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Abstract  

Statistical analysis approaches have been developed to predict the biological response to 

nanoparticles, especially quantitative structure-activity relationship (QSAR) models. But one 

major limitation remains the quantitative lack of data to build accurate models. The aim of this 

study was to investigate if simple alternative mathematical models could rank nanoparticles in 

a very binary way (i.e. toxic or not) in case of small dataset. We synthesized and characterized 

25 nanoparticles from 6 metal (hydr)oxide families with particle size and shape tuning. We 

assessed their toxicity on RAW 264.7 cells and investigated relationships with both physico-

chemical and dimensional descriptors. A simple partial least square (PLS) regression analysis 

allowed ranking nanoparticles with respect to their toxicity, without false-negative results. But 

this model was not predictive due to the specific response of each family to dimensional 

parameters variations. A classification tree extracted the same main bulk descriptor as PLS, but 

interestingly showed the relevance of dimensional descriptors for the second and third node. 

We thus recommend the development of family-specific models and propose the combination 

of these two simple methods as pre-screening tools, a compromise to bridge the gap between 

case-by-case studies (expensive and time-consuming) and sophisticated nano-QSAR models 

(not suitable for small datasets). 
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Introduction 

During the last decades, nanotechnologies and their applications have amazingly expanded 

leading to a growing public concern about the toxicity of manufactured nanoparticles. The huge 

number and variety of engineered nanoparticles makes it impossible to test them on a case-by-

case basis (Chatterjee 2009). In addition, this approach would require intensive animal testing 

to obtain for each nanoparticle the necessary data (Dekkers et al. 2016). It appears therefore 

necessary to develop alternative approaches to help prioritize materials that need the most 

rigorous testing, at the same time prioritizing financial and human resources available in 

toxicological investigations (Chatterjee 2009; Puzyn et al. 2011; Gajewicz et al. 2012; Winkler 

et al. 2013).  

To meet such expectations, predictive models are currently being developed. In particular, the 

Quantitative Structure–Activity Relationship (QSAR) model represents a promising approach. 

It was initially developed in the 1960’s for chemical compounds (Hansch et al. 1962). As an 

example, QSAR approach is commonly used for risk assessment of pesticides. Indeed, due to a 

growing need for toxicity assessment and the increasing variety and number of products, 

regulatory agencies and legislations, such as REACH (Registration, Evaluation and 

Authorisation of Chemical, the European legislation on chemicals) encourage the use of 

alternatives to animal testing. Computational approaches can accelerate advances in 

(eco)toxicological understanding as they support the experimental data with additional in silico 

studies and results (Mas et al. 2010; Hamadache et al. 2017; Villaverde et al. 2017, 2018). It 

was recently proposed to transpose QSAR models to nanomaterials to rapidly and cheaply 

screen and predict their toxicity (Pan et al. 2016). This adaptation is still at the development 

stage and is not without challenges (Gajewicz et al. 2012). To continue with the example of 

pesticides, the environmental fate and behavior of these products formulated as nano are 
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complex and vary from traditional formulations, arguing for the need of innovative and adapted 

risk assessment methodologies (Villaverde et al. 2018).  

But the usefulness of computational approach in the nano field is constantly rising as illustrated 

by some interesting results reported in the literature. In particular, Puzyn et al. (Puzyn et al. 

2011; Kar et al. 2014) have recently applied "nano-QSAR" starting from a dataset grouping 17 

metallic oxide particles all differing by their chemical composition, and concluded that their 

toxicity to Escherichia coli bacteria could be predicted on the basis of the chemical nature only 

thanks to calculated or experimental descriptors such as metal electronegativity and cation 

charge. Surprisingly, dimensional or shape descriptors did not play any role. Gajewicz et al. 

(2015) confirmed these observations in a model of mammalian cells, the HaCaT cell line, 

regarding the toxicity of 18 metal oxide nanoparticles. More recently, Pan et al. (2016) 

demonstrated that in addition to the cationic charge as shown by Puzyn et al., the individual 

size and aggregation size of metal oxides nanoparticles were important factors for the 

cytotoxicity to both E. coli and HaCaT cells. 

Despite these promising results, some hurdles remain to overcome. They may be roughly 

classified into 3 categories: i) the choice of the most suitable nanodescriptors, ii) the choice of 

the most relevant biological assays; and last but not least, iii) the quality and quantity of the 

data. Firstly, regarding the choice of the physico-chemical descriptors, many have been 

proposed as suitable for nanomaterials, they can be either derived from experimental data (for 

instance dimensional descriptors) or calculated with various theoretical approaches (Winkler et 

al. 2013; Gajewicz et al. 2015b; Pan et al. 2016). Often, physico-chemical descriptors are 

calculated, not assessed experimentally, and they usually do not follow the entire list of 

parameters described in the ISO recommendations (ISO/TR 13014:2012). In addition, almost 

always, only one sample per chemical composition is used. Secondly, a successful nano-QSAR 

also requires well-selected biological assays, at the same time facing the specific issues and 
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concern about nanoparticles and providing valuable data (biological descriptors) for the QSAR 

model (Fourches et al. 2010; Gajewicz et al. 2012; Dekkers et al. 2016). Thirdly, and most of 

all, the main issue of nano-QSAR lies in the quality and quantity of data. A sufficient number 

of samples (particles with well-defined and distinct physico-chemical descriptors) should be 

available to build a statistically acceptable dataset (Fourches et al. 2010; Dekkers et al. 2016). 

Indeed, traditional QSAR approach is based on very large datasets (hundreds or even thousands 

substances). However, available experimental data for nanoparticles are still not enough (units 

or tens, in the best case) and empirical data and physico-chemical and biological 

characterization are not systematic when they are not inconsistent (Gajewicz et al. 2012).  

Thus, although nano-QSAR models have been the topic of intensive research during the last 

two decades their use is actually limited, mainly because of the small size of the dataset 

available for modeling. We may therefore wonder if alternative mathematical models, less 

complex and less sophisticated cannot be sufficient to rank, although more modestly but still 

efficiently, nanomaterials with respect to their toxicity in case of small datasets. And indeed, 

recently, other approaches have gained interest such as classification trees or read-across based-

approaches (Gajewicz 2017a, b; Gajewicz et al. 2018). In this context, the aim of the present 

study was to determine if tools as simple as a simple partial least square regression or decision 

trees could accurately rank nanoparticles (i.e. toxic vs. non toxic) based on a small dataset. To 

compensate the quantitative lack of data, their quality must be optimal. We therefore 

synthesized 25 nanoparticles from 6 metal (hydr)oxide families we then thouroughly 

characterized according to the ISO standards (ISO/TR 13014:2012). We next assessed their 

toxicity in vitro using a model of macrophages and biological endpoints used in empirical 

nanotoxicology studies. This is the main originality of this work along with the synthesis, 

systematical and empirical physico-chemical characterization of the nanoparticles. Based on 
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these experimental data two predictive models and a decision tree were constructed and allowed 

us to discuss about the relevance of these approaches.  

 

Experimental 

Nanoparticle synthesis 

25 nanoparticles from 6 metal (hydr)oxide families (SiO2, TiO2, CeO2, AlOOH, ZnO, Ni(OH)2) 

were synthesized. In each chemical family particle size and shape were tuned to ensure an 

independent analysis of chemical and dimensional descriptors.  

The synthesis of boehmite particles was inspired from Yang (2011). Boehmite particles were 

synthesized by room temperature precipitation of aluminium chloride with soda-ammonia 

solutions followed by hydrothermal ripening at various pH values (4.5, 6 and 8.5) in autoclaves 

at 180°C during 24h or microwave heating (Monowave 300, Anton Paar) at 180°C during 10 

minutes. The objective was to control shape from platelets to rods. All samples were washed 

by successive centrifugations in water, then freeze-dried. Table 1 summarises the experimental 

conditions. AlOOH-1 and AlOOH-3 were supposed to give the same particles but samples 

exhibited a different specific surface area and agglomeration level in bundles, which may be 

due to accidental temperature oscillation in the autoclave and/or pH shift before heating. 

 

Table 1 – Experimental conditions for the synthesis of boehmite particles.  

Sample pH Heating device Ripening 

AlOOH-1 4.5 Autoclave 24h 

AlOOH-2 8.5 Autoclave 24h 

AlOOH-3 4.5 Autoclave 24h 

AlOOH-4 6 Autoclave 24h 

AlOOH-5 6 Microwave 10 min 

 

Synthesis of nickel hydroxide particles: nickel hydroxide nanoparticles are nanoplatelets, a 

shape induced by the brucite structure. For samples Ni(OH)2-1 to 4, nickel hydroxide was 

precipitated in a vortex rapid mixer (whose geometry was described by Di Patrizio et al. (2016)) 
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by mixing nickel nitrate 0.05M solution and soda-ammonia solutions. The control of particle 

characteristics (size, agglomeration) was obtained by tuning soda/ammonia ratio and 

concentrations as reported in Table 2. Ni(OH)2-5 particles were obtained by a protocol 

described by Coudun et al. (2005), allowing "stack of pancakes" morphology. All samples were 

washed by successive centrifugations in water, then freeze-dried. NiO sample was then 

obtained by calcining Ni(OH)2-4 at 300°C during 4h under air. 

 

Table 2 - Soda/ammonia ratios for the synthesis of nickel hydroxide particles. 

Sample [NaOH]/[NH3] 

Ni(OH)2-1 0.1/0.3 

Ni(OH)2-2 0.1/0 

Ni(OH)2-3 0.1/0.3* 

Ni(OH)2-4 0.01/0.3 

 

*For sample Ni(OH)2-3, ammonia was pre-mixed with nickel nitrate solution then the solution 

was mixed with soda in the rapid mixer. 

 

The synthesis of zinc oxide particles (slightly elongated particles or short rods) was inspired 

from Trenque et al. (2013). Dihydrated zinc acetate was dissolved in diethyleneglycol (0.1 M 

for ZnO-1, 1 M for ZnO-2) then the solutions were heated at 200°C by microwave irradiation 

(Monowave 300) during 3 minutes. 

The synthesis of cerium dioxide particles was inspired from Florea et al. (2013). Our protocols 

of precipitation of cerium(III) nitrate with soda-ammonia solution followed by hydrothermal 

ripening were previously described (Forest et al. 2017), they allowed shape tuning from 

isotropic particles to nanorods. 

Synthesis of titanium dioxide nanoparticles: for TiO2-1, a 0.5M titanium butoxide and 1M 

triethanolamine solution was heated at 180°C during 10 min by microwave irradiation. The 

sample was washed by successive centrifugations in water then freeze-dried. TiO2-2 is an 
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amorphous product resulting from titanium butoxide hydrolysis at room temperature. TiO2-3 

(spheres) and TiO2-4 (rods) were commercial products from Sigma-Aldrich. 

The synthesis of silica nanoparticles was inspired from Music et al. (2011). A solution of 

sodium silicate 26.5% was diluted 4 times in water, heated at 80°C and acidified to pH=2 by 

dropping a 1.8M sulfuric acid solution. For SiO2-1 heating was maintained during 45 min after 

acidification without pH control, for SiO2-2 heating was maintained during 90 min and pH 

value was maintained at 2 by sulfuric acid addition during heating. The samples were washed 

by successive centrifugations in water. 

 

Nanoparticle physico-chemical characterization 

Following ISO guidelines (ISO/TR 13014:2012), the following physico-chemical descriptors 

were considered:  

- nanoparticle size: average dimensions were measured by Transmission Electron Microscopy 

(TEM) using a FEI TECNAI 20FST operating at 200 kV. Each particle was defined by 1 

(sphere) or 2 (rods/plates) dimensions (sufficient considering that a revolution axis practically 

always exists): dmax and dmin. 

- chemical composition: known from synthesis conditions and X-ray diffraction. Associated 

descriptors were x(H2O) from the raw formula M(n+)O(n/2).xH2O, the oxidation degree of the 

metal (cation charge) n_oxy_M, the radius of the metallic cation r_cat, and the Pauling 

electronegativity of the metallic element EN_M. We decided to introduce x(H2O) to make a 

chemical difference (in addition to solubility) between oxides and hydroxides, the other 3 

descriptors were chosen from their occurrence in literature. 

- solubility: we considered the solubility of the bulk materials at pH=7, from tables.  

- shape: shape factor was classically defined as SF=dmax/dmin from dimensions by TEM, and 

we also introduced a corrected shape factor to discriminate between rods and plates, which is 



9 
 

of course critical since rods have 2 dimensions in the nano-range when plates only have 1: 

considering the length of the axis of revolution (daxis) and the dimension perpendicular to this 

axis (dperp), the corrected shape factor was defined as CSF=log(daxis/dperp). This way, we have 

different domains of CSF for each shape: for rods CSF>0, spheres CSF=0, plates CSF<0. 

- the zeta potential was measured at pH=7 by dispersing nanoparticles in water by ultrasonic 

treatment and using a nanoZS (Malvern Instrument, UK).  

- the specific surface area SSA was measured on dried powders by nitrogen gas adsorption at 

77K (BET method) with an ASAP2000 instrument from Micromeritics. 

- the crystalline structure was determined by X-ray diffraction using a Bruker D8 diffractometer 

in  geometry and Co K radiation (=1.789 Å) to check there was no minor phase in our 

syntheses, but was not introduced as a descriptor.  

- the agglomeration/aggregation state: agglomeration is difficult to quantify and there is no 

associated established metrology, especially when agglomeration (weak forces between 

particles) and aggregation (strong forces or bridges) may both occur and evolve during 

biological tests. To keep it simple, we just defined 3 classes from TEM observations and 

stability/dispersibility when handling suspensions: Agg=0: well-dispersed particles, 1= small 

(submicron) or fluffy agglomerates, 2= dense or big (micrometric) agglomerates and likely 

aggregates. 

 

Cellular model 

The RAW 264.7 cell line derived from mice peritoneal macrophages transformed by the 

Abelson murine leukemia virus and was provided by ATCC Cell Biology Collection 

(Promochem, LGC, Molsheim, France). Cells were cultured in Dulbecco Modified Eagle 

Medium (DMEM) complemented with 10% of fetal calf serum and 1% of penicillin-

streptomycin (called DMEMc) at 37°C under a 5% carbon dioxide humidified atmosphere. 
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Cells were seeded in 96-well-plates (100 000 cells in 50 µL of medium per well) and were 

allowed to adhere overnight. Nanoparticles were diluted in cell culture medium to reach the 

following final concentrations: 15, 30, 60 and 120 µg/mL. Nanoparticles were added to cells 

and further incubated for 24h. 

 

Empirical toxicity testing: the lactate dehydrogenase (LDH) release  

To evaluate cell membrane integrity, the cellular release in the supernatant of cytoplasmic 

lactate dehydrogenase was assessed using the CytoTox-96™ Homogeneous Membrane 

Integrity Assay (Promega, Charbonnières-les-Bains, France) according to the manufacturer’s 

instructions. The optical density of the samples was determined using a microplate reader 

(Multiskan RC; Thermolabsystems, Helsinki, Finland) set to 450 nm. Three independent 

experiments were performed, each in quadruplicate and the activity of the released LDH was 

reported to that of negative control cells (incubated without nanoparticles). A positive control 

consisted in the maximal cellular LDH released after cells lysis. 

 

Expression of the toxicity results: biological scores 

Regarding the biological assays, three independent experiments were performed in 

quadruplicate. Means were calculated between the 4 doses to get an average signal and this 

signal was normalized to the negative control (signal obtained for the cells incubated alone, i.e. 

without nanoparticles). Therefore, the basal signal obtained for the control was set to 1. As 

explained further, a threshold of 1.5 was selected to rank particles, i.e. a nanoparticle with a 

score > 1.5 was considered as cytotoxic.  

 

Partial least square regression analysis 
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The physicochemical descriptors included in this study were selected either because they were 

recommended by the ISO/TR 13014:2012 guideline or because they have been reported in the 

literature to be predictive of nanoparticle toxicity. A partial least square regression (PLS) 

analysis was performed using R software to build and compare two models. The fisrt one 

included the 4 composition-related "non nano" (non dimensional) descriptors and the second 

one considered all (12) descriptors thus mixing chemical and dimensional descriptors. The root 

mean square error of prediction (RMSEP) versus the number of components was used to select 

the best number of components (dimensions) and the coefficients of the linear equation were 

validated by a leave-one-out (LOO) approach. Considering the relatively low number of 

samples and our main objective (to predict a binary toxic/non toxic behavior considering both 

physico-chemical and dimensional descriptors), we prefered the LOO approach to methods 

based on training and validation sets, more relevant to bigger datasets. The R² was calculated 

to estimate the goodness of fit of our models (i.e. the ability to reproduce the data in the training 

set). For internal validation we used the leave-one-out-cross-validation (LOO-CV, especially 

recommended for small datasets (Gramatica 2007)) and calculated the Q²LOO to evaluate the 

robustness and predictivity of our models. Finally, as our dataset is composed of (hydr)oxide 

nanoparticles, the applicability domain of the models is defined as such. 

 

Decision tree 

Decision tree classification is a classic classification method in which records are labeled and 

classified into different levels of a response variable according to the frequency with which a 

set of features appear when a certain level of the response variable takes place. The algorithm 

implemented in this method is known as CART (Classification And Regression Tree). The main 

goal of the CART algorithm is to produce a classification tree – a set of classifier branches – 

that determines the set of rules or variable interactions capable of predicting a given outcome 
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(response variable). The objective in the construction of these classification rules is to make 

possible the prediction of the occurrence of such outcomes in future scenarios using the 

information from the set of variables and rules described by the decision tree (Kar et al. 2014). 

Considering the small size of the dataset, we applied the leave-one-out approach for cross-

validation. Each learning set is created by taking all the samples except one, the test set being 

the sample left out. Thus, for n samples, we have n different training sets and n different tests 

set. This cross-validation procedure does not waste much data as only one sample is removed 

from the training set. We implemented all algorithms using the Python language and the SciKit 

learn library for machine learning methods. To assess the performance of the prediction, we 

provided the following metrics: accuracy, sensitivity, specificity and error rate: 

Accuracy = (tp + tn)/(tp+tn+fp+fn) 

Sensitivity = tp/(tp+fn) 

Specificity = tn/(tn+fp) 

Error rate = fn/(fn+tp) 

where tp, fp, tn and fn denote the number of true positives, false positives, true negatives and 

false negatives respectively. 

Finally, in order to provide a decision aid tool to predict the toxicity of any new compound, we 

proposed an innovative approach to build an average tree, representing the best consensus of 

the n decision trees.  

 

Results  

Our approach considered, in the family of metallic oxides and hydroxides, 25 nanoparticles of 

6 chemical compositions with at least 2 significantly different particles (in size and/or shape) 

in each chemical family to ensure an independent analysis of chemical and dimensional 

descriptors. Nanoparticle samples were characterized to quantify the relevant experimental 
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descriptors. A toxicity test, commonly used in nanotoxicology, was performed: the assessment 

of the LDH release from RAW 264.7 cells. The results were analyzed by a home-made ranking 

method. Our aim was to predict a binary behavior (probably toxic versus probably non toxic) 

considering both physico-chemical and dimensional descriptors using a simple mathematical 

model. The idea was to propose a ranking tool for rapid and cheap pre-screening purpose. The 

biological scores were determined for global ranking purposes with usual dose range of 

nanoparticles used in in vitro nanotoxicology studies and did not directly take into account the 

impact of the nanoparticle dose.  

Following ISO guidelines (ISO/TR 13014:2012), the following physico-chemical descriptors 

were considered: nanoparticle size, chemical composition with associated descriptors (such as 

the hydration rate, the oxidation degree of the metal (cation charge), the radius of the metallic 

cation, and the Pauling electronegativity of the metallic element), solubility, shape, the zeta 

potential, the specific surface area SSA, the crystalline structure, and the 

agglomeration/aggregation state. Table 3 details the nanoparticle descriptors as well as the 

biological endpoint (score from the LDH assay) forming the dataset used in this study.  
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Table 3 – Dataset used for the construction of the models.  

 

Sample 
Hydratio

n rate 

Oxidation 

degree of 

the metal 

Radius of 

the metallic 

cation 

Pauling 

electronegativity 
Solubility 

Zeta 

potential 

pH=7 

Specific 

surface 

area 

Dimensions 
Shape factor 

=dmax/dmin 

Corrected shape 

factor=log(daxis/ 

dperp) 

Agglomeration/ 

aggregation 

state 

 

 x (H2O) n_oxy_M r_cat EN_M s(log Mtot) zeta SSA dmin dmax SF CSF Agg LDH 

AlOOH-1 0.5 3 67.5 1.61 -6.5 37 121 10 300 30 1.48 0 1.1 

AlOOH-2 0.5 3 67.5 1.61 -6.5 39 107 10 30 3 -0.48 0 1.08 

AlOOH-3 0.5 3 67.5 1.61 -6.5 37 62 6 300 50 1.7 1 1.05 

AlOOH-4 0.5 3 67.5 1.61 -6.5 33 40 10 100 10 1 0 1.07 

AlOOH-5 0.5 3 67.5 1.61 -6.5 37 54 5 50 10 1 2 1.07 

Ni(OH)2-1 1 2 83 1.91 -3.5 40 190 3 10 3 -0.48 1 2.76 

Ni(OH)2-2 1 2 83 1.91 -3.5 44 226 2 10 5 -0.7 2 2.57 

Ni(OH)2-3 1 2 83 1.91 -3.5 31 192 3 30 10 -1 1 2.99 

Ni(OH)2-4 1 2 83 1.91 -3.5 31 86 10 60 6 -0.78 0 2.2 

Ni(OH)2-5 1 2 83 1.91 -3.5 35 10 50 200 4 -0.6 0 2.07 

NiO 0 2 83 1.91 -12 35 40 10 30 3 -0.48 0 0.88 

ZnO-1 0 2 88 1.65 -2.5 15 93 10 10 1 0 2 2.62 

ZnO-2 0 2 88 1.65 -2.5 29 19 40 150 4 0.6 1 2.81 

CeO2-1 0 4 101 1.12 -9.5 -26 151 4 40 10 1 1 2.02 

CeO2-2 0 4 101 1.12 -9.5 -30 52 5 5 1 0 2 2.58 

CeO2-3 0 4 101 1.12 -9.5 -35 61 8 40 5 0.7 1 2.08 

CeO2-4 0 4 101 1.12 -9.5 -17 60 18 18 1 0 1 0.98 

CeO2-5 0 4 101 1.12 -9.5 -31 37 8 90 10 1 1 2.08 

CeO2-6 0 4 101 1.12 -9.5 9 61 15 15 1 0 1 0.82 

TiO2-1 0 4 74.5 1.54 -9 9 94 20 35 2 0.3 2 0.88 

TiO2-2 0 4 74.5 1.54 -9 1 302 2 2 1 0 2 1.01 

TiO2-3 0 4 74.5 1.54 -9 -4 45 20 20 1 0 1 1.29 

TiO2-4 0 4 74.5 1.54 -9 0 44 10 50 5 0.7 2 1 
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SiO2-1 0 4 54 1.9 -2.7 -9 326 10 10 1 0 2 1.2 

SiO2-2 0 4 54 1.9 -2.7 -29 447 14 14 1 0 2 1.09 
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A partial least square regression (PLS) analysis was performed. We first constructed a model 

with 4 chemical composition related descriptors (n_oxy_metal, xH2O, r_cation and EN-metal), 

thus excluding dimensional decriptors. Figure 1 plots the experimental LDH score versus the 

predicted score. Of course in this model all particles belonging to the same chemical family 

have the same predicted score, which is in general far from the experimental reality. According 

to RMSEP, a model with 2 components is appropriate and the obtained equation is: 

Predicted LDH score = 0.560 + 0.153 x(H2O) - 0.394 n_oxy_metal + 0.0263 r_cation + 0.102 

EN_metal.  

Since these descriptors are not normalized we also give the order of the maximum variation of 

the score induced by each term: 0.15 for x(H2O), 0.80 for n_oxy_metal, 1.20 for r_cation and 

0.08 for EN_metal. In other words, the cationic radius and the cation charge are the key 

descriptors, the introduction of x(H2O) in addition to the 3 other descriptors used as a refinement 

to encompass all families from metallic hydroxides to oxides has a relatively low impact, even 

if not to be neglected, whereas EN_metal impact is very low. 

R2=0.718 may be thought as a bit low to claim for a model, this is obviously due to the huge 

dispersion of experimental scores between samples with the same chemical composition, 

especially CeO2 and Ni(OH)2. This dispersion has nothing to do with poor data quality but is 

due to morphological and dimensional effects as shown in our previous study on ceria (Forest 

et al. 2017). Nevertheless, from a practical point of view, one must admit that this composition 

based "non dimensional" approach is sufficient to predict the non cytotoxicity of particles if we 

set a threshold value at score=1.5 (corresponding to the threshold above which the signal is 

considered significantly increased compared to the negative control, i.e. cells unexposed to 

nanoparticles), since no false negative results are obtained (all particles with experimental 

score>1.5 do have a predicted score>1.5). Only 3 particles are predicted as "cytotoxic" whereas 

they are not: 2 samples of CeO2 family, a material exhibiting a spectacular particle shape effect 
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on nanotoxicity as we exhibited in a previous publication (Forest et al. 2017), and the NiO 

sample obtained by calcining one Ni(OH)2 sample, interesting as it shows that the correction 

brought by x(H2O) is not totally sufficient. The point is the dispersion of experimental scores 

is low with "non toxic" families as SiO2, TiO2 and AlOOH whereas it is wide with cytotoxic 

families as CeO2 and Ni(OH)2. Clearly, our results call for introducing more TiO2 or SiO2 

samples in future studies to check this assessment.  

Q2-LOO= 0.0 is indeed very low and indicates a priori no predictability beyond our dataset, but 

one must also keep in mind that our approach is not to predict accurate scores but the right 

quadrant.  

Then we tried to build a model mixing composition and dimensional descriptors. Considering 

now all the chosen descriptors, after a first model we observed that 3 descriptors could be 

discarded without damage: dmin due to its low effect, zeta potential and solubility at pH7 due 

to their strong correlations to other descriptors. Considering the remaining 9 descriptors, a 

model with 6 components (RMSEP=0.55) gives the coefficients reported in Table 4, with 

R2=0.823. Of course, due to the relatively low number of samples, there may be overfitting.  

 

Table 4 – Descriptors chosen for the tentative second model and corresponding coefficients 

(not normalized). 

Variable constant x_H2O n_oxy_M r_cat EN_M SSA dmax SF CSF Agg 

coeff -0.662 0.190 -0.485 0.037 0.104 0.00193 0.00248 -0.0111 -0.0234 0.344 

variation range 

of the term 

variable*coeff 

 0.19 0.97 2.11 0.08 0.84 0.74 0.54 0.06 0.79 

 

Figure 2 plots the experimental versus the predicted LDH score with this second model. 

Compared to the previous model, the change of the coefficients of physico-chemical descriptors 
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is around 20%, and among the 5 dimensional descriptors, the corrected shape factor was found 

not significant whereas the relative weights of the 4 other ones were relatively close. 

Considering that the values quantifying the agglomeration/aggregation level were arbitrarily set 

to 0, 1 or 2 depending on a very rough and qualitative approach, this point calls for more 

attention to develop appropriate metrological tools to quantify agglomeration and aggregation.   

As far as Q²-LOO is concerned, one may wonder that it is even worse than in the previous 

"model" and negative (!) Q²-LOO = -0.3. 

One may consider that the model is poor (if existing). This is obviously true but the real reason 

is a key result as we explain now. As seen by comparing both figures, the corrections coming 

from dimensional descriptors do improve the prediction for families as Ni(OH)2, ZnO, AlOOH 

and SiO2 but not for CeO2 and even degrade the prediction for TiO2. The predicted cytotoxicity 

of NiO is significantly lowered but it remains a false positive. On the one hand, this full model 

has no practical benefit as compared to the simple previous model if we consider a classification 

based on a threshold at score=1.5. But on the other hand, it clearly shows that it does not work 

to mix composition and dimensional descriptors for a simple reason: the impact of dimensional 

descriptors does exist but is clearly family dependent. This is obvious considering for instance 

boehmite, where in spite of huge dimension and shape differences the experimental scores were 

more or less the same for all samples, whereas for ceria the shape variation induced a strong 

score variation. The same remarks would apply for all dimensional descriptors. At the end, the 

model does as best as possible to fit the results but there is no hope to be predictive this way. 

As a consequence, studies considering dimensional descriptors in order to predict toxicity make 

sense only if restricted to a given chemical family. 

At the end of this PLS study, we observe that the prediction of the right quadrant is pretty good 

with only the cationic radius and the cation charge, and that dimensional parameters cannot 

help to improve the fate of the 3 false positive because we want to deal simultaneously with all 
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families. This is a clear invitation to switch to decision tree, very suitable for our purpose and 

likely to extract more homogenous subgroups. Using the leave-one-out approach for cross 

validation, we computed 25 decision trees and reported the metrics to assess the quality of the 

prediction in Table 5.  

 

Table 5 – Performance of LDH prediction. TP: true positive, TN: true negative, FP: false 

positive, FN: false negative. 

Sub 

sample 

TP TN FP FN 

1  1   

2  1   

3  1   

4  1   

5  1   

6   1  

7 1    

8 1    

9 1    

10 1    

11    1 

12   1  

13 1    

14 1    

15   1  

16 1    

17    1 

18 1    

19  1   

20  1   

21  1   

22  1   

23  1   

24  1   

25  1   

Total 8 12 3 2 

Accuracy 0.8    

Sensitivity 0.8    

Specificity 0.8    

Error rate 0.2    
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For each subsample we reported the prediction result on the left out particle. The proposed 

method has a global accuracy of 80%, a sensitivity of 80%, a specificity of 80% and an error 

rate of 20%. Although the prediction approach performs well, it would benefit further tests by 

extending the original dataset to other compounds. 

The prediction model is improved using an average tree that is built using the 25 decision trees 

generated before. Figure 3 depicts the final average decision tree produced considering the 

common features included in the whole set of subsamples used to train the model. The decision 

tree branches include all rules and characteristics describing the different characteristics of 

nanoparticles. A test on the whole dataset has an accuracy, sensitivity and specificity of 100%. 

The process to construct an average decision tree involved the identification of common 

features in all the 25 decision trees produced from the subsamples generated. Since all 25 

decision trees share the same feature (metallic cation radius < 78.75) at the root of the tree, it 

appeared that such feature was the most discriminatory criterion for the ranking of 

nanoparticles. SF criterion comes second for 72% of the generated trees, followed by dmax 

which is considered discriminant in 68% of the generated trees. Thus we are able to provide 

recommendations related to nanoparticles characteristics that should be examined first to decide 

on their toxicity, which are metallic cation radius, SF, and dmax. 

Interestingly, the cation radius was the main descriptor according to PLS, whereas SF and dmax 

appeared as significant dimensional parameters in the second PLS model. So in spite of all the 

biases there is some consistency between both approaches and there was indeed an added value 

to keep them both in parallel. 

 

Discussion 
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Models able to predict nanoparticle toxicity based on adequate descriptors are strongly needed. 

And as a matter of fact in silico models are the subject of intensive research and different 

computational models for nanomaterials have been reported (Lamon et al. 2018). Among them, 

QSAR models (Fourches et al. 2010; Puzyn et al. 2011; Winkler et al. 2013; Gajewicz et al. 

2015b; Pan et al. 2016), read-across (Gajewicz et al. 2015a, 2017; Gajewicz 2017a, b), neural 

network (Fjodorova et al. 2017) or decision tree (Gajewicz et al. 2018) classifications. In the 

present study, we could not reasonably build a QSAR model because our dataset was too small. 

On the contrary, we chose PLS and decisions trees because of their simplicity and because they 

are easily accessible to a wider audience compared to other more complex computational 

methods. In this context, we showed that with a simple partial least square regression analysis 

it was possible to predict the cytotoxicity of a small dataset of (hydr)oxide metal nanoparticles 

and rank them without false-negative results considering only physico-chemical descriptors. 

Furthermore, a classification tree approach confirmed the high impact of chemical descriptors. 

Our results are perfectly consistent with data reported in the literature (Puzyn et al. 2011; Kar 

et al. 2014; Gajewicz et al. 2015b), that claimed a much higher impact of chemical descriptors 

as compared to dimensional descriptors to predict toxicity. But our approach was different as 

we did not exclude a priori size descriptors, we included them in our model. We evidenced 

there is undoubtedly a sharp impact of the particle shape with cerium dioxide (Forest et al. 

2017). Since each chemical family has its own behavior, by mixing all families the correlation 

with dimensional descriptors is blurred. If we focus on only one family, chemical descriptors 

will be constant and the impact of dimensional descriptors will be correctly evaluated. But of 

course that means gathering many fully characterized samples differing by their size and shape 

for each chemical composition of practical interest. 

One may regret that we used only one cell line but it has the advantage of being an eukaryote 

model, poorly described in the literature related to predictive models. Indeed, most existing 
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studies have been carried out on prokaryotic systems (i.e. Escherichia coli bacteria). Regarding 

eukaryotic systems information is more scarce (Ghorbanzadeh et al. 2012; Pan et al. 2016). 

Another originality of the present work is the use of a biological assay commonly employed in 

standard nanotoxicology, but not so often when trying to build predictive models where more 

basic indicators (i.e. EC50) are usually used, being more or less informative. The LDH release 

reflects cytotoxicity and it appeared to be a relevant endpoint allowing classifying nanoparticles 

either in a toxic or in a safe category. We have tried to construct other models including two 

other parameters commonly used in standard nanotoxicology: the TNF- production indicative 

of a pro-inflammatory response and the reactive oxygen species production signaling an 

oxidative stress (see Supplementary information). Suitable models could not be constructed, 

suggesting that the choice of the biological endpoints is not trivial and should be carefully 

considered, not all are relevant. Similarly, decision trees built with these data were not 

conclusive: when TNF- production or reactive oxygen species production were tested as target 

variables, key performance indicators were not satisfying (data not shown). Last but not least, 

another asset of our study is the use of well characterized nanoparticles, with biological assays 

carried out in the same conditions contrary to studies where values are extracted from 

previously published studies and where data obtained from different sources are directly 

compared. This is a major issue as it is acknowledged that a fundamental limitation for any 

predictive model is the quality of the data used to build it (Gajewicz et al. 2012). 

And indeed, the choice of descriptors is both crucial and delicate. Experimentally measured 

descriptors are rarely present and all the ISO standard parameters are not systematically 

integrated in predictive models described in the literature while they are mandatory to consider 

in any standard nanotoxicology study. An inappropriate choice of descriptors can be a source 

of bias in the results as we can only find correlations with initially included parameters while 
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we can miss some important finding just because the suitable descriptors were not included a 

priori.  

Moreover, the idea of building family-specific predictive models could be a good compromise 

between the unsound search for a universal model able to predict the toxicity of all types of 

nanoparticles and the case-by-case study (that is too fastidious, highly time and money-

consuming). Application of CART demonstrated good results for a specific target variable that 

is LDH release. It allowed to conclude on good predictive variables among physico-chemical 

characteristics of the nanoparticles. For further experiment, results provided using decisions 

trees can be used as a decision aid tool to decide on the most important features to measure 

experimentally. Also, the leave-one-out approach prevents the bias related to isolated training 

and test experiments and allows an objective validation of the provided decision aid tool as 

presented by Gajewicz et al. (2018). Decision tree classification appears as complementary to 

partial least square regression analysis as this latter allows a very binary classification of the 

nanoparticles (i.e. toxic or not toxic) while decision trees allow the identification of the main 

parameters involved in this toxicity. This could be of major interest, especially in the context 

of a “safer by design” approach. 

 

Conclusion 

The extension of traditional QSAR approach to nanoparticles faces some challenges, one of the 

biggest being the too small available datasets. With this study, based on the use of 25 thoroughly 

characterized metal oxide and hydroxide nanoparticles, we evidenced by partial least square 

regression analysis and decision tree classification relationships between toxicity and selected 

physical and chemical descriptors, able to rank nanoparticles in regard to their cytotoxicity 

without false-negative results. As illustrated by Figure 4, we thus propose these simple methods 

as pre-screening tools, a compromise able to bridge the gap between case-by-case studies (too 
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fastidious, expensive and time-consuming) and more sophisticated QSAR models (efficient but 

not suitable for small datasets). These mathematical tools are very simple and can be easily 

extended to other types of nanoparticles, allowing to get new insights in the nano-

(eco)toxicology field.  
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Figure captions 

 

Fig. 1 Plot of experimentally determined versus predicted LDH scores with model 1 

 

Fig. 2 Plot of experimentally determined versus predicted LDH scores with model 2 

 

Fig. 3 Classification tree for the nanoparticle cytotoxicity. Cytotoxic nanoparticles are indicated 

in red, non-cytotoxic materials in green. The classification tree uses the auto-scaled values of 

the descriptors: r_cat: radius of the metallic cation, SF: shape factor, dmax: maximal dimension. 

The Gini index represents a measure of statistical dispersion 

 

Fig. 4 Partial least square regression and decision trees proposed as alternative approaches to 

case-by-case studies and QSAR models for the ranking of nanoparticle toxicity in case of small 

dataset. The advantages and drawbacks of each approach are summarized 
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Figure 2 
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Figure 3 
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Figure 4 
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Besides the assessment of cytotoxicity by the LDH release assay, the pro-inflammatory 

response and the oxidative stress were investigated through the assessment of the TNF- and 

reactive oxygen species (ROS) production respectively. 

 

Methods 

As for the LDH assay, the RAW 264.7 cells were seeded in 96-well-plates (100 000 cells in 50 

µL of medium per well) and were allowed to adhere overnight. Nanoparticles were diluted in 

cell culture medium to reach the following final concentrations: 15, 30, 60 and 120 µg/mL. 

Nanoparticles were added to cells. 

TNF- production – After a 24h incubation with nanoparticles, the production of TNF-α was 

assessed in the supernatant using a commercial ELISA Kit (Quantikine® Mouse TNF- 

Immunoassay; R&D Systems, Lille, France) according to the manufacturer’s instructions. The 

optical density of each sample was determined using a microplate reader (Multiskan RC; 

Thermolabsystems, Helsinki, Finland) set to 450 nm. A standard curve was established and 

results were expressed in picograms of TNF- per milliliter of supernatant. Three independent 

experiments were performed, each in quadruplicate and the production of TNF- was reported 

to that of control cells (incubated without nanoparticles). 

Reactive oxygen species (ROS) production – A large array of ROS activity can be assessed 

with the OxiSelect™ ROS Assay Kit (Euromedex, Mundolsheim, France). The assay uses the 

conversion of a non-fluorescent substrate, 2.7′-dichlorodihydrofluorescein diacetate that can 

easily diffuse through cell membranes and be converted into a fluorogenic molecule 2′.7′-

dichlorodihydrofluorescein (DCF) in presence of ROS: fluorescence amount is directly related 

to ROS level. Fluorescence was detected using a Fluoroskan Ascent fluorometer (Ex: 480 nm, 

Em: 530 nm, Thermolabsystems) after a 90 min and a 24h incubation of cells with the 

nanoparticles. A positive control was included incubating cells with H2O2 (1 mM). Three 
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independent experiments were performed, each in quadruplicate and the generation of ROS was 

reported to that of the negative control (cells incubated without nanoparticles). 

Expression of the results: biological scores – As for the LDH assay, means were calculated 

between the 4 doses to get an average signal and this signal was normalized to the negative 

control (signal obtained for the cells incubated alone, i.e. without nanoparticles). Therefore, the 

basal signal obtained for the control was set to 1.  

 

Results 

PLS analysis 

Sample TNF- ROS 90min ROS 24h 

AlOOH-1 1.13 0.92 0.74 

AlOOH-2 0.96 0.89 0.69 

AlOOH-3 1.00 0.88 0.69 

AlOOH-4 0.99 0.88 0.67 

AlOOH-5 0.94 0.92 0.76 

Ni(OH)2-1 3.80 1.17 1.15 

Ni(OH)2-2 2.08 1.07 1.41 

Ni(OH)2-3 3.51 1.21 1.10 

Ni(OH)2-4 2.73 1.02 1.04 

Ni(OH)2-5 2.54 1.08 1.06 

NiO 1.19 1.08 2.77 

ZnO-1 0.83 1.14 1.40 

ZnO-2 0.90 1.12 1.32 

CeO2-1 1.50 1.09 1.25 



37 
 

CeO2-2 1.70 1.10 1.37 

CeO2-3 1.68 1.08 1.36 

CeO2-4 1.18 1.12 1.05 

CeO2-5 1.75 1.10 1.27 

CeO2-6 0.93 0.91 2.29 

TiO2-1 2.25 1.00 1.02 

TiO2-2 0.99 0.98 1.13 

TiO2-3 3.58 1.02 1.04 

TiO2-4 1.49 1.04 0.99 

SiO2-1 2.81 1.06 1.12 

SiO2-2 2.66 0.97 1.01 

 

 Suitable predictive models could not be constructed from these data. 

 

 

 


