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Closed-form solutions to optimal parameters of dynamic vibration absorbers
with negative stiffness under harmonic and transient excitation

Shaoyi Zhou, Claire Jean-Mistral, Simon Chesne∗

Université de Lyon, CNRS INSA-Lyon, LaMCoS UMR5259, 69621 Villeurbanne, France

Abstract

In this present paper, two configurations of dynamic vibration absorber in conjunction with negative stiffness

(NSDVA) are investigated and their parameter optimization is conducted according to two tuning methodolo-

gies: the fixed points theory and the stability maximization criterion. Closed-form solutions to the optimal

parameters of NSDVAs are analytically derived and are expressed in terms of ratio between the negative stiff-

ness and mechanical stiffness of primary system. Allowable bounds on negative stiffness are specified with the

consideration of stability requirement, based on which the ultimate control performance of NSDVAs could be

imagined. Furthermore, an optimal negative stiffness ratio is defined within the stable region when the NSDVAs

are tuned by the fixed points theory. Finally, numerical simulations are carried out in both harmonic and free

vibration scenarios. Simulation results suggest that the inclusion of negative stiffness in the coupled system

can significantly improve the vibration control performance in terms of broadening the frequency bandwidth

of vibration suppression, decreasing the peak vibration amplitude of primary system and confining the stroke

length of NSDVAs. Meanwhile, the negative stiffness can enhance the damping capability of coupled system,

engendering an accelerated convergence of transient disturbances.

Keywords: Dynamic vibration absorber, negative stiffness, optimization, fixed points theory, stability

maximization criterion

1. Introduction1

In the fields of mechanical and civil engineering, the dynamic vibration absorber (DVA) is widely used to reduce2

the undesired detrimental effects of dynamic loads on primary systems for its high simplicity and reliability [1–3

4]. Conventional DVAs are purely passive and are composed of three common mechanical elements, i.e. mass,4

spring and viscous damper. The traditional DVA (denoted as DVA-I in this paper) was proposed and well5

documented in [5], whose mass is attached to the primary structure via a parallel connection of a linear spring6

and damper. Meanwhile, a non-traditional DVA (denoted as DVA-II) was developed in [6], whose damper is7

connected to the base instead of the main system.8

The first analytical method for tuning DVAs is the fixed points theory [5]. In the objective of minimizing9

the peak amplitude of frequency response function (FRF) of primary system, it consists in equalizing the10

vibration amplitude at fixed points and making the FRF passing horizontally through these points. In fact,11

the fixed points correspond to positions where all FRFs of undamped primary system intersect, regardless of12

the damping level of DVA. Clearly, this heuristic approach only yields an approximate solution to the H∞13
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optimization problem due to the discrepancy between fixed points and resonance peaks of FRF, however, its14

high accuracy and efficiency is a long established fact [7]. By applying the fixed points theory, the optimal15

tuning of DVA-I and DVA-II was accomplished by Den Hartog [5] and Ren [6], respectively, when connecting16

to an undamped primary system of single degree of freedom (SDOF). It was reported in [6] that compared to17

DVA-I, DVA-II can slightly improve the vibration control performance and could bring convenience in certain18

practical implementation. For damped primary systems, approximate solutions were carried out for optimal19

parameters of DVA-I [8] and DVA-II [9] by employing an equivalent linearisation technique, by means of which20

the damped primary system can be matched with an equivalent undamped one.21

When the main system undergoes a transient disturbance, however, the optimal tuning based on fixed22

points theory could loss its effectiveness, since it aims at improving the steady state frequency response. In23

this context, a new tuning rule, termed as stability maximization criterion, was proposed by Yamaguchi [10]24

in the objective of decaying the transient disturbance as soon as possible. The design objective is fulfilled25

by maximizing the minimal absolute value of the real parts of system eigenvalues. By using this method,26

Yamaguchi [10] determined the optimal parameters for a DVA-I attached to an undamped primary structure.27

Xiang and Nishitani [11] analytically formulated the optimal parameters of DVA-II for an undamped main28

system, meanwhile, provided numerical solutions for a main system with different damping values.29

Nevertheless, the disadvantages of DVA-I and DVA-II are evident. First, their vibration control performance30

is limited by the maximally attainable mass ratio between the DVA and main system. Second, both DVAs are31

only effective within a narrow frequency range around the target mode, whose control effect could deteriorate32

when the excitation frequency varies. In the objective of enabling DVAs to adaptively track the excitation33

frequency, smart materials whose physical properties are adjustable can be integrated, e.g. shape memory alloy34

[12, 13], magnetorheological elastomer [14, 15] and combination thereof [16]. Besides, it was reported in [17]35

that the negative stiffness can be used to enhance the vibration control performance.36

The negative stiffness mechanism (NSM) is featured by a force-displacement curve with a negative slope,37

signifying that a NSM can generate a force to assist its motion instead of resisting it. Recently, the NSM has38

received wide attention in the domain of vibration isolation. By arranging in parallel the NSM and the support39

stiffness of structure to be isolated, the resonance frequency can be decreased, thereby improving the vibration40

isolation in the low-frequency region and broadening the frequency range of vibration isolation, meanwhile,41

the static stiffness is not affected in avoidance of an excessive static deflection and system instability. The42

high-static-low-dynamic stiffness characteristics can be achieved by various mechanical structures, which can43

be categorized into: symmetric pre-compressed springs [18, 19], bio-inspired X-shaped structures [20, 21] and44

magnetic negative stiffness springs [22, 23]. Clearly, most NSMs in aforementioned researches are passive and45

nonlinear, meanwhile, it was stated in [23] that the negative stiffness utilizing Maxwell magnetic normal stress46

can be regarded as linear in a certain range around the equilibrium position. A more convenient approach to47

realize a linear NSM was proposed and experimentally validated in [24] by using an active control technique48

with a linear actuator. To summarize, the NSM has widespread application in ameliorating the vibration49

isolation performance, however, only few studies on enhancing the control effect of DVAs via negative stiffness50

are available in the literature, as reported below.51

Shen et al. [25] incorporated a negative stiffness between the base and the mass of DVA-II, yielding the52

NSDVA-II configuration. Its optimization according to the fixed points theory was carried out for a SDOF53

primary system, suggesting that the use of negative stiffness decreases the peak vibration amplitude of primary54
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system and broadens the frequency range of vibration absorption. Similarly, the NSDVA-I was studied by55

Antoniadis et al. [26], however, the optimal damping value of absorber had not been provided. Later, Huang et56

al. [27] also addressed the optimal tuning of NSDVA-I attached to a SDOF primary system, while the optimal57

damping value of absorber was derived according to the equal damping criterion proposed in [28]. This criterion58

yielded a larger damping value for DVA and a larger peak amplitude for primary system when compared to59

the case optimized by the fixed points theory. It should be mentioned that the intentional introduction of a60

grounded negative stiffness into both DVAs does contribute to the improvement of vibration control performance,61

meanwhile, the coupled system could be potentially destabilized. Nevertheless, the crucial stability analysis and62

the permissible interval of negative stiffness had not been addressed in aforesaid works and the NSDVAs had63

been optimized only in terms of suppressing harmonic vibration.64

Therefore, the focus of this present paper is to carry out a thorough optimization analysis for both types65

of DVAs enhanced by grounded negative stiffness, NSDVA-I and NSDVA-II, under harmonic and transient66

excitation circumstances. Coupled systems related to both NSDVA-I and NSDVA-II are nondimensionalized in67

the same framework. Then, their optimal parameters are determined based on the two aforementioned tuning68

strategies, fixed points theory (FPT) and stability maximization criterion (SMC), respectively. And light will69

be shed onto the influence of negative stiffness on the control performance of DVAs and the allowable bounds70

on negative stiffness will be also predicted for both types of NSDVAs relevant to each optimization criterion.71

Finally, NSDVA-I and NSDVA-II will be compared with each other in different excitation scenarios for the first72

time.73

This paper is organized as follows. In the next section, mathematical modeling of both NSDVA-I and74

NSDVA-II implementing on a SDOF primary system is first presented and a stability analysis is performed. In75

Sections 3 and 4, the optimal parameters of NSDVAs are analytically derived according to two aforementioned76

criteria, respectively. Finally, simulation results and numerical analyses are given in Section 5 in order to77

underline the effect of negative stiffness and to compare the control performance of different DVAs.78

2. Mathematical modeling79

2.1. NSDVA-I80

A SDOF undamped primary system attached with a DVA-I is presented in Fig. 1a and Fig. 1b illustrates81

the coupled system with NSDVA-I, which is based on the classic DVA with a supplementary negative element82

locating between the secondary mass and the base. With an excitation force F (t) exerted on the primary83

system, the dynamics of the two DOF system in Fig. 1b can be described by the equations of motion:84

m1ẍ1 = k2(x2 − x1) + c2(ẋ2 − ẋ1) − k1x1 + F (t) (1a)

m2ẍ2 = k2(x1 − x2) + c2(ẋ1 − ẋ2) − knx2 (1b)

where x1 and x2 are the displacements of the main and secondary mass, respectively, and the dot represents85

differentiation with respect to the actual time t. m1 and k1 are the mass and mechanical stiffness of the primary86

system. m2, c2 and k2 stand for the mass, viscous damping coefficient and mechanical stiffness of the DVA. kn87

denotes the grounded negative stiffness.88

Denoted by ω1, ω2 and ξ, the natural frequencies of the main system and of the DVA and the mechanical89
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damping ratio of DVA are expressed by, respectively:90

ω1 =

√
k1

m1
, ω2 =

√
k2

m2
, ξ =

c2

2
√
k2m2

. (2)

m2

k2 c2
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Fig. 1. Schematic diagrams of a SDOF undamped primary system controlled by four types of absorber under direct force excitation:

(a) DVA-I; (b) NSDVA-I; (c) DVA-II; (d) NSDVA-II.

Then, two common tuning parameters of DVAs, the mass ratio µ and the frequency tuning ratio f between91

secondary and primary systems, can be defined as:92

µ =
m2

m1
, f =

ω2

ω1
. (3)

Furthermore, an additional dimensionless parameter β is herein introduced, which is defined as the ratio of93

negative stiffness and the mechanical stiffness of primary system:94

β =
kn
k1

(4)

with β ≤ 0. Rescaling the time by t = τ/ω1, one has:95

d

dt
= ω1

d

dτ
,

d2

dt2
= ω2

1

d2

dτ2
. (5)

By substituting Eqs. (2)-(5) into Eq. (1), the equations of motion (1) reduce to96

x′′1 + x1 + µx
′′
2 + βx2 = F (τ)/k1 (6a)

x′′2 + 2ξf(x′2 − x
′
1) + f

2
(x2 − x1) +

β

µ
x2 = 0 (6b)
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where the prime in the superscript indicates differentiation with respect to the rescaled time τ . The dimensionless97

frequency variable, complex magnitudes of displacement x1 and external force F (τ) are denoted by s̄, X1 and98

F , respectively. The transfer function GI(s̄) relating the static displacement of primary system, F /k1, and the99

displacement of primary system, X1, can be obtained by transforming Eq. (6) in the Laplace domain:100

GI(s̄) =
X1

F /k1
=

µs̄2 + 2µξfs̄ + β + µf2

µs̄4 + 2µξf(1 + µ)s̄3 + (β + µ + µf2 + µ2f2)s̄2 + 2µξf(1 + β)s̄ + β + µf2(1 + β)
(7)

where F /k1 corresponds to the static deformation amplitude of primary system when controlled by a classic101

DVA, namely β = 0. It is worth noting that as a negative stiffness is present, the static displacement of primary102

system is no longer equal to F /k1, as evident from GI(s̄ = 0) ≠ 1.103

2.2. NSDVA-II104

Fig. 1c illustrates the undamped primary system controlled by a non-traditional DVA, and Fig. 1d represents the105

coupled system relevant to NSDVA-II. Similarly, the dynamics of coupled system in Fig. 1d can be formulated106

as:107

m1ẍ1 = k2(x2 − x1) − k1x1 + F (t) (8a)

m2ẍ2 = k2(x1 − x2) − knx2 − c2ẋ2 (8b)

By taking the same procedure as in subsection 2.1, Eq. (8) can be recast into a dimensionless form:108

x′′1 + (1 + µf2
)x1 − µf

2x2 = F (τ)/k1 (9a)

x′′2 + 2ξfx′2 + f
2
(x2 − x1) +

β

µ
x2 = 0 (9b)

In this scenario, the transfer function GII(s̄) from the static displacement of primary system, F /k1, to the109

displacement of primary system, X1, is described by:110

GII(s̄) =
X1

F /k1
=

µs̄2 + 2µξfs̄ + β + µf2

µs̄4 + 2µξfs̄3 + (β + µ + µf2 + µ2f2)s̄2 + 2µξf(1 + µf2)s̄ + β + µf2(1 + β)
(10)

It is apparent that the transfer function of coupled system without negative stiffness can be achieved by vanishing111

β in Eq. (7) or (10). Moreover, the primary system coupled with either a NSDVA-I or a NSDVA-II has the112

same expression of static displacement, as GI(s̄ = 0) = GII(s̄ = 0).113

2.3. Stability analysis114

In light of the inclusion of negative stiffness, it is of a special importance to specify the allowable bound on the115

value of negative stiffness, within which the coupled system remains stable. Considering that stability analysis116

of such kind of system is rare in the current literature, therefore, one of the major contribution of this present117

paper is to conduct a systematic study on stability issue of primary system coupled with different types of118

NSDVA and in the two aforementioned excitation scenarios.119

According the Routh-Hurwitz stability criterion, a system is asymptotically stable if and only if all its120

eigenvalues lie in the left half of the complex plane. Denoted by λ, eigenvalues can be determined by the121

characteristic polynomial P (λ) of the two DOF system in the form of:122

P (λ) = λ4
+ δ1λ

3
+ δ2λ

2
+ δ3λ + δ4 (11)
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and the stability of coupled system is guaranteed when the following necessary and sufficient conditions are123

satisfied:124

δ1 > 0, δ3 > 0, δ4 > 0, δ1δ2δ3 > δ
2
3 + δ

2
1δ4. (12)

where all real coefficients of the characteristic polynomial P (λ) correspond to the ones in the denominator of125

the transfer function, GI(s̄) or GII(s̄), recasting into the monic form. Therefore, these coefficients are given by126

� NSDVA-I:127

δ1 = 2ξf(1 + µ), δ2 = 1 +
β

µ
+ (1 + µ)f2, δ3 = 2ξf(1 + β), δ4 =

β

µ
+ (1 + β)f2. (13)

� NSDVA-II:128

δ1 = 2ξf, δ2 = 1 +
β

µ
+ (1 + µ)f2, δ3 = 2ξf(1 + µf2

), δ4 =
β

µ
+ (1 + β)f2. (14)

By substituting Eq. (13) or (14) into Eq. (12), a unique constraint on the negative stiffness ratio β for both129

types of NSDVAs can be achieved as follows:130

β > −
µf2

µf2 + 1
= −1 +

1

µf2 + 1
(15)

where the expression of lower bound on β is implicit due to the probable dependence between the frequency131

tuning ratio f and the negative stiffness ratio β. Nevertheless, it is evident from Eq. (15) that β should be132

always greater than −1 for any positive mass ratio µ, signifying that the absolute value of negative stiffness133

kn should be always inferior to that of primary system k1. The explicit expression for lower limit of β will be134

derived in the following study under the condition that the analytical formulation of frequency tuning ratio f135

is sought and expressed as a function of β.136

3. Optimization of NSDVA-I137

In this section, the primary system undergoes a sinusoidal or transient disturbance and the parameters of138

NSDVA-I are tuned successively by the FPT and SMC. Moreover, the permissible bound on β will be specified139

in each scenario and an optimal value of β will be also defined in the harmonic case.140

3.1. Harmonic excitation scenario141

Considering that the primary system is harmonically excited at the forcing frequency ω, its squared amplitude142

of FRF can be written by substituting s̄ = jω/ω1 = jα into Eq. (7):143

G2
I(Ω) =

RRRRRRRRRRR

X1

F /k1

RRRRRRRRRRR

2

=
A + 4ξ2B

C + 4ξ2D
(16)

with j =
√
−1 and α designating the excitation frequency normalized by the natural frequency of primary system.144

And the four components are given by:145

A = [β + µ(φ −Ω)]
2
, B = µ2φΩ,

C = [[β + µ(φ −Ω)](1 −Ω) + µφ(β − µΩ)]
2

, D = µ2φΩ(1 −Ω + β − µΩ)
2
.

(17)

where two intermediate parameters are introduced for the purpose of brevity, i.e.:146

φ = f2, Ω = α2. (18)

6



3.1.1. Optimal tuning based on fixed points theory147

Fig. 2 depicts several normalized frequency responses of primary system coupled with a NSDVA-I with different148

damping ratios. One can tell that there exist two fixed points, denoted by P and Q, whose abscissas are149

independent of the mechanical damping ratio ξ. In order to locate their abscissas, two extreme scenarios are150

considered, ξ = 0 and ξ →∞, where the squared amplitudes of FRF can be simplified as:151

G2
I ∣
ξ=0

=
A

C
, G2

I ∣
ξ→∞

=
B

D
. (19)

Equating the two previous expressions results in

0 0.5 1 1.5 2

2

4

6

P

Q

Fig. 2. Existence of fixed points in frequency response of a SDOF undamped primary system attached with a NSDVA-I. µ = 0.05,

β = −0.1 and f = 1.6. Solid line: ξ = 0.1, dotted line: ξ = 0.3, dash-dotted line: ξ = 0.9.

152

β + µ(φ −Ω)

[β + µ(φ −Ω)](1 −Ω) + µφ(β − µΩ)
= ±

1

1 −Ω + β − µΩ
(20)

The positive sign does not conduct to meaningful results, while the negative sign leads to a quadratic equation153

in Ω:154

(µ2
+ 2µ)Ω2

− 2(β + µ + βµ + µφ + µ2φ)Ω + β2
+ 2β + 2µφ(1 + β) = 0 (21)

from which the abscissas at the two fixed points satisfy the following condition:155

ΩP +ΩQ =
2(β + µ + βµ + µφ + µ2φ)

µ2 + 2µ
(22)

Furthermore, the vibration magnitudes at ΩP and ΩQ should be equalized, namely:156

GI

RRRRRRRRRRRξ→∞,Ω=ΩP

= GI

RRRRRRRRRRRξ→∞,Ω=ΩQ

(23)

yielding another constraint on abscissas at fixed points that:157

ΩP +ΩQ =
2(1 + β)

1 + µ
(24)

The combination of Eqs. (22) and (24) gives the optimal frequency tuning ratio fI,fpt as a function of the mass158

ratio µ and the negative stiffness ratio β:159

fI,fpt =
√
φI,fpt =

√
µ − β

µ(1 + µ)2
(25)
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The back substitution of Eq. (25) into (21) and solving the quadratic equation yield the abscissas at two fixed160

points, respectively,161

ΩP =
µ(µ + 2)(β + 1) −

√
µ(µ + 2)(µ − β)2

µ(µ + 1)(µ + 2)
, ΩQ =

µ(µ + 2)(β + 1) +
√
µ(µ + 2)(µ − β)2

µ(µ + 1)(µ + 2)
. (26)

Then, the optimal maximum amplitude of FRF can be obtained as:162

GI,fpt = GI

RRRRRRRRRRRξ→∞,Ω=ΩP

= GI

RRRRRRRRRRRξ→∞,Ω=ΩQ

=

¿
Á
ÁÀµ(µ + 2)

(µ − β)2
(27)

Up to now, the only unknown tuning parameter is the absorber damping ratio ξ, and a direct way of determining163

its optimal value is to set as zero the partial derivative of FRF (16) with respect to Ω at fixed points P and164

Q, which could be cumbersome in some cases. Therefore, the Brock’s approach [29] is adopted in this paper165

to obtain the optimal damping ratio ξ in avoidance of the tedious derivatives. Denoting the optimal squared166

magnitude at fixed points by ~ = G2
I,fpt, the mechanical damping ratio ξ can be expressed as a function of this167

amplitude in such a way that:168

4ξ2
= −

A − ~C
B − ~D

(28)

Instead of imposing the horizontal tangent constraint at the fixed point P , we consider an adjacent point, P̃ of169

abscissa Ω = ΩP + ε with ε being the small perturbation in Ω, and equating its magnitude to ~ at fixed points,170

i.e.:171

4ξ2
= −

A − ~C
B − ~D

RRRRRRRRRRRΩ=ΩP+ε

=
n0 + n1ε + n2ε

2 + . . .

d0 + d1ε + d2ε2 + . . .
(29)

where the coefficients of ε are dependent of µ, β, φ and ~. It can be proven that the constant terms n0 and d0 are172

equal to zero when φ = φI,fpt, ~ = ~opt and Ω = ΩP or ΩQ. Therefore, the fraction n0/d0 is of intermediate form173

0/0 and the optimal damping ratio can be obtained by approaching ε → 0. According to the de L’Hospital ’s174

rule, one has:175

4ξ2
I,fpt = lim

ε→0
4ξ2

=
n1

d1
(30)

with the numerator and denominator given by:176

n1 = n10 + n11Ω + n12Ω2
+ n13Ω3

d1 = d10 + d11Ω + d12Ω2
(31)

where all coefficients are expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n10 = −2~µ2
(µ + 1) (β + 1)φ2

− 2µ (~β2
+ 2~β µ + 2~β + ~µ − µ)φ − 2β (~β + ~µ − µ)

n11 = 2~µ2
(µ + 1)

2
φ2

+ 4~µ (2β µ + µ2
+ β + 2µ)φ + 2~β2

+ 8~β µ + 2~µ2
− 2µ2

n12 = −6~µ (µ2φ + µφ + β + µ)

n13 = 4~µ2

d10 = −µ
2φ (~β2

+ 2~β + ~ − 1)

d11 = 4~µ2φ (µ + 1) (β + 1)

d12 = −3~µ2φ (µ + 1)
2

(32)

The optimal damping ratio ξI,fpt can be then computed by substituting the optimal frequency tuning ratio (25),177

frequencies at fixed points (26) and peak magnitude (27) into Eq. (30). Clearly, two quasi-optimal solutions of178

8



ξI,fpt can be obtained at the two fixed points, which are denoted by ξP and ξQ and are slightly different with179

each other. Finally, their root mean square value is accepted as the optimal mechanical damping ratio, i.e.:180

ξI,fpt =

¿
Á
ÁÀξ2

P + ξ
2
Q

2
=

¿
Á
Á
ÁÀ

µ(2βµ + 5β + 3)(µ − β)3

4(µ + 1)[µ(µ + 2)(β + 1)2(µ − β)2 − (µ − β)4]
(33)

By imposing β = 0, Eq. (33) reduces to
√

3µ/8(1 + µ), which is exactly the classic expression derived in [5] for181

the DVA-I without negative stiffness.182

3.1.2. Lower limit and optimal value of β183

By substituting the optimal frequency tuning ratio (25) into the general stability condition (15), an inequality184

on β can be obtained:185

β2
− (µ2

+ 3µ)β − µ < 0 (34)

suggesting that β should locate within the interval (β−I,fpt, β
+
I,fpt), with the lower and upper limits defined by:186

β−I,fpt =
µ2 + 3µ −

√
(µ2 + 3µ)2 + 4µ

2
, β+I,fpt =

µ2 + 3µ +
√

(µ2 + 3µ)2 + 4µ

2
. (35)

It is noticeable that β+I,fpt > 0 and β−I,fpt > −1 always hold for any positive µ. The allowable bound on β is then187

reduced to:188

β ∈ (β−I,fpt,0] (36)

Fig. 3 depicts the frequency response surface of primary system against the dimensionless excitation frequency189

α and the negative stiffness ratio β with absorber parameters tuned by the fixed points theory. The curve190

C1 corresponds to the frequency response curve of a classic DVA-I, namely β = 0. It is apparent that the191

inclusion of negative stiffness does contribute to the decreasing of peak vibration amplitude and the increasing192

of absorbing frequency range. Nevertheless, the vibration amplitude at α = 0, i.e. static displacement XI,st of193

primary system attached with a NSDVA-I, increases monotonically as the negative stiffness ratio β approaches194

to its lower limit β−I,fpt, which is in contrast with the trend of the magnitude at fixed points. Therefore, it could195

be postulated that the optimal negative stiffness ratio βI,fpt is achieved when are equalized the static amplitude196

of primary system XI,st and the peak magnitude ~ given in Eq. (27). The static amplitude of primary system197

XI,st can be determined by imposing Ω = 0 in Eq. (16), leading to:198

XI,st = GI ∣
Ω=0

=
µ + (µ2 + 2µ)β

µ + (µ2 + 3µ)β − β2
(37)

It is worth noting that XI,st deviates from unity in the presence of negative stiffness (namely β ≠ 0), which199

designates that the static displacement of primary system is no longer controlled solely by the mechanical200

property of primary system but also influenced by the secondary oscillator. Equating Eqs. (27) and (37) yields201

four rational values of βI,fpt, respectively:202

β1 =
µ2 + 3µ − (µ + 1)

√
µ2 + 2µ

2 − (µ + 1)2
, β2 =

µ2 + 3µ + (µ + 1)
√
µ2 + 2µ

2 − (µ + 1)2
,

β3 =
µ2 + 2µ − (µ + 1)

√
µ2 + 2µ

µ + 2
, β4 =

µ2 + 2µ + (µ + 1)
√
µ2 + 2µ

µ + 2
.

(38)

where β2 and β4 are always positive for a mass ratio µ < 0.25 which covers the most engineering applications in203

practice. Furthermore, β1 is always inferior to the lower bound β−I,fpt for any positive µ, with which the coupled204

system becomes unstable. Finally, β3 satisfies the following condition:205

−1 < β−I,fpt < β3 < 0 (39)
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which clearly suggests the existence of an optimal negative stiffness ratio βI,fpt within the stable region, which206

is formulated as:207

βI,fpt = β3 =
µ2 + 2µ − (µ + 1)

√
µ2 + 2µ

µ + 2
(40)

Marked by C2, the frequency response of primary system with the optimal value βI,fpt is drawn in Fig. 3, where208

an equilibrium is established between the increasing of static displacement and the decreasing of vibration209

amplitude at fixed points as the negative stiffness goes up to its lower limit.210
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Fig. 3. Frequency response of primary system attached with a NSDVA-I versus the dimensionless frequency α and the negative

stiffness ratio β with µ = 0.05. Curve C1: β = 0, C2: β = βI,fpt.

Fig. 4 depicts the evolution of peak vibration amplitude of primary system controlled by a NSDVA-I (marked211

by black solid curve) with respect to the stiffness ratio β when optimized by the fixed points theory. A minimum212

is observed in the peak amplitude curve within the stability region, at which the optimal negative stiffness ratio213

is defined and coincides with the one predicted by Eq. (40).
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Fig. 4. Evolution of normalized peak vibration amplitude of primary system with respect to negative stiffness ratio β in the

optimal scenario relevant to fixed points theory with given mass ratio µ = 0.05. Solid line: NSDVA-I, dash-dotted line: NSDVA-II.
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3.2. Transient excitation scenario215

In practice, there exists other performance assessment than optimizing the steady state frequency response of216

primary system, e.g. shaping its transient response optimally in terms of fast attenuation and low peak response.217

As presented in the Introduction, this design objective could be achieved by tuning the NSDVA according to218

the stability maximization criterion.219

3.2.1. Optimal tuning based on stability maximization criterion220

Give that the coupled system is of two DOFs, there exist four eigenvalues for its characteristic polynomial,221

denoted by λ1, λ2, λ3 and λ4. Therefore, the transient response of primary system under free vibration can be222

expressed in the form of:223

x1(τ) = A1e
λ1τ +A2e

λ2τ +A3e
λ3τ +A4e

λ4τ (41)

where A1, A2, A3 and A4 are coefficients in terms of rescaled time τ and are dependent of the initial state of224

the system. As proposed in [30], a performance index is defined as the absolute value of the maximal real part225

of all eigenvalues, i.e.:226

Λ = −max
i

{Re(λi)} (42)

which indicates the slowest speed of convergence of the free vibration response and is termed as the degree of227

stability. Therefore, the stability maximization criterion aims at maximizing the degree of stability Λ, namely228

all eigenvalues should locate as far as possible away from the imaginary axis in the left half complex plane.229

As stated in [30], the design objective is fulfilled when the eigenvalues of coupled system take the form of a230

double pair of complex conjugates. Denoting the eigenvalues by λ1 = λ3 = −p + jq and λ2 = λ4 = −p − jq, p must231

be positive in order to locate at the left half complex plane and is exactly the degree of stability Λ. Thus, the232

characteristic polynomial can be factorized in terms of its eigenvalues:233

(λ − λ1) ⋅ (λ − λ2) ⋅ (λ − λ3) ⋅ (λ − λ4) = 0 (43)

which can be expanded and further rearranged in the polynomial form of λ as:234

λ4
+ 4pλ3

+ (4p2
+ 2r2

)λ2
+ 4pr2λ + r4

= 0 (44)

with r =
√
p2 + q2 designating the modulus of complex poles. By comparing coefficients in Eqs. (13) and (44),235

four conditions should be satisfied simultaneously:236

4p = 2ξf(1 + µ) (45a)

4p2
+ 2r2

= 1 +
β

µ
+ (1 + µ)f2 (45b)

4pr2
= 2ξf(1 + β) (45c)

r4
=
β

µ
+ (1 + β)f2 (45d)

which culminate into the SMC-based optimal parameters of NSDVA-II as follows:237

fI,smc =

¿
Á
ÁÀ (µ − β)(1 − βµ)

µ(1 + β)(1 + µ)2
, ξI,smc =

√
µ − β

(1 + µ)(1 − βµ)
. (46)

which distinguish from the ones obtained in the harmonic scenario. Besides, the modulus and real part of238

eigenvalues (i.e. degree of stability) are written as:239

rI =

√
1 + β

1 + µ
, ΛI = pI =

¿
Á
ÁÀ (µ − β)2

4µ(1 + µ)(1 + β)
. (47)
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3.2.2. Lower bound on β240

With the knowledge of frequency tuning ratio fI,smc, the general stability condition (15) is always satisfied for241

any β > −1. However, another constraint should be considered for the SMC-based optimization procedure, i.e.242

p ≤ r (48)

as required by the complex pole assumption, which yields an inequality condition on β:243

(1 − 4µ)β2
− 10µβ + µ2

− 4µ ≤ 0 (49)

Given that µ is usually lower than 0.25 in practical applications, a lower limit can be determined for β as:244

−1 < β−I,smc =
µ − 2

√
µ

1 + 2
√
µ
< 0 (50)

while the upper threshold related to Eq. (49) is always positive for any mass ratio µ. As a whole, the permissible245

interval of negative stiffness ratio β in this scenario is described by:246

β ∈ [β−I,smc,0] (51)

The evolution of complex eigenvalues of the coupled system as a function of β is plotted in Fig. 5. One247

can notice that as the negative stiffness ratio approaches gradually to its lower threshold β−I,smc, the complex248

conjugate pair of eigenvalues move away from the imaginary axis of complex plane and migrate towards the249

real axis, designating a faster attenuation and a smaller oscillation cycle. When β arrives at its lower bound,250

all four poles coincide with each other and become real, whose abscissa is equal to −1/(1 + 2
√
µ) and for which251

the ultimate mechanical damping ratio is written as:252

ξ−I,smc =

¿
Á
ÁÀ

2
√
µ

(1 + µ)(1 − µ + 2
√
µ)

(52)

which clearly suggests that under no circumstance, the mechanical damping ratio of NSDVA-I tuned by the253

SMC could be greater than or equal to unity for µ < 0.25.
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Fig. 5. Evolution of root loci of the primary system coupled with a NSDVA-I versus the negative stiffness ratio β in the SMC-based

optimal scenario with given mass ratio µ = 0.05. For each specific value of β, the coupled system has a double pair of complex

conjugates.
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4. Optimization of NSDVA-II255

In this section, a non-traditional absorber NSDVA-II, as illustrated in Fig. 1d, is under consideration in both256

harmonic and free vibration cases. Although the optimization of NSDVA-II based on the fixed points theory257

is available in [25], its stability analysis and bound on negative stiffness ratio β had not been addressed, which258

will be accomplished in this paper. Furthermore, to the best knowledge of the authors, optimization based on259

stability maximization criterion is still lacking in the literature. Therefore, the optimization of NSDVA-II based260

on these two methods will be conducted by following the same procedure as in Section 3.261

4.1. Harmonic excitation scenario262

The primary system being excited harmonically, its squared amplitude of FRF can be cast in the form of Eq.263

(16) with the four coefficients expressed as:264

A = [β + µ(φ −Ω)]
2
, B = µ2φΩ,

C = [[β + µ(φ −Ω)](1 −Ω) + µφ(β − µΩ)]
2

, D = µ2φΩ(1 + µφ −Ω)
2
.

(53)

By employing the fixed points theory, the optimal frequency tuning ratio fI,fpt is formulated as the function of265

the mass ratio µ and the negative stiffness ratio β:266

fII,fpt =

√
µ − β

µ(1 − µ)
(54)

The fixed points P and Q locate at:267

ΩP =
2µ(1 − β) −

√
2µ(µ − β)2

2µ(1 − µ)
, ΩQ =

2µ(1 − β) +
√

2µ(µ − β)2

2µ(1 − µ)
. (55)

and the vibration amplitude at fixed points reads as:268

GII,fpt =

¿
Á
ÁÀ2µ(1 − µ)2

(µ − β)2
(56)

Finally, the optimal damping ratio ξII,fpt is determined by adopting Brock’s approach, giving269

ξII,fpt =

¿
Á
Á
ÁÀ

3µ(1 − β)(µ − β)3

4[2µ(1 − β)2(µ − β)2 − (µ − β)4]
(57)

The substitution of Eq. (54) in the general stability condition (15) leads to:270

β ∈ (β−II,fpt,0] (58)

with β−II,fpt = −
√
µ. As stated in previous section, optimal value of β can be determined by equating the271

static displacement of primary system and the vibration amplitude at fixed points. In this scenario, the static272

displacement of primary system is described by:273

XII,st = GII ∣
Ω=0

=
µ(1 − β)

µ − β2
(59)

Then balancing Eqs. (56) and (59) yields four possible values of βII,fpt, respectively:274

β1 =
−1 − (1 − µ)

√
2µ

1 − 2µ
, β2 =

−1 + (1 − µ)
√

2µ

1 − 2µ
,

β3 =
µ − (1 − µ)

√
2µ

2 − µ
, β4 =

µ + (1 − µ)
√

2µ

2 − µ
.

(60)
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where β2 and β4 are greater than zero for any positive µ and β1 < β−II,fpt always holds for µ < 0.25. The last275

possible solution satisfies: β−II,fpt < β3 < 0,∀µ ∈ (0,0.25), which should be then retained. Finally, the optimal276

negative stiffness ratio βII,fpt for the NSDVA-II is formulated as:277

βII,fpt =
µ − (1 − µ)

√
2µ

2 − µ
(61)

which is exactly the same as that proposed in [25]. Again the optimal formula (61) is validated by inspecting the278

frequency response of primary system with this specific value. As evident from Fig. 6, the static displacement279

and the vibration amplitude at fixed points are balanced in the frequency response relevant to βII,fpt (denoted280

as C4).
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Fig. 6. Frequency response of primary system attached with a NSDVA-II versus the dimensionless frequency α and the negative

stiffness ratio β with µ = 0.05. Curve C3: β = 0, C4: β = βII,fpt.

281

4.2. Transient excitation scenario282

In this scenario, the stability maximization criterion is adopted to improve the transient response of primary283

system connected with a NSDVA-II. By balancing the coefficients of corresponding characteristic polynomial284

(14) with the ones of the optimized characteristic polynomial (44), four optimality conditions should be fulfilled:285

286

4p = 2ξf (62a)

4p2
+ 2r2

= 1 +
β

µ
+ (1 + µ)f2 (62b)

4pr2
= 2ξf(1 + µf2

) (62c)

r4
=
β

µ
+ (1 + β)f2 (62d)

from which one can determine the optimal tuning parameters of NSDVA-II as:287

fII,smc =

¿
Á
ÁÀ1 + β − 2µ −

√
(1 + β)2 − 4µ

2µ2
, ξII,smc =

¿
Á
ÁÀ1 − β −

√
(1 + β)2 − 4µ

2
. (63)
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Frequency ratio f Mechanical damping ratio ξ ∥
X1

F /k1
∥
∞

DVA-I [5]
1

1 + µ

√
3µ

8(1 + µ)

√
µ + 2

µ

NSDVA-I

√
µ − β

µ(1 + µ)2

¿
Á
Á
ÁÀ

µ(2βµ + 5β + 3)(µ − β)3

4(µ + 1)[µ(µ + 2)(β + 1)2(µ − β)2 − (µ − β)4]

√
µ(µ + 2)

(µ − β)2

DVA-II [6]
1

√
1 − µ

√
3µ

4(2 − µ)
(1 − µ)

√
2

µ

NSDVA-II [25]

√
µ − β

µ(1 − µ)

¿
Á
Á
ÁÀ

3µ(1 − β)(µ − β)3

4[2µ(1 − β)2(µ − β)2 − (µ − β)4]
(1 − µ)

√
2µ

(µ − β)2

Table 1: Optimal parameters of various types of DVAs based on the fixed points theory.

Frequency ratio f Damping ratio ξ Degree of stability Λ

DVA-I [10]
1

1 + µ

√
µ

1 + µ

√
µ

4(1 + µ)

NSDVA-I

√
(µ − β)(1 − βµ)

µ(1 + β)(1 + µ)2

√
µ − β

(1 + µ)(1 − βµ)

¿
Á
ÁÀ (µ − β)2

4µ(1 + µ)(1 + β)

DVA-II [11]
1 −

√
1 − 4µ

2µ

√
1 −

√
1 − 4µ

2

√
1 − 3µ − (1 − µ)

√
1 − 4µ

8µ2

NSDVA-II

¿
Á
ÁÀ1 + β − 2µ −

√
(1 + β)2 − 4µ

2µ2

√
1 − β −

√
(1 + β)2 − 4µ

2

¿
Á
ÁÀ1 + β − (3 − β)µ − (1 − µ)

√
(1 + β)2 − 4µ

8µ2

Table 2: Optimal parameters of various types of DVAs according to the stability maximization criterion.

and the modulus and real part of eigenvalues (i.e. degree of stability) given by:288

rII =

¿
Á
ÁÀ1 + β −

√
(1 + β)2 − 4µ

2µ
, ΛII = pII =

¿
Á
ÁÀ1 + β − (3 − β)µ − (1 − µ)

√
(1 + β)2 − 4µ

8µ2
. (64)

The authors remark that in the case of NSDVA-II, the lower limit of β is not unique for µ ∈ [0,0.25] so that289

one should investigate the threshold of β per segment of µ. The lower bounds on negative stiffness ratio β are290

given directly as follows:291

β−II,smc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ + 2
√
µ(5µ − 1)

1 − 4µ
, 0 ≤ µ <

1

9
;

7µ − 1

1 − 3µ
,

1

9
≤ µ ≤

1

7
;

2
√
µ − 1,

1

5
≤ µ ≤

1

4
.

(65)

whose detailed deduction is annexed in the appendix A.292

At this point, it is pertinent to summarize all analytical formulae of optimal tuning parameters for both types293

of NSDVAs based on different optimization criteria and compare with those available in the literature. In Table294
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FPT SMC

NSDVA-I β > β−I,fpt =
µ2 + 3µ −

√
(µ2 + 3µ)2 + 4µ

2
β ≥ β−I,smc =

µ − 2
√
µ

1 + 2
√
µ

NSDVA-II β > β−II,fpt = −
√
µ β ≥ β−II,smc given in Eq. (65)

Table 3: Lower bounds on negative stiffness ratio β for two types of NSDVAs based on different optimization criteria.

1 are summarized the optimal frequency tuning ratios and mechanical damping ratios of both classic DVAs and295

NSDVAs optimized according to the fixed points theory and the normalized vibration amplitudes at invariant296

points are also listed. Clearly, the optimal expressions of NSDVA-I in the second row (or NSDVA-II in the297

fourth row) reduce to the classic formulae of DVA-I in the first row (or DVA-II in the third row) by imposing298

β = 0. Similarly, the optimal tuning parameters of different DVAs calibrated by the stability maximization299

criterion as well as their performance indices are outlined in Table 2. Finally, in Table 3 are arranged all lower300

thresholds of negative stiffness ratio β for both types of NSDVAs with respect to two tuning strategies.301

5. Numerical simulations and analyses302

In this section, numerical simulations will be performed in order to illustrate the effect of negative stiffness on303

vibration control performance in both harmonic and transient scenarios by comparing with the classic DVAs.304

In the following study, the results are obtained with the mass ratio being µ = 0.05 except for specific cases.305

The responses in the frequency domain are plotted directly by using the FRFs (7) and (10), meanwhile, the306

temporal responses are obtained by solving the dimensionless equations of motion (6) and (9) via the fourth-307

order Runge-Kutta method with a fixed and sufficiently small time step.
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Fig. 7. Frequency responses of primary structure attached to: (a) DVA-I; (b) DVA-II. Thin lines correspond to classic DVAs

(namely β = 0), Thick lines are related to NSDVAs with optimal negative stiffness ratio (β = βI,fpt or βII,fpt). Dashed and solid

lines are responses optimized by fixed points theory and stability maximization criterion, respectively. For both configurations,

vibration responses at fixed points P and Q have the same amplitude as the corresponding static displacement.

308
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5.1. Harmonic vibration case309

Fig. 7 depicts the normalized frequency responses of primary system attached with four aforementioned types310

of DVAs under sinusoidal force excitation. The frequency responses with DVA-I are plotted in Fig. 7a, while311

the performance of non-traditional DVAs is illustrated in Fig. 7b. The thin lines correspond to the absence312

of negative stiffness (i.e. β = 0), while the thick lines are related to the case with optimal negative stiffness313

ratio βI,fpt or βII,fpt. Finally, the dashed and solid curves are relevant to DVAs optimized by FPT and SMC,314

respectively. It is evident that compared to the SMC, the FPT contributes to the minimizing of peak vibration315

amplitude of primary system in the steady state and to a relatively large frequency bandwidth of vibration316

suppression. Moreover, in the frequency responses related to NSDVAs with optimal negative stiffness ratio,317

the vibration amplitude at fixed points P and Q is equal to the static deformation (i.e. at α = 0), validating318

the aforementioned postulation on optimality condition. By inspecting frequency responses relevant to DVAs319

and NSDVAs, one can infer that the addition of negative stiffness leads to the decrease of peak vibration320

amplitude, the broadening of suppression bandwidth and the left shifting of resonance area for both optimal321

NSDVAs. Furthermore, it is hinted that given the same mass ratio, the DVA-II (or NSDVA-II) can provide a322

better control performance than the DVA-I (or NSDVA-I, respectively) in terms of reducing the peak vibration323

amplitude of primary system.324
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Fig. 8. Cumulative mean square value of normalized displacement of primary system: (a) DVA-I; (b) DVA-II. Thin lines correspond

to classic DVAs (namely β = 0), thick lines are related to NSDVAs with optimal negative stiffness ratio (β = βI,fpt or βII,fpt). Dashed

and solid lines are responses optimized by fixed points theory and stability maximization criterion, respectively.

The main drawback of negative stiffness is to amplify the vibration amplitude of primary system in low325

frequency region. Nevertheless, the justification of its use in control scheme could be twofold: improved frequency326

responses over a larger area around resonance as previously discussed and reduced cumulative mean square327

response (CMSR) of primary mass, which is illustrated in Fig. 8. The dimensionless CMSR is defined as the328

integrated value of squared normalized displacement of primary system over a certain frequency range [31],329

standing for the total kinetic energy of primary mass when undergoing a broadband excitation. Fig. 8 clearly330

suggests that both NSDVAs can reduce the peak value of CMSR by a factor close to 3, signifying that the use331

of negative stiffness can enhance significantly the system damping capability against external disturbance.332
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Fig. 9. Frequency responses of relative displacement between primary and secondary masses: (a) DVA-I; (b) DVA-II. Thin lines

correspond to classic DVAs (namely β = 0), thick lines are related to NSDVAs with optimal negative stiffness ratio (β = βI,fpt or

βII,fpt). Dashed and solid lines are responses optimized by fixed points theory and stability maximization criterion, respectively.

More benefit could be introduced into the control performance by using the negative stiffness. Fig. 9333

demonstrates frequency responses of relative motion between primary and secondary masses, also termed as the334

stroke length, under harmonic force excitation. One can remark that both NSDVAs can reduce significantly the335

peak vibration amplitude of stroke length compared to their DVA counterparts, which facilitates their practical336

implementation in a more strict environment.337

Nevertheless, the FPT is not oriented towards the optimization of damping ratio ξ∗ of coupled system,338

which is defined as the minimal value of all modal damping ratios. The modal damping ratio associated with a339

specific eigenvalue is determined as the absolute value of ratio between its real part and its complex modulus.340

Therefore, increasing ξ∗ leads to the decrease of damped natural frequency so that the required oscillation cycle341

for decaying the disturbance to zero is reduced. Fig. 10 demonstrates the evolution of system damping ratio342

ξ∗ as a function of negative stiffness ratio β for the NSDVA-I (in Fig. 10a) and the NSDVA-II (in Fig. 10b).343

For both NSDVAs, FPT always yields a smaller value of ξ∗ than SMC over the whole range of β, implying that344

SMC is more preferable for tuning NSDVAs in the case where a larger damping ratio is needed. Moreover, one345

can observe that the system damping value at the optimal negative stiffness ratio, βI,fpt or βII,fpt, is not the346

largest, validating the fact that FPT aims at improving the steady state response instead of maximizing the347

damping capability.348

5.2. Transient vibration case349

The capability of decaying transient disturbances can be also quantified by taking the degree of stability Λ350

as the performance index. In fact, Λ represents the slowest exponential decay speed of transient response,351

therefore, a larger value of Λ corresponds to a faster decay of disturbance. Fig. 11 depicts the eigenvalues of352

primary system controlled by a DVA-I (in Fig. 11a) or a DVA-II (in Fig. 11b). With the definition of degree353

of stability given in Eq. (42), the performance indices for different DVAs read as: ΛI,fpt = 0.061, ΛI,smc = 0.11354

and Λ−
I,smc = 0.83 for DVA-I based on different optimization criteria, and ΛII,fpt = 0.067, ΛII,smc = 0.12 and355

Λ−
II,smc = 1.35 for DVA-II with different tuning parameters. Performance indices without any superscript are356
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Fig. 10. The fluctuation of system damping ratio ξ∗ as a function of the negative stiffness ratio β: (a) NSDVA-I, (b) NSDVA-II.

Dashed and solid curves are related to FPT- and SMC-based optimization, respectively.

related to DVAs without negative stiffness, while those with the superscript, −, are related to NSDVAs with357

critical negative stiffness ratio β−I,smc or β−II,smc. It clearly suggests that the SMC always conducts to a double358

pair of complex eigenvalues and a larger performance index than the FPT, namely a faster convergence of359

transient response. In the ultimate scenario with SMC-based optimization, all the eigenvalues are coincident360

with each other and locates at the real axis of the complex plane, at which the largest degree of stability can361

be achieved. Furthermore, DVA-II has a slightly better performance index than DVA-I with β = 0, while the362

inclusion of negative stiffness renders the advantage claimed for DVA-II over DVA-I more significant. Precisely,363

an increase of 62.7% in terms of performance index is observed for the NSDVA-II when compared to NSDVA-I364

at their respective lower bound on β.365
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Fig. 11. Root loci of primary system coupled with a: (a) DVA-I; (b) DVA-II. Circle and square markers: classic DVA optimized

by FPT and SMC, respectively (i.e. β = 0); diamond marker: SMC-based NSDVA with critical negative stiffness ratio β−I,smc or

β−II,smc. The performance indices read as: (a) ΛI,fpt = 0.061, ΛI,smc = 0.11 and Λ−

I,smc = 0.83; (b) ΛII,fpt = 0.067, ΛII,smc = 0.12 and

Λ−

II,smc = 1.35.
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A numerical simulation in the temporal domain is also carried out to investigate the control performance366

of various DVAs with respect to transient vibration. Fig. 12 plots the temporal responses of primary system367

and stroke length of absorber for different configurations. The simulation is performed under free vibration368

(namely F (τ) = 0) with a relatively large mass ratio µ = 0.1 for a better visual effect. The initial states of two369

DOFs are imposed as: x1(0) = z0 = 0.1 and x′1(0) = x2(0) = x
′
2(0) = 0. The temporal solutions related to the370

dimensionless ordinary differential equations (6) and (9) are obtained by adopting the fourth order Runge-Kutta371

method with a fixed time step 1e−4 for a simulation duration of 60. As evident from Figs. 12a and 12b, SMC372

and FPT render a similar attenuation performance of transient response of primary system in terms of the peak373

vibration amplitude and the settling time when β = 0, which is consistent with the prediction according to the374

performance index. Besides, the SMC-based NSDVA-II with critical negative stiffness ratio outperforms the375

NSDVA-I in terms of much more shorter settling time and lower peak amplitude of primary system. Finally,376

Figs. 12c and 12d suggest that SMC is more preferable than FPT in terms of confining the peak vibration377

amplitude of stroke length of DVA.
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Fig. 12. Transient responses under free vibration normalized by the initial displacement of primary system z0: (a)-(b) displacement

of primary system; (c)-(d) stroke lengths of DVAs. The mass ratio is imposed as µ = 0.10. Dashed line: FPT-based DVAs (with

β = 0); thin solid line: SMC-based DVAs (with β = 0); thick solid line: SMC-based NSDVAs with critical negative stiffness ratio

(i.e. β−I,smc or β−II,smc).
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6. Conclusions379

In this paper, optimization of both NSDVA-I and NSDVA-II is carried out based on two tuning strategies,380

fixed points theory and stability maximization criterion. Optimal parameters of frequency tuning ratio and381

mechanical damping ratio of absorber are derived analytically. And allowable bound on negative stiffness is382

specified for each NSDVA and for each optimization scenario based on the stability requirement. Besides, an383

optimal negative stiffness ratio is defined when the NSDVA is optimized according to the fixed points theory.384

Numerical simulation results demonstrate that under harmonic excitation, the inclusion of negative stiffness385

can reduce significantly the maximum vibration amplitude of primary system and the stroke length of DVA386

and increase the frequency bandwidth of vibration suppression. Moreover, it is shown that the system damping387

increases as the negative stiffness approaches to its lower limit. Finally, temporal responses under free vibration388

suggest that in the ultimate scenario, the SMC-based NSDVAs can attenuate the transient response in an389

extremely short duration.390

Comparisons between the two types of DVAs are also made. It is apparent that DVA-II (or NSDVA-II)391

can provide a better control performance than DVA-I (or NSDVA-I) in terms of confining the peak vibration392

amplitude of primary system and stroke length of absorber. These two types of DVAs with β = 0 have a similar393

performance of attenuating transient disturbance. When a negative stiffness is present, the SMC-based NSDVA-394

II can provide a better damping performance and have a larger permissible interval for the negative stiffness,395

comparing to the NSDVA-I. Therefore, the NSDVA-II can yield a more rapid convergence of transient response396

of both primary system and stroke length of absorber and can reduce their peak response more significantly.397
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Appendix A Allowable interval of β for SMC-based optimization of NSDVA-II401

Multiple constraints exist on the negative stiffness ratio β, as discussed one by one in the following study.402

1. The stability requirement. The substitution of optimal frequency tuning ratio fII,smc into the general403

stability condition (15) yields:404

(1 + β)2
− 2µ > (1 + β)

√
(1 + β)2 − 4µ (A.1)

which results in a possible bound on β: β > β1 =
√

2µ − 1.405

2. f2
II,smc ≥ 0. This condition imposes that:406

1 + β ≥ 2µ

(1 + β)2 ≥ 4µ

(1 + β − 2µ)2 ≥ (1 + β)2 − 4µ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ô⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β ≥ β2 = 2µ − 1

β ≥ β3 = 2
√
µ − 1

(A.2)
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One can tell that β3 > β1 > β2 always holds for any positive µ ≤ 0.5 and the mass ratio should be inferior407

to 0.25. Up to now, the negative stiffness ratio β should be bounded by: β ≥ β3 = 2
√
µ − 1.408

3. The complex eigenvalue assumption p2
II ≤ r

2
II. The inequality conducts to t1 ≤ t2 with the two polynomials409

given by:410

t1 = 1 − 7µ + β(1 − 3µ), t2 = (1 − 5µ)
√

(1 + β)2 − 4µ. (A.3)

It is remarkable that the signs of t1 and t2 depend on the mass ratio µ so that the lower bound on β411

should be deducted per segment of µ. The coefficient t1 will be positive if β > β4 = (7µ−1)/(1−3µ) and t2412

remains positive when µ is less than 1/5. Besides, one can tell that β3 ≥ β4 for any µ ∈ [0,1/9]. Therefore,413

three possible cases where a negative stiffness could be employed in the DVA, i.e. β < 0, are listed as414

follows:415

� Case 1: β ≥ β3, β3 ≤ 0, 0 ≤ t1 ≤ t2, ∀µ ∈ [0,
1

9
],416

� Case 2: β ≥ β4, β4 ≤ 0, 0 ≤ t1 ≤ t2, ∀µ ∈ [
1

9
,
1

5
],417

� Case 3: β ≥ β3, β3 ≤ 0, t1 ≤ t2 ≤ 0, ∀µ ∈ [
1

5
,
1

4
].418

each of which will be investigated in order to obtain the lower bound on β with respect to the segment of419

mass ratio µ.420

� Case 1. β < 0 always holds for µ ∈ [0,1/9]. Moreover, the condition 0 ≤ t1 ≤ t2 results in:421

(1 − 4µ)β2
− 2µβ + 25µ2

− 4µ ≤ 0 (A.4)

It is noticeable that the upper limit of this inequality is always positive, therefore, the corresponding422

bound on β is: β5 ≤ β ≤ 0 with423

β5 =
µ + 2

√
µ(5µ − 1)

1 − 4µ
(A.5)

With β5 being superior to β3 in the very range of mass ratio, the allowable bound on β is:424

β5 ≤ β ≤ 0,∀µ ∈ [0,
1

9
]. (A.6)

� Case 2. In this range of mass ratio, the condition 0 ≤ t1 ≤ t2 will be satisfied if β ≥ β4 holds.425

Nevertheless, β4 will be positive when the mass ratio is greater than 1/7. Therefore, no negative426

stiffness could be employed in the range of [1/7,1/5] and the permissible bound on β is expressed427

as:428

β4 ≤ β ≤ 0,∀µ ∈ [
1

9
,
1

7
]. (A.7)

� Case 3. The constraint of t1 ≤ t2 ≤ 0 gives rise to429

β ≤ β− =
µ − 2

√
µ(5µ − 1)

1 − 4µ
, β ≥ β+ =

µ + 2
√
µ(5µ − 1)

1 − 4µ
(A.8)

In the mass ratio range of [1/5,1/4], β+ > β− > 0 always holds. Therefore, the corresponding interval430

of β is given as:431

β3 ≤ β ≤ 0,∀µ ∈ [
1

5
,
1

4
]. (A.9)

Finally, the lower thresholds of negative stiffness ratio β are found for each segment of mass ratio µ and are432

summarized in Eq. (65).433
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