

On the continuous dual of the sequence space bvMohammed El Azhari

▶ To cite this version:

Mohammed El Azhari. On the continuous dual of the sequence space bv. Acta Mathematica Universitatis Comenianae, 2020, 89 (2), pp.295-298. hal-02132299

HAL Id: hal-02132299 https://hal.science/hal-02132299

Submitted on 17 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the continuous dual of the sequence space bv

M. El Azhari

Abstract. Imaninezhad and Miri introduced the sequence space d_{∞} in order to characterize the continuous dual of the sequence space bv. We show by a counterexample that this claimed characterization is false.

Mathematics Subject Classification 2010: 46B10, 46B45.

Keywords: continuous dual, sequence space.

1. Preliminaries

Let ω denote the vector space of all complex sequences, where addition and scalar multiplication are defined pointwise. For each $k \ge 1$, let $e^{(k)} = (e_n^{(k)})_{n \ge 1}$ be the complex sequence defined by $e_k^{(k)} = 1$ and $e_n^{(k)} = 0$ for $n \neq k$. A sequence space is a vector subspace of ω including the set $\{e^{(k)} : k \ge 1\}$. By l_{∞} , c, and l_q $(1 \leq q < \infty)$, we denote the sequence spaces of all bounded, convergent and absolutely q-summable sequences, respectively. Also the inclusions $l_q \subset c \subset l_{\infty}$ are strict. c and l_{∞} are Banach spaces with the supremum norm $||x||_{\infty}$ $\sup\{|x_k|:k \ge 1\}$. l_q is a Banach space with the norm $||x||_q = (\sum_{k=1}^{\infty} |x_k|^q)^{\frac{1}{q}}$. Let $bv_p (1 \leq p < \infty)$ denote the sequence space of all sequences of bounded variation defined, in [2], by $bv_p = \{x = (x_k)_{k \ge 1} \in \omega : \sum_{k=1}^{\infty} |x_k - x_{k-1}|^p < \infty\}$ with $x_0 = 0. bv_p$ is a Banach space with the norm $||x||_{bv_p} = \left(\sum_{k=1}^{\infty} |x_k - x_{k-1}|^p\right)^{\frac{1}{p}}$. We will write bv instead of bv_1 . If we define the sequence $b^{(k)} = (b_n^{(k)})_{n \ge 1}$ of elements of the space bv_p for every $k \ge 1$ by $b_n^{(k)} = 0$ if n < k and $b_n^{(k)} = 1$ if $n \ge k$, then the sequence $(b^{(k)})_{k\ge 1}$ is a Schauder basis [2] for bv_p and every $x \in bv_p$ has a unique representation of the form $x = \sum_{k=1}^{\infty} (x_k - x_{k-1})b^{(k)}$ with $x_0 = 0$. Let Δ_{ω} denote the difference operator on ω defined by $\Delta_{\omega}x = (x_k - x_{k-1})_{k\ge 1}$ with $x_0 = 0$ for every $x = (x_k)_{k \ge 1} \in \omega$. For each $1 \le p < \infty$, the map $\Delta: bv_p \to l_p, \ \Delta x = \Delta_{\omega} x$, is an isometric linear isomorphism [2]. If $(E, \|.\|)$ is a normed sequence space, then E^* denotes the continuous dual of E with the norm defined by $||f|| = \sup\{|f(x)| : ||x|| = 1\}$ for all $f \in E^*$. It is well-known that $l_1^* \cong l_\infty$ and $l_p^* \cong l_q$ $(1 < p, q < \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$

2. The sequence space d_{∞}

Proposition 2.1. A linear functional f on bv is continuous if and only if there exists $a = (a_k)_{k \ge 1} \in l_{\infty}$ such that $f(x) = \sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv$. Furthermore, $f(b^{(i)}) = a_i$ and $f(e^{(i)}) = a_i - a_{i+1}$ for every $i \ge 1$.

Proof. The map $\Delta : bv \to l_1, \Delta x = (x_k - x_{k-1})_{k \ge 1}$ with $x_0 = 0$, is an isometric linear isomorphism [2]. Let f be a linear functional on bv. If f is continuous, then $f \circ \Delta^{-1}$ is a continuous linear functional on l_1 , so there exists continuous, then $f \circ \Delta^{-1}$ is a continuous linear functional on i_1 , so there exists $a = (a_k)_{k \ge 1} \in l_{\infty}$ such that $f \circ \Delta^{-1}(y) = \sum_{k=1}^{\infty} a_k y_k$ for all $y \in l_1$. Hence $f(x) = (f \circ \Delta^{-1})(\Delta x) = \sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv$. Conversely, if $f(x) = \sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv$ and some $(a_k)_{k \ge 1} \in l_{\infty}$, then $|f(x)| \le \sum_{k=1}^{\infty} |a_k| |(\Delta x)_k| \le ||a||_{\infty} \sum_{k=1}^{\infty} |(\Delta x)_k| = ||a||_{\infty} ||x||_{bv}$. Therefore f is a continuous linear functional on bv. Let $i \ge 1$, $f(b^{(i)}) = \sum_{k=1}^{\infty} a_k(\Delta b^{(i)})_k = a_i$ and $f(e^{(i)}) = \sum_{k=1}^{\infty} a_k (\Delta e^{(i)})_k = a_i - a_{i+1}.$

Proposition 2.2. bv^* is isometrically isomorphic to l_{∞} .

Proof. Define $\varphi : bv^* \to l_{\infty}, \ \varphi(f) = (f(b^{(k)}))_{k \ge 1}, \ \varphi$ is a surjective linear map by Proposition 2.1, and φ is injective since $(b^{(k)})_{k \ge 1}$ is a basis for bv. Let $f \in bv^*$ and $x \in bv$, $|f(x)| = |f(\sum_{k=1}^{\infty} (\Delta x)_k b^{(k)})| = |\sum_{k=1}^{\infty} (\Delta x)_k f(b^{(k)})| \le \sum_{k=1}^{\infty} |(\Delta x)_k| |f(b^{(k)})| \le \sup_{k \ge 1} |f(b^{(k)})| \sum_{k=1}^{\infty} |(\Delta x)_k| = ||\varphi(f)||_{\infty} ||x||_{bv}$, then $\|f\| \leq \|\varphi(f)\|_{\infty}$. On the other hand, $|f(b^{(k)})| \leq \|f\| \|b^{(k)}\|_{bv} = \|f\|$ since $\|b^{(k)}\|_{bv} = 1$ for all $k \geq 1$, then $\|\varphi(f)\|_{\infty} = \sup_{k \geq 1} |f(b^{(k)})| \leq \|f\|$.

Imaninezhad and Miri [3] introduced the sequence space $d_{\infty} = \{x = (x_k)_{k \ge 1} \in$ $\omega : \sup_{k \ge 1} |\sum_{i=k}^{\infty} x_i| < \infty \}$, and claimed that $T : bv^* \to d_\infty, T(f) = (f(e^{(k)})_{k \ge 1}, f(e^{(k)})_{k \ge 1})$ is an isometric linear isomorphism [3, Theorem 3.3] (see also [4, Theorem 4.1]). Here we show that the set $T(bv^*)$ is not included in d_{∞} .

Counterexample. Let $a = (a_k)_{k \ge 1} \in l_{\infty} \setminus c$, and consider the map f(x) = $\sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv$. By Proposition 2.1, $f \in bv^*$ and $f(e^{(i)}) = a_i - a_{i+1}$ for every $i \ge 1$. Let $k \ge 1$ and $n \ge k$, $\sum_{i=k}^{n} f(e^{(i)}) = \sum_{i=k}^{n} (a_i - a_{i+1}) = a_k - a_{n+1}$. If $(f(e^{(k)}))_{k\ge 1} \in d_\infty$, then $\lim_{n\to\infty} \sum_{i=k}^{n} f(e^{(i)}) = \sum_{i=k}^{\infty} f(e^{(i)}) \in \mathbb{C}$ and consequently $\lim_{n\to\infty} a_{n+1} = a_k - \sum_{i=k}^{\infty} f(e^{(i)})$, which contradicts the fact that the sequence $(a_k)_{k \ge 1}$ is not convergent.

3. The sequence space $d_q (1 < q < \infty)$

Proposition 3.1. Let $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. A linear functional f on bv_p is continuous if and only if there exists $a = (a_k)_{k \ge 1} \in l_q$ such that $f(x) = bv_p$ $\sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv_p$. Furthermore, $f(b^{(i)}) = a_i$ and $f(e^{(i)}) = a_i - a_{i+1}$ for every $i \ge 1$.

Proof. The map $\Delta : bv_p \to l_p, \Delta x = (x_k - x_{k-1})_{k \ge 1}$ with $x_0 = 0$, is an isometric linear isomorphism [2]. Let f be a linear functional on bv_p . If f is continuous, then $f \circ \Delta^{-1}$ is a continuous linear functional on l_p , so there exists $a = (a_k)_{k \ge 1} \in l_q$ such that $f \circ \Delta^{-1}(y) = \sum_{k=1}^{\infty} a_k y_k$ for all $y \in l_p$. Hence $f(x) = (f \circ \Delta^{-1})(\Delta x) = \sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv_p$. Conversely, if $f(x) = \sum_{k=1}^{\infty} a_k(\Delta x)_k$ for all $x \in bv_p$ and some $a = (a_k)_{k \ge 1} \in l_q$, then $|f(x)| \leq \sum_{k=1}^{\infty} |a_k| |(\Delta x)_k| \leq (\sum_{k=1}^{\infty} |a_k|^q)^{\frac{1}{q}} (\sum_{k=1}^{\infty} |(\Delta x)_k|^p)^{\frac{1}{p}} = ||a||_q ||x||_{bv_p}$ by Holder inequality. Therefore f is a continuous linear functional on bv_p .

Proposition 3.2. Let $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then bv_p^* is isometrically isomorphic to l_q .

Proof. Define $\psi : bv_p^* \to l_q$, $\psi(f) = (f(b^{(k)}))_{k \ge 1}$, ψ is a surjective linear map by Proposition 3.1, and ψ is injective since $(b^{(k)})_{k \ge 1}$ is a basis for bv_p . Let $f \in bv_p^*$ and $x \in bv_p$, $|f(x)| = |f(\sum_{k=1}^{\infty} (\Delta x)_k b^{(k)})| = |\sum_{k=1}^{\infty} (\Delta x)_k f(b^{(k)})| \le \sum_{k=1}^{\infty} |(\Delta x)_k| |f(b^{(k)})| \le (\sum_{k=1}^{\infty} |(\Delta x)_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty} |f(b^{(k)})|^q)^{\frac{1}{q}} = ||\psi(f)||_q ||x||_{bv_p}$ by Holder inequality, then $||f|| \le ||\psi(f)||_q$. On the other hand, let $f \in bv_p^*$ and define the sequence $(x^{(n)})_{n\ge 1}$ of the space bv_p by $(\Delta x^{(n)})_k = |f(b^{(k)})|^q f(b^{(k)})^{-1}$ if $1 \le k \le n$ and $f(b^{(k)}) \ne 0$, $(\Delta x^{(n)})_k = 0$ otherwise. Let $n \ge 1$, $f(x^{(n)}) =$ $f(\sum_{k=1}^{\infty} |\Delta x^{(n)}|_k b^{(k)}) = \sum_{k=1}^{\infty} (\Delta x^{(n)})_k f(b^{(k)}) = \sum_{k=1}^{n} |f(b^{(k)})|^q$. Then $\sum_{k=1}^{n} |f(b^{(k)})|^q = f(x^{(n)}) = |f(x^{(n)})| \le ||f|| ||x^{(n)}||_{bv_p} =$ $||f||(\sum_{k=1}^{n} |f(b^{(k)})|^{(q-1)p})^{\frac{1}{p}} = ||f||(\sum_{k=1}^{n} |f(b^{(k)})|^q)^{\frac{1}{p}}$ since (q-1)p = q. Therefore $(\sum_{k=1}^{n} |f(b^{(k)})|^q)^{\frac{1}{q}} = (\sum_{k=1}^{n} |f(b^{(k)})|^q)^{\frac{1}{q}} \le ||f||$ for all $n \ge 1$. Letting $n \to \infty$, we get $||\psi(f)||_q = (\sum_{k=1}^{\infty} |f(b^{(k)})|^q)^{\frac{1}{q}} \le ||f||$.

Akhmedov and Basar [1] introduced the sequence space $d_q = \{x = (x_k)_{k \ge 1} \in \omega : \sum_{k=1}^{\infty} |\sum_{i=k}^{\infty} x_i|^q < \infty\}$ $(1 < q < \infty)$, with the norm $||x||_{d_q} = (\sum_{k=1}^{\infty} |\sum_{i=k}^{\infty} x_i|^q)^{\frac{1}{q}}$, and proved that the sequence space d_q is isometrically isomorphic to bv_p^* $(1 with <math>\frac{1}{p} + \frac{1}{q} = 1$ (see [1, Theorem 2.3] or [3, Theorem 3.6]). Here we deduce this result as a consequence of Proposition 3.2.

Corollary 3.3. Let $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then bv_p^* is isometrically isomorphic to d_q .

Proof. By Proposition 3.2 and the fact that the map $D: d_q \to l_q, D((x_k)_{k \ge 1}) = (\sum_{i=k}^{\infty} x_i)_{k \ge 1}$, is an isometric linear isomorphism.

REFERENCES

[1] A. M. Akhmedov and F. Basar, The fine spectra of the difference operator Δ over the sequence space bv_p ($1 \leq p < \infty$), Acta Math. Sin. Eng. Ser., 23(10)(2007), 1757-1768.

[2] F. Basar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1)(2003), 136-147.

[3] M. Imaninezhad and M. Miri, The dual space of the sequence space bv_p ($1 \le p < \infty$), Acta Math. Univ. Comenianae, 79(1)(2010), 143-149.

[4] M. Imaninezhad and M. Miri, The continuous dual of the sequence space $l_p(\Delta^n)$, Acta Math. Univ. Comenianae, 79(2)(2010), 273-280.

Ecole Normale Supérieure Avenue Oued Akreuch Takaddoum, BP 5118, Rabat Morocco

E-mail: mohammed.elazhari@yahoo.fr