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Abstract

The continuum scale description of the plasticity of silicate glasses is a dif-
ficult task. In addition to significant amount of densification, it has been
shown that, depending upon composition, there is a more or less pronounced
coupling of yield stress with pressure. Moreover, the scant experimental re-
sults make it difficult it build up reliable, quantitative constitutive equations.
To overcome the problem, we have recently shown that atomic scale simula-
tions can be used to investigate the plastic response of amorphous silicates
and we have proposed a generic analytical form for the constitutive relations
of amorphous silicates (Molnár et al., 2016a. Acta Mat. 111, 129–137). Here
we show how this generic constitutive relation can be turned into a quan-
titative description by calibration from micromechanics experiments. We
consider the case of amorphous silica for which we have most complete sets
of data.
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1. Introduction

Fracture and strength of silicate glasses have been investigated with re-
newed vigor in the past decade. A large number of papers have dealt with
the relation between composition, structure, physical and also more advanced
mechanical properties - see Wondraczek et al. (2011) for a recent review of
the latter. Much sparser have been the efforts towards constitutive relations
which could properly account for the plastic response under both simple and
more complex loadings (Kermouche et al. (2008); Keryvin et al. (2014)).
However, the sound understanding of extreme mechanical response such as
strength or cracking, and their composition dependence, would greatly ben-
efit from a reliable description of the response at the continuum scale.

In fact, investigation of the plastic response of silicate glasses at the con-
tinuum scale has been limited by two major issues. First, in terms of mea-
surements, it is difficult to obtain quantitative experimental data because
large scale plastic deformations are preceded by cracking in most circum-
stances (Cook and Pharr (1990)). Therefore, only local (ie micron-scale)
measurements can be performed. Secondly, in terms of description, it has
long been known that material density may change during plastic defor-
mation, ie there is irreversible volumetric strain also called densification or
compaction (Ernsberger (1968)). Therefore, we are confronted by a non con-
ventional type of plasticity, in the sense that it does not conserve volume.
Moreover, this second observation also points to the significance of harden-
ing in the continuum scale response, which changes as the structure of the
material evolves with plastic strain.

Faced with the issues of measurement difficulties, evolving structure and
unconventional plasticity, alternative strategies are welcome. One of them is
to resort to numerical simulations. In this field, pioneering work deduced a
macroscopic yield criterion using numerical methods for bulk metallic glasses
(BMGs): Schuh and Lund (2003) were able to capture the pressure depen-
dence of the deviatoric yield strength shown experimentally Mukai et al.
(2002); Zhang et al. (2003), using only atomic scale simulations. Due to the
complexity of the topic, only a limited number of papers have appeared, for
metallic glasses (Lund and Schuh (2003); Schuh and Lund (2003); Shimizu
et al. (2006)), nano-crystaline metals (Lund and Schuh (2004); Salehinia
et al. (2014); van Swygenhoven et al. (1999)), glassy polymers (Mott et al.
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(1993); Rottler and Robbins (2001)) and other model materials (McDowell
(2010); Xu et al. (2014)). Recently, we have shown that yield surfaces can
be calculated by atomic scale simulations for amorphous silicates (Molnár
et al. (2016a)). However, this approach is not widespread because of some
shortcomings of these simulations. With key issues such as calibration of the
potential, size effects and time scale effects, atomistic simulations usually
provide at most qualitative results. Here we investigate a method to turn
the yield surfaces obtained from molecular statics (MS) into usable contin-
uum scale descriptions of the material response of silicate glasses. We start
from a parametric shape for the yield surface, inferred from MS, which duly
reproduces the known evolutions with irreversible strain and we calibrate
the parameters of the yield function from the available experimental results.
Then the predictions of the resulting constitutive model are compared to
other experiments and models. We also discuss the missing experimental
results which would be most useful in this context.

2. Model

A generic analytical form for the yield criteria of silicate glasses has been
evaluated numerically using Molecular Dynamics (or more precisely Molec-
ular Statics) following the methodology reported in Molnár et al. (2016b)
and Molnár et al. (2016a). In brief, through numerical experiments, different
loading combinations have been applied to various systems modeling several
binary glass compositions. The deformation was applied in a quasi-static
manner, therefore no rate dependent effect is observable. The residual den-
sity and residual shear strain have been mapped as a function of applied
stress and pressure. From these maps, a pressure dependent yield strength
clearly appeared. We have therefore derived an analytical expression for the
yield criterion as a function of pressure. The flow data obtained in the sim-
ulations have not been directly used for the constitutive relation but it was
found that assuming associated plasticity we obtained a reasonable rendering
of the computed irreversible strains (Molnár et al. (2017b); Molnár et al.
(2016a)).

A typical yield surface is shown in the p − q plane (Fig. 1) for a model
amorphous silica1.

1The criterion is written as a function of two invariants of the Cauchy
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Figure 1: Shear strength as a function pressure for different material densities for silica.
After Molnár et al. (2016a) and Mantisi et al. (2016).

The yield surfaces are plotted for different material densities ranging be-
tween pristine to fully densified material. In contrast to usual metal plasticity,
the yield surface for the pristine, undensified material, forms a dome which
reflects the strong coupling between shear and hydrostatic pressure, as ob-
served experimentally (Mackenzie (1963); Meade and Jeanloz (1988)). Above
some value of hydrostatic pressure (ca -5 GPa in this case) shear strength
decreases with increasing pressure. The strength curve crosses the pressure
axis at the compressive (hydrostatic) strength which is the threshold for
plastic deformation under pure hydrostatic pressure. Below a pressure of ca
-5 GPa, the shear strength decreases as pressure decreases, similarly defining
the tensile (hydrostatic) strength when the curve crosses the pressure axis.
As a result a peak deviatoric strength arises, equal to about 16 GPa here. As
expected, this yield surface is found to evolve significantly with permanent
volumetric strain εplV : as density increases, the peak deviatoric strength de-
creases moderately, as well as the tensile (hydrostatic) strength (in absolute
value), while the compressive (hydrostatic) strength increases dramatically.
This strong increase of the hydrostatic compression strength reflects hard-

stress tensor: the pressure (p = −(σx + σy + σz)/3) and the equivalent

shear stress: q =

√[
(σx − σy)

2
+ (σx − σz)

2
+ (σy − σz)

2
+ 6

(
τ2xy + τ2xz + τ2yz

)]/
2).
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Figure 2: DP-cap yield criterion in the p (pressure) - q (equivalent shear stress) space,
part (a) shows the parameters of the yield function. Part (b) shows how the hardening
takes place and the bump disappears with densification.

ening with densification: as density saturates, the plastic response becomes
shear dominated, analogous to BMGs. On the tensile side, the threshold
signals instability: a homogeneous pressure state can not be maintained and
macroscopic voids nucleate (Molnár et al. (2016c)). This phenomenon should
be modeled with an appropriate damage model (Molnár and Gravouil (2017);
Moös et al. (1999)) rather than basic computational plasticity.

Based on this evolution, we have proposed a generic shape for the yield
surface (Molnár et al. (2016a)):

p
py,−

+
(
q
c

)b − 1 = 0 if p ≤ pint(
p−h
d

)2
+
(
q
e

)2 − 1 = 0 if pint < p
(1)

In this yield surface, the tensile side of the dome is modeled by an ex-
tended Drucker-Prager model. This power law function is closed by an elliptic
cap on the compression side. Under the assumption of associated plasticity,
densification sets in under pure hydrostatic compression. This model will be
subsequently referred to as DP-cap.

For simplicity, we have chosen to work with an associated rule. Thus
equation (1) will be considered both as yield function and flow potential.
This is common practice for microscopic yield criteria (Kermouche et al.
(2008); Keryvin et al. (2014); Lambropoulos et al. (1996); Schuh and Lund
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(2003)).
The parameters for the DP-cap model are as follows (Fig. 2a). py,− sets

the tensile strength and b the power law exponent of the extended Drucker-
Prager function: for b = 1 we find the standard linear Drucker-Prager model
while curvature increases with b (Fig. 3a). Parameter c sets the cohesion
(Fig. 3b). The three parameters of the elliptic cap d, e and h are set by
the compressive strength py,+ and the requirement that the two component
functions meet smoothly at some pressure pint (Fig. 2a). Details on the
governing equations can be found in our previous work Molnár et al. (2016a).
As a result, the following equations can be used:

d =
∆p2 + b ·∆p (py,+ −∆p− py,−)

2∆p+ b · (py,+ −∆p− py,−)
, (2)

e =
c [∆p+ b (py,+ −∆p− py,−)]√

py,− · b [2∆p+ b (py,+ −∆p− py,−)]
(

py,+−∆p−py,−

py,−

) b−2
2b

, (3)

h = py,+ − d. (4)

Within this framework, two simple additional features are introduced to
model the complex evolution shown in Fig. 1. First the strength in compres-
sion py,+ increases with densification as measured experimentally. Therefore
irreversible volumetric strain εplV is used as an internal variable, as is stan-
dard in some recent constitutive relations for amorphous silica (Kermouche
et al. (2008); Keryvin et al. (2014)). As a result, when density saturates, the
cap slides to infinity and the yield function evolves smoothly into a standard
BMG-like behavior (Fig. 2b). Second, we observe that the choice of pres-
sure pint at which Drucker-Prager and elliptic functions meet has a strong
impact on the overall shape of the yield function because it sets the slope
of the ellipse on the tension side. As a result, if pint is close to the tensile
strength py,−, then the elliptic cap will be prominent. If pint is far away from
py,−, then the elliptic cap is fully included inside the Drucker-Prager function
which it simply closes off on the compressive side. An interesting feature is
that, although the evolution shown in Fig. 1 is complicated, with a decreas-
ing bump with increasing density, it can be modeled very simply within the

DP-cap model if we define pint = py,+
(
εplV

)
− ∆p where ∆p is a constant.

Then pint increases with py,+ as density increases and if pint is initially close
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Figure 3: Effect of parameters b and c on the DP-cap yield criterion.

to py,−, the initially prominent bump will decrease to finally blend into the
Drucker-Prager function as densification proceeds (Fig. 2b).

The implementation of pressure and densification coupled shear models
have been extensively studied in literature, thus only the main issues are
addressed here. Let us note that such constitutive models have been used
for granular materials, such as geological materials by Borja and Lee (1990),
pharmaceutical powders by Wu et al. (2008) and Han et al. (2008). One
essential – and perhaps misleading feature – of the present work is that it ad-
dresses pressure-dependence of bulk materials, which are not usually consid-
ered porous contrary to those mentioned above. However, some similarities
can be found between the yield properties of granular and bulk materials. For
instance, it has been shown by Nemat-Nasser and Okada (2001) that continu-
ous shearing induces irreversible anisotropy and densification (Nemat-Nasser
(2004)) in cohesionless sand, which was surprisingly also observed in silicate
glasses using atomic scale simulations by Molnár et al. (2016a).

To implement the DP-Cap yield function in ABAQUS/Standard (ABAQUS
(2011)) a user defined material model scheme (UMAT) is used. Details con-
cerning the algorithm can be found in Appendix A.

3. Experimental calibration

In practice, to model a given amorphous silicate, py,−, b, c, py,+
(
εplV

)
and ∆p must be determined. This quantitative evaluation of the numerical
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parameters – ie the calibration of the model – can be performed by compari-
son between numerical trials and experimental results. To that end, we need
quantitative measurements for as many different types of loadings as possi-
ble. However, as stated before, one of the major constraints is the necessity
to carry out these measurements at the micron-scale.

This calibration is necessary not only because of the limitations of the
potentials used in the Molecular Statics calculations but also because the
calculations are done without thermal activation. The experiments are con-
ducted at room temperature, which is well below the glass transition tem-
perature of silica, so that temperature is not expected to play a significant
role in the shape of the yield ciriterion. Therefore, it may be assumed that
the form of the yield function is unchanged, however the yield strength could
actually be lower due to more active plastic zones.

3.1. Experimental data sets

An extensive set of possible experiments is shown schematically in Fig. 4
along with an indication of the average loading path in the p-q plane. Among
these tests, we find the well known diamond anvil cell (DAC - hydrostatic
compression - 6) and indentation (4) experiments, along with more recently
developed tests such as pillar (5) and sphere (3) compression. Also shown
is uniaxial traction (1), a test of considerably greater difficulty (Luo et al.
(2016)), and pure shear (2) which has not been attempted (or at least
achieved) so far. Due to experimental difficulties, a reasonably consistent
series of results are available only for amorphous silica, which is why we have
attempted calibration of the DP-cap model for silica glass only.

3.2. Calibration procedure

The compressive strength of silica under pure hydrostatic pressure and

especially its evolution with density py,+
(
εplV

)
(exp. (6) in Fig.4) has been

extensively studied by anvil methods, either DAC or multi-anvil devices.
To take this abundant data into account we use the approximate analytical
dependence proposed earlier by Keryvin et al. (2014):

py,+
(
εplV

)
=


[
− ln

(
1− εplV

εpl,max
V

)
1
k

]1/m

· (pm − p0) + p0 ifεplV > εpl,max
V

∞ otherwise,

(5)
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Figure 4: DP-Cap yield criterion in the space of pressure and equivalent shear stress.
Different stress paths and domains are shown: 1) uniaxial tension; 2) pure shear; 3)
sphere compression; 4) indentation; 5) uniaxial compression; 6) hydrostatic compression.

where p0 is the initial yield pressure and pm, k and m are material parameters
(see Tab. 2). We chose this function to describe the hydrostatic hardening of
silica, because it fits well with atomistic simulations, where almost no pure
elastic domain was found (Molnár et al. (2016a)). Different experiments put
the elastic limit (p0) of silica to different pressure values depending on their
precision. For example densification is found around 7-8 GPa (Rouxel et al.
(2010)) indentation, and 9 GPa (Vandembroucq et al. (2008)) for diamond
anvil cells. Therefore to create a smooth transition between elastic and hard-
ening domains we chose the most up to date function proposed recently by
Keryvin et al. (2014). However, it needs to be strengthened that this sig-
moidal function with p0 = 3 GPa is only an approximation. This slight
shortcoming is of no consequence for the kind of mechanical tests we are
interested in here, but may lead to significant error for detailed mechanical
studies near the threshold. In this case a more accurate description of the
threshold is in order.The determination of py,− is a bit more difficult to carry
out since in this regime there is almost no data available at all. We therefore
assume a reasonable value of -5 GPa. This choice turns out to be consistent
with the (very scattered) data available (Luo et al. (2016) - exp. (1) in Fig.4).
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The evaluation of ∆p is more tricky and we will comment more exten-
sively on the impact of this parameter in the discussion. Since we know that a
purely elliptic model reasonably fits indentation and pillar experiments (Ker-
mouche et al. (2008)), we do not expect a strong bump contribution. There-
fore, we assume an intermediate value for ∆p (7 GPa) which puts the model
in the monotonically increasing strength regime (Fig. 2a).

Finally, we are left with the determination of b and c. Examination of
Fig. 2 and 4 suggests that sphere compression (exp. (3)) and indentation
(exp (4)) can be used for that purpose: these two types of experiments lie in
a somewhat different area of the loading space where b and c both affect the
response directly. As a result, we can expect a differentiation of these two
parameters.

The elastic material properties for all models are taken according to
Tab. 1. The finite element geometries for each test is summarized in Fig. 5.
Indentation tests were computed using fully integrated 3D solid elements. To
save computational time the half of the actual test is modeled. Therefore, as
shown in Fig. 5a, the y-displacement is constrained on the middle plane. The
remaining sides and the bottom of the sample were constrained completely.
The load was applied on the top of the indenter using a displacement con-
trolled method. For each indenter tip α and r are fixed (g = 5000 nm and
α = 65.3◦ for Berkovich), and the rest of the geometry is calculated according
to: f = tan (α) · g

/√
3 and j = tan (α) · 3g. The average finite element size

of 200 nm was taken around the indenter tip.
To model sphere compression 2D axis-symmetric elements were used. The

rotational symmetry is defined around axis y, as shown in Fig. 5b. The
bottom of the silicon substrate is constrained in both x and y directions,
while the load is applied on the top of the diamond indenter. An average of
50 nm finite element mesh size is used on the contact surface and 300 nm
elsewhere.

Furthermore, to verify the calibrated parameters, micro-pillars were tested.
Similarly to the sphere compression, axis-symmetric elements were used. The
rotational symmetry was defined on axis y. The bottom and the right side
of the substrate was constrained, while the load was applied on the top of
the indenter. The pillar was meshed with an element size of 200 nm.

For all contacts a 0.1 friction coefficient was used with a Penalty formula-
tion. We have calculated the flat punch compression of a sphere to emulate
available data (Romeis et al. (2015)). Based on the experimental results, we
plot the maximum reaction force for a 0.927 micron punch penetration on a
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Figure 5: a) 3D finite element geometry and mesh for indentation tests. α shows the angle
of the indenter tip. b) Axis symmetric finite element geometry for nanosphere compression.
c) Axis symmetric finite element geometry for micropillar compression tests.

Material Young’s modulus [GPa] Poisson’s ratio [-]
Silica 72 0.18
Diamond (indenter) 1000 0.07
Silicon (substrate) 130 0.22

Table 1: Elastic material properties used in the finite element models.

4.17 micron silica sphere in Fig. 6b. We find that the calculated maximum
reaction force is almost insensitive to the Drucker-Prager exponent b. This
finding is in agreement with the quasi pure shear type of loading experi-
enced in sphere compression. In contrast, the calculated maximum reaction
force for a 2 micron deep Berkovich indentation (Fig. 6a) displays a clear
dependence upon Drucker-Prager exponent b as well as cohesion c because
the stress state involves more hydrostatic component. Based on the experi-
mental values of reaction force, an optimum set of (b, c) parameters can be
established (Fig. 6c and Table 2).

The full loading-unloading curves calculated for the final values of the
model parameters are shown in Fig. 7 for Berkovich indentation (a) and
sphere compression (b). Good agreement is found with the experiments,
further demonstrating that the form of the yield function is reasonable and
the parameter values adequate.
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Figure 6: a) Maximum reaction force (Pmax) for Berkovich indentation at hmax = 2000 nm
as a function of parameter c for different b values. Blue dashed line shows the experimental
value ( 515 mN Field et al. (2003); Iwashita and Swain (2002)). b) Maximum reaction
force (Pmax) for nanosphere compression at hmax = 927 nm as a function of parameter c
for different b values. Blue dashed line shows the experimental value ( 34.36 mN Romeis
et al. (2015)). c) Combination of parameter b and c which reproduces the experimental
values correctly.

Yield properties
b c ∆p py,− py,+

5 5.7 GPa 7 GPa -5 GPa according to eq. (5)

Initial (undensified) cap parameters
d e h

4.42 GPa 5.09 GPa -1.42 GPa

Positive yield pressure (py,+)

p0 pm k m εpl,max
V

3 GPa 20 GPa 3 4 -0.196

Table 2: Material parameters identified and used in present work.
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Figure 7: Reaction force as a function of displacement (h). Solid black line shows the
results of present work, red dashed line the results calculated using the yield criterion
of Kermouche et al. (2008) and symbols represent the experimental measurements: a)
Berkovich test (Field et al. (2003); Iwashita and Swain (2002)); b) Nanosphere compres-
sion (Romeis et al. (2015)).

4. Discussion

To assess the predictive power of the calibrated DP-cap model, we have
performed additional calculations for other loading configurations. Results
for indentation with sharper tips are shown in Fig. 8a and compared with
experimental results (Field et al. (2003)). Good agreement is found although
the loading curve is slightly underestimated in our calculations. We also
considered pillar compression. The results are shown in Fig. 8b along with
the data from Kermouche et al. (2016). A similarly good agreement is found
although the predictions again slightly underestimate the loading curve.

We observe that the results of the DP-cap model do not differ significantly
from the results of the standard elliptic model by Kermouche et al. (2008).
When dealing with mainly compressive loadings, such as the presently avail-
able data, the models turn out very similar in effect. For silica we observe
only a small pressure dependence (b = 5) in the DP-Cap model, while this
can be much larger for other compositions. This is fully consistent with the
atomistic simulations (Molnár et al. (2016a)). In the DP-cap model, the co-
hesion c = 5.7 GPa (ie the strength at zero pressure) is somewhat lower than
in the elliptic model (6.5 GPa). In the DP-cap model, the derivative of the
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Figure 8: a) Reaction force as a function of indentation depth for α = 45◦ (red circles),
cube corner (green triangle) tests (Field et al. (2003)). Black solid line shows the results of
the simulation. b) Reaction force as a function of displacement for micropillar compression
tests. Symbols show the experimental values (Kermouche et al. (2016)) and solid line the
simulated ones.

strength with pressure is positive at zero pressure, in contrast to the elliptic
model where this derivative is zero. To maintain the same average response,
the cohesion is therefore lower in the DP-cap model.

Along the same line of thought, we note that in the atomic scale simu-
lations of pure silica (Mantisi et al. (2016)), a significant bump contributes
to the low hydrostatic pressure region, quite similar to Fig. 1. However we
were able to model silica response with a large value of the ∆p parameter,
i.e. with no bump. One reason for this discrepancy could be that strain
hardening rapidly induces a reduction of the bump. More likely, the reason
is that the sole datum of reaction force vs. displacement for different ex-
perimental configurations cannot discriminate between all combinations of
parameter values.

A maybe more differentiating way to analyze the calculation results is to
plot the spatial distribution of the stress state in the p-q plane for a given
experimental configuration. As an example, three different configurations
are shown in Fig. 9. For indentation, a marked high pressure tail clearly
appears in the stress state distribution, which is absent in pillar compression
(Lacroix et al. (2012)). This tail is due to confinement by the surrounding
elastic medium which strongly limits radial plastic flow, resulting in hydro-
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Figure 9: Stress state distribution for three types of loading at maximum penetration. (a)
Berkovich indentation (b) microsphere compression (c) pillar compression. The figure also
shows the yield criteria in the initial state and at full densification.

static pressure build-up and finally densification. Indeed care must be taken
that tests which occupy roughly the same region in the stress state diagram
(Fig. 4) may still differ markedly because of the spread in the stress states. In
this respect it is interesting to note that sphere compression is somewhat in-
termediate between pillar compression and indentation, with some extension
of the stress state into the high pressure regime. This result is not obvious
from the bare inspection of Fig. 4. In fact, the sphere geometry restores some
of the confinement which was lost in the pillar. From these considerations,
it appears that sphere compression may be a truly fruitful pursuit in the
present field.

These results suggest that beyond force displacement data, which are the
result of spatial integration over a stress state distribution, full field measure-
ments should be developed for refined definition of constitutive relations in
silicate glasses. Residual strain maps are an example of this strategy (Perriot
et al. (2006)). For this reason, we have investigated the impact of parameter
∆p on density distribution in Berkovich indentation. All other model pa-
rameters have been kept constant. Fig. 10 shows: a) the load displacement
curves for the various values of ∆p tested; b) the density along the vertical
axis (z) in the symmetry plane under the indenter. We find that increasing
∆p enhances densification. This was to be expected since densification pro-
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Figure 10: a) Reaction force for Berkovich indentation for different ∆p values. b) Plastic

volumetric strain (εplV ) after unloading under the indenter tip in the silica specimen for
different ∆p values.

ceeds only when the elliptic cap is reached in the yield criterion, and since
for large ∆p, the cap is active in a larger range of pressure. This verifies our
original assumption of ∆p = 7 GPa, showing a maximum of εplV = 15.4 %,
which compares favorably with previous experiments (Perriot et al. (2006)).
It is remarkable, however, that this variation is obtained without measurable
impact on the load displacement curve.

5. Conclusion

Based on our previous atomic scale modeling of the plastic deformation of
various silicate glasses, we have shown how a quantitative constitutive rela-
tion can be built by calibration of the analytical form to experimental results.
Additional loading configurations have been calculated to test the reliabil-
ity of the model. This generic form for constitutive relations of amorphous
silicates is fully consistent with more specific phenomenological constitutive
models proposed recently to model amorphous silica. It also provides rele-
vant criteria for a larger variety of silicate glasses, with a well established
physical basis. We have also shown that we can identify the constitutive pa-
rameters using a small set of micromechanical experiments which have been
developed recently. Although the full set of data is only available for silica
presently, it can relatively easily be extended to other silicate glasses in a
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near-future. Due to the increasing complexity of the constitutive models, we
have also emphasized that the simpler datum of load displacement curves
under various relevant loadings must be complemented by richer data sets
such as strain distribution measurements. Our work also points out that
experiments in the tensile regime, which are very difficult, would be most
valuable at present, and that even in the case of silicate glasses (ie with
modifiers) the paucity of micromechanics experiments strongly limits the ac-
curacy of the possible descriptions. Finally, several interesting issues have
not been considered here. For example, a detailed analysis of the flow rule as
derived from the MD results would be a challenging increment to the present
method. In a different direction, softening and the formation of shear bands
would deserve specific developments as well.
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Oñate, E., Owen, R., 2007. Computational Plasticity. Springer Netherlands.

Perriot, A., Vandembroucq, D., Barthel, E., Martinez, V., Grosvalet, L.,
Martinet, C., Champagnon, B., 2006. Raman microspectroscopic charac-
terization of amorphous silica plastic behavior. Journal of the American
Ceramic Society 89 (2), 596–601.

Romeis, S., Paul, J., Herre, P., de Ligny, D., Schmidt, J., Peukert, W.,
2015. Local densification of a single micron sized silica sphere by uniaxial
compression. Scripta Materialia 108, 84 – 87.

Rottler, J., Robbins, M. O., 2001. Yield conditions for deformation of amor-
phous polymer glasses. Physical Review E 642, 051801.

Rouxel, T., Ji, H., Guin, J. P., Augereau, F., Rufflé, B., 2010. Indentation
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Appendix A. Implementation details

We divide the criterion into three parts: the extended Drucker-Prager
part (py,− < p < pint), the left side of the ellipse (pint < p < h, where h is the
center of the ellipse) and the right side of the ellipse (h < p < py,+). In the
first two parts the slope is positive, thus the plastic volume change is positive
as well, whereas, if the slope is negative, the material densifies (εplV < 0, where
εplV can be calculated by taking the trace of the plastic Hencky strain tensor).
According to atomistic simulations (Molnár et al. (2016a)) positive plastic
volume change does not affect the positive yield pressure, therefore when the
stress path reaches the left side (either the Drucker-Prager curve or the left
side of the ellipse) the equivalent plastic strain (εplV ), controlling the hard-
ening, remains unchanged. As a result the implementation and the return
algorithm can be separated into a left (perfectly plastic) and right (harden-
ing) part. On the left (p < h) side a radial return algorithm is used both for
the Drucker-Prager and the ellipse. On the other hand, the increasing posi-
tive yield pressure complicates the implementation even with an associated
flow rule since the ellipse changes in a non-radial way. Therefore, to follow
the changing gradient of the yield function, a Newton-Raphson iteration is
applied to satisfy the following conditions:

s = ∆σ − C∆ε+ C∆λ∇F
(
σA + ∆σ

)
= 0, (A.1)

r = F
(
σA + ∆σ

)
= 0. (A.2)

Equation A.1 stands for the stress condition, namely that the vectorial
sum of the predicted increment (C∆ε) and return (C∆λ∇F

(
σA + ∆σ

)
)

must be equal to the final stress increment (see Fig. A.11). Unfortunately,
if the gradient of the yield surface (∇F ) is different in point A and point B,
this equation cannot be solved directly. Thus the yield criterion also needs
to be satisfied (eq. A.2).

The equation system is solved iteratively by minimizing gradually the
residues (s, r). The Jacobian of the system is updated in each j internal
iteration step:[

I + ∆λC∇2F C∇F
∇F T ∂F/∂λ

]
j

[
δσj+1

δλj+1

]
=

[
−sj
−rj

]
, (A.3)
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Figure A.11: Implicit non-radial return algorithm.

where C is the elastic stiffness tensor, ∇F and ∇2F are the first and
second gradients of the yield surface with respect to the stress tensor at the
internal step j (calculated from the actual stress state σj = σA + ∆σj). The
stress (∆σ) and the plastic multiplier (∆λ) increments are updated in each
j iterations as follows:

∆σj+1 = ∆σj + δσj+1

∆λj+1 = ∆λj + δλj+1
. (A.4)

The aim of the above iteration is to minimize the stress residue (s) and the
value of the yield function (r). Therefore, after each internal step their value
is updated as well. To solve the linear equation system an LU decomposition
is used The plastic strain increment is defined using an associated flow rule:
dεpl = dλ∇F . Finally, when the residues are eliminated, all quantities are
updated to calculate the tangent stiffness according to the following equation:

Ctan = C −
C∇F∇F TC

∇F TC∇F − ∂F/∂λ
. (A.5)

Further information about the algorithm can be found in several text-
books discussing computational plasticity (de Souza-Neto et al. (2008); Krabbenhøft
(2002); Nemat-Nasser (2004); Oñate and Owen (2007)).
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