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The elastoplastic behavior of sodium silicate glasses is studied at different scales as a function of composition
and pressure, with the help of quasistatic atomistic simulations. The samples are first compressed and then sheared
at constant pressure to calculate yield strength and permanent plastic deformations. Changes occurring in the
global response are then compared to the analysis of local plastic rearrangements and strain heterogeneities. It is
shown that the plastic response results from the succession of well-identified localized irreversible deformations
occurring in a nanometer-size area. The size and the number of these local rearrangements, as well as the amount
of internal deviatoric and volumetric plastic deformation, are sensitive to the composition and to the pressure.
In the early stages of the deformation, plastic rearrangements are driven by sodium mobility. Consequently,
the elastic yield strength decreases when the sodium content increases, and the same when pressure increases.
Finally, good correlation was found between global and local stress-strain relationships, reinforcing again the
role of sodium ions as local initiators of the plastic behavior observed at larger scales.
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I. INTRODUCTION

Silicate glasses are widely used for their ease in forming and
recycling, among other interesting physical and mechanical
properties. Sodium silicate glasses are excellent examples of
this type of glass with practical interest (hardening accelerator
in cements, passive fire protection, etc.). In addition, for
theoretical interest, they show a complex mechanical behavior
resulting from the mixing of only two different materials: silica
(SiO2), where Si atoms acts as network formers, and sodium
oxide (Na2O), where Na acts as network modifiers enhancing
the viscosity of the supercooled phase [1]. Sodium silicate
glasses are known as “normal glasses,” while pure silica
glasses have an anomalous mechanical behavior characterized
by their anomalous thermal retraction and plastic densification
at small scales [2]. Based on the tests done with micrometer-
size balls at room temperature, Romeis et al. [3] showed
that the response of pure silica is dominated by densification.
On the other hand, indentation tests performed on soda-lime
silica [4,5] showed that the addition of sodium and calcium
decreases densification processes but increases shear flow
significantly, even below the glass transition temperature [6,7].
Studying the small-scale plastic behavior of silicate glasses is
crucial to also understanding crack initiation processes and
the brittle behavior of glasses at large scales [8,9]. It is thus
very important to have an adequate description of their plastic
response at the atomic scale in order to identify and, if possible,
to predict their failure behavior. While this kind of description
already exists for crystals [10], it is not yet well established
in these amorphous glasses, especially due to the lack of
experimental measurements at a sufficiently small scale.

In the 1970s, Spaepen [11] and Argon [12] proposed
a description of the elementary processes responsible for
plasticity in metallic glasses. The description proposed by
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Spaepen was based on the existence of randomly distributed
soft zones, or free volumes, while the description of Argon
described low temperature plasticity as a succession of shear
dominated dislocation loops identified as shear transformation
zones (STZs). Recently, it was shown that the plastic
deformation of amorphous systems can be described as
a succession of Eshelby inclusions [13] containing both
deviatoric (shear dominated) and compressive (densification)
components [14–19]. The description of the number and size
of the Eshelby inclusions appearing during plastic deformation
in glasses is sufficient to reconstruct the stress-strain curves
even at finite shear rates [19–23]. However, actual mesoscopic
modeling of plasticity in amorphous materials is based on
an evolution equation inspired either from master equation
developed from statistical physics [24] or from extremal
modeling of self-organized phenomena [25]. Both approaches
are written on the spatial and temporal evolution of elementary
plastic events (PEs). A realistic description of the mechanical
couplings between these objects will of course depend on their
actual shape, size, and orientation. Moreover, the succession of
local dissipative rearrangements is strongly dependent on the
nucleation criteria that are still under debate [26–28]. Finally,
larger scale calculations (e.g., finite element calculations [29])
need a general description of the yield surface and plastic flow
properties in a general three-dimensional (3D) stress space.
It was shown recently that the apparent constitutive laws in
silicate glasses have a nontrivial shape depending strongly
on the composition and pressure [30]. Current mesoscopic
models are neither able to provide such an overall description
nor to explain the transition between the anomalous to normal
behavior as a function of the composition in silicate glasses
[27]. Hence, it is essential for larger scale mechanical modeling
of glasses to first describe the composition dependence of the
elementary processes responsible for plasticity. Therefore,
classical atomistic simulations (molecular dynamics and
statics) are an ideal tool to describe these elementary processes
and the corresponding yield surface at the micrometer
scale [31].
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To investigate the effect of the composition and pressure on
the plastic response of sodium silicates, large scale atomistic
simulations were carried out and combined with a detailed
description of the elementary processes responsible for plastic
flow. First the global response is described throughout hydro-
static and shear tests. Then the change observed in the global
shear strength is explained by identifying the aforementioned
plastic events and relating them to local stress and strain limits.
Finally we show that the overall behavior of the individual
events corresponds well with the macroscopically observed
phenomena. The paper is organized as follows: in Sec. II, the
details of the initial sample generation and the elementary
deformation procedure are discussed; in Sec. III, the results
obtained at the global scale during hydrostatic and shear
deformation are discussed as a function of the composition;
in Sec. IV, the elementary processes responsible for plastic
deformation are analyzed and a microscopic explanation for
the change in plastic response as a function of composition
and pressure is proposed; we end the paper with a conclusion
and some additional remarks.

II. METHODS

A. Atomic sample preparation

Sodium silicate systems are described using the widely
used van Beest–Kramer–van Santen (BKS) potential [32]
with the parameters of Yuan and Cormack [33], completed
with a repulsive function [34]. As discussed in Ref. [35],
within this empirical interatomic interaction potential, each
atom supports an effective charge and only repulsive, van der
Waals, and effective ionic couplings are taken into account.
The polarizability of the electronic cloud, for example, is
not taken into account here. However, the results compare
reasonably well with the experimental measurements of the
mechanical properties. The amorphous glass samples were
generated by random sequential placement of the atoms in a
cubic simulation box with periodic boundary conditions.

Molecular dynamics [36] in an N-P-T ensemble was
performed to equilibrate the liquid at 3000 K and 0 GPa
for 100 ps. The liquids were then quenched to 10−5 K
with 10+13 K/s cooling rate. Four different configurations
of each xNa2O-(100-x)SiO2 glass system, with x = 5, 15,
and 30% mol (referred to as NSx5, NSx15, and NSx30)
are generated with 67 041 atoms for NSx5, 69 849 atoms
for NSx15, and 73 368 atoms for NSx30. According to the
composition, the cutoff in the Buckingham potential was
tuned to reproduce the experimental glass densities at ambient
pressure after the quench [35]. Using this procedure, the size

of the final cubical simulation boxes is 1003 Å
3

for all the
samples. At this scale, no finite size effects are expected, as
extensively discussed in Refs. [19,35,37]. Structural properties
of the generated samples and the effect of sodium is in good
accordance with experimental measurements [38–40]. The
comparison was already presented in previous studies [33,35].

B. Mechanical deformation

The generated sodium silicate glass samples are then
deformed quasistatically [27,41], using molecular statics
simulations [42]. In each deformation step, the shape of the

simulation box is modified and the position of the atoms
is homogeneously rescaled to describe first homogeneous
applied strain δε. To find the new equilibrium atomic positions,
the Polak-Ribiere conjugate gradient algorithm is then used to
reach the nearest local minimum of the potential energy. In
order to have a quasielastic response, the maximum elementary
applied strain step is set to (δε) = (5 × 10−3)% [35]. Note
that viscous and intertial effects are not taken into account
here since the dynamics is chosen to follow the closest static
equilibrium. In amorphous materials, it was shown that inertial
and viscous effects start to play a role at sufficiently large
strain rates or temperatures, typically when the damping time
becomes larger than the intrinsic vibrational period, as detailed
in Ref. [43].

Two types of quasistatic deformations were applied to
evaluate the plastic behavior of the samples, and thus the stress
response under specific strain conditions. All samples were
first submitted to hydrostatic compression and tension to set
the proper pressure state. Then pure shear deformation was
applied at the desired—constant—pressure.

The components of the Cauchy stress tensor (σ ) are calcu-
lated using virial stress [44]. Pressure is derived from the di-
agonal elements: p = −tr(σ )/3. During the initial hydrostatic
load, all axial dimensions of the simulation box were changed
in order to achieve compaction or extension: no shear strain is
applied. The volumetric strain is calculated from the volume
variation: εV = dV /V0, where dV is the volume variation
(dV = V − V0) compared to the initial volume (V0). In step
2, the simulation box was tilted in the xy plane to apply shear
(εxy) at the formerly obtained pressure state. During this stage,
the pressure is iteratively controlled by changing the axial size
of the simulation box in order to achieve equal axial stresses:
σxx = σyy = σzz = −p, thus a constant hydrostatic stress state
[45]. The maximum value of the pressure and the equivalent
shear stress is then registered. The equivalent shear stress (k)
can be calculated according to the following equation [46,47]:

k2 = 1
6

[
(σxx − σyy)2 + (σxx − σzz)

2 + (σyy − σzz)
2

+ 6
(
σ 2

xy + σ 2
xz + σ 2

yz

)]
, (1)

where σii corresponds to normal stresses and σij to shear
stresses. In this way, the stress state is decomposed into a
hydrostatic component (p) and a pure deviatoric part (k). The
same method was used to calculate the equivalent shear strain
(εk). Only in this case, the Green-Lagrange strain tensor was
used instead of the Cauchy stress tensor [48,49].

During step 3, the box is tilted in the opposite direction
to reduce the shear stress to zero (keeping the system at the
same pressure). Finally, in step 4, the pressure is relaxed to
p = 0 GPa. The final box shape is compared to the original
one to calculate the permanent shear [εpl

xy(p,k)] and volumetric
[εpl

V (p,k)] strains as a function of the applied stresses. The
numerical experiment is carried out for various stress states
(p ∈ [−14,17] GPa, k ∈ [0,8.5] GPa) to map the plastic
response of the material.

III. LARGE SCALE MECHANICAL RESPONSE

In order to describe the plastic response of the material, the
results are divided into three separate sections. First, the hydro-
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FIG. 1. (a) Pressure as a function of volumetric strain for NSx5,
NSx15, and NSx30 glass compositions. The dashed line shows the
reverse deformation and the calculated permanent volume change
(εpl

V ). In the absence of hydrostatic experiments on sodium silicate,
results measured on silica samples are shown [50,51] with cross
and plus symbols. (b),(c) Isodensity surfaces (ρ = 0.1 g/cm3) at the
minimum pressure state for NSx5 (left) and NSx30 (right).

static response is discussed (without shear deformation). Then
several shear cases are studied as a function of composition and
pressure. Finally, as explained in Sec. II, the two elementary
deformation paths are combined and reversed to map the
plastic response as a function of hydrostatic and shear stress.

A. Hydrostatic deformation

In this section, the results obtained upon pure hydrostatic
compression (k = 0 GPa) are presented. First the pressure is
shown as a function of volumetric strain, then the tangent
modulus and the permanent volume change are shown as
a function of pressure. Figure 1 shows the pressure as a
function of volumetric strain for different compositions (NSx5,
NSx15, and NSx30). The results are compared with different
experiments on pure silica [50,51]. The dashed line shows
how permanent volumetric strains are computed. All samples
are deformed isotropically. After reaching the desired pressure
value (pup), the direction of the deformation is reversed until
the pressure is relaxed to zero. The permanent volume variation
is calculated by comparing the initial and final volume size.

Figure 1 shows first that the tensile strength of the material
reduces by increasing the sodium content. With more sodium,
the material behaves more ductile: after reaching the maximum
tensile pressure, the resistance of NSx5 reduces dramatically,
while NSx30 maintains its pressure but enters a plastic plateau.

FIG. 2. Pressure dependence of the tangent bulk modulus for
NSx5, NSx15, and NSx30 samples. The tangent bulk modulus is
calculated by fitting a fifth-order polynomial function on the p − εV

results (shown in Fig. 1) and then the derivative of the fitted curve
is taken with respect to εV . The figure also shows the tangent shear
modulus with a third-order polynomial, calculated from the shear
deformation results (see Fig. 6).

The abrupt change for NSx5 and NSx15 at εV = 32% and
40%, respectively, corresponds to stress relaxation caused by
discontinuity (crack opening) in the atomic structure. The
pressure does not relax to zero at imposed strain due to the
nonzero stress components in the in-plane crack directions,
as detailed in Ref. [52]. In NSx30, the degradation is much
more homogeneous, as seen in Figs. 1(b) and 1(c); therefore,
the pressure can be maintained for a long time at a constant
plateau. However, after large expansions, the pressure begins
to reduce in NSx30 as well, just not in an abrupt way as
observed in the other two cases. The compression side of the
diagram is different. While on the tensile side, the pressure’s
amplitude was higher in NSx5 than in the other compositions
before breakdown, on the compression side in contrast, the
pressure rises quickly in NSx30. Despite the fact that the
initial bulk modulus of NSx30 is lower than that of NSx5,
for large compressive deformations (εV < −2 < 0%), NSx30
seems to be stiffer. Measurements conducted on pure silica for
the compressive part [50,51] show similar shape and pressure
values as the simulated curves.

From the polynomial fit of the hydrostatic deformation
test, the apparent tangent bulk modulus is derived as K ≈
−V0dp/dV [53]. Figure 2 shows the tangent bulk modulus as
a function of pressure for the different glass compositions. The
K − p curve is obtained from p(εV ) and K(εV ), and shows
the tangent bulk modulus as a function of an easily measurable
quantity. At zero pressure, the apparent bulk modulus of
the different simulated glass compositions is consistent with
experiments and previous calculations within 10% accuracy
[35,56] (see Table I).

In compression (positive pressure), NSx15 and NSx30
show a monotonous behavior from 0 to 20 GPa, where the
tangent moduli evolve in the range of 45 to 110 GPa. For
low sodium content (NSx5), however, a stiffness anomaly
(nonmonotonous behavior) [57–59] is clearly observed. The
tangent bulk modulus decreases until the minimum value
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TABLE I. Bulk modulus comparison between different calcula-
tion techniques and experiment [56]. Unit is in GPa.

Composition This study Ref. [35] Experiments [56]

NSx5 48.35 51.03 ± 1.5
NSx15 35.11 38.66 ± 2.0 36.03
NSx30 36.07 37.92 ± 1.8 40.15

of 33.6 GPa (reached at p = 7 GPa), and then it increases
again for higher pressure values. Similar results were already
obtained in Ref. [56] where it was shown that 15% Na20
was a critical composition separating anomalous behavior (for
lower sodium content) to normal behavior. The anomalous
nonmonotonous behavior may be related to the free open space
in the structure and the role of sodium as lattice modifier. As
shown in Fig. 3, when the pressure increases in low sodium
content materials, structural changes affect mainly Na-Na and
O-O interatomic distances [as shown in the partial structure
factors, Figs. 3(b) and 3(c)], while the Si skeleton becomes
slightly more disordered [Fig. 3(a)]. The interatomic Na-Na
distance changes by 33% for a global volume variation of
only 10% when the pressure increases from 0 to 5 GPa in
NSx5. As a result of these microbuckling events, the apparent
tangent bulk modulus decreases [31,34]. In NSx30, the free
volume is filled with sodium. The interactions of sodium

ions with the Si skeleton are complex because sodium ions
are more mobile, inducing local softening [35], but their
presence prevents, in the same time, the isotropic collapse of
Si rings. Therefore, initially softer, the material finally stiffens
rapidly.

From several pressurized states, decompression was per-
formed to relax the total pressure, and the resulting permanent
relative volume change ε

pl

V was measured by comparing the
initial and the final configuration in the same zero-pressure
state. An example of a compression-decompression cycle is
shown in Fig. 1 for NSx30. Figure 4 shows the permanent
volume change which corresponds to the densification after
the loading-unloading cycles until the maximum pressure
value of 45 GPa. A sigmoidal fit [6] is used to guide the
eye of the reader. All simulated compositions are shown next
to two experimental measurements obtained for pure silica
[54,55] and soda-lime silica [47]. At low pressure values,
higher densification is observed in NSx30. But after reaching
a limit pressure (5 GPa in NSx5), the permanent volume
change begins to increase rapidly, eventually saturating to a
threshold (εpl,max

V = −25% in NSx5). This result is consistent
with the phenomena observed in Fig. 2. A large increment of
the permanent volume change shows an increase in volumetric
plasticity, which may result in a decrease of the observed
tangent bulk modulus with pressure as already discussed in
[34]. The decay of the apparent modulus with pressure can
also be related to any kind of irreversible rearrangement

FIG. 3. Top: Partial pair correlation function for different compositions and different pressures. Bottom: Effect of shear strain on the Na-Na
pair correlation function, for different compositions and different pressures.

043001-4



EFFECT OF COMPOSITION AND PRESSURE ON THE . . . PHYSICAL REVIEW E 95, 043001 (2017)

FIG. 4. Permanent volume change for NSx5, NSx15, and NSx30
glass samples obtained as a function of maximum pressure. The
experimental result on pure silica [54,55] and a soda-lime-silica glass
[6] is reported to compare the tendencies.

leading to a new atomic equilibrium position. In some cases,
as will be shown later, these rearrangements can be driven
by local irreversible shears only, without volumetric plasticity,
especially at low pressures or for large sodium content. The
idea that lower sodium content contains more free volume
is confirmed here by the fact that the maximum volume
change is significantly lower for NSx30 (εpl,max

V = −17%
for NSx30).

Despite the fact that the present numerical models show
higher permanent volume change than in experiments, the
qualitative relation between the increase of the network
modifiers concentration and the decrease of the permanent
deformation is in good agreement with measurement [54].
Generally, the hydrostatic behavior of the simulated systems is
in qualitative agreement with experiments [54,55] and density
measurements [55,60], as seen in Figs. 1 and 4. This agreement
strongly strengthens our numerical analysis.

B. Shear deformation

Quasistatic shear deformation is conducted in the xy plane
until εxy = 50% tensorial shear strain for the different glass
compositions and different pressure states (the prepressurized
samples are taken from the previous part).

Figure 5 shows the composition dependence of the gov-
erning stress at p = 0 GPa for sodium silicate glasses. The
result for pure silica from the numerical work of Mantisi
et al. [34] is also plotted in order to show the gradual change
with the percentage of sodium content. As in pure silica, the
shear response of low sodium content glass (NSx5) shows a
softening stage which is characterized by a local maximum
followed by a decrement. Finally, a plateau is reached for high
strain values in all compositions. The increment of sodium
content reduces the global shear stiffness, as can be observed
by looking at the slope of the quasielastic part (εxy = [0,5]%)
that was drawn in Fig. 2. The material yields at a lower
deformation stage and a lower yield strength, thus reducing
as well the final yield strength at high strain values. Moreover,
it appears that for a sufficient amount of sodium, the softening

FIG. 5. Equivalent shear stress (k) at p = 0 GPa pressure as a
function of the applied shear strain for different compositions, and
four different configurations for NSx5. The result for silica is taken
from the work of Mantisi et al. [34].

vanishes: for NSx30 and NSx15 glass, a continuous stress
increase is observed without any significant decay.

Let us now consider the effect of pressure for a given
composition. Figure 6 shows the equivalent shear stress k as
a function of shear strain for several constant pressure states
(p = −10,−2,0,5 GPa) in NSx5. Using a dashed line (the
same way as done in Fig. 1), the shear stress during unloading is
shown in order to demonstrate the measurement of permanent
plastic shear strains (εpl

xt ). Two different responses can be
distinguished in this figure:

Brittle. At high tensile stress (e.g., p = −10 GPa), after
a maximum shear stress the material completely loses its
load bearing capacity and both shear stress and pressure
reduce to zero. This large strain response is characterized by
macroscopic crack formation.

FIG. 6. Equivalent shear stress (k) as a function of the applied
shear strain for different pressure states and different configurations
of NSx5 glass. The figure shows the brittle failure at p = −10 GPa
and the plastic response for the other cases. Red stars indicate
the maximum shear strength achieved during deformation. Using
a dashed line, a reverse loading case is shown to demonstrate the
calculation of plastic shear strains (εpl

xy).
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FIG. 7. Maximum shear stress (red stars in Fig. 6) as a function of
pressure for NSx5, NSx15, and NSx30 samples. The solid symbols
indicate that the failure is brittle. Plastic response is shown using
open symbol. Crosses indicate the saturated value of the shear stress
at large strains when it is different from the maximum shear stress.

Ductile. For higher pressure values, the applied shear strain
can be increased without the disintegration of the sample. In
this case, after either a softening stage (for low pressures)
or a monotonic increment (for higher loads), the shear stress
enters and maintains a plastic plateau. In this way, the tangent
stiffness reduces to zero, but the pressure and shear stress state
is maintained at a nonzero value.

In Fig. 7, the maximum shear stress is summarized as a
function of the applied pressure for different compositions.
Solid symbols show brittle failure modes and empty ones
show the ductile failure modes. By adding Na2O into silica, the
maximum shear stress and especially the tensile stress reduce
significantly. The boundary between brittle and ductile failure,
however, increases in the direction of the positive pressure. In
NSx5, the first ductile pressure state is at p � −5 GPa, for
NSx15 it is p � −2 GPa, and for NSx30 it is p � −1 GPa.
This means that not only the shear, but also the tensile strength
of the material is reduced by the presence of sodium ions. A
local maximum in the shear load bearing capacity is present

for NSx5 and NSx15 as a function of pressure at p = −6
and p = −5 GPa, respectively, after which the maximum
shear stress reduces to a local minimum (p = 5 and 2 GPa)
for NSx5 and NSx15. These results show that pressure and,
hence, permanent volume loss alter the structure causing the
maximum shear stress to reduce. However, after this local
minimum, the maximum shear stress increases again with
the compaction of the material, as shown for other materials
[61–63]. Indeed, it is interesting that permanent volume
loss and pressurization do not affect NSx30 this way. The
shear load bearing capacity of sodium rich samples increases
monotonously with pressure.

Section IV will be dedicated to giving a microscopic
explanation of the reduction of the supported stress with
pressure and with the increasing amount of sodium.

C. Remaining plastic deformation

To map the plastic response of the material, the procedure
described in Sec. II was systematically carried out. The
samples were successively compressed isotropically to reach
the target pressure, then sheared at constant pressure. After
reaching the desired stress state (p − k), the deformation was
reversed and both shear stress and pressure were relaxed. Fi-
nally, the original and the final simulation box were compared
to evaluate the remaining plastic strain tensor. Figure 8 shows
two components of the plastic strain tensor as a function of the
stress state (p − k). Additional results can be found in Ref. [30]
for different loading paths. Plastic shear strain (εpl

xy) is shown
using red lines; permanent volume change (εpl

V ) is indicated
with black ones. To be able to compare the volumetric and
shear strains, the volumetric strain (εpl

V ) is divided by 3 and
the tensorial shear strain (εxy) is multiplied by 2 [64,65]. The
axes are set to the same range to highlight the compositional
difference. The curves shown in Fig. 8 are thus a visualization
of the elastic domain and the governing yield surfaces in the
stress space k − p, for different values of the remaining plastic
strain components. They allow us to compare the effect of
stress and of sodium content directly on the plastic response,
as already suggested in Ref. [34]. The pure elastic response can

FIG. 8. Residual volumetric strain (εpl

V ) and residual deviatoric (or equivalent shear) strain (εpl

k ) as a function of maximum applied stress
state for different compositions. Each numerical test is shown with crosses. Volumetric strain values are divided by 3 and deviatoric strain
values are multiplied by 2, as explained in the text. Every red curve symbolizes an increment in the permanent deviatoric deformation by 2%,
and every black curve does the same for the volumetric part. The gray area covers the quasielastic domain, where the plastic strains are lower
than 1%.
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only be found in the elementary deformation step; therefore,
a quasielastic limit is defined at a threshold of the plastic
strains equal to 0.01 (highlighted by the gray area). Using this
representation, the role of sodium content on the elastic limit
can be clearly identified.

Regarding the composition dependence, Fig. 8 clearly
shows that the increase of the sodium content considerably
reduces the elastic domain in the k − p space. For NSx30,
the elastic domain is strongly reduced, while NSx5 has
a relatively large elastic domain where neither shear nor
volumetric deformation is observed. Plasticity of NSx5 is
mainly dominated by permanent volume loss which is different
for NSx30, in which case the plastic shear strain is dominant
in the early stages of plastic deformation, especially when
low pressure is applied. Note that even for low sodium
content, a small amount of plastic shear is always visible in
the low pressure domain where no irreversible densification
took place. However, the relative amount of volumetric
and shear plastic strains depends on the composition: the
plastic shear strain always increases with the amount of
sodium.

Finally, it is interesting to recognize that volumetric plastic
strain is increasing upon deviatoric deformation at constant
pressure. For example, if a NSx5 sample is sheared at p =
7 GPa pressure, initially no permanent volume change is
registered. If the shear stress exceeds k = 1.5 GPa, permanent
volumetric strain increases up to 1%. And, finally, at the
maximum shear stress k = 5.5 GPa, εpl

V is more than 9%. This
coupling between applied shear and the resulting densification
was observed experimentally a long time ago [66], but did
not have clear evidence. The densification upon shear has
a structural signature in the spatial distribution of sodium
ions, which become closer to each other, especially at low
pressures, as shown in Fig. 3. Based on our analysis, it was
shown recently that shear and densification can indeed be taken
into account in a single intrinsic parameter [30]. The overall
decline of the load bearing capacity and the increase in the
ductile behavior when increasing the sodium content is in
agreement with experimental measurements [67].

We will now compare these global results to the analysis of
the microscopic irreversible processes responsible for plastic
deformation at small scales.

IV. LOCAL MICROSCOPIC ANALYSIS

A. Nonaffine displacements

In previous sections, it was shown that the yield behavior
of sodium silicates strongly depends on composition and
pressure: Fig. 7 showed that the presence of sodium and
the increasing pressure (and densification) reduces the shear
strength significantly. To complete the previous global plastic
description, a local analysis is now performed. To compare
the effect of composition and pressure, four shear cases
were chosen: NSx5 and NSx30 at p = 0 GPa highlights the
differences caused by sodium; and NSx5 at p = −2 and 5 GPa
shows the effect of pressure.

To identify the plastic activity, the nonaffine displacement
field is used [68,69]. This quantity was shown to highlight the
plastic centers that are located precisely at its local maxima

FIG. 9. Mean squared nonaffine displacement of Si, O, and Na
atoms during shear deformation for NSx5 at p = −2, 0, 5 GPa and
NSx30 at p = 0 GPa pressure.

as soon as irreversible displacement occurs [15,23,26,70].
The nonaffine displacement field duna is obtained between
two deformation states by subtracting the displacements of
the atoms in the affine hypothesis to the real displacements
obtained after mechanical equilibrium is reached. It is written
as

duna = du − dε · r0, (2)

where du is the atomic displacement obtained from simu-
lations, which compares the atomic positions after energy
relaxation to the atomic positions before the external de-
formation is applied, and dε · r0 is the so-called affine part
where r0 corresponds to the initial position of the atom and
dε is the global strain step tensor between the deformation
states. The nonaffine displacement field thus evaluates the
atomic displacements occurring during energy minimization.
It corresponds as well to the deviation from the homogeneous
strain field. Its average over all the atoms is zero.

To accurately measure the displacements, duna is calculated
between every 10 load steps (e.g., between the initial and the
configuration obtained after 10 load steps, then between the
10th and 20th one, and so on) that is for a strain interval
dεxy = 10 · (δε) = 5 × 10−2%. The cumulative nonaffine dis-
placements una(εxy) are obtained, if needed, by summing the
nonaffine displacement increments up to the global strain εxy :

una

(
εxy

) =
∑

dεxy

duna. (3)

Similarly to thermal diffusion in atomic systems, nonaffine
displacement provides information about the random motion
caused by shear, in the harmonic as well as in the anharmonic
regime. In Fig. 9, the mean squared displacement (MSDna)
is shown as a function of the applied shear strain. The
displacement data is shown for the four chosen deformation
cases and each atomic species is plotted in a separate figure.
MSDna is calculated by averaging the cumulative nonaffine
displacement over different atomic species:

MSDna(εxy) = 1

N

N∑

i=1

[
ui

na(εxy)
]2

, (4)
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where N is the number of atoms in each species and ui
na(εxy) is

the amplitude of the cumulative nonaffine displacement vector.
This quantity shows the relative mobility of the atoms. During
shear deformation, the network modifier (Na atoms) appears
to be the most mobile atomic species, followed by oxygen and
silicon atoms. This order respects as well the mobility observed
by thermal activation [71–73]. It appears that reducing the
free volume in the structure (by compressing the samples)
reduces the global mobility of the atoms. Sodium atoms motion
also decreases by increasing the composition (in this way,
filling up the free volume with sodium) from NSx5 to NSx30.
However, the motion of the other two species (Si and O) is
not affected significantly by the amount of network modifiers.
These atomic scale measurements are in agreement with the
interpretation of the global elastoplastic response proposed in
Sec. III A in terms of atomic mobility and free volume in the
silicon skeleton.

The nonaffine displacements can also be used to identify
local plastic events (PEs), which control the major part of
irreversible rearrangements in amorphous solids [12,15,74].
Fusco et al. [20,23] showed that the dissipation of elastic
energy is mainly located at the position of the local maxima of
the nonaffine displacement fields. We will now look in detail
at the core of the plastic events.

B. Plastic events

From the atomic displacements, it is possible to compute
local strains by using, for example, the physically based
coarse-graining procedure proposed by Goldenberg et al. [70].
The definition of strain is then obtained by deriving the
coarse-grained continuous displacement field, whose expres-
sion preserves the mass conservation equation. We applied
this coarse-graining procedure to the nonaffine displacement
values to transform the original discrete atomic values into
a continuum field. More precisely, the technique consists of
a mass-weighted Gaussian convolution evaluated on a 3D
grid with 100 × 100 × 100 points. A coarse-graining length,
which is basically the width of the Gaussian function, is set
to 3 Å according to the work of Goldenberg et al. [70]. With
this method, the discrete values calculated at each atom are
weighted differently to obtain a homogeneous field. Using
the definition of the Green-Lagrange strains (e.g., 2εxy =
∂u
∂y

+ ∂v
∂x

+ ∂u
∂x

∂u
∂y

+ ∂v
∂x

∂v
∂y

+ ∂w
∂x

∂w
∂y

, where u, v, and w are
displacements in the x, y, and z directions, respectively), εxy

can be calculated locally from the coarse-grained displacement
field. To obtain this last quantity, a larger 5 Å coarse-graining
length was used because it was shown previously [35] that
strain is ill defined under this value.

Figure 10 compares the amplitude of the coarse-grained
cumulative nonaffine displacement field una(x,y,z), and of the
plastic shear strain field ε

pl
xy(x,y,z) for different cases in the

middle plane of the sample. The plastic shear strain ε
pl
xy(x,y,z)

was calculated by comparing the initial (undeformed) sample
and the one which was relaxed backward from εxy = 20%
to σxy = 0 (in both cases, the global shear stress is zero).
The comparison between the plastic strain field and the
nonaffine displacement, cumulated up to εxy = 20%, definitely
strengthens in our specific sample the relationship between

FIG. 10. Amplitude of the cumulative nonaffine displacement
field at εxy = 20% (left) and permanent plastic shear strain (εpl

xy)
after relaxing shear stresses (right) from the same deformation state.
The results are shown for NSx5 at −2 and 0 GPa, and NSx30 at
0 GPa. The correlation coefficient computed for the data sets is
corr(|ucum

na |,εpl
xy) = 0.83,0.72,0.78, respectively.

nonaffine displacements and globally calculated plastic strains:
Strong spatial correlations (corr(|una|,εpl

xy) = 0.83,0.72,0.78)
indeed show that the cumulative nonaffine displacement
field is directly related to the governing plastic strain. This
measurement confirmed that plastic rearrangements identified
by the nonaffine displacements are truly responsible for the
major part of global plastic strain, not just statistically but
spatially as well. In NSx5 samples at p = −2 GPa, the
localization of both the nonaffine and the plastic strain field
along elementary shear bands can be observed. Note that in this
deformation case, at εxy = 20%, the stress-strain relationship
shows a softening response (Fig. 6). This result supports the
theory that shear softening is related to the persistent alignment
of plastic events (PEs) [27,75,76]. By looking at the other
two cases in Fig. 10, it is seen that the increment of either
pressure or sodium content homogenizes the plastic response.
At the same time, no shear softening was observed: the samples
harden monotonously.
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FIG. 11. Amplitude of the coarse-grained nonaffine displacement
field in NSx5 sample at the plastic event (PE). The figure shows the
position of the plastic event with a curved black arrow, and the planar
projections of atomic displacements are drawn with gray arrows.

The contribution of the individual rearrangements to the
global plastic strain can be studied in detail as a function
of the composition and pressure. The characteristics of the
PEs are obtained using the method developed by Fusco et al.
[20]. First, duna(x,y,z) was computed between every 10 load
steps. Then the local maxima of this field are identified as
individual PEs. According to the recommendation of Ref. [20],
local maxima smaller than duna < 0.1 Å are neglected because
their amplitude is within the numerical precision of the energy
minimization scheme. Figure 11 shows the amplitude of
the coarse-grained nonaffine displacement field of the NSx5
sample with p = 0 GPa in the middle plane (z = 50 Å) for
εxy ∈ [15.50,15.55]% (10 load steps). A PE is clearly shown at
x = 62 Å and y = 29 Å. It corresponds to a local plastic strain
with evident contribution of shear displacements, analogous
to the Eshelby-like strain heterogeneities recently recognized
as the elementary ingredient for plastic deformation in amor-
phous materials [17,19]. Plastic strain is given directly by the
eigenstrain of the Eshelby inclusions. The size (rPE) of a PE is
estimated by looking at the radial decay of the angular averaged
intensity of the nonaffine field around its local maximum.
The values were then fitted with an exponential function:
una = umax

na exp(−r/rPE), where umax
na is the value at the peak,

r is the radial distance, and rPE measures the radius of the
PE’s core. It is possible to measure not only the size and the
number of plastic events, but also their core’s composition, and
internal strain tensor. The results are summarized in Fig. 14.

Figure 14(a) shows the cumulative number of PEs calcu-
lated by counting the local maxima at every 10 step interval.
Similarly to the evolution measured in other systems such as
amorphous silicon [20], three stages are clearly visible: (1) a
first stage where almost no PE is found, (2) a second stage
where the PEs appear, and (3) a final stationary stage, where
the number of PEs appearing at each strain step is constant,
giving rise to a linear strain dependence of the cumulative
number of PEs, or constant nucleation rate. The first stage
can be considered as elastic (plasticity is negligible); then the
material gradually plastifies, and finally the response enters

a stationary plastic plateau. The second stage appears as a
crossover between the elastic regime and the perfect plastic
plateau. The crossover between these two regimes can be fitted
assuming a hyperbolic transition [fits shown in Fig. 14(a)]. It
shows a characteristic crossover strain εC

k depending on the
external pressure and on the glass composition, while the final
creation rate depends only on the composition. For NSx5 at
p = 0 and −2 GPa, the elastic regime is found until εxy = 5%;
in contrast, NSx30 at p = 0 GPa and NSx5 at p = 5 GPa
begin to yield at an earlier strain state (εxy = 2–3%). The
resulting number of plastic events is always larger for large
sodium content (NSx30) or high pressures (NSx5 at 5 GPa).
It is also shown that in the final stationary regime, all the
samples containing 5% Na2O have similar plastic rate: the
differences in the plastic rates, due for example to pressure
variations, are restricted to the initial stages. In contrast, in
NSx30 the plastic rate in the stationary regime is almost two
times larger compared to NSx5. The role of composition is thus
crucial for the plastic activity, but interestingly the number of
plastic events alone is not sufficient to reconstruct the global
stress-strain curves.

Figure 14(b) shows the amplitude of the nonaffine displace-
ment field at the plastic event averaged over all the events in
the same strain step. The same kind of stages can be found as in
Fig. 14(a): after an initial low value, the amplitude increases
quasilinearly and saturates to a stationary regime. It can be
observed that the amplitude in NSx30 is generally lower in
all stages; however, it finally saturates to a value similar to
the pressurized NSx5 sample. Not just composition but also
pressure have a significant effect on the amplitude: increasing
the pressure enhances the amplitude in the initial quasielastic
stage, but the amplitude decreases with pressure in the final
stationary plateau. The general trend is thus an enhancement
of plastic activity with pressure, combined with slightly larger
amplitude events in the early stages of deformation, and
then significantly lower amplitude. Increasing the amount of
sodium content always increases the plastic rate but decreases
the amplitude of plastic rearrangements. We will now look at
the effective volume involved in the plastic rearrangements.

Figure 14(c) shows the average radius size (rPE) of the
plastic event’s core as a function of the imposed shear
deformation. In all cases, the PE’s radius is smaller in the
early stage, but increases gradually and tends to a stationary
value in the plastic plateau. Initially, rPE is clearly pressure and
composition dependent. It is enhanced by the pressure and by
the sodium content. Increasing the pressure from −2 to 5 GPa
in NSx5 samples enlarges the plastic cores by 50% from 4 to
6 Å. This effect is similar to the composition effect: higher
sodium content increases the core’s size in the same range. In
the stationary regime, the PE core radius is nearly 6.5 Å and
it is only slightly enlarged by pressure but no longer depends
on composition.

The distribution of the different strain components mea-
sured in the core of the inclusions at each deformation step
and weighted by the size of the PEs is shown in Fig. 12.
In agreement with the previous analysis, two regimes of
deformation were distinguished: Figures 12(a) and 12(b) show
the histograms of the different components of the strain tensor
measured in the center of the inclusions for states belonging
to the initial linear part of the global stress-strain relation.
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FIG. 12. Top: Distribution of (a) deviatoric strain components
and (b) volumetric strain measured in the core of the plastic events in
the linear part of the stress-strain relation. Bottom: Distribution of (c)
deviatoric strain components and (d) volumetric strain measured in
the core of the plastic event, in the plastic plateau. The strain values
are computed in the center of the plastic events and are weighted by
the volume of the plastic events supposed to be spherical, with the
radius of the PEs core.

Figures 12(c) and 12(d) show the same histograms obtained
in the plastic plateau. The histograms in Figs. 12(c) and 12(d)
are better defined due to the larger number of plastic events in
this part. Contrary to Ref. [19], here we show the histogram of
the total strain, and not of the eigenstrain of corresponding
Eshelby inclusions, because we have chosen to show the

FIG. 13. (a) Global plastic equivalent shear strain kpl
ε as a function

of the applied global shear strain, for different compositions and
pressures. The plastic equivalent shear strain is computed either from
the reverse shear deformation (empty symbols) or from the deviatoric
strain inside the PEs (filled symbols). (b) Plastic volumetric strain as
a function of plastic equivalent shear strain for different compositions
and pressures.

direct measurement of total strain without any assumption
on the elastic strain. The result should be comparable to the
distribution of true eigenstrains, as it was shown in Fig. 13(a),
that the elastic contribution to the strain is negligible in the
center of the PEs. Indeed, the total strain, computed as the
sum of the local deviatoric strain measured in the centers of the
PEs, compares quite well with the global plastic deformation
measured after unloading the system. In particular, the slight
increase of the remaining plastic shear strain when pressure
increases is clearly visible in the figure for a global applied
strain of ≈10%. In Fig. 12, the strains are weighted by the
relative size of the PEs, as suggested in Ref. [19]. We used the
same quantity to compute the total averaged remaining plastic
deformation in Fig. 13(a) mentioned above (results from PEs),
assuming that the plastic deformation is localized strictly in
the core of the PEs.

The histograms of the deformation in the core of the
PEs show, in Fig. 12, that the distributions are not very
different for different compositions and pressures. The main
difference occurs in the volumetric part. There is a small,
but not negligible, volumetric strain for all the events in the
sample, with a larger distribution for compression than for
expansion in the early stages of deformation [Fig. 12(a)]. It is
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FIG. 14. (a) Cumulated number of plastic events during shear deformation for NSx5 at p = −2, 0, 5 GPa and NSx30 at p = 0 GPa.
(b) Average amplitude of the nonaffine displacement field at the plastic event. (c) Average radius size (rPE) of the core of plastic events as a
function of applies global shear strain. (d) Average normalized local composition (xloc/x) at the core of plastic events.

interesting to note that for low sodium content, larger pressure
(p = 5 GPa) will change the local volumetric strain, giving
rise to larger local densification during applied shear. In the
case of large sodium content (NSx30) in contrast, the local
volume expansion is as important as the local compression,
as in the case of low pressure low sodium content, but the
local deviatoric strain is smaller. In general, large sodium
content gives rise to smaller core strains. The total remaining
plastic deformation results from the accumulation of PEs,
and the large plastic capacity of NSx30 results thus solely
from the larger number of (smaller size) events. In this
case, the (non-negligible) densification is compensated by the
(non-negligible) volume expansion, without significant global
remaining volumetric strain. In all cases, the local deviatoric
strains are larger or equal to the volumetric strains, and follow
an approximately exponential distribution with characteristic
value for the weighted deviatoric strain, (εd ) = 3 × 10−3%

(L3 · εd = 30 Å
3
, comparable to the value obtained in amor-

phous silicon [19]). This characteristic weighted strain is
consistent with an averaged eigenstrain in the core of Eshelby
inclusions, (ε∗) ≈ 2 × 10−3, with an average size rPE ≈ 6 Å
[19]. The local plastic strain is small, but the large number
of plastic events explains the non-negligible remaining plastic
strain values.

In the plastic plateau, the distribution of the volumetric
changes is extended to larger volume variations. Upon shear
at constant pressure, the densification reached can be larger
than upon direct hydrostatic compression, as was already

observed in Ref. [30]. Finally, in the plastic plateau, the
plastic strain can reach a few tens of percents. The relation
between the volumetric remaining plastic strain and deviatoric
remaining plastic strain is shown in Fig. 13(b). In the plastic
plateau, it becomes proportional, with slightly larger deviatoric
strains. This figure also illustrates also the fact that the part
of volumetric plastic strain increases with pressure, while
deviatoric strain is dominant in samples with large sodium
content. Despite the similar decrease of plastic yield in both
cases, large pressure and large sodium content differ from the
relative amount of volumetric versus deviatoric plastic strain.

Finally, the local composition in the core of the plastic
events is calculated to identify to role of sodium. All atoms
are counted inside the core of the plastic event (r < rPE) and,
using the following formula, the local composition (xloc) is
obtained:

xloc = nNa

nSi + nO + nNa

3

2
, (5)

where nSi, nO , and nNa are the number of silicon, oxygen,
and sodium atoms counted. In Fig. 14(d), the average local
composition divided by the global value is shown as a function
of applied strain for the four cases. The data are normalized
by the average concentration of sodium in order to make
the comparison easier. Here again, two regimes have to be
distinguished. In the initial stages of plasticity, plastic events
appear clearly at sodium rich regions. In this stage, for NSx5
at p = −2 and 0 GPa, the local composition of the PEs is
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FIG. 15. Local shear-strain increment caused by PEs as a function
of the amplitude of the nonaffine displacement registered at their core
for NSx5 at p = −2, 0, 5 GPa and NSx30 at p = 0 GPa with a linear
fit [see Eq. (6)] corresponding to rPE = 6.5 Å.

60% higher compared to the global value. For NSx30, the
initial value is not as dominant (≈+20% compared to the
average composition). The plastic activity near mobile sodium
decreases progressively. But in any case, even after the plastic
plateau is reached, the average sodium content in the core of the
plastic events remains higher than the average concentration.
This result clearly indicates that sodium atoms act as a catalyst
for the early stages of the plastic deformation.

To summarize this analysis, we showed that it is necessary
to distinguish three phases for the plastic behavior of silicate
glasses: an initial stage with very low density of PEs,
an intermediate regime that is crucial in determining the
properties of the elastic limit, and a final stationary stage with
a constant nucleation rate of events corresponding to a perfect
plastic plateau in the global stress-strain behavior. The decay
of the initial yield stress in the case of large sodium content
samples is shown to be related to the large number of PEs in
this case that are located close to the more mobile sodium ions.
In the early stages of plasticity, the size of the events is larger
for large sodium content samples, but the average weighted

strain in the core of the plastic events is smaller. The larger
nucleation rate of plastic events is thus crucial to explain the
smaller yield stress in this case. The resulting plastic strain
is mainly deviatoric in these samples. In the case of samples
deformed upon larger external pressure, the difference with
low pressure samples is not only the number of plastic events,
but mainly the larger size and the larger amplitude of the
plastic events. In this case, the densification is as important as
the deviatoric strain.

C. Local stress-strain behavior

Is the mechanical response at a local scale reminiscent
of the mechanical response at large scales? In Fig. 15, the
local coarse-grained shear strain variation (dεk) is shown as a
function of the amplitude of the plastic event. Equivalent shear
strain (εk) is computed the same way as k [in Eq. (1), replace
the components of the stress tensor by the coarse-grained strain
components]. The coarse-grained strain tensor ε(x,y,z) is
computed from the coarse-grained displacement field between
each 10 steps as before. It can be seen in Fig. 15 that the
relationship between the nonaffine displacement and local
shear strain is linear. Therefore, if una is higher, the local
strain increment is higher as well. The dashed line shows a
linear regression between the two data. The slope of the line
corresponds to the inverse of the elementary size of the local
rearrangement,

2εk = una

2rPE
. (6)

By taking rPE = 6.5 Å, a relatively good fit can be achieved,
verifying the results already shown in Fig. 14(c).

Local stress tensors can also be calculated using coarse
graining. The simulation provides us with the stress tensor on
each atom using virial stresses [44]. With 5 Å coarse-graining
scale, the stresses are well defined and can be compared to
strains. Figure 16 shows the evolution of the local load k

[Eq. (1)] and the amplitude of the nonaffine displacement field

FIG. 16. Local equivalent shear stress (k) as a function of global shear strain for two different local compositions taken from NSx5. With
the dashed lines, the global stress-strain curves are plotted to visualize the similarities between the local and global behavior for different
compositions. Under each diagram, the value of the nonaffine displacement field is plotted to show the comparison between stress drops and
plastic events.
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at two different locations in sample NSx5 for p = −2 and
p = 5 GPa. The chosen locations have significantly different
compositions: in Fig. 16(a), the Na2O content is 5%, and in
Fig. 16(b), it is 15%. In this way, two different stress responses
can be observed inside the same sample. Using dashed lines,
the large scale global stress curve is plotted for the same
composition to highlight similarities between the global and
local responses.

It can be seen in Fig. 16(a) that the maximum stress
(kp=−2

max = 8.5 GPa) at p = −2 GPa in the end of the elastic
regime (εxy = 15%) is higher than at p = 5 GPa (kp=5

max =
5.9 GPa). As can be deduced from the stress fluctuations along
the stress-strain curves, the reason for the maximum stress
decay is not the stiffness lowering with pressure (as shown
in Fig. 6 at large scales), but the stress decreases due to the
influence of initial PEs. Indeed, at larger pressures, the initial
PEs are more frequent and with larger amplitudes. Therefore,
we can conclude that the increase of the shear modulus
observed at a large scale results from local plastic strain
hardening. It can also be seen in Fig. 16(a) that compositions
with low sodium content behave elastically, while the structure
remains intact. If the system is compressed, the network is
damaged and plasticity appears at earlier stages, making the
material yield faster.

The same phenomenon is observed in Fig. 16(b) at sodium
rich regions. Thanks to the mobility of the network modifiers,
the materials area plastifies rapidly. In this way, it reduces
the elastic maximum strength. Sodium also acts at negative
pressure; therefore, the effect of pressure is much smaller in
sodium rich regions.

Finally, in Fig. 17, the local maximum equivalent shear
stress (kmax) is plotted as a function of the local composition.
The plotted maximum stress or so-called strength value is
computed by registering the maximum stress before the first
large stress decrement (δk) (blue dotted line in Fig. 17 inset).

FIG. 17. Quasielastic local shear strength (kmax) at the end of
the quasielastic regime as a function of local composition. The
values plotted in the main figure are shown in the inset using a
triangle. The results presented in the figure are taken at quasizero
pressure (±0.1 GPa) and from the pure shear meridian in the
Haigh-Westergaard space [47]. The inset shows the method which
is used to determine the quasielastic shear strength from the stress
curves; detailed discussion can be found in the text.

This stress release indicates that the elastic load bearing
capacity of the sample is exceeded. Clear correlation is
observed between the strength and the local composition of
the material. Moreover, the local composition dependence
of the local stress maxima is centered on the composition
dependence of the global stress maximum, thus showing again
the correspondence between the two.

V. DISCUSSION AND CONCLUSION

Molecular statics calculations were performed to investi-
gate the plastic response of sodium silicate glasses. Correlation
is made between the yield behavior observed at a large
scale and atomic rearrangements. The samples were first
pressurized, then shear deformation was applied at constant
pressure. After relaxing both shear and pressure, the initial
and the final simulation box were compared in order to
determine the global permanent shear and volumetric strains.
In parallel, the coarse-grained nonaffine displacement field
was used to identify the position, the amplitude, and the size
of the plastic events. The characteristics of these microscopic
transformation zones were then used to explain the change in
the global yield strength and the governing plastic strain.

Global results showed that with the addition of sodium,
both hydrostatic tensile and shear yield strength are reduced.
Na acts as a catalyst of plasticity, especially in the early stages
of the deformation. The response thus transforms from a brittle
softening to a ductile one for sufficiently large sodium content.
Pressurization (as permanent volume loss) acts in a similar
way: it reduces maximum shear stress and increases ductility.
The increment of the sodium content helps the material to
yield rapidly, reducing the size of the quasielastic domain in the
stress space. The only difference between large sodium content
and pressurized samples seems to be the relative amount of
volumetric versus equivalent shear strain, and the absolute
number of PEs.

Our results strengthen the connection between global and
local plasticity, restricted to local events with finite extent.
Clear spatial and statistical correlation was made between
the plastic events identified by the nonaffine displacement
field and the local strain field. The elementary diameter of
the microscopic plastic rearrangements were found around
13 Å, which approximately corresponds to 6–8 interatomic
distances. This is the typical size of plastic cores (also
referred to as shear transformation zones, STZs) observed in
other amorphous materials [15,19,77]. Using the statistically
identified plastic events (from the nonaffine displacement
field), three deformation stages were distinguished: an initial
mainly elastic stage, a gradual plastification, and a stationary
plastic plateau. By increasing the pressure, larger plastic events
were observed and with larger amplitude, while in sodium
rich samples, the number of (smaller) plastic events is two
times higher. Both large number and large size of plastic
events contribute to reduce the global yield stress [20]. In
all cases, plastic rearrangements occur at sodium rich local
regions, showing that the network modifier acts as a catalyst for
plasticity. Local stress analysis showed that by pressurizing the
samples, a large number of plastic events appear in the initial
quasielastic stage, reducing the maximum elastic strength
and increasing permanent deformation. Thus, increasing the
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pressure or the sodium content, the samples plastify in an
earlier stage, becoming more ductile at a large scale.

Local analysis showed that Na is the most mobile ion in the
structure. However, either pressure or the increment of compo-
sition reduces the amplitude of this motion, trapping sodium
inside the silica network. This effect becomes significant in the
plastic flow regime only. It would be interesting to compare this
description to the local rigidity network described in Ref. [9].

Finally, excellent correlation was found between locally and
globally measured maximum yield strength, thus confirming
that plastic events identified using the nonaffine displacements
are indeed responsible for the change in the elastoplastic
behavior observed at large scales.

The size of the plastic events was shown to be pressure sen-
sitive and thus without direct structural origin. The number of
plastic events depends on the nucleation criteria that are related
to local sodium content [35]. Sodium silicate glasses are thus
examples of glasses where complex composition simplifies the
research of local criteria due to the large mobility of sodium
ions. However, the precise role of sodium at the different stages

of the deformation is still under study and cannot be solved
easily. In the plastic plateau, for example, the role of sodium
is less evident, suggesting a self-organized flow behavior. It
is the same for the distribution of eigenstrains and for the
pressure sensitivity of the number and of the size of plastic
events. Is there any collective effect in these characteristics?
Among other perspectives, understanding nucleation criteria
for plasticity at different load levels, to get a more quantitative
analysis of the local plasticity in amorphous materials and to
open the door for definitely more quantitative prediction of
plastic deformation, is still a challenging task. A realistic de-
scription needs to introduce finite temperature effects as well.
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