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Abstract

In this article we establish a global subelliptic estimate for Kramers-Fokker-Planck
operators with homogeneous potentials V (q) under some conditions, involving in par-
ticular the control of the eigenvalues of the Hessian matrix of the potential. Namely,
this work presents a different approach from the one in [Ben], in which the case
V (q1, q2) = −q21(q

2
1 + q22)

n was already treated only for n = 1. With this article, after
the former one dealing with non homogeneous polynomial potentials, we conclude the
analysis of all the examples of degenerate ellipticity at infinty presented in the frame-
work of Witten Laplacian by Helffer and Nier in [HeNi]. Like in [Ben], our subelliptic
lower bounds are the optimal ones up to some logarithmic correction.
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1 Introduction and main results

In this work we study the Kramers-Fokker-Planck operator

KV = p.∂q − ∂qV (q).∂p +
1

2
(−∆p + p2) , (q, p) ∈ R

2d , (1.1)

where q denotes the space variable, p denotes the velocity variable and the potential V (q) is
a real-valued function defined in the whole space R

d
q .

Setting

Op =
1

2
(D2

p + p2) , and XV = p.∂q − ∂qV (q).∂p ,

the Kramers-Fokker-Planck operator KV defined in (1.1) reads KV = XV +Op.

We firstly list some notations used throughout the paper. We denote for an arbitrary function
V (q) in C∞(Rd)

Tr+,V (q) =
∑

ν∈Spec(Hess V )
ν>0

ν(q) ,

Tr−,V (q) = −
∑

ν∈Spec(Hess V )
ν≤0

ν(q) .

In particular for a polynomial V of degree less than 3, Tr+,V and Tr−,V are two constants.
In this case we define the constants AV and BV by

AV = max{(1 + Tr+,V )
2/3, 1 + Tr−,V } ,

BV = max{min
q∈Rd

|∇ V (q)|4/3 , 1 + Tr−,V

log(2 + Tr−,V )2
} .

This work is principally based on the publication by Ben Said, Nier, and Viola [BNV], which
concerns the study of Kramers-Fokker-Planck operators with polynomials of degree less than
three. In [BNV] we proved the existence of a constant c > 0, independent of V , such that
the following global subelliptic estimate with remainder

‖KV u‖2L2(R2d) + AV ‖u‖2L2(R2d) ≥ c
(
‖Opu‖2L2(R2d) + ‖XV u‖2L2(R2d)

+ ‖〈∂qV (q)〉2/3u‖2L2(R2d) + ‖〈Dq〉2/3u‖L2(R2d)

)

(1.2)

holds for all u ∈ C∞
0 (R2d). Furthermore, supposing Tr−,V + min

q∈Rd
|∇ V (q)| 6= 0, there exists a

constant c > 0, independent of V , such that

‖KV u‖2L2(R2d) ≥ cBV ‖u‖2L2(R2d) , (1.3)
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is valid for all u ∈ C∞
0 (R2d). As a consequence collecting (1.3) and (1.2) together, there is a

constant c > 0, independent of V , so that the global subelliptic estimates without remainder

‖KV u‖2L2(R2d) ≥
c

1 + AV

BV

(
‖Opu‖2L2(R2d) + ‖XV u‖2L2(R2d)

+ ‖〈∂qV (q)〉2/3u‖2L2(R2d) + ‖〈Dq〉2/3u‖L2(R2d)

)
(1.4)

holds for all u ∈ C∞
0 (R2d). Here and throughout the paper we use the notation

〈·〉 =
√

1 + | · |2 .

Moreover we remind that for an arbitrary potential V ∈ C∞(Rd), the Kramers-Fokker-Planck
operator KV is essential maximal accretive when endowed with the domain C∞

0 (R2d) (see
Proposition 5.5, page 44 in [HeNi]). Thanks to this property we deduce that the domain of
the closure of KV is given by

D(KV ) =
{
u ∈ L2(R2d), KV u ∈ L2(R2d)

}
.

Resultently, by density of C∞
0 (R2d) in the domain D(KV ) all estimates written in this article,

which are verified with C∞
0 (R2d) functions, can be extended to D(KV ). By relative bounded

perturbation with bound less than 1 , this result holds as well when V ∈ C∞(R \ {0}) is an
homogeneous function of degree r > 1.

Our results will require the following assumption after setting

S =
{
q ∈ R

d, |q| = 1
}

. (1.5)

Assumption 1. The potential V (q) is an homogeneous function of degree r > 2 in
C∞(Rd \ { 0}) and satisfies:

∀ q ∈ S , ∂qV (q) = 0 ⇒ Tr−,V (q) > 0 . (1.6)

Our main result is the following.

Theorem 1.1. If the potential V (q) verifies Assumption 1, then there exists a strictly positive
constant CV > 1 (which depends on V ) such that

‖KV u‖2L2 + CV ‖u‖2L2 ≥ 1

CV

(
‖L(Op)u‖2L2 + ‖L(〈∇V (q)〉 2

3 )u‖2L2

+ ‖L(〈Hess V (q)〉 1
2 )u‖2L2 + ‖L(〈Dq〉

2
3 )u‖2L2

)
,

(1.7)

holds for all u ∈ D(KV ) where L(s) = s+1
log(s+1)

for any s ≥ 1.

Corollary 1.2. The Kramers-Fokker-Planck operator KV with a potential V (q) satisfying
Assumption 1 has a compact resolvent.
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Proof. Let 0 < δ < 1. Define the functions fδ : R
d → R by

fδ(q) = |∇V (q)| 43 (1−δ) + |Hess V (q)|1−δ .

As a result of (1.7) in Theorem 1.1 there is a constant CV > 1 such that

‖KV u‖2L2 + CV ‖u‖2L2 ≥ 1

CV

(
〈u, fδu〉+ ‖L(Op)u‖2L2 + ‖L(〈Dq〉

2
3 )u‖2L2

)
,

holds for all u ∈ C∞
0 (R2d) and all δ ∈ (0, 1). In order to show that the operator KV has

a compact resolvent it is sufficient to prove that lim
q→+∞

fδ(q) = +∞. It is a matter of how

different derivatives scale. Consider the unit sphere S = {q ∈ R
d : |q| = 1}. By Assumption

(1.6), at every point on S either ∇V 6= 0 or |Hess V | 6= 0. Then the function fδ is always
positive on S. By hypothesis, fδ is continuous on S and therefore it achieves a positive
minimum there, call it mδ > 0.

For any y, |y| > 1 there exists λ > 1 such that y = λq for some q ∈ S. By homogeneity,

V (y) = λrV
(y
λ

)
= λrV (q)

and therefore, by the chain rule

|∇V (y)| = λr−1|∇V (q)|

and
|Hess V (y)| = λd(r−2)|Hess V (q)|.

Adding these up,

|∇V (y)| 43 (1−δ) + |HessV (y)|1−δ ≥ λ(1−δ) min{ 4
3
(r−1),d(r−2)}fδ(q) ≥ mδλ

(1−δ)min{ 4
3
(r−1),d(r−2)}

which goes to infinity as |y| = λ → ∞, since by assumption r > 2.

Remark 1.3. The result of Corollary does not hold in the case of homogenous polynomial of
degree 2 with degenerate Hessian. Indeed, we already know that in this case, the resolvent of
the Kramers-Fokker-Planck operator KV is not compact since it is not as so for the Witten
Laplacian (cf. Proposition 5.19 and Theorem 10.16 in [HeNi]).

Remark 1.4. Our results are in agreement with the results of Wei-Xi-Li [Li][Li2] and those
of Helffer-Nier on Witten Laplacian with homogeneous potential [HeNi1].

2 Observations and first inequalities

2.1 Dyadic partition of unity

In this paper, we make use of a locally finite dyadic partition of unity with respect to the
position variable q ∈ R

d. Such a partition is described in the following Proposition. For a
detailed proof, we refer to [BCD] (see page 59).
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Proposition 2.1. Let C be the shell
{
x ∈ R

d, 3
4
< |x| < 8

3

}
. There exist radial functions χ

and φ valued in the interval [0, 1], belonging respectively to C∞
0 (B(0, 4

3
)) and to C∞

0 (C) such
that

∀x ∈ R
d, χ(x) +

∑

j≥0

φ(2−jx) = 1 ,

∀x ∈ R
d \ {0} ,

∑

j∈Z

φ(2−jx) = 1 .

Setting for all q ∈ R
d,

χ−1(q) =
χ(2q)

(
χ2(2q) +

∑
j′≥0

φ2(2−j′q)
) 1

2

=
χ(2q)

(
χ2(2q) + φ2(q)

) 1
2

,

χj(q) =
φ(2−jq)

(
χ2(2q) +

∑
j′≥0

φ2(2−j′q)
) 1

2

if j≤2
= ,

φ(2−jq)
( ∑

j−1≤j′≤j+1

φ2(2−j′q)
) 1

2

we get a localy finite dyadic partition of unity

∑

j≥−1

χ2
j (q) = χ̃2

−1(2|q|) + χ̃2
0(2|q|) +

∑

j≥0

χ̃2(2−j|q|) = 1 (2.1)

where for all j ∈ N, the cutoff functions χ̃0, χ̃ and χ̃−1 belong respectively to C∞
0 (

]
3
4
, 8
3

[
),

C∞
0 (

]
3
4
, 8
3

[
) and C∞

0 (
]
0, 4

3

[
).

Lemma 2.2. Let V be in C∞(Rd \ {0}). Consider the Kramers-Fokker-Planck operator KV

defined as in (1.1). For a locally finite partition of unity
∑

j≥−1

χ2
j(q) = 1 one has

‖KV u‖2L2(R2d) =
∑

j≥−1

‖KV (χju)‖2L2(R2d) − ‖(p∂qχj)u‖2L2(R2d) , (2.2)

for all u ∈ C∞
0 (R2d).

In particular when the cutoff functions χj have the form (2.1), there exists a uniform
constant c > 0 so that

(1 + 4c)‖KV u‖2L2(R2d) + c‖u‖2L2(R2d) ≥
∑

j≥−1

‖KV (χju)‖2L2(R2d), (2.3)

holds for all u ∈ C∞
0 (R2d).
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Proof. The proof of the equality (2.2) is detailed in [Ben]. Now it remains to show the
inequality (2.3), after considering a locally finite dyadic partition of unity

∑

j≥−1

χ2
j (q) = 1 , (2.4)

where for all j ∈ N, the cutoff functions χj and χ−1 are respectively supported in the shell{
q ∈ R

d, 2j 3
4
≤ |q| ≤ 2j 8

4

}
and in the ball B(0, 3

4
).

Since the partition is locally finite, for each index j ≥ −1 there are finitely many j′ such
that (∂qχj)χj′ is nonzero. Along these lines, there exists a uniform constant c > 0 so that

∑

j≥−1

‖(p∂qχj)u‖2L2 =
∑

j≥−1

∑

j′≥−1

‖(p∂qχj)χj′u‖2L2

≤ c
∑

j≥−1

1

(2j)2
‖pχju‖2L2 , (2.5)

holds for all u ∈ C∞
0 (R2d).

On the other hand, for every u ∈ C∞
0 (R2d),

c
∑

j≥−1

1

(2j)2
‖pχju‖2L2 ≤ 4c ‖pu‖2L2 ≤ 8cRe 〈u,KV u〉 ≤ 4c (‖u‖2L2 + ‖KV u‖2L2) . (2.6)

Collecting the estimates (2.2), (2.5) and (2.6), we establish the desired inequality (2.3).

2.2 Localisation in a fixed Shell

Lemma 2.3. Let V (q) be an homogeneous function in C∞(Rd \ {0}) of degree r and assume
j ∈ Z. Given uj ∈ C∞

0 (R2d), one has

‖KV uj‖L2(R2d) = ‖Kj,V vj‖L2(R2d) ,

where the operator Kj,V is defined by

Kj,V =
1

2j
p∂q − (2j)r−1∂qV (q)∂p +Op , (2.7)

and vj(q, p) = 2
jd

2 uj(2
jq, p).

In particular when uj is supported in
{
q ∈ R

d, 2j 3
4
≤ |q| ≤ 2j 8

3

}
, the support of vj is a

fixed shell C =
{
q ∈ R

d, 3
4
≤ |q| ≤ 8

3

}
.

Proof. Let j ∈ Z be an index. Assume uj ∈ C∞
0 (R2d) and state

vj(q, p) = 2
jd

2 uj(2
jq, p) . (2.8)
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On the grounds that the function V is homogeneous of degree r we deduce that respectively
its gradient ∂qV (q) is homogeneous of degree r − 1. As follows, we can write

KV uj(q, p) = KV

(
2

−jd

2 vj(2
−jq, p)

)

= 2
−jd

2

(
(2−jp∂q − (2j)r−1∂qV (q)∂p +Op)vj

)
(2−jq, p) .

Notice that if

supp uj ⊂
{
q ∈ R

d, 2j
3

4
≤ |q| ≤ 2j

8

3

}
,

the cutoff functions vj, defined in (2.8), are all supported in the fixed shell

C =

{
q ∈ R

d,
3

4
≤ |q| ≤ 8

3

}
.

Remark 2.4. Assume j ∈ N. If we introduce a small parameter h = 2−2(r−1)j then the
operator Kj,V , defined in (2.7), can be rewritten as

Kj,V =
1

h

(√
hp(h

1
2
+ 1

2(r−1)∂q)−
√
h∂qV (q)∂p +

h

2
(−∆p + p2)

)
.

Now owing to a dilation with respect to the velocity variable p, which for (
√
hp,

√
h∂p) asso-

ciates (p, h∂p), we deduce that the operator Kj,V is unitary equivalent to

K̂j,V =
1

h

(
p(h

1
2
+ 1

2(r−1)∂q)− ∂qV (q)h∂p +
1

2
(−h2∆p + p2)

)
.

In particular, taking r = 2,

K̂j,V =
1

h

(
p(h∂q)− ∂qV (q)h∂p +

1

2
(−h2∆p + p2)

)
,

is clearly a semiclassical operator with respect to the variables q and p. However if r > 2, the

operator K̂j,V is semiclassical only with respect to the velocity variable p (since h
1
2
+ 1

2(r−1) > h).
For a polynomial V (q), the case r = 2 corresponds to the quadratic situation. Extensive works
have been done concerned with this case (see [Hor][HiPr][Vio][Vio1][AlVi][BNV]).

3 Proof of the main result

In this section we present the proof of Theorem 1.1.
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Proof. In the whole proof we denote

C =

{
q ∈ R

d,
3

4
≤ |q| ≤ 8

3

}
.

Assume u ∈ C∞
0 (R2d) and consider a localy finite dyadic partition of unity defined as in (2.1).

By Lemma 2.2 (see (2.3)), there is a uniform constant c such that

(1 + 4c)‖KV u‖2L2(R2d) + c‖u‖2L2(R2d) ≥
∑

j≥−1

‖KV uj‖2L2(R2d). (3.1)

where we denote uj = χju. We obtain by Lemma 2.3 and the estimate (3.1)

(1 + 4c)‖KV u‖2L2(R2d) + c‖u‖2L2(R2d) ≥
∑

j≥−1

‖Kj,V vj‖2L2(R2d) , (3.2)

where the operator

Kj,V =
1

2j
p∂q − (2j)r−1∂qV (q)∂p +Op ,

and vj(q, p) = 2
jd

2 uj(2
jq, p) . Setting h = 2−2(r−1)j , one has

Kj,V = p(h
1

2(r−1)∂q)− h− 1
2∂qV (q)∂p +

1

2
(−∆p + p2) .

Now, fix ν > 0 such that

max(
1

6
,
1

8
+

3

8(r − 1)
) < ν <

1

4
+

1

4(r − 1)
. (3.3)

Such a choice is always possible:

• In the case r ≥ 10, max(1
6
, 1
8
+ 3

8(r−1)
) equals 1

6
while 1

4
+ 1

4(r−1)
is always greater than

1
4
. So we can choose a value ν independent of r between 1

6
and 1

4
.

• in the case 2 < r < 10, max(1
6
, 1
8
+ 3

8(r−1)
) equals 1

8
+ 3

8(r−1)
< 1

4
+ 1

4(r−1)
. Hence, we

can choose for example ν = 3
16

+ 5
16(r−1)

.

Taking ν > 0, satisfying (3.3), we consider a locally finite partition of unity with respect to
q ∈ R

d given by

∑

k≥−1

(θk,h(q))
2 =

∑

k≥−1

(
θ(

1

| ln(h)|hν
q − qk)

)2

=
∑

k≥−1

(
θ(

1

| ln(h)|hν
(q − qk,h)

)2

= 1 ,
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where for any index k

qk,h = | ln(h)|hνqk , supp θk,h ⊂ B(qk,h, | ln(h)|hν) , θk,h ≡ 1 in B(qk,h,
1

2
| ln(h)|hν) .

Using this partition we get through Lemma 2.2 (see (2.2)),

‖Kj,V vj‖2L2 ≥
∑

k≥−1

‖Kj,V θk,hvj‖2L2 − | ln(h)|−2h
1

r−1
−2ν‖pθk,hvj‖2L2 . (3.4)

In order to reduce the written expressions we denote in the whole of the proof

wk,j = θk,hvj .

Taking into account (3.4),

‖Kj,V vj‖2L2 ≥
∑

k≥−1

‖Kj,Vwk,j‖2L2 − | ln(h)|−2h
1

r−1
−2ν‖wk,j‖L2‖Kj,Vwk,j‖L2

≥
∑

k≥−1

3

4
‖Kj,Vwk,j‖2L2 − 2| ln(h)|−2h

1
r−1

−2ν‖wk,j‖2L2 . (3.5)

Notice that in the last inequality we simply use respectively the fact that

‖pwk,j‖2L2 ≤ 2Re〈wk,j, Kj,Vwk,j〉 ≤ ‖wk,j‖L2‖Kj,Vwk,j‖L2 ,

and the Cauchy inequality with epsilon ( ab ≤ ǫa2 + 1
4ǫ
b2).

From now on, set

K0 =
{
q ∈ C , ∂qV (q) = 0

}
.

Clearly, by continuity of the map q 7→ ∂qV (q) on the shell C (which is a compact set of Rd),
we deduce the compactness of K0.

Since q 7→ Tr−,V (q)

1+Tr+,V (q)
is uniformly continuous on any compact neighborhood of K0 , there

exists ε1 > 0 such that

d(q,K0) ≤ ǫ1 ⇒
Tr−,V (q)

1 + Tr+,V (q)
≥ ǫ0

2
, (3.6)

where ǫ0 := min
q∈K0

Tr−,V (q)

1+Tr+,V (q)
.

On the other hand, in vue of the definition of K0 and by continuity of q 7→ ∂qV (q) on C,
there is a constant ǫ2 > 0 (that depends on ǫ1) such that

∀ q ∈ C , d(q,K0) ≥ ǫ1 ⇒ |∂qV (q)| ≥ ǫ2 . (3.7)

Now let us introduce

Σ(ǫ1) = {q ∈ C , d(q,K0) ≥ ǫ1} ,

I(ǫ1) = {k ∈ Z , supp θk,h ⊂ Σ(ǫ1)} .

In order to establish a subelliptic estimate for Kj,V , we distinguish the two following cases.
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Case 1 k 6∈ I(ǫ1). In this case the support of the cutoff function θk,h might intercect the set
of zeros of the gradient of V.

Case 2 k ∈ I(ǫ1). Here the gradient of V does not vanish for all q in the support of θk,h.

The idea is to use, in the suitable situation, either quadratic or linear approximating
polynomial Ṽ near some q′k,h ∈ supp θk,h to write

∑

k≥−1

‖Kj,Vwk,j‖2L2 ≥ 1

2

∑

k≥−1

‖Kj,Ṽwk,j‖2L2 − ‖(Kj,V −Kj,Ṽ )wk,j‖2L2 ,

or equivalently

∑

k≥−1

‖Kj,Vwk,j‖2L2 ≥
1

2

∑

k≥−1

‖Kj,Ṽwk,j‖2L2 − ‖ 1√
h
(∂qV (q)− ∂qṼ (q))∂pwk,j‖2L2 . (3.8)

Then based on the estimates written in [BNV], which are valid for the operator KṼ , we
deduce a subelliptic estimate for KṼ , after a careful control of the errors which appear in
(3.5) and (3.8).
Case 1. In this situation, we use the quadractic approximation near some element
q′k,h ∈ supp θk,h ∩ (Rd \ Σ(ǫ1)),

V 2
k,h(q) =

∑

|α|≤2

∂α
q V (q′k,h)

α!
(q − q′k,h)

α .

Notice that one has for all q ∈ R
d,

|V (q)− V 2
k,h(q)| = O(|q − q′k,h|3) . (3.9)

Accordingly, for every q in the support of wk,j,

|∂qV (q)− ∂qV
2
k,h(q)| = O(|q − q′k,h|2)

= O(| ln(h)|2h2ν) . (3.10)

Combining (3.8) and (3.10), there is a constant c > 0 such that

∑

k≥−1

‖Kj,Vwk,j‖2L2 ≥ 1

2

∑

k≥−1

‖Kj,V 2
k,h
wk,j‖2L2 − c

(| ln(h)|2h2ν)2

h
‖∂pwk,j‖2L2

≥ 1

2

∑

k≥−1

‖Kj,V 2
k,h
wk,j‖2L2 − c

(| ln(h)|2h2ν)2

h
‖wk,j‖L2‖Kj,V 2

k,h
wk,j‖L2

≥ 3

16

∑

k≥−1

‖Kj,V 2
k,h
wk,j‖2L2 − 2c

(| ln(h)|2h2ν)2

h
‖wk,j‖2L2 . (3.11)
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Putting (3.5) and (3.11) together,

‖Kj,V vj‖2 ≥
9

64

∑

k≥−1

‖Kj,V 2
k,h
wk,j‖2 −

3

2
c
(| ln(h)|2h2ν)2

h
‖wk,j‖2 − 2| ln(h)|−2h

1
r−1

−2ν‖wk,j‖2 .

(3.12)

On the other hand, owning to a change of variables q” = qh
1

2(r−1) , one can write

‖Kj,V 2
k,h
wk,j‖L2 = ‖K̃j,V 2

k,h
w̃k,j‖L2 , (3.13)

where the operator K̃j,V 2
k,h

reads

K̃j,V 2
k,h

= p∂q − h− 1
2∂qV

2
k,h(h

1
2(r−1) q)∂p +

1

2
(−∆p + p2)

= p∂q − h
− 1

2
+ 1

2(r−1)︸ ︷︷ ︸
=:H

∂qV
2
k,h(q)∂p +

1

2
(−∆p + p2) ,

and

wk,j(q, p) =
1

h
d

4(r−1)

w̃(
q

h
1

2(r−1)

, p) .

In the rest of the proof we denote

H = h− 1
2h

1
2(r−1) .

From now on assume j ∈ N. In view of (3.6), Tr−,V 2
k,h

= Tr−,V (q
′
k,h) 6= 0. Hence by (1.3),

‖K̃j,V 2
k,h
w̃k,j‖2L2 ≥ c

1 +HTr−,V 2
k,h

log(2 +HTr−,V 2
k,h
)2
‖w̃k,j‖2L2 . (3.14)

Or samely

‖K̃j,V 2
k,h
w̃k,j‖2L2 ≥ c

1 +HTr−,V (q
′
k,h)

log(2 +HTr−,V (q′k,h))
2
‖w̃k,j‖2L2 . (3.15)

Using once more (3.6),

Tr−,V (q
′
k,h) ≥

ǫ0

2
(1 + Tr+,V (q

′
k,h)) , (3.16)

where we remind that ǫ0 = min
q∈K0

Tr−,V (q)

1+Tr+,V (q)
. Consequently

|Hess V (q′k,h)| ≥ Tr−,V (q
′
k,h) ≥

ǫ0

2
, (3.17)

11



and

Tr−,V (q
′
k,h) ≥

1

2
Tr−,V (q

′
k,h) +

ǫ0

4
(1 + Tr+,V (q

′
k,h))

≥ 1

2
min(1,

ǫ0

2
)(Tr−,V (q

′
k,h) + Tr+,V (q

′
k,h))

≥ 1

2
min(1,

ǫ0

2
)|Hess V (q′k,h)| . (3.18)

Furthermore by continuity of the map q 7→ Tr−,V (q) on the compact set C, there exists a
constant ǫ3 > 0 such that Tr−,V (q) ≤ ǫ3 for all q ∈ C. Hence

ǫ0

2
≤ Tr−,V (q

′
k,h) ≤ ǫ3 . (3.19)

From (3.15), (3.18) and (3.19),

‖K̃j,V 2
k,h
w̃k,j‖2L2 ≥ c

H

log(H)2
‖w̃k,j‖2L2 .

It follows from the above inequality and (3.13),

‖Kj,V 2
k,h
wk,j‖2L2 ≥ c

H

log(H)2
‖wk,j‖2L2 . (3.20)

Now using the estimate (3.20), we should control the errors coming from the partition of
unity and the quadratic approximation. For this reason, notice that our choice of exponent
ν in (3.3) implies

{
(| ln(h)|2h2ν)2

h
≪ H

log(H)2

| ln(h)|−2h
1

r−1
−2ν ≪ H

log(H)2
.

As a result, collectting the estimates (3.12) and (3.20), we deduce the existence of a constant
c > 0 such that

‖Kj,V vj‖2L2 ≥ c
∑

k≥−1

‖Kj,V 2
k,h
wk,j‖2L2 . (3.21)

Via (1.2), there is a constant c > 0 so that

‖K̃j,V 2
k,h
w̃k,j‖2 + (1 + 10c)H|Hess V (q′k,h)|‖w̃k,j‖2 ≥ c

(
‖Opw̃k,j‖2 + ‖〈Dq〉

2
3 w̃k,j‖2

+H|Hess V (q′k,h)|‖w̃k,j‖2
)
.

(3.22)

12



Hence using the reverse change of variables q” = q

h
1

2(r−1)
, we obtain in view of the above

estimate and (3.13),

‖Kj,V 2
k,h
wk,j‖2 + (1 + 10c)H|Hess V (q′k,h)|‖wk,j‖2 ≥ c

(
‖Opwk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3wk,j‖2

+H|Hess V (q′k,h)|‖wk,j‖2
)
.

(3.23)

Or by (3.18) and (3.19),

ǫ0

2
≤ |Hess V (q′k,h)| ≤

2ǫ3
min(1, ǫ0

2
)
, (3.24)

Putting (3.23) and (3.24) together, there is a constant c > 0 so that

‖Kj,V 2
k,h
wk,j‖2 +H‖wk,j‖2 ≥ c

(
‖Opwk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3wk,j‖2

+H‖wk,j‖2 + ‖〈H|Hess V (q′k,h)|〉
1
2wk,j‖2

)
.

(3.25)

On the other hand, for all q ∈ supp wk,j,

|Hess V (q)− Hess V (q′k,h)| = O(|q − q′k,h|) = O(| ln(h)|hν) (3.26)

Therefore by (3.24) and (3.26), we obtain for every q ∈ supp wk,j and all j sufficiently large.

1

2
|Hess V (q′k,h)| ≤ |Hess V (q)| ≤ 3

2
|Hess V (q′k,h)| . (3.27)

From (3.25) and (3.47), there exists a constant c > 0 so that

‖Kj,V 2
k,h
wk,j‖2 +H‖wk,j‖2 ≥ c

(
‖Opwk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3wk,j‖2

+H‖wk,j‖2 + ‖〈H|Hess V (q)|〉 1
2wk,j‖2

)
, (3.28)

is valid for all j large enough.
Furthermore, by continuity of the map q 7→ |∂qV (q)| 43 on the fixed shell C, for all q ∈

supp wk,j

1

4
H ≥ c |h− 1

2∂qV (q)| 43 , (3.29)

holds for all j sufficiently large.
In such a way, considering (3.28) and (3.29)

‖Kj,V 2
k,h
wk,j‖2 + (2 +H)‖wk,j‖2 ≥ c

(
‖Opwk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3wk,j‖2 + (2 +H)‖wk,j‖2

+ ‖(H|Hess V (q)|) 1
2wk,j‖2 + ‖〈h− 1

2 |∂qV (q)|〉 2
3wk,j‖2

)
.

(3.30)

13



Putting (3.20) and (3.30) together,

‖Kj,V 2
k,h
wk,j‖2 ≥ c

(
‖ Op

log(2 +H)
wk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3

log(2 +H)
wk,j‖2 + ‖ (2 +H)

1
2

log(2 +H)
wk,j‖2

+ ‖〈H|Hess V (q)|〉 1
2

log(2 +H)
wk,j‖2 + ‖〈h

− 1
2 |∂qV (q)|〉 2

3

log(2 +H)
wk,j‖2

)
,

(3.31)

holds for all j ≥ j0, for some j0 ≥ 1 large enough.
Now let us collect the finite remaining terms for −1 ≤ j ≤ j0. After recalling h = 2−j and

H = h
− 1

2
+ 1

2(r−1) we define

c
(1)
V = max

−1≤j≤j0

[
AV 2

k,h
+ sup

q∈supp (χjθk,h)

(
〈H|Hess V (q)|〉+ 〈h− 1

2 |∂qV (q)|〉4/3
)

+
(2 +H)

log(2 +H)2
+

3

2
c
(| ln(h)|2h2ν)2

h
+ 2| ln(h)|−2h

1
r−1

−2ν

]
.

From the lower bound (1.2), we deduce the existence of a constant c > 0 so that

9

64
‖KV 2

k,h
wk,j‖+ (c

(1)
V − 3

2
c
(| ln(h)|2h2ν)2

h
− 2| ln(h)|−2h

1
r−1

−2ν)‖wk,j‖2

≥ c
(
‖Opwk,j‖2 + ‖〈h

1
2(r−1)Dq〉2/3wk,j‖2 + ‖〈h− 1

2 |∂qV (q)|〉2/3wk,j‖2

+ ‖〈H|Hess V (q)|〉1/2wk,j‖2 + ‖ (2 +H)
1
2

log(2 +H)
wk,j‖2

)
,

(3.32)

holds for all −1 ≤ j ≤ j0.

Finally, collecting (3.21), (3.31) and (3.32),

‖Kj,V vj‖2 + c
(2)
V ‖vj‖2 ≥ c

∑

k 6∈I(ǫ1)

(
‖ Op

log(2 +H)
wk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3

log(2 +H)
wk,j‖2 + ‖ (2 +H)

1
2

log(2 +H)
wk,j‖2

+ ‖〈H|Hess V (q)|〉 1
2

log(2 +H)
wk,j‖2 + ‖〈h

− 1
2 |∂qV (q)|〉 2

3

log(2 +H)
wk,j‖2

)
,

(3.33)

is valid for every j ≥ −1.

Case 2. We consider in this case the linear approximating polynomial

V 1
k,h(q) =

∑

|α|=1

∂α
q V (qk,h)

α!
(q − qk,h)

α .

14



Note that for any q ∈ R
d,

|V (q)− V 1
k,h(q)| = O(|q − qk,h|2) , (3.34)

and for every q ∈ supp wk,j,

|∂qV (q)− ∂qV
1
k,h(q)| = O(|q − qk,h|)

= O(| ln(h)|hν) . (3.35)

Due to (3.8) and (3.35),

∑

k≥−1

‖Kj,Vwk,j‖2 ≥
1

2

∑

k≥−1

‖Kj,V 1
k,h
wk,j‖2 − c

(| ln(h)|hν)2

h
‖∂pwk,j‖2

≥ 1

2

∑

k≥−1

‖Kj,V 1
k,h
wk,j‖2 − c

(| ln(h)|hν)2

h
‖wk,j‖‖Kj,V 1

k,h
wk,j‖

≥ 3

16

∑

k≥−1

‖Kj,V 1
k,h
wk,j‖2 − 2c

(| ln(h)|hν)2

h
‖wk,j‖2 . (3.36)

Assembling (3.5) and (3.36),

‖Kj,V vj‖2 ≥
9

64

∑

k≥−1

‖Kj,V 1
k,h
wk,j‖2 −

3

2
c
(| ln(h)|2h2ν)2

h
‖wk,j‖2 − 2| ln(h)|−2h

1
r−1

−2ν‖wk,j‖2 .

(3.37)

Additionally, one has

‖Kj,V 1
k,h
wk,j‖L2 = ‖K̃j,V 1

k,,h
w̃k,j‖L2 , (3.38)

where the operator K̃j,V 1
k,,h

is given by

K̃j,V 1
k,h

= p∂q − h− 1
2∂qV

1
k,h(h

1
2(r−1) q)∂p +

1

2
(−∆p + p2)

= p∂q − h− 1
2∂qV (qk,h)∂p +

1

2
(−∆p + p2) , (3.39)

and

wk,j(q, p) =
1

h
d

4(r−1)

w̃(
q

h
1

2(r−1)

, p) . (3.40)

Now, in order to absorb the errors in (3.37) we need the following estimates showed in [BNV]
(see (1.3)),

‖K̃j,V 1
k,h
w̃k,j‖2L2 ≥ c‖(h− 1

2 |∂qV (qk,h)|)
2
3 w̃k,j‖2L2 . (3.41)

15



From now on assume j ∈ N. Taking into account (3.7) and (3.41),

‖Kj,V 1
k,h
w̃k,j‖2L2 ≥ c‖(h− 1

2 )
2
3 w̃k,j‖2L2 . (3.42)

Owing to (3.38) and (3.41),

‖Kj,V 1
k,h
wk,j‖2 ≥ c‖(h− 1

2 )
2
3wk,j‖2 . (3.43)

Note that one has Therefore, combining (3.37) and (3.43), there is a constant c > 0 so that

‖Kj,V vj‖2 ≥ c
∑

k≥−1

‖Kj,V 1
k,h
wk,j‖2 . (3.44)

Using once more [BNV] (see (1.2)), there is a constant c > 0 such that

‖K̃j,V 1
k,h
w̃k,j‖2 ≥ c

(
‖Opw̃k,j‖2 + ‖〈Dq〉

2
3 w̃k,j‖2 + ‖〈h− 1

2 |∂qV (qk,h)|〉
2
3 w̃k,j‖2

)
. (3.45)

As a consequence of (3.38) and (3.45),

‖Kj,V 1
k,h
wk,j‖2 ≥ c

(
‖Opwk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3wk,j‖2 + ‖〈h− 1

2 |∂qV (qk,h)|〉
2
3wk,j‖2

)
. (3.46)

By (3.7) and (3.35),

1

2
|∂qV (q)| ≤ |∂qV (qk,h)| ≤

3

2
|∂qV (q)| , (3.47)

holds for all q ∈ supp wk,j and any j large. Then, it follows from (3.47) and (3.46),

‖Kj,V 1
k,h
wk,j‖2 ≥ c

(
‖Opwk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3wk,j‖2 + ‖〈h− 1

2 |∂qV (q)|〉 2
3wk,j‖2

)
. (3.48)

Or in this case, in vue of the (3.7), one has |∂qV (q)| ≥ ǫ2 for all q ∈ supp wk,j. Hence it
results from the above inequality

‖Kj,V 1
k,h
wk,j‖2 ≥ c

(
‖Opwk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3wk,j‖2 + ‖(h− 1

2 )
2
3wk,j‖2 + ‖〈h− 1

2 |∂qV (q)|〉 2
3wk,j‖2

)
.

(3.49)

Furthermore, by continuity of q 7→ |Hess V (q)| on the compact set C, one has for all
q ∈ supp wk,j and any j large

1

4
(h− 1

2 )
4
3 ≥ cH|Hess V (q)| . (3.50)

Then by the above inequality and (3.49), we get

‖Kj,V 1
k,h
wk,j‖2 ≥ c

(
‖Opwk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3wk,j‖2 + ‖(2 +H)

1
2wk,j‖2

+ ‖〈H|Hess V (q)|〉 1
2wk,j‖2 + ‖〈h− 1

2 |∂qV (q)|〉 2
3wk,j‖2

)
, (3.51)

16



for every j ≥ j1 for some j1 ≥ 1 large. Now set

c
(3)
V = max

−1≤j≤j1

[
sup

q∈supp (χjθk,h)

(
〈H|Hess V (q)|〉+ 〈h− 1

2 |∂qV (q)|〉4/3
)

+
(2 +H)

log(2 +H)2
+

3

2
c
(| ln(h)|2h2ν)2

h
+ 2| ln(h)|−2h

1
r−1

−2ν

]
.

Seeing (1.2), we deduce the existence of a constant c > 0 so that

9

64
‖KV 1

k,h
wk,j‖+ (c

(3)
V − 3

2
c
(| ln(h)|2h2ν)2

h
− 2| ln(h)|−2h

1
r−1

−2ν)‖wk,j‖2

≥ c(‖Opwk,j‖2 + ‖〈h
1

2(r−1)Dq〉2/3wk,j‖2 + ‖〈h− 1
2 |∂qV (q)|〉2/3wk,j‖2

+ ‖〈H|Hess V (q)|〉1/2wk,j‖2 + ‖ (2 +H)
1
2

log(2 +H)
wk,j‖2) ,

(3.52)

holds for all −1 ≤ j ≤ j1.

Thus, combining the estimates (3.44), (3.51) and (3.52)

‖Kj,V vj‖2 + c
(4)
V ‖vj‖2 ≥ c

∑

k∈I(ǫ1)

(
‖Opwk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3wk,j‖2 + ‖ (2 +H)

1
2

log(2 +H)
wk,j‖2

+ ‖〈H|Hess V (q)|〉 1
2wk,j‖2 + ‖〈h− 1

2 |∂qV (q)|〉 2
3wk,j‖2

)
,

(3.53)

holds for all j ≥ −1.
In conclusion, in view of (3.33) and (3.53), there is a constant c > 0 such that

‖Kj,V vj‖2 + c
(5)
V ‖vj‖2 ≥ c

∑

k≥−1

(
‖ Op

log(2 +H)
wk,j‖2 + ‖〈h

1
2(r−1)Dq〉

2
3

log(2 +H)
wk,j‖2 + ‖ (2 +H)

1
2

log(2 +H)
wk,j‖2

+ ‖〈H|Hess V (q)|〉 1
2

log(2 +H)
wk,j‖2 + ‖〈h

− 1
2 |∂qV (q)|〉 2

3

log(2 +H)
wk,j‖2

)
,

(3.54)

holds for all j ≥ −1.
Finally setting L(s) = s+1

log(s+1)
for all s ≥ 1, notice that there is a constant c > 0 such

that for all x ≥ 1,

inf
t≥2

x

log(t)
+ t ≥ 1

c
L(x) . (3.55)
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After setting the quantities

Λ1,j =
Op

log(2 +H)
, Λ2,j =

〈H|Hess V (q)|〉1/2
log(2 +H)

, Λ3,j =
〈h− 1

2 |∂qV (q)|〉 2
3

log(2 +H)
,

Λ4,j =
2 +H

log(2 +H)2
, Λ5,j =

〈h
1

2(r−1)Dq〉)
2
3

log(2 +H)
,

we get through the estimate (3.55), for every j, k ≥ −1

‖Λ1,jwk,j‖2L2 +
1

4
‖Λ4,jwk,j‖2L2 ≥ c1‖L(Op)wk,j‖2L2 ,

‖Λ5,jwk,j‖2L2 +
1

4
‖Λ4,jwk,j‖2L2 ≥ c2‖L(〈h

1
2(r−1)Dq〉

2
3 )wk,j‖2L2 ,

‖Λ2,jwk,j‖2L2 +
1

4
‖Λ4,jwk,j‖2L2 ≥ c3‖L(〈H|Hess V (q)|〉 1

2 )wk,j‖2L2 ,

‖Λ3,jwk,j‖2 +
1

4
‖Λ4,jwk,j‖2L2 ≥ c4‖L(〈h− 1

2 |∂qV (q)|〉 2
3 )wk,j‖2L2 .

From the above estimates and (3.54),

‖Kj,V vj‖2 + c
(6)
V ‖vj‖2 ≥ c

∑

k≥−1

(
‖L(Op)wk,j‖2 + ‖L(〈h

1
2(r−1)Dq〉

2
3 )wk,j‖2

+ ‖L(〈H|Hess V (q)|〉 1
2 )wk,j‖2 + ‖L(〈h− 1

2 |∂qV (q)|〉 2
3 )wk,j‖2

)
.

(3.56)

Therefore in view of Lemma 2.5 in [Ben] conjugated by the unitary transformation of the
change of scale,

‖Kj,V vj‖2 + c
(7)
V ‖vj‖2 ≥ c

(
‖L(Op)vj‖2 + ‖L(〈h

1
2(r−1)Dq〉

2
3 )vj‖2

+ ‖L(〈H|Hess V (q)|〉 1
2 )vj‖2 + ‖L(〈h− 1

2 |∂qV (q)|〉 2
3 )vj‖2

)
,

(3.57)

or equivalently

‖KV uj‖2 + c
(7)
V ‖uj‖2 ≥ c

(
‖L(Op)uj‖2 + ‖L(〈Dq〉

2
3 )uj‖2

+ ‖L(〈Hess V (q)〉 1
2 )uj‖2 + ‖L(〈∂qV (q)〉 2

3 )uj‖2
)
, (3.58)

for every j ≥ −1.
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Therefore, combining the last estimate and (3.1), there is a constant CV > 1 so that

‖KV u‖2L2(R2d) + CV ‖u‖2L2(R2d) ≥
1

CV

(
‖L(Op)u‖2 + ‖L(〈Dq〉

2
3 )u‖2

+ ‖L(〈Hess V (q)〉 1
2 )u‖2 + ‖L(〈∂qV (q)〉 2

3 )u‖2
)

(3.59)

holds for all u ∈ C∞
0 (R2d).
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