

y = ly , i.e. the plate is simply supported at the sides, and, ∂2

∂y2 (x, y, t) = 0 at y = 0, y = ly .

Using the Green’s function technique, the solution of the equation can be expressed as

following

u(x, y, t) =

∫ ∫ ∫

F (x0, y0, τ)G(x, y, t)dx0dy0dτ, (14)

where G(x, y, t) is solution of

[−T0x
∂2

∂x2
− T0y

∂2

∂y2
+Bx

∂4

∂x4
+ 2

√

Bxy

∂2

∂x2

∂2

∂y2
+By

∂4

∂y4
+ s+m

∂2

∂t2
]×

G(x− x0, y − y0, t− τ) = δ(x− x0)δ(y − y0)δ(t− τ).

(15)

Modelling the circular tire by an infinitely long strip and calculating the corresponding

Green’s function in terms of the superposition of normal modes, one can obtain (see Hamet

(2001))

G(x, y, t) =
4

lxly

1

m

∞
∑

n=1

sin(kyny0)sin(kyny)

∞
∑

m=0

ǫm
cos[kxm(x− x0)]sin[Ωnm(t− τ)]

Ωnm

e−ηnmΩnm(t−τ)H(t− τ),

(16)



Comparison of different tire models for tire/road noise applications 9

Figure 3 Orthotropic plate model

whereΩnm are the eigenfrequenciesassociated to the wavenumberskxm = 2πm
lx

andkyn =
πn
ly

. Ωnm is defined as

Ωnm = Re(
√

[k4xmBx + 2k2xmk2yn
√

BxBy + k4ynBy + (k2xm + k2yn)T0 + s]/m),

(17)

The constant ǫ has the values ǫ0 = 1
2 and ǫm 6=0 = 1. η is the damping for each mode which

is calculated as

η =
1

Ωnm

Im(
√

[k4xmBx + 2k2xmk2yn
√

BxBy + k4ynBy + (k2xm + k2yn)T0 + s]/m).

(18)

Compared with the circular ring model, the main advantage of these plate models is to

describe non uniform motions along the width of the tire.

2.5 Periodic 3D Model

A symmetrical periodic element of the tire, as shown in Figure 4, is considered. The equation

for time harmonic motions of a periodic section can be written as

Du = q, (19)
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where D = K + iωC − ω2M , is the dynamic stiffness matrix, u and q denote nodal DoFs

and the force vector, respectively.K , C, andM are the stiffness, viscous damping and mass

matrices which are obtained from conventional FE methods. If D is decomposed into its

left (L) and right (R) boundaries, its interior degrees of freedom are indicated by I , and also

it is assumed that there are no external forces on the interior nodes, the equation of motion

can be expressed as





DLL DLR DLI

DRL DRR DRI

DIL DIR DII



×





uL

uR

uI



 =





qL
qR
0



 . (20)

By eliminating the interior degrees of freedom this equation can be condensed, also

in order to decrease the number of degrees of freedom, a reduced basis can be used (see

Duhamel et al. (2006)). After calculation of wave modes in the system, the frequency

response function can be obtained.

This model should lead to exactly the same results as a full finite element computation if

the deformation is linear and if the geometry of the tire is periodic along the circumference.

With these two assumptions one can get results in a much lower computing time than if a

full 3D model was used.

2.6 Full 3D Model

Figure 5 displays a full three-dimensional model of tire considered in this study. This model

is devoted solely to the verification of the results obtained by the periodic 3D model. For this

purpose, the tire is analysed numerically by the finite element techniques. Abaqus software

is applied to model and analyse the tire.

This is the more general approach which could allow to consider non linear behaviors

in term of material and geometrical deformations. Complicated geometrical details of the

tire could also be described. However, this leads to very heavy computations so that only

low frequencies can be computed.

2.7 Experimental study

Finally, the vibrations of the tire are studied experimentally. The type of tire used in this

experiment is a Michelin 165/70R13. The inflation pressure of the tire is about 2 bars.

Figure 6 shows a schematic of the experiment setup. As it is seen, a freely suspended tire

mounted on a steel rim is taken into account. To apply random excitation forces to the tire,

an electrodynamic shaker (B&K 4809) is considered. Point mobility is measured with an

impedance head (B&K 8001). In this study, only the radial vibration of the tire is measured.

Using a Fast Fourier Transformation (FFT) based spectrum analyser, one can obtain the

mobility response of the system.

3 Prediction of structural and material properties required in the circular

ring and orthotropic models

As described in the previous sections, in order to study the dynamic behaviour of tires,

two models of circular ring and orthotropic plate, beside of the SDOF and 3D models, are
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Figure 4 Symmetrical periodic element of a tire
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Figure 5 Full 3D model

Figure 6 Schematic of the experiment setup
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employed. In order to apply these models, first, we require to estimate structural and material

data associated to the nature of these models. For this purpose, two studies are conducted; at

the first study a homogeneous smooth tire, and at the second one a homogeneous grooved tire

are modelled by Abaqus software. For both studies, we consider that the inflation pressure

in the tire equals 2 bars. The models have the same cross-sections as in Figures 4(a),(b)

but with the full circumference modelled by finite elements. The mechanical and structural

properties of the tire are given in Table 1. In the present study, a proportional damping is

considered, so that the viscous damping matrix C is defined as

C = αM + βK, (21)

where, M and K are the mass and stiffness matrices of the model respectively. α and β
are damping factors whose values are computed based on an experimental measurement

on the Michelin R13/165/65 tire in which, α = 14.4 and β = 8× 10−5. The radial driving

point mobilities corresponding to the smooth and the grooved tires are plotted in Figure 7

for a point force at position 1 in Figure 4 and a receiver at position 2. It can be seen that

the response is higher for the grooved tire because the structure has a lower stiffness being

made with a reduced thickness at the groove positions.

Internal radius 165.1 mm

Width of tread 165 mm

Height of sidewall 115.5 mm

Young modulus 80 MPa

Poisson coefficient 0.49

Table 1 The mechanical and structural properties of the homogeneous tire

Substituting the first and second resonance frequencies of the given mobility into Eq. 10,

one can determine the stiffness of the radial and tangential springs kr and kθ as defined in

the circular ring model. Table 2 displays the calculated results for both smooth and grooved

tires inflated at 2 bars.

Smooth tire

kr 1.244e6N/m2

kθ 9.455e5N/m2

Grooved tire

kr 1.273e6N/m2

kθ 9.643e5N/m2

Table 2 Structural and material properties required in the circular ring model of a smooth and
grooved tire inflated at 2 bars

In case of the orthotropic plate model, based on the method described by Andersson et

al. (2001), the foundation stiffness, s, tensions, T0x and T0y, and bending stiffness, Bx, By ,

and Bxy, and their corresponding damping values can be estimated. Detailed formulations

to obtain these parameters are given in Appendix A. The results for the considered tires are

presented in Table 3.



14 L. Pahlevani et al.

Figure 7 The radial driving point mobility corresponding to the smooth (−) and grooved tire
(−.−) for a force at position 1 and a receiver at position 2.
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Smooth tire

T0x 5e4(1 + 0.09i)N/m
T0y 8.5e4(1 + 0.09i)N/m
Bx 10.1(1 + 0.3i)Nm
By 5.1(1 + 0.3i)Nm
√

Bxy 7.1(1 + 0.3i)Nm
s 3e4(1 + 0.01i)N/m3

Grooved tire

T0x 4.8e4(1 + 0.09i)N/m
T0y 8.3e4(1 + 0.09i)N/m
Bx 2.3(1 + 0.3i)Nm
By 1.2(1 + 0.3i)Nm
√

Bxy 1.6(1 + 0.3i)Nm
s 3e4(1 + 0.01i)N/m3

Table 3 Structural and material properties required in the orthotropic plate model of a smooth and
grooved tire inflated at 2 bars

In the next section the vibrational responses obtained by the different methods are

studied.
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Figure 8 Comparison of the radial driving point mobility obtained by the rotating ring, Timoshenko
circular beam, orthotropic plate, and periodic 3D models of tire inflated at 2 bars
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4 Results and discussions

To compare the various models of tire, several numerical studies will be addressed in this

section. Furthermore, the effect of inflation pressure as well as of the shape and property

of tire are examined. In all the studies presented in this section, the models are subjected

to a point force excitation as shown in position 1 of Figure 4, also the reported results are

corresponding to the excitation point.

4.1 Homogeneous smooth tire

In the first study, a homogeneous smooth tire inflated at 2 bars is considered. The material

properties of the tire are referred in Table 1. The radial point mobility calculated by the

models of circular ring, orthotropic plate and periodic 3D are shown in Figure 8.

As it is expected, the models of rotating ring and Timoshenko circular beam are in a good

correspondencewith the periodic 3D model at low frequencies whereas, at high frequencies,

the point mobility given by the orthotropic plate model is very similar to the corresponding

results of the periodic 3D model. The circular ring model and the Timoshenko beam model

are two beam models with globally the same advantages and defects, so they have similar

global behaviours. They provide good results as long as waves do no propagate along

the width of the tire which happens around 400Hz, see Kropp (1989). So above 400Hz
they can not provide reliable results and they deviate from other more accurate models.

The orthotropic plate is close to the finite element model for high frequencies because the

response of the tire is rather local in this frequency range and the curvature of the tire or the

boundary conditions have little influence here.

The results of a full 3D and a periodic 3D models are compared in Figure 9. It is assumed

that the inflation pressure is zero, p= 0. Figure 9 demonstrates the point mobilities pertinent
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Figure 9 Comparison of the radial driving point mobility obtained by the full (×) and periodic 3D
(−) models of tire, the inflation pressure is ignored
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to each model for a point force at position 1 and a receiver at position 2 in Figure 4. As

it is seen, the results of two models have a good agreement with each other, whereas, the

computation time for the periodic 3D model is significantly less than for the full 3D model.

This could be expected as the periodic model is only a numerical tool to accelerate the

computation but is based on the same discrete finite element model.

The effect of the inflation pressure is examined in this part. The point mobilities given

by the periodic 3D model at pressures 0, 1, and 2 bars are plotted at Figure 10. It is observed

that, at low frequencies an increase of the pressure causes the mobilities to decline while

the resonance frequencies increase. But, at high frequencies the variation of the inflation

pressure has no essential influence on the mobility. The pressure acts by increasing the

rigidity of the tire which can be clearly seen at low frequencies where the rigidity dominates.

For higher frequencies pre-stress has less influence.

In another study, the variations of kr and kθ in the circular ring model with respect to

the inflation pressure are displayed in Figure 11. As expected kr and kθ increase with the

internal pressure as the structure becomes more rigid.

4.2 Homogeneous grooved tire

As it can be seen in Figure 7, when the frequency increases a notable difference between the

point mobilities of the smooth tire and the grooved one is observed. To this end, in this part

the point mobilities of the homogeneous grooved tire obtained by the different models of tire

are studied. We assume that the inflation pressure of the tire is 2 bars. Figure 12 illustrates

the results of the different models. Comparison of Figures 8 and 12 shows that, when the

tread patterns are considered, the difference of point mobilities between the 3D periodic

and the other models increases. Interestingly, this discrepancy is noticeable especially at

low frequencies for the circular ring model and high frequencies for the orthotropic model,
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Figure 10 The effect of inflation pressure on the radial driving point mobility obtained by the
periodic 3D model of tire
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Figure 11 The variations of kr (continuous line) and kθ (dashed line) in the circular ring model
with respect to the inflation pressure
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Figure 12 Comparison of the radial driving point mobility obtained by the rotating ring,
Timoshenko circular beam, orthotropic plate, periodic 3D, and experimental models of
tire inflated at 2 bars
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where those models are valid. It can be due to the fact that intrinsically, the circular ring

and orthotropic plate models are very simple models of a tire in which the details pertinent

to the physical characteristics of a real tire are ignored. On the contrary the periodic finite

element model can take into account the geometrical change induced by the groove. One

also see that it give results close to the experiment.

4.3 Non-homogeneous grooved tire

Finally, a non-homogeneous grooved tire, modelled by a periodic 3D method is studied

(Figure 13). The inflation pressure of the tire is 2 bars. The structural and material properties

of the tire are presented in Table 4. Figure 14 illustrates the results corresponding to the

radial point mobility of the model. The result is similar to the curve in Figure 12.

5 Conclusion

In summary, we outlined the characteristics of various models of tire as a SDOF system,

circular ring, orthotropic plate, 3D, and experimental models. When the tire is subjected to

an excitation, we compared the vibrational responses of the models. Generally, the results

demonstrated that the circular ring models are valid for low frequencies while the orthotropic

plate model provides reasonable result in high frequencies. Also, the point mobility of the

tire obtained from 3D and experimental models well agreed with each other. In addition,

the effect of the inflation pressure as well as tread patterns were studied. It is observed

that there is a significant discrepancy between the calculated point mobility and also the

resonance frequency for different pressures at low frequency but by increasing the frequency

the discrepancy fades away. Moreover, considering of tread patterns plays an essential role
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Figure 13 Cross section of a non-homogeneous grooved tire

Figure 14 The radial point mobility of a non-homogeneous grooved tire modelled by a periodic
3D approach

10
2

10
3

−30

−20

−10

Frequency [Hz]

20
lo

g 10
(Y

/Y
0|)[

dB
 r

ef
. Y

0=
1 

m
/N

s]



20 L. Pahlevani et al.

Part Parameter Value

ρ 1000 kg/m3

Tread E 7Mpa
ν 0.49
ρ 2014 kg/m3

Ex 660Mpa
Belt Ey 9Mpa

νxy 0.4
Gxy 183Mpa

ρ 1000 kg/m3

Sidewall E 109Mpa
ν 0.48

ρ 7850 kg/m3

Bead core E 162.6Gpa
ν 0.33

Table 4 The mechanical and structural properties of the non-homogeneous tire (see Nguyen
(2008))

in the results given by 3D models whereas it has no considerable effect on the results of

other numerical models. It can be due to the simple nature of these models. Finally, the

point mobility of the tire with a non-homogeneous material was reported in the current

work. The presented study may find potential applications in the study of rolling noise and

rolling resistance.
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Appendix A

In this section, the determination of the parameters required for the orthotropic plate model

is described.

Foundation stiffness

The effect of sidewalls and the inflation pressure are represented by the foundation stiffness,

s. For a freely suspended tire, the interaction between the tire and the rim can be considered

as a simple mass-spring-mass system, in which the tire structure and the rim correspond to

the masses and the foundation represents the spring stiffness. To this end, the mobility can

be written as

Y (ω) =
iω(k − ω2mrim)

ω2[ω2mrimmtire − k(mrim +mtire)]
, (22)

where k is the spring stiffness. When we consider the anti-resonance of the system, i.e.

k − ω2mrim = 0, the foundation stiffness can be determined as

s =
k

lxly
=

ω2
1mrim

lxly
, (23)

whereω1 is the anti-resonance. The damping can be estimated by the half-power bandwidth

around the anti-resonance.

Bending stiffness; tangential and lateral

As it is known, at higher frequencies, the behaviour of the tire structure is the same as a

plate. The mobility of a plate is computed as

Y =
1

8
√

m
√

Bxy

. (24)

Therefore, if we fit this equation to the data given by 3D models at high frequencies,

the mixed bending stiffness, Bxy can be obtained. Assuming that Bxy = BxBy and
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Bx = 2By, one can determine Bx and By .

Tension

In order to calculate the tension, caused by the inflation pressure in the tire, it is supposed

that the lateral direction vibrates only in the fundamental mode. When we substitute the

resonance frequencies obtained from the frequency response of the 3D model, into Eq. 17,

Tx0 and Ty0 can be estimated.


