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We investigate the dynamics of inverted pendulum structures under fast-dynamic excitations arising from an
explosion. We model blast actions using established empirical models and best-fit interpolations of existing
experimental tests. We focus attention on pure rocking response mechanisms. We present moment balance
equations and overturning conditions. Inspired by previous works in the frame of earthquake engineering, we
derive new analytical, closed-form solutions for the rocking response and the overturning domain of slender
blocks due to explosions.

The analytical findings and assumptions are validated through existing experimental tests and detailed
three-dimensional numerical simulations, which consider the full interaction between the blast waves and the
structure. We show that unilateral rocking response and overturning are predominant mechanisms compared
to sliding and up-lifting.

Finally, we develop design charts to be used as a straightforward decision making tool for determining
the critical stand-off distance between the explosive source and the target in order to prevent overturning.
Our model can be easily applied for the design of protective devices to preserve artefacts, secure buildings
and humans, as well as for devising energy absorbing systems based on rocking.
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Nomenclature

Blast parameters
d exponential decay coefficient
ir+, ir− MPa-ms positive and negative reflected impulses
Po MPa ambient hydrostatic pressure
Pro, Pro− MPa peak of the over- and under-pressure
Pr+, Pr− MPa time-history of the over- and under-pressure
R m stand-off distance
tA ms arrival time
to, to− ms positive and negative phase durations
W kg TNT equivalent explosive weigth
Z = R/ 3

√
W m/kg1/3 Hopkinson-Cranz’s scaled distance

Block’s parameters
α ◦ slenderness angle
ρ kg m−3 density
φ ◦ friction angle
2b m width
g m s−2 gravitational acceleration
2h m height
m kg mass
r m slenderness length
S m2 front surface
2w m depth
Io kg m2 moment of inertia

Response parameters
θ ◦ rotation angle
q s−1 frequency parameter
s m1/2 kg−1/2 load parameter
t ms time

Dimensionless parameters
ϕ rotation angle
τ time
τo, τo− blast phase durations
χ, χ̄ rocking and stabilising moment
p+, p− time-history of the over- and under-pressure
R ♯, R ♮ critical distances for overturning
R ♮

num, R ♮
FSI numerical critical distance for overturning

1. Introduction

The dynamic behaviour of inverted pendulum structures under blast and high-rate actions is studied
herein. Our modelling approach is analytical and focuses on providing closed form solutions. The most
important physics of the problem are considered in order to describe the dominant features of the rocking
motion due to blast waves. This is accomplished through adequate modelling assumptions, which allow
the mathematical treatment of the system and the identification of the dominant parameters that pilot
the dynamic behaviour and failure. Failure is defined here as the limit state where overturning (toppling)
happens.

The modelling of inverted pendulum structures involves several difficulties. In particular, the inherent
non-linearity and the unilateral contact conditions at the base of the inverted pendulum (rocking) make
the dynamics of the system much different from the classical single- or multi-degree-of-freedom harmonic
oscillators [1].

The problem of rocking attracts significant scientific research, mostly in the domain of earthquake en-
gineering (construction of bridges, seismic isolation, masonry structures, historical monuments, etc.). We
refer, for instance, to the seminal works of Omori [2, 3] and especially to the investigations of Housner [4],
who was the first to study the response of a rigid, free-standing block subjected to constant and square pulse
seismic (ground) accelerations. Zhang and Makris [5] investigated the overturning of a rigid block under
trigonometric pulses and, more recently, Voyagaki et al. [6] studied rocking for time-symmetrical pulses of
various shapes. In the same framework, Dimitrakopoulos and DeJong [7] provided useful insight on the dy-
namic response of a rocking block under finite-duration actions, revisiting the subject via the identification
of self-similarity laws both for slender and non-slender blocks. The rocking response of structures has been
also studied experimentally, e.g. [8, 9]. Peña et al. [8] investigated through shaking table tests the rocking
response under free vibration, harmonic and random motions of the base and compared the test results with
analytical and numerical approaches.

Interest has been also shown in the effects of blast induced ground shocks [10, 11]. Hao and Zhou [11]
investigated the response of a rigid block under vertical and horizontal ground shocks. Explosion induced
ground shocks are generally characterized by higher frequency content, larger amplitude, and shorter period
with respect to earthquake motion. If the peak vertical ground acceleration due to ground shocks is sub-
stantially higher than the gravitational one, un-anchored rigid structures may fly into the air. We record
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that in relatively far-field explosions the contribution of ground shocks is generally negligible with respect
to the air-blast shock, see e.g. [12, 13, 14], where uplifting due to vertical ground accelerations is unlikely.

Our developments take root in the existing knowledge and theory of inverted pendulum structures sub-
jected to earthquake loading and extend them to non-symmetrical pulses provoked by blast waves. We model
blast actions using well-established empirical models accounting for both the positive and the negative phase
of the blast pressure. Moment balance equations and overturning conditions are presented and used to de-
termine the critical (minimum) stand-off distance between the source and the target to prevent toppling.
This is accomplished by deriving new analytical, closed-form solutions, which lead to the identification of
the central and dominant dimensionless parameters that govern the dynamical behaviour of the system.
These dimensional parameters improve and extend the current understanding of rocking due to blasts (cf.
[10, 11, 12, 13, 14, 15, 16, 17]) and lead to fundamental insights for design. Moreover, they can be helpful to
conceive in-scale experimental tests focusing on overturning of (slender) blocks at the loading rates under
study. Notice that performing blast experiments either in reduced [17] or in full scale [12] presents many
difficulties, due to the nature of the loading action (e.g. need of specialized personnel, risks, measuring
devices, repeatability, uncertainties etc.).

Contrary to earthquake actions, the excitation due to explosions presents additional complexity. This is
not only because of the ultra-high rates involved−the characteristic time of a blast is of several milliseconds
instead of ≈ 1 ÷ 10 s for earthquakes−but also due to several phenomena related to wave propagation
and fluid-structure interaction (e.g. diffraction, rarefaction, reflections, damage etc.). The effect of these
phenomena on our modelling assumptions is extensively discussed in the manuscript. More specifically, the
predictions of our analytical model are compared to detailed numerical analyses that consider the above
mentioned phenomena, a combined sliding/rocking behaviour, and the possibility of uplifting (flight mode).
The numerical analyses are three-dimensional, they benefit from the well-established balloon analogue [18]
for modelling the explosive source and they are based on a Coupled Eulerian-Langrangian (CEL) scheme
for modelling the propagation of shock waves and their interaction with the rocking block. It is worth
emphasizing that a complete 3D fluid-structure interaction of shock waves with all sides of the block is
considered in order to assess the validity of our modelling assumptions and simplifications. Finally, the
results of our analytical model are confirmed by comparisons with existing experimental results [17, 12].

Engineering applications of the present study can be found in several domains. For instance, our analyses
can be used for protecting un-anchored equipment and museum (slender) artefacts from overturning (e.g.
statues), securing historical buildings made of monolithic columns from collapse (e.g. classical Greek and
Roman temples [19], [20]) and for designing barriers and blast walls to protect existing buildings, assets and
humans. Finally, our analysis can be used for conceiving energy absorbing systems based on rocking.

The paper is structured as follows. In Section 2 we present the main assumptions of our modelling ap-
proach regarding the dynamics of the system and the considered blast actions. Our simplifying assumptions
cover a broad spectrum of loading cases. In Section 3 we derive analytical solutions for the non-linear rocking
motion and the overturning domain, by considering only the positive phase of the blast action. Then, in
Section 4 we assess the influence of the negative phase, which has a significant stabilising effect as far as it
concerns toppling. Detailed charts for the critical stand-off distance (i.e., the minimum distance to avoid
targets overturning) are presented as a result of the analytical model. Finally, in Section 5 we investigate
the accuracy and the validity of the main assumptions of our model through detailed numerical simulations
and the limited experimental results that were retrieved from the literature.

2. Statement of the problem

The problem of a rigid block resting on a horizontal plane is studied based on the following assumptions
(Fig. 1):

i. A rectangular slender, rigid block is assumed with a uniformly distributed mass m. The dimensions
of the block are 2b× 2h× 2w and the radial distance from the rocking pivot point O to the centre of
gravity is r = b secα, where α is the slenderness angle.
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ii. The contact with the horizontal plane is assumed punctual at point O (no contact moment). Contact
is considered to be unilateral. The angle of friction, φ, is assumed to be sufficiently large to prevent
sliding.

iii. The pressure load due to the explosion is exclusively applied on the front surface S (incident surface,
see Fig. 1) and the blast wave is assumed to impinge all points of S at the same time (simultaneously)
and with the same magnitude (uniformly). We consider the resulting load to act always horizontally
and at the block’s centroid as the loading pulse duration is extremely short (i.e., small inclination
angle within the duration of the loading). Diffraction phenomena are neglected. The effects of induced
ground shocks are also omitted [11, 14].

These simplifying assumptions are helpful for reducing the complexity of the problem and for deriving
analytical, closed-form solutions. Their adequacy is explored in Section 5, where it is shown that the
analytical solution represents quite well the dynamic behaviour of the system and the overturning condition.
In particular, it is shown that the minimum distance that has to be assured between the explosive source
and the target, such that toppling is avoided, is in good agreement and on the safety side with the one
determined by the full numerical model and experimental results presented in Section 5.

O# O # (-)

# = > 0 

(+)

# = < 0 

Figure 1: Configuration considered for the rocking problem: a rectangular slender, rigid block resting on a
horizontal plane with uniformly distributed mass, subjected to uniform pressure load due to an explosion.

2.1. Rocking motion
Depending on the characteristics of the excitation and the properties of the friction angle, the rigid block

can either slide, rock, or both. As far as it concerns the response mechanisms of pure rocking and sliding, the
corresponding initiation conditions can be found from rotational and translational equilibria, respectively.

• Rocking initiation. Rocking initiates if the moment due to blast actions exceeds the restoring moment
due to gravity. The initiation condition reads

S

mg
Pro ≥ tanα, (1)

where Pro is the overpressure peak acting on block’s front surface S (see below), and g is the gravita-
tional acceleration.
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• Sliding initiation. Sliding initiates when

S

mg
Pro ≥ tanφ. (2)

For relatively slender blocks, i.e. α ≤ 20◦, which are of interest here, and for an angle of friction
φ ≈ 30◦ (typical value for marble to marble interfaces see for instance [21]), rocking is critical.

2.2. Blast actions
Explosion produces a blast wave of high-pressure accompanying high-temperature and supersonic ex-

pansion of gases. The abrupt increase of the pressure carried by a blast wave can produce severe structural
damage. When the primary shock meets a target, it generates on it the so-called reflected overpressure,
Pr, which is the difference between the pressure determined by the explosion increased by the reflection at
target’s surface and the ambient one, Po. Figure 2 shows the schematic time variation of Pr, which is de-
termined by the arrival time of the shock wave, tA, the overpressure peak, Pro, the positive phase duration,
to, negative phase duration, to−, and the underpressure peak, Pro−. These parameters are functions of the
distance R and the explosive weight (conventionally expressed in TNT equivalent).

0
time

O
v
er
p
re
ss
u
re

positive

phase

negative

phase

Figure 2: Time evolution of overpressure (i.e. the pressure measured relatively to the atmospheric one) due
to an explosion acting on a target. The blast load is determined by the arrival time of the shock wave, tA, the
overpressure peak, Pro, the positive phase duration, to, negative phase duration, to−, and the underpressure
peak, Pro−.

The simulation of a blast can be conducted by using different approaches [22, 23, 24], i.e., empirical or
physics-based ones. These models are presented below.

2.2.1. Empirical models
Empirical models rely on best-fit interpolations of experimental results and mainly on those of Kingery

and Bulmash [25], which allow to determine the blast parameters and pressure loading from the knowledge
of the trinitrotoluene (TNT) equivalent explosive weight, W , and the Hopkinson-Cranz scaled distance,
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Z = R/ 3
√
W (see Appendix A). The time evolution of the positive phase of the reflected pressure is mod-

elled with the well established modified Friedlander equation [26],

Pr+(t) = Pro

[(
1− t

to

)(
1− H [t− to]

)]
exp

(
−d

t

to

)
, (3)

where H [·] denotes the Heaviside (step) function, d is the exponential decay coefficient, and tA is taken
as the origin of the time axis. The impulse ir associated to the positive phase, which represents the area
beneath the pressure curve, reads

ir+ =

∫ to

0

Pr+ dt =
[
e−d + d− 1

] Pro to
d2

, (4)

The above equation allows to determine the exponential decay coefficient, d, by equating it with the
best-fit interpolation of ir from experiments (see Appendix A).

The negative phase is modelled with the so-called cubic approximation [27], namely

Pr−(t) = Pro−

(27
4

t− to
to−

)(
1− t− to

to−

)2(
H [t− to]− H [t− (to + to−)]

)
. (5)

Accordingly, the negative reflected impulse ir− can be evaluated as

ir− =

∫ to+to−

to

Pr− dt =
9Pro−

16
to−, (6)

which is computed from the best-fit interpolations of to− and Pro− (see again Appendix A).
It is worth noting that Friedlander equation captures very well the positive phase of the reflected pressure

as compared to extensive experimental data. However, for the negative phase of the reflected pressure there
is not a universal, established best-fit expression. Here we follow the work of Rigby et al. [28] and we use
the cubic approximation, which gives a reasonable agreement with experimental evidence.

2.2.2. Numerical physics-based models
Physics-based, numerical approaches allow a rather detailed description of the main features of the blast

phenomenon with, of course, an increased calculation cost. They rely on the definition of two domains:
the explosive charge and the surrounding air. Through numerical simulations, detonation, propagation of
shock waves and their interaction with deformable structures can be efficiently modelled with a Coupled
Eulerian-Langrangian (CEL) scheme.

Air is commonly considered as an ideal gas in these simulations. Explosive is usually modelled with
the empirical JWL equation of state (Jones, Wilkins, and Lee [29, 30, 31]), which relies on a steady-state
ideal detonation model [32, 33]. An alternative, simplified model for generating the blast wave is the
so-called balloon analogue [34]. This approach replaces the solid explosive charge with an energetically
equivalent sphere of compressed air, resulting in reduced calculation cost compared to the JWL. Moreover,
this approach has been proved to be in good agreement with experimental tests and numerical analyses
[23, 18], and this is why we use it in Section 5.

3. Rocking response to an explosion

First we solely account for the positive phase using the empirical relation of Friedlander. The negative
phase is expected to have a stabilising effect on the rocking response and, therefore, its influence is studied
separately in the next section. In all cases, the explosive source is considered to be (very) close to the ground
(surface burst).
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3.1. Equation of motion
The moment balance around the rocking pivot point gives the equation of motion

Ioθ̈ +mgr sin(α− θ) = SrPr cos(α− θ), θ(t) > 0,

Ioθ̈ +mgr sin(−α− θ) = SrPr cos(−α− θ), θ(t) < 0,

}
(7)

where Io = (4/3)mr2 is the moment of inertia with respect to the pivot point, θ = θ(t) is the inclination
angle, and Pr = Pr+(t) is the loading which is given by the Friedlander equation (3) as mentioned above.
Introducing the frequency parameter q, and the load parameter, s, the above equations can be rearranged into

θ̈

q2
= − sin [α sgn (θ)− θ] +

s2

q2
Pro p cos [α sgn (θ)− θ] , (8)

where sgn(·) denotes the signum function and

q =

√
mgr

Io
=

√
3g

4r
,

s =

√
Sr

Io
=

1

2

√
3

2bρr
,

p =
Pr

Pro
,

(9)

with ρ the material density.

3.1.1. Dimensionless form of governing equations
Using the dimensionless angle of rotation ϕ = θ/α and the normalized time τ = qt we obtain

ϕ̈ = − 1

α
sin

[
α
(
sgn (ϕ)− ϕ

)]
+ χp cos

[
α
(
sgn (ϕ)− ϕ

)]
, (10)

where χ represents the normalized rocking moment, i.e., the ratio between the moment due to the blast
load and the restoring moment due to gravity, p+ the normalized Friedlander time-history, and τo the ratio
between the characteristic time of the load and the time parameter, T , related to the response of the rigid
block.

χ =
s2

q2
Pro

α
=

1

2ρbg

Pro

α
,

p+ =

[(
1− τ

τo

)(
1− H [τ − τo]

)]
e−d τ

τo ,

τo = qto =
to
T
.

(11)

3.1.2. Analytical solution for slender blocks
For tall, slender blocks, angles θ and α are small and the equation of motion (10) can be linearised using

the first-order approximations sin(·) ∼= · and cos(·) ∼= 1

ϕ̈ = ϕ+ χp+ − sgn(ϕ). (12)

7



Notice that under this normalization the rocking initiation condition, Eq. (1), reads χ ≥ 1.

As the load is acting always on the same direction (positive), a unilateral response mechanism is ex-
pected. Here we focus on overturning, thus we restrict expression (12) to positive angles only,

ϕ̈ = ϕ+ χp+ − 1. (13)

Initially the block is at rest (ϕ̇(0) = 0, ϕ(0) = 0). Equation (13) admits a close form solution, whose
complete mathematical expression is given in Appendix B.

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40

W = 50 k
g

W = 1 kg

Figure 3: Normalized time, τo = to/T in function of the stand-off distance, R, for different explosive
quantities, W , in equivalent TNT weight. The ratio between the characteristic time of the blast load, to,
and the time parameter, T , related to the dynamic, rocking, response of the rigid block is small for blocks
of centrimetric scale or larger.

Notice that the characteristic time parameter, T , of blocks of centimetric scale or larger, is much higher
than the characteristic time of blast loads to and, therefore, τo << 1. Figure 3 shows τo with respect to the
explosive weight, W , and the stand-off distance, R. For instance, if we consider h = 1 m, 1 kg of TNT and
a stand-off distance R = 10 m, τo ≈ 0.01, i.e., the positive phase duration, to, is two orders of magnitude
smaller than T . Indeed, a τ ≈ 1 for the same values of W and R would actually correspond to a block with
a height of ≈ 0.33 mm, which is too small for the applications that we focus on in the current paper.

3.2. Overturning domain
For unilateral excitations, overturning happens when the rocking angle θ ≥ α or, equivalently, when

ϕ ≥ 1. The overturning condition can be found by equating the total work done by the blast load to the
difference in potential energy between positions θ = α and θ = 0 (see also Housner, [4]):∫ ∞

0

rSPro p θ̇ cos
(
α− θ

)
dt ≥ mgr(1− cosα). (14)
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Noticing that p (t ≥ to) = 0 and rearranging the inequality in terms of the non-dimensional rocking angle
and normalized time, one obtains

αrSPro

∫ τo

0

p+ϕ̇ cos
[
α(1− ϕ)

]
dτ ≥ mgr(1− cosα). (15)

Applying further the mean-value theorem, Eq. (15) becomes

α2 cos
[
α(1− ϕ̃)

]
1− cosα

Iχ ≥ 1,

I =

∫ τo

0

p+ ϕ̇ dτ,

(16)

where 0 < ϕ̃ ≤ 1.
For slender blocks, the power series expansion at the first order gives (1−cosα) ∼= α2/2 and cos[α(1−ϕ̃)] ∼=

1, hence the overturning condition simply becomes

2Iχ ≥ 1, (17)

The left-hand side term in inequality (17) represents the non-dimensional overturning moment.
Figure 4 shows the dimensionless rocking and overturning moments as functions of the stand-off distance,

R, for an explosion of 1 kg of TNT. The rocking moment, χ, expresses the condition for rocking initiation
(χ ≥ 1), while the overturning moment the condition for overturning (2Iχ ≥ 1). We observe that the
minimum stand-off distance to avoid overturning is 0.6 m. For R ≥ 35 m, rocking is not initiated at all.

0.5 1 5 10
1

10

100

1000

10 4

10 5

403020

Rocking  responseOverturning

Figure 4: Rocking initiation and overturning conditions for a block with h = 1 m, ρ = 2000 kg/m3, and
α = 20◦, subjected to W = 1 kg at various stand-off distances, R. The rocking moment, χ, expresses
the condition for rocking initiation (χ ≥ 1), while the overturning moment the condition for overturning
(2Iχ ≥ 1).

It is worth comparing the overturning condition from the linearised equations of motion with the one
from the non-linear ones. Taking the ratio between the non-dimensional overturning moments in expression
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(16) and (17) and further considering angles α ≤ 20◦, we obtain

non-linear overturning condition
linear overturning condition = 1− 1

2

[
α
(
1− ϕ̃

)]2
≤ 1. (18)

Therefore, the linearised overturning condition is a lower bound of the exact one. The ratio is usually
higher than 0.95 for blocks with α ≤ 20◦ and does not drop under 0.80 for α < 40◦ (see also [6]).

3.3. Minimum stand-off distance
Using the overturning condition (2Iχ = 1) we can determine the minimum required distance between

the explosive source and the target, R ♯, in order to avoid toppling. Figure 5 shows the contours of the
critical distance R ♯ for different slenderness angles, block heights, densities, and explosive quantities.
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Figure 5: Contours of the critical stand-off distance, i.e., the minimum required distance between the
explosive source and the rigid target, R ♯, in order to avoid toppling. For ρ = 2500 (left column), 2000
(centre column), 1500 kg/m3 (right column), heights h = 1.5 (top row), 1.0 (centre row), 0.5 m (bottom
row), R ♯ is plotted as a function of the explosive quantity, W , and slenderness, α.
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4. Influence of the negative phase

In this section attention is focused on the influence of the negative phase on the response mechanisms
and the overturning criterion. We represent the positive phase with Friedlander equation as above, but in
this case the negative phase is also considered (see paragraph 2.2.1).

Equations (10) and (13) become respectively

ϕ̈ = − 1

α
tan

[
α
(
sgn (ϕ)− ϕ

)]
+ χp+ − χ̄ p−, (19)

and
ϕ̈ = ϕ+ χp+ − χ̄ p− − sgn(ϕ). (20)

χ̄ is the dimensionless blast stabilising moment, i.e., a negative pressure component, which has a restoring
role, p− the normalized negative time-history, and τo− the ratio between the characteristic time of the neg-
ative phase and the time parameter of the rigid block:

χ̄ =
s2

q2
Pro−

α
,

p− =
(27
4

τ − τo
τo−

)(
1− τ − τo

τo−

)2(
H [τ − τo]− H [τ − (τo + τo−)]

)
,

τo− = qto− =
to−
T

.

(21)

Equation (20) admits a closed-form solution under the assumption of small slenderness angles. The
solutions ϕ, ϕ̇ are given in Appendix B.

The negative phase plays a significant role on the response mechanism. In Figure 6 we present the
angular displacement and velocity as solutions of Eq.s (12) and (20). Perfectly plastic impact is considered.
The plots display the response due to a 10 kg TNT explosive charge at varying stand-off distance and for a
block with α = 15◦, ρ = 2000 kg/m3 and h = 1 m. The negative phase clearly limits the amplitude of the
rocking angle since the suction component of the blast load acts as a restoring moment, see Eq. (19).

Figures 7 and 8 depict the trajectories (ϕ, ϕ̇) in the phase space. The phase portraits highlight the pulse
nature of blast loads. Notice that the duration of the positive phase, to, is extremely short and in some
cases it may be replaced by an instantaneous increment of the angular velocity ϕ̇ at ϕ = 0, as suggested in
[12].

Figure 8 shows the important role of the negative phase, which decreases the angular velocity ϕ̇ and
stabilizes the system. Contrary to the positive phase, the negative one can be hardly simplified by a jump
discontinuity of ϕ̇.

4.1. Overturning domain and minimum stand-off distance
The overturning condition can be written taking advantage of Eq. (14) and updating the work done by

the external loads in order to consider the negative phase, as follows

α2 cos
[
α(1− ϕ̃)

]
1− cosα

(
Iχ− Īχ̄

)
≥ 1, (22)

where

I =

∫ τo

0

p+ ϕ̇ dτ and Ī =

∫ τo+τo−

τo

p− ϕ̇ dτ, (23)
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Figure 6: Normalized inclination angle, ϕ, and angular velocity, ϕ̇, of the rocking block considering (a) only
the positive phase of the blast wave, Eq. (12), and (b) accounting for both positive and negative blast
phases, Eq. (20). The plots refer to a TNT explosive weight W = 10 kg and a rigid target with α = 15◦,
h = 1 m, ρ = 2000 kg/m3, for stand-off distances R ∈ [1, 4] m. Red dashed curves indicate overturning.

For slender blocks, equation (23) is simplified to

2
(
Iχ− Īχ̄

)
≥ 1. (24)

The required minimum distance between an explosive source W and a block in order to avoid toppling,
is here denoted with R ♮ and is retrieved by setting (2

(
Iχ+ Īχ̄

)
= 1). In Figure 9 we present the contours

of the critical stand-off distance R ♮, for different values of ρ, h, W and α. It should be emphasized that the
negative phase de novo engenders a considerable stabilising effect.
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Figure 9: Contours of the critical stand-off distance, i.e., the minimum required distance between the
explosive source and the rigid target, R ♮, in order to avoid toppling. The effect of both positive and
negative phases of the blast wave is considered. For ρ = 2500 (left column), 2000 (centre column), 1500
kg/m3 (right column), heights h = 1.5 (top row), 1.0 (centre row), 0.5 m (bottom row), R ♮ is plotted as a
function of the explosive quantity, W , and slenderness, α. The negative phase has a significant stabilising
effect (see also Fig. 5).

15



5. Validation of the overturning domain

The analytical approach presented in the previous sections allowed to determine the minimum stand-off
distance to prevent toppling. The calculations lead to closed-form solutions, which are useful for identifying
the main factors that influence the dynamic response of the system under explosive loads. However, the
aforementioned approach is based on some simplifying assumptions (see Sect. 2), whose validity is explored
in the present Section.

Of interest here is the minimum stand-off distance, which is a central design quantity for protective
measures. This quantity is first validated through numerical analyses that introduce more physics into the
blast wave loading, its interaction with the rocking block, and the full dynamic response of the system.
Next, the predictions of our analytical model are validated through available experimental results.

First we explore the validity of assumptions (i) and (ii) of Section 2. In other words, we quantify a)
the linearisation of the equations of motion (see also paragraph 3.2), and b) the effect of combined sliding,
rocking, and uplift (flight mode). We consider Coulomb friction at the interface of the block with the rigid
base, with an angle of friction equal to φ = 35◦, which is common for many geomaterials (concrete, marble,
stone etc.). Blast loads are applied as in Section 4, relying on the best-fit interpolations in Appendix A.
ABAQUS commercial software is used for the computations. A hard contact formulation is used, i.e., no
penetration is allowed at the contact of the rocking block with the base [35]. The rigid base is fixed and the
rigid block is free to translate along y− and x−axes, rotate around z, and uplift, see Figure 1.

It should be mentioned that our analyses are made only for rigid blocks. In the case of deformable ones,
where significant dissipation is expected due to, for instance, deformability and damage, our model might
underestimate the resistance of the system to overturning that allow to be on the safety side.

Next, we focus on assumption (iii) which concerns the simplifications related to the blast loads and
their approximation by empirical models. In particular, we investigate the effects due to the interaction
between blast waves and the rocking block. The analyses are performed again using ABAQUS software.
The same modelling approach is used for the interaction of the block and the base as before. The results of
this comparison are presented in paragraph 5.2, Comparison C2.

Finally, we validate our model with existing experimental tests of quasi-rigid (stiff) [17] and deformable
targets [12] subjected to explosions. Both the overturning domain and the rocking response are compared
with large-scale tests. This comparison allows us to explore the validity of our assumptions in general and,
in particular, to assess the effects of explosion induced ground motions [14, 11], which the above mentioned
numerical model does not account for. In accordance with [14], the aforementioned ground motions were
found to have negligible effects. The results are presented in paragraph 5.3, Comparison C3.

5.1. Comparison C1
We investigate the minimum stand-off distance (R ♮

num) for several combinations of slenderness angles and
explosive weights. Figure 10 depicts the response of the rigid block, while Table 1 displays the comparison
between the threshold range (R ♮), derived in Section 4, and the one obtained from the numerical simulations
(R ♮

num). Finally, in Figure 11 we present the ratio R ♮
num/R ♮ as function of W .

The numerical analyses show that rocking and sliding happen together. However, for slender structures
sliding is limited and rocking prevails. This justifies the no-sliding assumption. For blocks of high slenderness,
sliding becomes even smaller and practically only rocking is observed. For blocks of lower slenderness, sliding
has a more important effect and becomes more pronounced for increasing explosive weights. In the worst
case studied here (W = 50 kg and α = 20◦) the analytical approximation overestimates the minimum stand-
off distance by approximately 25%. This is due to the the fact that by increasing W , the duration of the
positive phase increases (see Fig.s 3, 6) enhancing sliding and frictional energy dissipation (toppling is less
favorable due to low slenderness). Consequently, our analytical estimation provides a close upper bound for
the critical distance and, therefore, can be safely used for the design of protective measures.
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Table 1: Comparison of the overturning domain between the analytical solution, R ♮, and the numerical one,
R ♮

num. The rocking block has h = 1 m, ρ = 2000 kg/m3, and variable slenderness angle α. Different weights
of TNT, W , are considered. Good agreement is found, being always on the safety side.

α = 20◦ α = 15◦ α = 10◦

W [kg] 10 20 50 10 20 50 10 20 50
to [ms] 1.292 1.744 2.422 2.499 2.991 3.507 3.728 3.873 4.01

R ♮ [m] 1.51 2.10 3.18 1.88 2.53 3.67 2.21 2.84 3.93
R ♮

num [m] 1.40 1.75 2.40 1.85 2.35 3.15 2.20 2.80 3.15
R ♮

num

R ♮
0.9283 0.8373 0.7547 0.9831 0.9282 0.8580 0.9965 0.9919 0.9899

= 20° = 10°= 15°

Figure 10: Response mechanism as computed by numerical simulations considering an empirical model for
blast actions and allowing for sliding, rocking and uplift. The explosive quantity considered is W = 10 kg.
The rocking block has h = 1 m, ρ = 2000 kg/m3 and slenderness angle α equal to 20◦ (left), 15◦ (center)
and 10◦ (right). Overturning is observed with limited sliding.

5.2. Comparison C2
We account for three-dimensional Fluid-Structure Interactions (FSI) with a CEL approach: the balloon

analogue models the explosive source and air is assumed as an ideal gas. The material parameters for
the constitutive laws of the balloon are those detailed in [18] (p. 645, model #6). Figure 12 displays the
geometry of the whole domain. We impose symmetry along the x − y plane and non-reflecting boundary
conditions at the other faces. To ensure mesh convergence, the Eulerian domain is discretized with 8-node
linear hexahedral elements of approximately 10× 10× 10 mm3 size. The solid block is discretized with rigid
(non-deformable) elements which have the same size with the Eulerian mesh elements in order to assure a
proper description of the fluid-structure interaction (mesh compatibility). For more details, we refer to [36].

The numerical analyses account for diffraction and rarefaction phenomena, multiple reflections, no-
normal incident angle of the blast waves with all the faces of the rocking block, and the three-dimensionality
of the shock front. For example, due to diffraction, a rarefaction wave is developed when the shock front
arrives at the boundaries of the impinged surface, while the diffracted wave continues to propagate on the
rear surface. These effects result in an overall reduction of the blast impulse with respect to the analytical
model. Nevertheles, this reduction is small.

The detailed numerical analyses showed limited uplifting even for combinations of stand-off distance and
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Figure 11: Ratio of the numerical overturning domain, R ♮
num, and the analytical one, R ♮, (cf. Tab. 1). The

rocking block has h = 1 m, ρ = 2000 kg/m3 and variable slenderness angle α. Good agreement is found
between the analytical model and the detailed numerical one. In the worst case study, the analytical model
overestimates the minimum stand-off distance by approximately 25% (safety side).

explosive weight close to the critical ones. Therefore, the hypothesis of neglecting uplifting (flight modes) is
justified and pertinent.

Despite the aforementioned phenomena that our simplified approach neglects, a remarkably good agree-
ment of the numerical results with the analytical model is found. Table 2 presents the critical distance, as
obtained from the numerical simulations, R ♮

FSI , for slenderness α = 15◦ and W = 10, 20, 50 kg. In Figure
13, we plot the ratio R ♮

FSI/R
♮ as function of W and we compare it with the one of C1 (R ♮

num/R ♮). An
opposite trend is observed for increasing W . More specifically, the error of the simplified model is higher
for small values of W and lower for large W . This difference is attributed to the aforementioned complex
phenomena and depends on the geometry of the rocking object (cf. statues). Nevertheless, our simplified
solution gives a safe estimate for the critical stand-off distance (upper bond) that it is close to the one derived
from the detailed analysis. This means that the most important physics of the system are incorporated in
our model and justifies the assumptions made in Section 2.

Table 2: Comparison of the overturning domain between the analytical solution, R ♮, and the numerical one,
R ♮

FSI . The rocking block has h = 1 m, ρ = 2000 kg/m3, and slenderness angle α = 15◦. Different weights
of TNT, W , are considered. Again, good agreement is found, justifying the simplifying assumptions of the
analytical model, which gives close upper bound estimates for the critical stand-off distance.

α = 15◦

W [kg] 10 20 50

R ♮ [m] 1.88 2.53 3.67
R ♮

num [m] 1.50 2.25 3.35
R ♮

num

R ♮
0.7978 0.8893 0.9128
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Figure 12: Geometrical domain used in the Finite Element numerical simulations, which consider three-
dimensional Fluid-Structure Interaction between the target (in gray) and the blast waves originated by the
detonation of the explosive source (in red).

5.3. Comparison C3
We investigate the reliability of the analytical model in predicting the rocking response and overturning

of targets on the basis of the experimental tests conducted by Soper [17] and Scherbatiuk [12].

5.3.1. Soper’s experimental tests
Soper (see also Baker et al. [37]) conducted tests of a prototype ten-wheel van subjected to the detonation

of 226.8 kg (500 lb) TNT equivalent charge at a distance equal to 10.7 m (35 ft). Soper further examined
a scaled model in which the geometry of the specimen, as well as the stand-off distance, were reduced by
a factor of 20, requiring the invariance of the scaled distance Z. Table 3 presents the overall dimensions of
the targets. Subscripts p and m refer to the prototype and the scaled model, respectively.

In both tests, the target showed a combined sliding/rocking response and overturned. However, no
information is available about the time evolution of the rocking response in the experiments.

To compare our model, we consider a homogeneous rigid block with overall dimensions equal to those
of the experiment (see Tab. 3) and same weight, imposing an equivalent density for the different widths
(here denoted with subscripts f and b for front and back width, respectively). It is with no doubt that this
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Figure 13: Ratio of the numerical overturning domains, R ♮
num and R ♮

FSI , and the analytical one, R ♮, for a
rocking block with h = 1 m, ρ = 2000 kg/m3, and slenderness α = 15◦. Different weights of TNT, W , are
considered and good agreement is found. The analytical solution provides safe estimates, with a maximum
difference of 20%

is a strong simplification as a) we neglect the vehicle’s suspensions and b) we consider the geometric centre
instead of the mass centroid of the van, which is lower due to the presence of the engine, the car shaft and
the chassis. The latter assumption is justified by the fact that even though a lower centre of mass results in
a decrease of the slenderness, the applied overturning moment due to the blast loading is higher (surface S
remains unchanged, see Fig. 1), which counterbalances the effect of the lower mass centre (see Tab. 3).

The analytical model predicts for the prototype a critical stand-off distance R♮
fp = 11.82 m, considering

the block’s width equal to the van’s front width, and R♮
bp = 11.85 m, for the back width.

For the scaled model, we obtain R♮
fm = 1.072 m and R♮

bm = 1.073 m, leading to overturning as in the
experimental tests.

5.3.2. Scherbatiuk’s experimental tests
Scherbatiuk [12] investigated experimentally the response under explosive loads of free-standing soil-

filled containers. He also developed two models for studying the rocking behaviour of the aforementioned
soil-filled containers. The first one is a rocking rigid-body model, where the blast loading is considered only
through an initial angular velocity applied at the block, while the second, called rigid-body hybrid model,
goes further by accounting for the local deformation of the block at its pivot point. Both rigid and hybrid
models were developed for non-slender structures (no-linearisation of the equation of motion) and they were
integrated numerically in order to assess overturning. The numerical results were compared then with full-
scale experiments. Here we refer only to trials 1, 4, and 6 (see [12], pp. 102-118), as the rest were for blocks
with high slenderness angles (α ≈ 58◦), whose study exceeds the scope of the present work.

In Table 4 we compare the predictions of our model with the ones from [12] and the experimental results
as far it concerns overturning. We recall that our model does not account for the deformability of the blocks
tested and, therefore, it ignores the experimentally energy dissipation due to damage at the incident surface
and the deformation of the block at the pivot point. Therefore, we expect to overestimate overturning,
which results in a safety factor for applications and design. Moreover, our analytical model is valid only for
slender blocks (i.e., α / 20◦), while the targets in trials 1, 4, and 6 have a slenderness angle α = 31.61◦.
This means that our predictions underestimate the resistance to overturn, see Eq. (18), being again on the
safety side. This is clearly shown in the comparison for trial 1, see Tab. 4. However, if the linearisation
assumption is neglected and the non-linear equations of motion (10) are numerically integrated we do not
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Table 3: Geometric parameters, explosive, and stand-off distance for the prototype and scaled model in [17],
and corresponding parameters for the analytical model. Subscripts p and m refer to the prototype and the
model test, respectively. Subscript f indicates that the rectangular rigid model has a width equal to the
front width of the van, and subscript b to the back. Good agreement is found regarding overturning.

Experimental test

Prototype Scaled model

Front width 1.77 m Wp = 226.8 kg Front width 88.39 mm Wm = 28.35 g
Back width 2.16 m Rp = 10.7 m Back width 108.2 mm Rm = 535 mm
Length 5.85 m Length 293.37 mm
Height 2.93 m Height 146.56 mm
Weight 5443 kg Weight 28.35 g

Overturning : Y Overturning : Y

Analytical model

Prototype Scaled model

2bfp = 1.77 m Wp = 226.8 kg 2bfm = 88.39 mm Wm = 28.35 g
2bbp = 2.16 m Rp = 10.7 m 2bbm = 108.2 mm Rm = 535 mm
2hp = 2.93 m 2hm = 146.56 mm
ρfp = 179.80 kg/m3 ρfm = 179.80 kg/m3

ρbp = 7.46 g/m3 ρbm = 6.09 kg/m3

Overturning : Y Overturning: Y

have overturning in trial 1 and we predict a maximum rotation angle θmax = 17.7◦ which is very close to
the experimental results and closer than the prediction of Scherbatiuk hybrid model.

For trials 4 and 6, we present in Figure 14 the evolution of the horizontal block displacements as reported
in [12]. The response of the experimental system is bounded by the linearised system (upped bound) and
the non-linear one (lower bound).

Despite the complex physics involved (fluid-structure interaction phenomena, induced ground shocks
vibration, etc.), the deformability of targets, and a combined rocking/sliding response of soil-filled containers
subjected to explosions, our predictions exhibit good agreement with the experiment reality, on the safety
side. They always provide a close upper bound of the critical stand-off distance for overturning.
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Figure 14: Comparison between the experimental results for trials 4 (left) and 6 (right) and the proposed
analytical model in terms of the horizontal displacement of a point located at 1.50 m above the ground and
on the rear face of the container. Both the linearised and non-linearised versions of the model, with respect
to slenderness, are presented. The experimental response is closely bounded by the linearised system (upper
bound) and the non-linear one (lower bound).

Table 4: Comparison between experimental tests [12], the rocking block models proposed by Scherbatiuk
and our model. Targets dimensions are 1.2× 1.95× 3.9 m (2b× 2h× depth). θmax represents the maximum
rotation angle. Compared to previous analyses, our approach shows closer agreement regarding overturning
and maximum inclination angle with the experimental results.

Trial Blast impulse Overturning (y/n)

Experiment Scherbatiuk models [12] Proposed models
Rigid body model Hybrid model Analytical Non-linear

1 ir = 4.096 MPa.ms n n n y n
(θmax = 15◦) (θmax = 13◦) (θmax = 20◦) − (θmax = 17.7◦)

4 ir = 4.184 MPa.ms y y y y y

6 ir = 3.391 MPa.ms y n y y y
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6. Concluding remarks

We investigated the dynamics of inverted pendulum structures under fast-dynamic excitations arising
from an explosion. The purpose of our analysis is to derive reliable decision making tools in the design of
protective devices to preserve the historical heritage, secure buildings and human beings.

First, by virtue of a simplified expression of blast actions and based on established empirical models, we
derived the equations of motion for the rocking of inverted pendulum structures and analytical solutions
for slender ones. In particular, it was found that the response is fully described by three non-dimensional
parameters: the dimensionless rocking moment, χ, i.e., the ratio between the moment due to the blast load
and the restoring moment due to gravity; the dimensionless load duration τo; and d, the exponential decay
coefficient used to model the decrease in time of the pressure resulting from an explosion.
We derived then the overturning condition relying on an energy approach and we recovered the overturning
strength in terms of the minimum distance (critical stand-off distance) that has to be assured between the
explosive source and the target, such that toppling is avoided.

The stabilizing effect of the negative phase was investigated in order to provide more realistic estima-
tions. In a similar manner, we derived a closed-form solution for the motion that depends on two additional
dimensionless parameters. These are the dimensionless blast stabilising moment χ̄ and the dimensionless
negative phase duration τo−. It is shown that the negative phase has a non-negligible impact and has to be
taken into account.

Finally, the adequacy of the assumptions made to derive the analytical solutions of the rocking response
and overturning domain of inverted pendulum structures was investigated through two set of numerical
simulations and existing experimental tests.
The numerical solutions allowed to assess the effect of sliding and of the complex loading due to an explosion
as well as the validity of the linearisation of the system. A good agreement was found. As expected, the
analytical solution is exact for slender structures. For higher slenderness angles, α, the analytical computa-
tions overestimate to a small extent the critical distance, which from the design of point view favours safety.
Fluid Structure Interaction simulations, performed with the well-established balloon analogue model, al-
lowed to account for more complex behaviours (e.g. diffraction, rarefaction, multiple reflections, no-normal
incidence, three-dimensional shock front, uplifting etc.). Again the estimations of the analytical model re-
main close to the numerical results and on the safety side. This means that the dominant features of the
dynamic system are described by our analytical model.
The comparison of the proposed model with existing experimental tests of different target typologies showed
good agreement and eventually validated our modelling assumptions.

Based on our model, the critical stand-off distance can be easily calculated. Herein, we presented it in
the form of design charts, which can be helpful in applications. For instance they can be used in museums,
for determining the minimum perimeter around statues of high historical and aesthetic value or, in the
frame of protection of existing buildings and assets, for the construction and positioning of blast wall and
barriers. The presented model can be used as well for devising energy absorbing systems based on rocking.
Our work can be extended in the future for studying systems with multiple degrees-of-freedom as it is done
for instance in [38] and [39]. Finally, the analytical derivations of the overturning domain can also be used
in the design of experiments involving prototypes in reduced scale.
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Appendix A. Analytical interpolations for blast loading

The expressions for the blast parameters that determine the reflected pressure time-history due to a
surface burst (explosion on or very close to the ground surface) are given below and presented in Figure 6.
For more details we refer to [40, 41].

• normal reflected pressure peak Pro:

Pro(Z) =
(
1 +

1

2e10Z

)
exp

[
2.0304− 1.8036 lnZ

−0.09293 ln2 Z − 0.8779 sin(lnZ)− 0.3603 sin2(lnZ)
]

• scaled and effective positive reflected impulse irw, ir:

irw(Z,W ) = exp
[
− 0.110157− 1.40609 lnZ + 0.0847358 ln2 Z

]
,

ir(Z) = W
1
3 irw(Z,W )

• scaled and effective arrival time tAw, tA:

tAw(Z,W ) =


exp

[
− 0.6847 + 1.4288 lnZ + 0.0290 ln2 Z

+0.4108 sin(lnZ)
]

if Z ≥ 0.18 m/kg1/3,
0.0315495 if Z < 0.18 m/kg1/3,

tA(Z) = W
1
3 tAw(Z,W )

• scaled and effective positive duration time tow, to:

tow(Z,W ) =



exp

[
0.592 + 2.913 lnZ − 1.287 ln2 Z − 1.788 ln3 Z

+ 1.151 ln4 Z + 0.325 ln5 Z − 0.383 ln6 Z

+ 0.090 ln7 Z − 0.004 ln8 Z − 0.0004 ln9 Z

+ 0.537 cos7
[
1.032 (lnZ − 0.859)

]
sinh

[
1.088 (lnZ − 2.023)

]]
if Z ≥ 0.18 m/kg1/3,

0.251703 if Z < 0.18 m/kg1/3,

to(Z) = W
1
3 tow(Z,W )

• reflected negative pressure peak Pro−:

Pro−(Z) =
(
0.0415 +

1

2e0.1449Z

)
exp

[
− 1.7850− 0.1213 lnZ

−0.0514 ln2 Z − 0.4083 sin(lnZ)− 0.3824 sin2(lnZ)
]

• scaled and effective negative duration time tow−, to−:

tow−(Z,W ) = exp
[
2.4052 + 0.1177 lnZ + 0.0312 ln2 Z

−0.0107 ln3 Z + 0.1092 cos(lnZ)
]
,

tow−(Z) = W
1
3 tow−(Z,W )
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Figure 15: Analytical interpolations for blast loading: scaled duration times, impulses and reflected pressure
as functions of the scaled distance, Z.
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Appendix B. Analytical solutions of the equation of motion

B1. Positive phase
Analytical, closed-form solution of Equation (13): angular displacement, ϕ, and angular velocity, ϕ̇ (with

ζ = d/τo).

ϕ(τ) =



χ
(ζ2−1)2

{ [
1−

(
1− 2

τo

)
ζ

]
cosh τ+[(

ζ + 1
τo

) (
ζ2 − 1

)
− 2

τo

]
sinh τ−[ (

ζ2 − 1
)
(ζ − 1)− 2 ζ

τo

]
cosh d τ

τo
+[

τ
τo

(
ζ2 − 1

)
−
(
ζ − 2

τo

)
ζ + 1

]
sinh d τ

τo

}
if τ ≤ τo,

1
τo

1
(ζ2−1)2

{[ (
ζ2 + 1

)
e−ζτo

]
χ sinh τ−[

ζ
(
τo + ζ − ζ2τo

)
+ 1

]
χ sinh(τ + τo)−[ (

ζ2 − 1
)
τo

(
ζ2 + χ− 1

)
− 2ζχ

]
cosh(τ + τo)−

2ζχe−ζτo cosh τ

}
+ 1 if τ > τo.

ϕ̇(τ) =



χ
(ζ2−1)2

{ [
1 +

(
1− 2

τo

)
ζ

]
cosh τ+[(

ζ + 1
τo

) (
ζ2 − 1

)
− 2

τo

]
sinh τ−[ (

ζ2 − 1
)
(ζ − 1) + 2 ζ

τo

]
cosh d τ

τo
+[

τ
τo

(
ζ2 − 1

)
−
(
ζ − 2

τo

)
ζ + 1

]
sinh d τ

τo

}
if τ ≤ τo,

1
τo

1
(ζ2−1)2

{[ (
ζ2 + 1

)
e−ζτo cosh τ + 2ζ2e−ζτ cosh τ

]
χ−[

ζ
(
τo + ζ − τoζ

2
)
+ 1

]
χ cosh(τ + τo)−[ (

ζ2 − 1
)
τo

(
ζ2 + χ− 1

)
− 2ζχ

]
sinh(τ + τo)−

2ζχe−ζτ sinh τ

}
if τ > τo.
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B2. Positive and negative phase
Analytical, closed-form solution of Equation (20): angular displacement, ϕ, and angular velocity, ϕ̇.

ϕ(τ) =



χ
(ζ2−1)2

{ [
1−

(
1− 2

τo

)
ζ

]
cosh τ +

[(
ζ + 1

τo

) (
ζ2 − 1

)
− 2

τo

]
sinh τ−[ (

ζ2 − 1
)
(ζ − 1)− 2 ζ

τo

]
cosh d τ

τo
+

[
τ
τo

(
ζ2 − 1

)
−
(
ζ − 2

τo

)
ζ + 1

]
sinh d τ

τo

}
if τ ≤ τo,

27χ̄
4τ3

o−

{ [
τ3 − τ2(3τo + 2τo−) + τ

[
(τo + τo−)(3τo + τo−) + 6

]
− τo

[
(τo + τo−)

2 + 6
]
− 4τo−

]
+[[

τo
(
(τo + τo−)

2 + 6
)
+ 4τo−

]]
cosh τ −

[
(τo + τo−)(3τo + τo−) + 6

]
sinh τ

}
−

1
τo

1
(ζ2−1)2

{ [ (
ζ2 − 1

)
τo

(
ζ2 + χ− 1

)
− 2ζχ

]
cosh(τ + τo)− χe−ζτo

[ (
ζ2 + 1

)
sinh τ − 2ζ cosh τ

]
−[ (

ζ2 − 1
)
ζτo − ζ2 − 1

]
χ sinh(τ + τo)

}
+ 1

if τo < τ ≤ τo + τo− ,

1
4(ζ2−1)2τoτ3

o−

{
54

(
ζ2 − 1

)2
τoτo−χ̄ cosh τ + 4

(
ζ2 − 1

)2
τoτ

3
o−+[

27
(
ζ2 − 1

)2
τoχ̄

[
τo

(
(τo + τo−)

2 + 6
)
+ 4τo−

]
− 8ζτ3o−χe

−ζτo
]
cosh(τ + τo + τo−)−

4τ3o−

[ (
ζ2 − 1

)
τo

(
ζ2 + χ− 1

)
− 2ζχ

]
cosh(τ + 2τo + τo)+

4
(
ζ2 + 1

)
τ3o−χe

−ζτo sinh(τ + τo + τo−)−

27
(
ζ2 − 1

)2
τoχ̄

[[
(τo + τo−)(3τo + τo−) + 6

]
sinh(τ + τo + τo−)− 6 sinh τ

]
−

4τ3o−χ
[
ζ
(
τo + ζ − ζ2τo

)
+ 1

]
sinh(τ + 2τo + τo−)

}
if τ > τo + τo− .
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ϕ̇(τ) =



χ
(ζ2−1)2

{ [
1 +

(
1− 2

τo

)
ζ

]
cosh τ +

[(
ζ + 1

τo

) (
ζ2 − 1

)
− 2

τo

]
sinh τ−[ (

ζ2 − 1
)
(ζ − 1) + 2 ζ

τo

]
cosh d τ

τo
+

[
τ
τo

(
ζ2 − 1

)
−
(
ζ − 2

τo

)
ζ + 1

]
sinh d τ

τo

}
if τ ≤ τo,

27χ̄
4τ3

o−

{ [
3τ2 − 2τ(3τo + 2τo−) + (τo + τo−)(3τo + τo−) + 6

]
−[

(τo + τo−)(3τo + τo−) + 6
]
cosh τ +

[
4τo− + τo(6 + (τo + τo−)

2)
]
sinh τ

}
−

1
τo

1
(ζ2−1)2

{ [ (
ζ2 − 1

)
ζτo − ζ2 − 1

]
χ cosh(τ + τo) + χe−ζτo

[
(1 + ζ2) cosh τ − 2ζ sinh τ

]
−[ (

ζ2 − 1
)
τo

(
ζ2 + χ− 1

)
− 2ζχ

]
sinh(τ + τo)

}
+ 1

if τo < τ ≤ τo + τo− ,

1
4(ζ2−1)2τoτ3

o−

{
4
(
ζ2 + 1

)
τ3o−χe

−ζτo cosh(τ + τo + τo−)−

27
(
ζ2 − 1

)2
τoχ̄

[[
(τo + τo−)(3τo + τo−) + 6

]
cosh(τ + τo + τo−)− 6 cosh τ

]
−

4τ3o−χ
[
ζ
(
τo + ζ +−ζ2τo

)
+ 1

]
cosh(τ + 2τo + τo−) + 54

(
ζ2 − 1

)2
τoτo−χ̄ sinh τ+[

27
(
ζ2 − 1

)2
τoχ̄

[
τo

[
(τo + τo−)

2 + 6
]
+ 4τo−

]
− 8ζτ3o−χe

−ζτo

]
sinh(τ + τo + τo−)−

4τ3o−

[
− 2ζχ+ (−1 + ζ2)τo(−1 + ζ2 + χ)

]
sinh(τ + 2τo + τo−)

}
if τ > τo + τo− .
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