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On the continuous dual of the sequence space bv

M. El Azhari

Abstract. Imaninezhad and Miri introduced the sequence space d∞ in order
to characterize the continuous dual of the sequence space bv. We show by a
counterexample that this claimed characterization is false.
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1. Preliminaries

Let ω denote the vector space of all complex sequences, where addition and

scalar multiplication are defined pointwise. For each k > 1, let e(k) = (e
(k)
n )n>1

be the complex sequence defined by e
(k)
k = 1 and e

(k)
n = 0 for n 6= k. A sequence

space is a vector subspace of ω including the set {e(k) : k > 1}. By l∞, c, and
lq (1 6 q < ∞), we denote the sequence spaces of all bounded, convergent and
absolutely q-summable sequences, respectively. Also the inclusions lq ⊂ c ⊂ l∞
are strict. c and l∞ are Banach spaces with the supremum norm ‖x‖∞ =

sup{|xk| : k > 1}. lq is a Banach space with the norm ‖x‖q = (
∑

∞

k=1|xk|
q)

1

q . Let
bvp (1 6 p <∞) denote the sequence space of all sequences of bounded variation
defined, in [2], by bvp = {x = (xk)k>1 ∈ ω :

∑
∞

k=1|xk − xk−1|
p < ∞} with

x0 = 0. bvp is a Banach space with the norm ‖x‖bvp = (
∑

∞

k=1|xk−xk−1|
p)

1

p .We

will write bv instead of bv1. If we define the sequence b
(k) = (b

(k)
n )n>1 of elements

of the space bvp for every k > 1 by b
(k)
n = 0 if n < k and b

(k)
n = 1 if n > k,

then the sequence (b(k))k>1 is a Schauder basis [2] for bvp and every x ∈ bvp
has a unique representation of the form x =

∑
∞

k=1(xk − xk−1)b
(k) with x0 = 0.

Let ∆ω denote the difference operator on ω defined by ∆ωx = (xk − xk−1)k>1

with x0 = 0 for every x = (xk)k>1 ∈ ω. For each 1 6 p < ∞, the map
∆ : bvp → lp, ∆x = ∆ωx, is an isometric linear isomorphism [2]. If (E, ‖.‖) is
a normed sequence space, then E∗ denotes the continuous dual of E with the
norm defined by ‖f‖ = sup{|f(x)| : ‖x‖ = 1} for all f ∈ E∗. It is well-known
that l∗1

∼= l∞ and l∗p
∼= lq (1 < p, q <∞) with 1

p
+ 1

q
= 1

2. The sequence space d∞

Proposition 2.1. A linear functional f on bv is continuous if and only if
there exists a = (ak)k>1 ∈ l∞ such that f(x) =

∑
∞

k=1 ak(∆x)k for all x ∈ bv.

Furthermore, f(b(i)) = ai and f(e
(i)) = ai − ai+1 for every i > 1.
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Proof. The map ∆ : bv → l1,∆x = (xk − xk−1)k>1 with x0 = 0, is an
isometric linear isomorphism [2]. Let f be a linear functional on bv. If f is
continuous, then f ◦∆−1 is a continuous linear functional on l1, so there exists
a = (ak)k>1 ∈ l∞ such that f ◦ ∆−1(y) =

∑
∞

k=1 akyk for all y ∈ l1. Hence
f(x) = (f ◦∆−1)(∆x) =

∑
∞

k=1 ak(∆x)k for all x ∈ bv.

Conversely, if f(x) =
∑

∞

k=1 ak(∆x)k for all x ∈ bv and some (ak)k>1 ∈ l∞, then
|f(x)| 6

∑
∞

k=1 |ak||(∆x)k| 6 ‖a‖∞
∑

∞

k=1 |(∆x)k| = ‖a‖∞‖x‖bv. Therefore f is
a continuous linear functional on bv. Let i > 1, f(b(i)) =

∑
∞

k=1 ak(∆b
(i))k = ai

and f(e(i)) =
∑

∞

k=1 ak(∆e
(i))k = ai − ai+1.

Proposition 2.2. bv∗ is isometrically isomorphic to l∞.

Proof. Define ϕ : bv∗ → l∞, ϕ(f) = (f(b(k)))k>1, ϕ is a surjective linear
map by Proposition 2.1, and ϕ is injective since (b(k))k>1 is a basis for bv. Let
f ∈ bv∗ and x ∈ bv, |f(x)| = |f(

∑
∞

k=1(∆x)kb
(k))| = |

∑
∞

k=1(∆x)kf(b
(k))| 6∑

∞

k=1|(∆x)k||f(b
(k))| 6 supk>1|f(b

(k))|
∑

∞

k=1|(∆x)k| = ‖ϕ(f)‖∞‖x‖bv, then

‖f‖ 6 ‖ϕ(f)‖∞. On the other hand, |f(b(k))| 6 ‖f‖‖b(k)‖bv = ‖f‖ since
‖b(k)‖bv = 1 for all k > 1, then ‖ϕ(f)‖∞ = supk>1|f(b

(k))| 6 ‖f‖.

Imaninezhad and Miri [3] introduced the sequence space d∞ = {x = (xk)k>1 ∈
ω : supk>1|

∑
∞

i=k xi| <∞}, and claimed that T : bv∗ → d∞, T (f) = (f(e(k))k>1,

is an isometric linear isomorphism [3, Theorem 3.3] (see also [4, Theorem 4.1]).
Here we show that the set T (bv∗) is not included in d∞.

Counterexample. Let a = (ak)k>1 ∈ l∞ r c, and consider the map f(x) =∑
∞

k=1 ak(∆x)k for all x ∈ bv. By Proposition 2.1, f ∈ bv∗ and f(e(i)) = ai−ai+1

for every i > 1. Let k > 1 and n > k,
∑n

i=k f(e
(i)) =

∑n

i=k(ai − ai+1) =
ak − an+1. If (f(e

(k)))k>1 ∈ d∞, then limn→∞

∑n

i=k f(e
(i)) =

∑
∞

i=k f(e
(i)) ∈ C

and consequently limn→∞ an+1 = ak −
∑

∞

i=k f(e
(i)), which contradicts the fact

that the sequence (ak)k>1 is not convergent.

3. The sequence space dq (1 < q <∞)

Proposition 3.1. Let 1 < p, q < ∞ with 1
p
+ 1

q
= 1. A linear functional f on

bvp is continuous if and only if there exists a = (ak)k>1 ∈ lq such that f(x) =∑
∞

k=1 ak(∆x)k for all x ∈ bvp. Furthermore, f(b(i)) = ai and f(e
(i)) = ai− ai+1

for every i > 1.

Proof. The map ∆ : bvp → lp,∆x = (xk − xk−1)k>1 with x0 = 0, is an
isometric linear isomorphism [2]. Let f be a linear functional on bvp. If f is
continuous, then f ◦∆−1 is a continuous linear functional on lp, so there exists
a = (ak)k>1 ∈ lq such that f ◦ ∆−1(y) =

∑
∞

k=1 akyk for all y ∈ lp. Hence
f(x) = (f ◦∆−1)(∆x) =

∑
∞

k=1 ak(∆x)k for all x ∈ bvp.

Conversely, if f(x) =
∑

∞

k=1 ak(∆x)k for all x ∈ bvp and some a = (ak)k>1 ∈ lq,
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then |f(x)| 6
∑

∞

k=1|ak||(∆x)k| 6 (
∑

∞

k=1|ak|
q)

1

q (
∑

∞

k=1|(∆x)k|
p)

1

p = ‖a‖q‖x‖bvp
by Holder inequality. Therefore f is a continuous linear functional on bvp.

Proposition 3.2. Let 1 < p, q < ∞ with 1
p
+ 1

q
= 1. Then bv∗p is isometrically

isomorphic to lq.

Proof. Define ψ : bv∗p → lq, ψ(f) = (f(b(k)))k>1, ψ is a surjective linear map

by Proposition 3.1, and ψ is injective since (b(k))k>1 is a basis for bvp. Let
f ∈ bv∗p and x ∈ bvp, |f(x)| = |f(

∑
∞

k=1(∆x)kb
(k))| = |

∑
∞

k=1(∆x)kf(b
(k))| 6

∑
∞

k=1|(∆x)k||f(b
(k))| 6 (

∑
∞

k=1|(∆x)k|
p)

1

p (
∑

∞

k=1|f(b
(k))|q)

1

q = ‖ψ(f)‖q‖x‖bvp
by Holder inequality, then ‖f‖ 6 ‖ψ(f)‖q. On the other hand, let f ∈ bv∗p and

define the sequence (x(n))n>1 of the space bvp by (∆x(n))k = |f(b(k))|qf(b(k))−1

if 1 6 k 6 n and f(b(k)) 6= 0, (∆x(n))k = 0 otherwise. Let n > 1, f(x(n)) =
f(
∑

∞

k=1(∆x
(n))kb

(k)) =
∑

∞

k=1(∆x
(n))kf(b

(k)) =
∑n

k=1|f(b
(k))|q.

Then
∑n

k=1|f(b
(k))|q = f(x(n)) = |f(x(n))| 6 ‖f‖‖x(n)‖bvp =

‖f‖(
∑n

k=1|f(b
(k))|(q−1)p)

1

p = ‖f‖(
∑n

k=1|f(b
(k))|q)

1

p since (q − 1)p = q. There-

fore (
∑n

k=1|f(b
(k))|q)

1

q = (
∑n

k=1|f(b
(k))|q)1−

1

p 6 ‖f‖ for all n > 1. Letting

n→ ∞, we get ‖ψ(f)‖q = (
∑

∞

k=1|f(b
(k))|q)

1

q 6 ‖f‖.

Akhmedov and Basar [1] introduced the sequence space dq = {x = (xk)k>1 ∈
ω :

∑
∞

k=1|
∑

∞

i=k xi|
q <∞} (1 < q <∞), with the norm

‖x‖dq
= (

∑
∞

k=1|
∑

∞

i=k xi|
q)

1

q , and proved that the sequence space dq is isomet-
rically isomorphic to bv∗p (1 < p < ∞) with 1

p
+ 1

q
= 1 (see [1, Theorem 2.3] or

[3, Theorem 3.6]). Here we deduce this result as a consequence of Proposition
3.2.

Corollary 3.3. Let 1 < p, q < ∞ with 1
p
+ 1

q
= 1. Then bv∗p is isometrically

isomorphic to dq.

Proof. By Proposition 3.2 and the fact that the mapD : dq → lq, D((xk)k>1) =
(
∑

∞

i=k xi)k>1, is an isometric linear isomorphism.
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