Mona Ben Said 
email: bensaid@univ-paris13.fr
  
Kramers-Fokker-Planck operators with homogeneous potentials

Keywords: subelliptic estimates, compact resolvent, Kramers-Fokker-Planck operator 35Q84, 35H20, 35P05, 47A10, 14P10

HAL is a

Introduction and main results

In this work we study the Kramers-Fokker-Planck operator K V = p.∂ q -∂ q V (q).∂ p + 1 2 (-∆ p + p 2 ) , (q, p) ∈ R 2d , (1.1)

where q denotes the space variable, p denotes the velocity variable and the potential V (q) is a real-valued function defined in the whole space R d q . Setting O p = 1 2 (D 2 p + p 2 ) , and X V = p.∂ q -∂ q V (q).∂ p ,

the Kramers-Fokker-Planck operator K V defined in (1.1) reads

K V = X V + O p .
We firstly list some notations used throughout the paper. We denote for an arbitrary function

V (q) in C ∞ (R d ) Tr +,V (q) = ν∈Spec(Hess V ) ν>0 ν(q) ,
Tr -,V (q) = -ν∈Spec(Hess V ) ν≤0

ν(q) .

In particular for a polynomial V of degree less than 3, Tr +,V and Tr -,V are two constants.

In this case we define the constants A V and B V by

A V = max{(1 + Tr +,V ) 2/3 , 1 + Tr -,V } , B V = max{min q∈R d |∇ V (q)| 4/3 , 1 + Tr -,V log(2 + Tr -,V ) 2 } .
This work is principally based on the publication by Ben Said, Nier, and Viola [BNV], which concerns the study of Kramers-Fokker-Planck operators with polynomials of degree less than three. In [BNV] we proved the existence of a constant c > 0, independent of V , such that the following global subelliptic estimate with remainder

K V u 2 L 2 (R 2d ) + A V u 2 L 2 (R 2d ) ≥ c O p u 2 L 2 (R 2d ) + X V u 2 L 2 (R 2d ) + ∂ q V (q) 2/3 u 2 L 2 (R 2d ) + D q 2/3 u L 2 (R 2d ) (1.2)
holds for all u ∈ C ∞ 0 (R 2d ). Furthermore, supposing Tr -,V + min

q∈R d
|∇ V (q)| = 0, there exists a constant c > 0, independent of V , such that

K V u 2 L 2 (R 2d ) ≥ c B V u 2 L 2 (R 2d ) , (1.3) 
is valid for all u ∈ C ∞ 0 (R 2d ). As a consequence collecting (1.3) and (1.2) together, there is a constant c > 0, independent of V , so that the global subelliptic estimates without remainder

K V u 2 L 2 (R 2d ) ≥ c 1 + A V B V O p u 2 L 2 (R 2d ) + X V u 2 L 2 (R 2d ) + ∂ q V (q) 2/3 u 2 L 2 (R 2d ) + D q 2/3 u L 2 (R 2d ) (1.4) holds for all u ∈ C ∞ 0 (R 2d ).
Here and throughout the paper we use the notation

• = 1 + | • | 2 .
Moreover we remind that for an arbitrary potential V ∈ C ∞ (R d ), the Kramers-Fokker-Planck operator K V is essential maximal accretive when endowed with the domain C ∞ 0 (R 2d ) (see Proposition 5.5, page 44 in [HeNi]). Thanks to this property we deduce that the domain of the closure of K V is given by

D(K V ) = u ∈ L 2 (R 2d ), K V u ∈ L 2 (R 2d ) .
Resultently, by density of C ∞ 0 (R 2d ) in the domain D(K V ) all estimates written in this article, which are verified with C ∞ 0 (R 2d ) functions, can be extended to D(K V ). By relative bounded perturbation with bound less than 1 , this result holds as well when V ∈ C ∞ (R \ {0}) is an homogeneous function of degree r > 1.

Our results will require the following assumption after setting

S = q ∈ R d , |q| = 1 . (1.5) Assumption 1. The potential V (q) is an homogeneous function of degree r > 2 in C ∞ (R d \ { 0}
) and satisfies:

∀ q ∈ S , ∂ q V (q) = 0 ⇒ Tr -,V (q) > 0 . (1.6)
Our main result is the following.

Theorem 1.1. If the potential V (q) verifies Assumption 1, then there exists a strictly positive constant C V > 1 (which depends on V ) such that

K V u 2 L 2 + C V u 2 L 2 ≥ 1 C V L(O p )u 2 L 2 + L( ∇V (q) 2 3 )u 2 L 2 + L( Hess V (q) 1 2 )u 2 L 2 + L( D q 2 3 )u 2 L 2 , (1.7)
holds for all u ∈ D(K V ) where L(s) = s+1 log(s+1) for any s ≥ 1.

Corollary 1.2. The Kramers-Fokker-Planck operator K V with a potential V (q) satisfying Assumption 1 has a compact resolvent.

Proof. Let 0 < δ < 1. Define the functions f δ : R d → R by

f δ (q) = |∇V (q)| 4 3 (1-δ) + |Hess V (q)| 1-δ .
As a result of (1.7) in Theorem 1.1 there is a constant C V > 1 such that

K V u 2 L 2 + C V u 2 L 2 ≥ 1 C V u, f δ u + L(O p )u 2 L 2 + L( D q 2 3 )u 2 L 2 ,
holds for all u ∈ C ∞ 0 (R 2d ) and all δ ∈ (0, 1). In order to show that the operator K V has a compact resolvent it is sufficient to prove that lim q→+∞ f δ (q) = +∞. It is a matter of how different derivatives scale. Consider the unit sphere S = {q ∈ R d : |q| = 1}. By Assumption (1.6), at every point on S either ∇V = 0 or |Hess V | = 0. Then the function f δ is always positive on S. By hypothesis, f δ is continuous on S and therefore it achieves a positive minimum there, call it m δ > 0.

For any y, |y| > 1 there exists λ > 1 such that y = λq for some q ∈ S. By homogeneity,

V (y) = λ r V y λ = λ r V (q)
and therefore, by the chain rule

|∇V (y)| = λ r-1 |∇V (q)| and |Hess V (y)| = λ d(r-2) |Hess V (q)|.
Adding these up,

|∇V (y)| 4 3 (1-δ) + |Hess V (y)| 1-δ ≥ λ (1-δ) min{ 4 3 (r-1),d(r-2)} f δ (q) ≥ m δ λ (1-δ) min{ 4 3 (r-1),d(r-2)}
which goes to infinity as |y| = λ → ∞, since by assumption r > 2.

Remark 1.3. The result of Corollary does not hold in the case of homogenous polynomial of degree 2 with degenerate Hessian. Indeed, we already know that in this case, the resolvent of the Kramers-Fokker-Planck operator K V is not compact since it is not as so for the Witten Laplacian (cf. Proposition 5.19 and Theorem 10.16 in [HeNi]).

Remark 1.4. Our results are in agreement with the results of Wei-Xi-Li [Li][Li2] and those of Helffer-Nier on Witten Laplacian with homogeneous potential [START_REF] Helffer | Criteria to the Poincare Inequality Associated with Dirichlet Forms in R d , d ≥ 2[END_REF].

2 Observations and first inequalities

Dyadic partition of unity

In this paper, we make use of a locally finite dyadic partition of unity with respect to the position variable q ∈ R d . Such a partition is described in the following Proposition. For a detailed proof, we refer to [BCD] (see page 59).

Proposition 2.1. Let C be the shell x ∈ R d , 3 4 < |x| < 8 3 . There exist radial functions χ and φ valued in the interval [0, 1], belonging respectively to C ∞ 0 (B(0, 4 3 )) and to

C ∞ 0 (C) such that ∀x ∈ R d , χ(x) + j≥0 φ(2 -j x) = 1 , ∀x ∈ R d \ {0} , j∈Z φ(2 -j x) = 1 . Setting for all q ∈ R d , χ -1 (q) = χ(2q) χ 2 (2q) + j ′ ≥0 φ 2 (2 -j ′ q) 1 2 = χ(2q) χ 2 (2q) + φ 2 (q) 1 2 , χ j (q) = φ(2 -j q) χ 2 (2q) + j ′ ≥0 φ 2 (2 -j ′ q) 1 2 if j≤2 = , φ(2 -j q) j-1≤j ′ ≤j+1 φ 2 (2 -j ′ q) 1 2
we get a localy finite dyadic partition of unity

j≥-1 χ 2 j (q) = χ2 -1 (2|q|) + χ2 0 (2|q|) + j≥0 χ 2 (2 -j |q|) = 1 (2.1)
where for all j ∈ N, the cutoff functions χ 0 , χ and χ -1 belong respectively to

C ∞ 0 ( 3 4 , 8 3 ), C ∞ 0 ( 3 4 , 8 3 ) and C ∞ 0 ( 0, 4 3 ). Lemma 2.2. Let V be in C ∞ (R d \ {0}
). Consider the Kramers-Fokker-Planck operator K V defined as in (1.1). For a locally finite partition of unity

j≥-1 χ 2 j (q) = 1 one has K V u 2 L 2 (R 2d ) = j≥-1 K V (χ j u) 2 L 2 (R 2d ) -(p∂ q χ j )u 2 L 2 (R 2d ) , (2.2) for all u ∈ C ∞ 0 (R 2d
). In particular when the cutoff functions χ j have the form (2.1), there exists a uniform constant c > 0 so that

(1 + 4c) K V u 2 L 2 (R 2d ) + c u 2 L 2 (R 2d ) ≥ j≥-1 K V (χ j u) 2 L 2 (R 2d ) , (2.3) holds for all u ∈ C ∞ 0 (R 2d ).
Proof. The proof of the equality (2.2) is detailed in [Ben]. Now it remains to show the inequality (2.3), after considering a locally finite dyadic partition of unity

j≥-1 χ 2 j (q) = 1 , (2.4)
where for all j ∈ N, the cutoff functions χ j and χ -1 are respectively supported in the shell

q ∈ R d , 2 j 3 4 ≤ |q| ≤ 2 j 8 4
and in the ball B(0, 3 4 ). Since the partition is locally finite, for each index j ≥ -1 there are finitely many j ′ such that (∂ q χ j )χ j ′ is nonzero. Along these lines, there exists a uniform constant c > 0 so that j≥-1

(p∂ q χ j )u 2 L 2 = j≥-1 j ′ ≥-1 (p∂ q χ j )χ j ′ u 2 L 2 ≤ c j≥-1 1 (2 j ) 2 pχ j u 2 L 2 , (2.5) holds for all u ∈ C ∞ 0 (R 2d ). On the other hand, for every u ∈ C ∞ 0 (R 2d ), c j≥-1 1 (2 j ) 2 pχ j u 2 L 2 ≤ 4c pu 2 L 2 ≤ 8c Re u, K V u ≤ 4c ( u 2 L 2 + K V u 2 L 2 ) . (2.6)
Collecting the estimates (2.2), (2.5) and (2.6), we establish the desired inequality (2.3).

Localisation in a fixed Shell

Lemma 2.3. Let V (q) be an homogeneous function in C ∞ (R d \ {0}) of degree r and assume

j ∈ Z. Given u j ∈ C ∞ 0 (R 2d ), one has K V u j L 2 (R 2d ) = K j,V v j L 2 (R 2d ) ,
where the operator K j,V is defined by

K j,V = 1 2 j p∂ q -(2 j ) r-1 ∂ q V (q)∂ p + O p , (2.7) and v j (q, p) = 2 jd 2 u j (2 j q, p). In particular when u j is supported in q ∈ R d , 2 j 3 4 ≤ |q| ≤ 2 j 8 3 , the support of v j is a fixed shell C = q ∈ R d , 3 4 ≤ |q| ≤ 8 3 . Proof. Let j ∈ Z be an index. Assume u j ∈ C ∞ 0 (R 2d
) and state v j (q, p) = 2 jd 2 u j (2 j q, p) .

(2.8)

On the grounds that the function V is homogeneous of degree r we deduce that respectively its gradient ∂ q V (q) is homogeneous of degree r -1. As follows, we can write

K V u j (q, p) = K V 2 -jd 2 v j (2 -j q, p) = 2 -jd 2 (2 -j p∂ q -(2 j ) r-1 ∂ q V (q)∂ p + O p )v j (2 -j q, p) . Notice that if supp u j ⊂ q ∈ R d , 2 j 3 4 ≤ |q| ≤ 2 j 8 3 ,
the cutoff functions v j , defined in (2.8), are all supported in the fixed shell

C = q ∈ R d , 3 4 ≤ |q| ≤ 8 3 .
Remark 2.4. Assume j ∈ N. If we introduce a small parameter h = 2 -2(r-1)j then the operator K j,V , defined in (2.7), can be rewritten as

K j,V = 1 h √ hp(h 1 2 + 1 2(r-1) ∂ q ) - √ h∂ q V (q)∂ p + h 2 (-∆ p + p 2 ) .
Now owing to a dilation with respect to the velocity variable p, which for ( √ hp, √ h∂ p ) associates (p, h∂ p ), we deduce that the operator K j,V is unitary equivalent to

K j,V = 1 h p(h 1 2 + 1 2(r-1) ∂ q ) -∂ q V (q)h∂ p + 1 2 (-h 2 ∆ p + p 2 ) .
In particular, taking r = 2,

K j,V = 1 h p(h∂ q ) -∂ q V (q)h∂ p + 1 2 (-h 2 ∆ p + p 2 ) ,
is clearly a semiclassical operator with respect to the variables q and p. However if r > 2, the operator K j,V is semiclassical only with respect to the velocity variable p (since h 1 2 + 1 2(r-1) > h). For a polynomial V (q), the case r = 2 corresponds to the quadratic situation. Extensive works have been done concerned with this case (see [Hor][HiPr] [Vio][Vio1][AlVi] [BNV]).

Proof of the main result

In this section we present the proof of Theorem 1.1.

Proof. In the whole proof we denote

C = q ∈ R d , 3 4 ≤ |q| ≤ 8 3 . Assume u ∈ C ∞ 0 (R 2d
) and consider a localy finite dyadic partition of unity defined as in (2.1). By Lemma 2.2 (see (2.3)), there is a uniform constant c such that

(1 + 4c) K V u 2 L 2 (R 2d ) + c u 2 L 2 (R 2d ) ≥ j≥-1 K V u j 2 L 2 (R 2d ) . (3.1)
where we denote u j = χ j u. We obtain by Lemma 2.3 and the estimate (3.1)

(1 + 4c) K V u 2 L 2 (R 2d ) + c u 2 L 2 (R 2d ) ≥ j≥-1 K j,V v j 2 L 2 (R 2d ) , (3.2) 
where the operator

K j,V = 1 2 j p∂ q -(2 j ) r-1 ∂ q V (q)∂ p + O p ,
and v j (q, p) = 2 jd 2 u j (2 j q, p) . Setting h = 2 -2(r-1)j , one has

K j,V = p(h 1 2(r-1) ∂ q ) -h -1 2 ∂ q V (q)∂ p + 1 2 (-∆ p + p 2 ) . Now, fix ν > 0 such that max( 1 6 , 1 8 + 3 8(r -1) ) < ν < 1 4 + 1 4(r -1)
.

(3.3) Such a choice is always possible:

• In the case r ≥ 10, max( 1 6 , 1 8 + 3 8(r-1) ) equals 1 6 while 1 4 + 1 4(r-1) is always greater than 1 4 . So we can choose a value ν independent of r between 1 6 and 1 4 . • in the case 2 < r < 10, max( 1 6 , 1 8 + 3 8(r-1) ) equals 1 8 + 3 8(r-1) < 1 4 + 1 4(r-1) . Hence, we can choose for example ν = 3 16 + 5 16(r-1) .

Taking ν > 0, satisfying (3.3), we consider a locally finite partition of unity with respect to q ∈ R d given by k≥-1

(θ k,h (q)) 2 = k≥-1 θ( 1 | ln(h)|h ν q -q k ) 2 = k≥-1 θ( 1 | ln(h)|h ν (q -q k,h ) 2 = 1 , where for any index k q k,h = | ln(h)|h ν q k , supp θ k,h ⊂ B(q k,h , | ln(h)|h ν ) , θ k,h ≡ 1 in B(q k,h , 1 2 | ln(h)|h ν ) .
Using this partition we get through Lemma 2.2 (see (2.2)),

K j,V v j 2 L 2 ≥ k≥-1 K j,V θ k,h v j 2 L 2 -| ln(h)| -2 h 1 r-1 -2ν pθ k,h v j 2 L 2 . (3.4)
In order to reduce the written expressions we denote in the whole of the proof

w k,j = θ k,h v j .
Taking into account (3.4),

K j,V v j 2 L 2 ≥ k≥-1 K j,V w k,j 2 L 2 -| ln(h)| -2 h 1 r-1 -2ν w k,j L 2 K j,V w k,j L 2 ≥ k≥-1 3 4 K j,V w k,j 1 r-1 -2ν w k,j 2 L 2 . (3.5)
Notice that in the last inequality we simply use respectively the fact that

pw k,j 2 L 2 ≤ 2Re w k,j , K j,V w k,j ≤ w k,j L 2 K j,V w k,j L 2
, and the Cauchy inequality with epsilon ( ab ≤ ǫa 2 + 1 4ǫ b 2 ). From now on, set

K 0 = q ∈ C , ∂ q V (q) = 0 .
Clearly, by continuity of the map q → ∂ q V (q) on the shell C (which is a compact set of R d ), we deduce the compactness of K 0 .

Since q → Tr -,V (q) 1+Tr +,V (q) is uniformly continuous on any compact neighborhood of K 0 , there exists ε 1 > 0 such that

d(q, K 0 ) ≤ ǫ 1 ⇒ Tr -,V (q) 1 + Tr +,V (q) ≥ ǫ 0 2 , (3.6)
where ǫ 0 := min q∈K 0

Tr -,V (q) 1+Tr +,V (q) . On the other hand, in vue of the definition of K 0 and by continuity of q → ∂ q V (q) on C, there is a constant ǫ 2 > 0 (that depends on ǫ 1 ) such that

∀ q ∈ C , d(q, K 0 ) ≥ ǫ 1 ⇒ |∂ q V (q)| ≥ ǫ 2 . (3.7) Now let us introduce Σ(ǫ 1 ) = {q ∈ C , d(q, K 0 ) ≥ ǫ 1 } , I(ǫ 1 ) = {k ∈ Z , supp θ k,h ⊂ Σ(ǫ 1 )} .
In order to establish a subelliptic estimate for K j,V , we distinguish the two following cases.

Case 1 k ∈ I(ǫ 1 ). In this case the support of the cutoff function θ k,h might intercect the set of zeros of the gradient of V.

Case 2 k ∈ I(ǫ 1 ). Here the gradient of V does not vanish for all q in the support of θ k,h .

The idea is to use, in the suitable situation, either quadratic or linear approximating polynomial V near some q ′ k,h ∈ supp θ k,h to write

k≥-1 K j,V w k,j 2 
L 2 ≥ 1 2 k≥-1 K j, V w k,j 2 L 2 -(K j,V -K j, V )w k,j 2 L 2 ,
or equivalently

k≥-1 K j,V w k,j 2 L 2 ≥ 1 2 k≥-1 K j, V w k,j 2 L 2 - 1 √ h (∂ q V (q) -∂ q V (q))∂ p w k,j 2 L 2 . (3.8)
Then based on the estimates written in [BNV], which are valid for the operator K V , we deduce a subelliptic estimate for K V , after a careful control of the errors which appear in (3.5) and (3.8).

Case 1. In this situation, we use the quadractic approximation near some element

q ′ k,h ∈ supp θ k,h ∩ (R d \ Σ(ǫ 1 )), V 2 k,h (q) = |α|≤2 ∂ α q V (q ′ k,h ) α! (q -q ′ k,h ) α .
Notice that one has for all q ∈ R d ,

|V (q) -V 2 k,h (q)| = O(|q -q ′ k,h | 3 ) . (3.9)
Accordingly, for every q in the support of w k,j ,

|∂ q V (q) -∂ q V 2 k,h (q)| = O(|q -q ′ k,h | 2 ) = O(| ln(h)| 2 h 2ν ) .
(3.10)

Combining (3.8) and (3.10), there is a constant c > 0 such that k≥-1

K j,V w k,j 2 L 2 ≥ 1 2 k≥-1 K j,V 2 k,h w k,j 2 L 2 -c (| ln(h)| 2 h 2ν ) 2 h ∂ p w k,j 2 L 2 ≥ 1 2 k≥-1 K j,V 2 k,h w k,j 2 L 2 -c (| ln(h)| 2 h 2ν ) 2 h w k,j L 2 K j,V 2 k,h w k,j L 2 ≥ 3 16 k≥-1 K j,V 2 k,h w k,j 2 L 2 -2c (| ln(h)| 2 h 2ν ) 2 h w k,j 2 L 2 .
(3.11) Putting (3.5) and (3.11) together,

K j,V v j 2 ≥ 9 64 k≥-1 K j,V 2 k,h w k,j 2 - 3 2 c (| ln(h)| 2 h 2ν ) 2 h w k,j 2 -2| ln(h)| -2 h 1 r-1 -2ν w k,j 2 .
(3.12)

On the other hand, owning to a change of variables q" = qh 1 2(r-1) , one can write

K j,V 2 k,h w k,j L 2 = K j,V 2 k,h w k,j L 2 , (3.13)
where the operator K j,V 2 k,h reads

K j,V 2 k,h = p∂ q -h -1 2 ∂ q V 2 k,h (h 1 2(r-1) q)∂ p + 1 2 (-∆ p + p 2 ) = p∂ q -h -1 2 + 1 2(r-1) =:H ∂ q V 2 k,h (q)∂ p + 1 2 (-∆ p + p 2 ) , and 
w k,j (q, p) = 1 h d 4(r-1) w( q h 1 2(r-1) , p) .
In the rest of the proof we denote -1) .

H = h -1 2 h 1 2(r
From now on assume j ∈ N. In view of (3.6), Tr -,V 2 k,h = Tr -,V (q ′ k,h ) = 0. Hence by (1.3),

K j,V 2 k,h w k,j 2 
L 2 ≥ c 1 + HTr -,V 2 k,h log(2 + HTr -,V 2 k,h ) 2 w k,j 2 L 2 . (3.14)
Or samely

K j,V 2 k,h w k,j 2 
L 2 ≥ c 1 + HTr -,V (q ′ k,h ) log(2 + HTr -,V (q ′ k,h )) 2 w k,j 2 L 2 . (3.15) Using once more (3.6), Tr -,V (q ′ k,h ) ≥ ǫ 0 2 (1 + Tr +,V (q ′ k,h )) , (3.16) 
where we remind that ǫ 0 = min q∈K 0

Tr -,V (q) 1+Tr +,V (q) . Consequently

|Hess V (q ′ k,h )| ≥ Tr -,V (q ′ k,h ) ≥ ǫ 0 2 , (3.17) and Tr -,V (q ′ k,h ) ≥ 1 2 Tr -,V (q ′ k,h ) + ǫ 0 4 (1 + Tr +,V (q ′ k,h )) ≥ 1 2 min(1, ǫ 0 2 )(Tr -,V (q ′ k,h ) + Tr +,V (q ′ k,h )) ≥ 1 2 min(1, ǫ 0 2 )|Hess V (q ′ k,h )| . (3.18)
Furthermore by continuity of the map q → Tr -,V (q) on the compact set C, there exists a constant ǫ 3 > 0 such that Tr -,V (q) ≤ ǫ 3 for all q ∈ C. Hence

ǫ 0 2 ≤ Tr -,V (q ′ k,h ) ≤ ǫ 3 . (3.19)
From (3.15), (3.18) and (3.19),

K j,V 2 k,h w k,j 2 
L 2 ≥ c H log(H) 2 w k,j 2 L 2 .
It follows from the above inequality and (3.13),

K j,V 2 k,h w k,j 2 L 2 ≥ c H log(H) 2 w k,j 2 L 2 .
(3.20)

Now using the estimate (3.20), we should control the errors coming from the partition of unity and the quadratic approximation. For this reason, notice that our choice of exponent ν in (3.3) implies

(| ln(h)| 2 h 2ν ) 2 h ≪ H log(H) 2 | ln(h)| -2 h 1 r-1 -2ν ≪ H log(H) 2 .
As a result, collectting the estimates (3.12) and (3.20), we deduce the existence of a constant c > 0 such that

K j,V v j 2 L 2 ≥ c k≥-1 K j,V 2 k,h w k,j 2 L 2 . (3.21)
Via (1.2), there is a constant c > 0 so that

K j,V 2 k,h w k,j 2 + (1 + 10c)H|Hess V (q ′ k,h )| w k,j 2 ≥ c O p w k,j 2 + D q 2 3 w k,j 2 + H|Hess V (q ′ k,h )| w k,j 2 .
(3.22)

Hence using the reverse change of variables q" = q h 1 2(r-1)

, we obtain in view of the above estimate and (3.13),

K j,V 2 k,h w k,j 2 + (1 + 10c)H|Hess V (q ′ k,h )| w k,j 2 ≥ c O p w k,j 2 + h 1 2(r-1) D q 2 3 w k,j 2 + H|Hess V (q ′ k,h )| w k,j 2 .
(3.23)

Or by (3.18) and (3.19),

ǫ 0 2 ≤ |Hess V (q ′ k,h )| ≤ 2ǫ 3 min(1, ǫ 0 2 ) , (3.24) 
Putting (3.23) and (3.24) together, there is a constant c > 0 so that

K j,V 2 k,h w k,j 2 + H w k,j 2 ≥ c O p w k,j 2 + h 1 2(r-1) D q 2 3 w k,j 2 + H w k,j 2 + H|Hess V (q ′ k,h )| 1 2 w k,j 2 .
(3.25)

On the other hand, for all q ∈ supp w k,j ,

|Hess V (q) -Hess V (q ′ k,h )| = O(|q -q ′ k,h |) = O(| ln(h)|h ν ) (3.26)
Therefore by (3.24) and (3.26), we obtain for every q ∈ supp w k,j and all j sufficiently large.

1 2 |Hess V (q ′ k,h )| ≤ |Hess V (q)| ≤ 3 2 |Hess V (q ′ k,h )| . (3.27)
From (3.25) and (3.47), there exists a constant c > 0 so that

K j,V 2 k,h w k,j 2 + H w k,j 2 ≥ c O p w k,j 2 + h 1 2(r-1) D q 2 3 w k,j 2 + H w k,j 2 + H|Hess V (q)| 1 2 w k,j 2 , (3.28)
is valid for all j large enough. Furthermore, by continuity of the map q → |∂ q V (q)| 4 3 on the fixed shell C, for all q ∈ supp w k,j

1 4 H ≥ c |h -1 2 ∂ q V (q)| 4 3 , (3.29)
holds for all j sufficiently large.

In such a way, considering (3.28) and (3.29)

K j,V 2 k,h w k,j 2 + (2 + H) w k,j 2 ≥ c O p w k,j 2 + h 1 2(r-1) D q 2 3 w k,j 2 + (2 + H) w k,j 2 + (H|Hess V (q)|) 1 2 w k,j 2 + h -1 2 |∂ q V (q)| 2 3 w k,j 2 .
(3.30)

+ H|Hess V (q)| 1 2 log(2 + H) w k,j 2 + h -1 2 |∂ q V (q)| 2 3 log(2 + H) w k,j 2 , (3.33)
is valid for every j ≥ -1.

Case 2. We consider in this case the linear approximating polynomial

V 1 k,h (q) = |α|=1 ∂ α q V (q k,h ) α! (q -q k,h ) α .
Note that for any q ∈ R d ,

|V (q) -V 1 k,h (q)| = O(|q -q k,h | 2 ) , (3.34) 
and for every q ∈ supp w k,j , 

|∂ q V (q) -∂ q V 1 k,h (q)| = O(|q -q k,h |) = O(| ln(h)|h ν ) . ( 3 
K j,V w k,j 2 ≥ 1 2 k≥-1 K j,V 1 k,h w k,j 2 -c (| ln(h)|h ν ) 2 h ∂ p w k,j 2 ≥ 1 2 k≥-1 K j,V 1 k,h w k,j 2 -c (| ln(h)|h ν ) 2 h w k,j K j,V 1 k,h w k,j ≥ 3 16 k≥-1 K j,V 1 k,h w k,j 2 -2c (| ln(h)|h ν ) 2 h w k,j 2 .
(3.36) Assembling (3.5) and (3.36),

K j,V v j 2 ≥ 9 64 k≥-1 K j,V 1 k,h w k,j 2 - 3 2 c (| ln(h)| 2 h 2ν ) 2 h w k,j 2 -2| ln(h)| -2 h 1 r-1 -2ν w k,j 2 .
(3.37)

Additionally, one has (3.38) where the operator K j,V 1 k,,h is given by

K j,V 1 k,h w k,j L 2 = K j,V 1 k,,h w k,j L 2 ,
K j,V 1 k,h = p∂ q -h -1 2 ∂ q V 1 k,h (h 1 2(r-1) q)∂ p + 1 2 (-∆ p + p 2 ) = p∂ q -h -1 2 ∂ q V (q k,h )∂ p + 1 2 (-∆ p + p 2 ) , (3.39) 
and w k,j (q, p) = 1 h d 4(r-1) w( q h 1 2(r-1) , p) .

(3.40)

Now, in order to absorb the errors in (3.37) we need the following estimates showed in [BNV] (see (1.3)),

K j,V 1 k,h w k,j 2 
L 2 ≥ c (h -1 2 |∂ q V (q k,h )|) 2 3 w k,j 2 L 2 .
(3.41) (3.54) holds for all j ≥ -1.

+ H|Hess V (q)| 1 2 log(2 + H) w k,j 2 + h -1 2 |∂ q V (q)| 2 3 log(2 + H) w k,j 2 ,
Finally setting L(s) = s+1 log(s+1) for all s ≥ 1, notice that there is a constant c > 0 such that for all x ≥ 1, , Λ 2,j = H|Hess V (q)| 1/2 log(2 + H) , Λ 3,j = h -1 2 |∂ q V (q)| Therefore, combining the last estimate and (3.1), there is a constant C V > 1 so that

K V u 2 L 2 (R 2d ) + C V u 2 L 2 (R 2d ) ≥ 1 C V L(O p )u 2 + L( D q 2 
3 )u 2 + L( Hess V (q)

1 2 )u 2 + L( ∂ q V (q)

2 3 )u 2 (3.59) holds for all u ∈ C ∞ 0 (R 2d ). Acknowledgement I would like to thank my supervisor Francis Nier for his support and guidance throughout this work.

 (3.31)holds for all j ≥ j 0 , for some j 0 ≥ 1 large enough. Now let us collect the finite remaining terms for -1 ≤ j ≤ j 0 . After recalling h = 2 -j and

From the lower bound (1.2), we deduce the existence of a constant c > 0 so that

V - (3.32) holds for all -1 ≤ j ≤ j 0 . Finally, collecting (3.21), (3.31) and (3.32),

From now on assume j ∈ N. Taking into account (3.7) and (3.41),

Owing to (3.38) and (3.41),

Note that one has Therefore, combining (3.37) and (3.43), there is a constant c > 0 so that

Using once more [BNV] (see (1.2)), there is a constant c > 0 such that

As a consequence of (3.38) and (3.45),

holds for all q ∈ supp w k,j and any j large. Then, it follows from (3.47) and (3.46),

Or in this case, in vue of the (3.7), one has |∂ q V (q)| ≥ ǫ 2 for all q ∈ supp w k,j . Hence it results from the above inequality

(3.49) Furthermore, by continuity of q → |Hess V (q)| on the compact set C, one has for all q ∈ supp w k,j and any j large

Then by the above inequality and (3.49), we get

for every j ≥ j 1 for some j 1 ≥ 1 large. Now set c

(3)

Seeing (1.2), we deduce the existence of a constant c > 0 so that

V -

holds for all -1 ≤ j ≤ j 1 . Thus, combining the estimates (3.44), (3.51) and (3.52) (3.53) holds for all j ≥ -1.

In conclusion, in view of (3.33) and (3.53), there is a constant c > 0 such that

From the above estimates and (3.54),

3 )w k,j 2 .

(3.56)

Therefore in view of Lemma 2.5 in [Ben] conjugated by the unitary transformation of the change of scale, (3.57) or equivalently

3 )u j 2 + L( Hess V (q)

1 2 )u j 2 + L( ∂ q V (q)

2 3 )u j 2 , (3.58) for every j ≥ -1.