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In the paper, we investigate the controllability of crystallization processes by reachability analysis. Crys-
tallization processes are governed by hyperbolic partial differential equations. Given a desired crystal
size distribution, we study its reachability by the temperature control from the initial condition without
seeding. When the desired crystal size distribution is reachable, we construct an admissible control steer-

ing the state to the desired distribution. Our construction is developed based on the discretized model. To
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ensure that the desired distribution be reached facing model uncertainty, we propose an output feedback
control law to correct errors resulted from disturbed parameters of the model.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In many industries, crystallization is the most common way
for producing high value chemicals with high purity, desired sizes
and desired shapes. It is usually used by separation and purifica-
tion processes in pharmaceutical, chemical and food industries. The
mathematical description of crystallization processes is essentially
based on the population balance equations (PBE), coupled with
integral differential algebraic equations. The obtained dynamical
models are described by a first order partial differential equation
(PDE) in which the important state variable, crystal size distribution
(CSD), depends on both time and crystal size. The CSD determines
the quality of the crystallization products, and it also affects the
production efficiency of the subsequent products when the crys-
tallization products are the semi-products. Hence we have for the
main objective to develop a method of controlling the crystallizer
state to obtain the desired CSD. In the present work, our study is
focused on the batch cooling crystallization.

Recently many control problems have been investigated for
batch cooling crystallization (cf. [1,2]). Among these studies, two
main directions have been identified: the first is based on the
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robustness analysis, which mainly deals with the impact of distur-
bances and model uncertainty on the quality of control strategies
(see [3,4]); the second is the optimization approach, which stud-
ies and optimizes some crystallization property factors such as the
mean crystal size, the ratio between nucleated crystal mass and
seed crystal mass (see [5-7]). Meanwhile the two approaches have
been combined together to solve the optimization problem facing
model uncertainty (see [8,9]).

To design a control scheme for a given system, studying con-
trollability is an important step. The controllability analysis is a
necessary expedient to the control design and may help us to
develop wise control strategies. However there exist few studies on
the controllability of crystallization processes. In [10], Semino and
Ray have investigated the controllability of the PBE and demon-
strated some controllability results for a continuous crystallizer
controlled by using feed concentration without constraint. In [11]
the controllability of the feed-batch Draft-Tube crystallizer has
been examined by using the evaporation of solvent. Vollmer and
Raisch have tackled the controllability problem of batch crystal-
lization with a system inversion approach and gave a feed-forward
control [12]. Their approach consists to work essentially on a
finite-dimensional moment model. The approach that we con-
sider here is essentially based on the method of characteristics
for the hyperbolic PDE model. We have been inspired by the
work of Li and Rao [13]. Therefore the controllability problem
remains an interesting and open problem for general crystallization
processes.
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The present paper deals with the controllability of a batch cool-
ing crystallization process using the temperature control. We like to
know if a given crystal size distribution is reachable by the tempera-
ture control. When the desired crystal size distribution is reachable,
we like to know how to construct an admissible temperature con-
trol strategy steering the state to the desired distribution. To do so,
we use the reachability analysis carried out in the first step, and
we are able to plan a temperature control trajectory to achieve the
defined objective. The control design resorts to a feedback control
scheme obtained by the reachability analysis. Furthermore another
feedback control law is added to the closed-loop system to compen-
sate the model uncertainties. To make possible the application of
our feedback control laws, we provide a simple high-gain observer
to estimate the zeroth moment which is an unknown quantity of
the control laws.

The paper is organized as follows. In Section 2, the batch crys-
tallization model will be presented. Section 3 gives a discretized
model with the method of characteristics (MOC). In Section 4,
the reachability of desired CSD for a batch cooling crystalliza-
tion will be studied. Based on the reachability analysis, feedback
control laws will be proposed, by taking into account nucleation
parameter uncertainty, to achieve targeted CSD facing perturbed
parameters. To realize the proposed feedback control, a high gain
observer is designed to estimate the zeroth moment which is an
unknown quantity of the control law. In Section 6, numerical sim-
ulation results will be presented to illustrate the performances of
the proposed control strategies. The last section is devoted to our
conclusions.

2. Dynamical models of batch crystallization

The considered model is based on the ideal batch cooling crys-
tallizer on supersaturation, where breakage and aggregation of
crystals are neglected [14,15]. The growth rate is assumed to be
independent of crystal size according to the McCabe hypothesis
[15]. The model is governed by the following population balance
equation

on(x,t)

on(x, t) 2
o + G(t) p =0, (x,t)eR2, (1)
with initial and boundary conditions:
n(x, 0) = no(x) (2)
 Ry(t)
n(O, t) - Wv (3)

where n(x, t), Ry(t), G(t), x and t represent crystal size density,
nucleation rate, growth rate, crystal size and time, respectively.
The growth rate is independent of crystal size and given by:

M

2, Kenl(€(0) = Goar(D), (4)

G(t) =
where Ms, ps and J are molar mass of crystal, density of the solute of
crystal and constant exponent, respectively. The variables C(t) and
Csqr(t) represent the solute concentration and saturated solute con-
centration, respectively. 77 denotes the effectiveness factor relating
the actual mass flux of solid integrated in the crystal structure to the
maximum theoretical flux that would be integrated in the absence
of diffusive limitation [16]. The variable 7 is the solution of the
following equation

Kc

(€O = Coar ) 49" 1 =0, (5)
d

where K, and K. are positive constants, denoting global mass trans-
fer coefficient and growth coefficient, respectively. The variable

Csqr(t) is a function of the crystallizer temperature and defined by
Van't Hoff formula (see [14,17])

—AHf
GCsat(t) = asar €Xp m s (6)

where asqt, AHy, R and T(t) are the saturation constant, the fusion
enthalpy, the universal constant of perfect air and the crystallizer
temperature, respectively.

In the batch crystallizer, the total mole of solute in the suspen-
sion is constant. According to the mole balance, the variable C(t) is
given by the algebraic relation

_ (1 —(Ms/ ps)Cs(0))C(0) + C5(0) — Gs(t)
1 — (Ms/ps)Cs(t) '

The variable Cs(t) is the concentration of solid in the suspension
defined by

C(t) (7)

Cs(t)z%/ x3n(x, t)dx, (8)
s Jo

where K, is the shape factor. When the crystal is assumed to be
spherical, K, is equal to 7r/6. We notice that, at supersaturated state,
C(t) > Csqe(t) and hence growth rate G(t) is always positive and 7 € (0,
1). Given ((t) and given Csq(t), n can be computed by solving (5).

The nucleation rate R,(t) can be expressed as sum of primary
nucleation Ry, (t) and secondary nucleation Rp,(t) (see [18] and
[14]), i.e.

Rn(t) = Rn, (t) 4 Rn, (). 9)

The primary nucleation part is given by

—bn
R, (t) = an, exp (1) , (10)
In®(C(£)/ Coat(£))
and represents the kinetics of the crystal formation when no crystal
is inserted into the solution, where a,, and by, are primary nuclea-
tion constant parameters. The secondary nucleation part is given
by

Ry (£) = Kny (C(t) — Csae (£))n2 Cy(£ )2, (11)

and represents the kinetics of the crystal formation attributable to
the influence of the existing crystals in the solution, where K, , I;»
and J,,; are the secondary nucleation parameters which are positive
constants.

The heat balance is described by

3
S om0 — Ay D a1y, a2)
i=1

where Cpq, Cp, and Cps are the molar heat capacity of the solid,
solute in the solution and the solvent, respectively, ny, n, and n3
denote the mole number of the solid, solute in the solution and
the solvent, respectively, and AHc, Vr, U, A and T; are crystalliza-
tion enthalpy, the total suspension volume, the overall heat transfer
coefficient, contact surface through the jacket wall and jacket tem-
perature, respectively. In practice, the jacket temperature Tj(t) is
considered as control variable for the process.

The CSD can be also characterized by its moments:

p,i(t):/ xin(x, t)dx, i=0,1,2,.... (13)
0

The moments from zero order to third order represent the total
number, the total size, the total surface and the total volume of the
crystals per unit volume of suspension, respectively.
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By differentiating these moments, we obtain the following ODE
system:

WO _ ictoyia(n), i=1,2,... a4
dpolt) _

where G(t) and Ry(t) have been defined in (4) and (9).

Since these equations form a closed system, we can compute the
dynamic evolution of the system with the energy balance and the
molar balance. In particular, the system (14) and (15) fori=1, 2, 3
is decoupled from the rest.

The control strategy is elaborated based on cooling the crys-
tallizer temperature to obtain the supersaturation such that the
nucleation and growth of the crystals take place. Hence, we assume
that the jacket temperature Tj(t) is our control input variable and
that T¢r(t), C(t), Cs(t) are our measurable output variables [1]. The
controlled output is the crystal size distribution n(x, t).

3. Discretized model

Much effort has been invested to develop appropriate numer-
ical schemes for crystallization process simulation. Among these
numerical techniques, we can cite: the moment method which con-
sists, by finding a condition of closure, to solve the moments system
and to reconstruct the crystal size distribution [19-21]; the finite
difference method which consists to approximate the continuous
system by discrete system and to study the variation of the state
variable at each node [14]; the finite volume method which stud-
ies the conservation law of each discretized volume instead of the
node [22]; the finite element method which approximates the solu-
tion of the PDE with piecewise low order polynomials [23]; and the
method of characteristics studying the variation of the state vari-
able along the characteristic curves and proposing a discretization
strategy based on the finite differences method [24].

Among these methods, the finite differences method (FDM) is
widely used to simulate such processes. The advantages of this
method are that it is easy to implement and that we get directly
a nice structure from the discretized model. However, the main
disadvantage is that we need numerous meshes to get an accurate
numerical simulation. Furthermore, a finer mesh will increase the
computational time and numerical oscillations which may affect
the solution accuracy and the schema stability [25,26]. Hence, to
eliminate these problems, we choose the method of characteristics
(MOC) [13,24].

3.1. Method of characteristics

The model described by the PBE is discretized by the method
of characteristics as presented in [27] and [24]. From the defini-
tion, along a characteristic curve the total derivative of n(x, t) with
respect to t is given by
dn(x,t) On(x,t) On(x,t)d

n(x ): n(x )+ n(x )7x' (16)
dt ot ox dt

Since the characteristic curve defined in xt-plane satisfies the rela-

tion dx/dt=G(t) and from Eq. (1), the variation of n(x, t) along the
characteristics curve is given by

d

n(x,t) _ on(x, t) N on(x, t)G
dt ot ox

Hence, the variation of n(x, t) along a characteristics curve is

reduced to two ordinary differential equations

dn(x, t)
dt

(t)=0.

-0 (17)

Kiz Kl Xi Kt

Fig. 1. The method of characteristics in xt-plane.

dx
T G(t). (18)
Since the growth rate G(t) is independent of x, the characteristic
curves are parallel along the direction of x in the xt-plane. Hence,
the crystal size is discretized with the fixed step Ax, and the mesh
is created so that the characteristics curves meet mesh nodes at
every time step. Consequently, the problem is reduced to find the
time step At;_; beginning at t;_; as illustrated in Fig. 1.

Let X={Xq, X1, X2, ..., Xy} denote the discrete size set and let fi(t;)
be the discretized state

ﬁ(tj) = [n(X(), tj)i n(X] s t])7 M) n(XN, t])]T

We assume that xy is equal to or greater than the biggest crys-
tal size during the process, the crystal is formed at neglected size
(i.e. X9=0), and Vx;, x;_1 €X, a fixed step Ax=x; —x;_1 is used to
discretize the crystal size between 0 and xy. Then the discretized
model is described by

fi(t;) = Afi(t; 1)+BR”(tf') (19)
] 1= G(f])’
where
ro ... .. ... 07
1
1 0
A =|p , B=|.
' 20
s . (20)
0 0 1 0 1 0|
- JjAX 1
. gt / 1 g
4 T J o1y ax GEE)

In the discretized model, the concentration of solid Cs in (8) is
obtained by trapezoidal numerical integration as follows

N-1
Kyps Ax
Co(l) = =50 > (xPnes )+ X, i ). 21)
i=0

Notice that, as drawnin Fig. 1, the CSD is constant along the diagonal
mesh nodes or n(x;, tj)=n(x;_1, tj_1 ). The time equation (20) can be
solved by using the following moment equations

dt 1 dus dua duq duo  Ru(t)
= _— = = =2 _— = _— = . 22
& -Cn dx oM g T T TR TR T Tm (22)
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Table 1

Parameters used in the simulations.
Parameter Unit Value
M; kg - mol~! 146.14 x 103
Ds kg-m—3 1360
Vr m? 03 %1073
] Dimensionless 2.00
K mol'.m¥-2.5-1 1.57 x 102
Ky m-s~! 0.85x 1073
K, Dimensionless /6
an, [nb]-m—3.s! 1.5 x 10'?
bn, Dimensionless 1.063

3(Iny +Iny —1)

Kn, [ni]. r::) ](’nz an) 1.44 x 103
In, Dimensionless 1.968
Jn, Dimensionless 1
Asar mol-m~3 7.492 x 106
R J-K=1.mol-! 8.314
AHj J-mol™! 32,424.6
AHc J-mol-! —48, 000
Cp, J-K=1.mol! 372
Cp, J-K~'-mol-! 75.33
Cp, J-K~'-mol! 75.33
U W.m2.K! 1000
A m? 2.2x1072

3.2. Parameter sensitivity

In practice, the nucleation parameters and the growth param-
eters are obtained from experimental results in the ideal
environment condition. However the parameters of nucleation
kinetic are sensitive to the environment and hence it is difficult
to accurately measure the nuclei number and consequently the
parameters are known with uncertainty. Therefore it is necessary
to analyze the influence of these parameters. To do so, we sim-
ulate the process with different nucleation parameters denoted
0 = [an,, bn,, Kn,, In, ]. The three cases §,0+10%6 and 6 — 10% 6 are
considered, respectively. The parameters used in the simulation are
summarized in Table 1.

The evolutions of the nucleationrate and the final CSD are shown
in Figs. 2 and 3, respectively. From the numerical simulations it is
seen that the nucleation rate is highly sensitive to the variation of
the nucleation parameters, hence the disturbance in these param-
eters greatly affects the final CSD. In conclusion, the control design
for the crystallization process must take into account the nucleation
parameter uncertainties.

x 107
12} n J——
[N

— 1 - = =0+10%06
«? 10F (] - = 0-10%6
B i i
) L
é 8r [
= 1o
-
g£° o
= ! 1
8 ab [ i
8 ro
g b
Z ot i \

! |

! \

i \ e -~ \ ,

0 200 400 600 800 1000 1200
time t (s)

Fig. 2. Evolution of the nucleation rate with different nucleation parameters.

33(]0
A —0
- - - 0+10%0
2.5¢ e
1 - = 6-10%8

density of population ([nb]/m/m3)
n

0 05 1 1.5 2
size (m) x10™

Fig. 3. Final CSD with different nucleation parameters.

4. Reachability analysis of the batch cooling crystallization

Without loss of generality, we assume that the crystallizer tem-
perature T¢-(t) is completely controllable by the jacket temperature
T;(t) (see the heat balance equation (12)). Hence the variable Tc(t)
can be used as control variable instead of T(t).

From (19), it is clear that if the part Rn(t;)/G(t;) is completely
controllable by T.(t), then we can show that the system is glob-
ally controllable. However Rn(tj) and G(t;) have their physical
constraints and the system model is under the supersaturation
condition ((t) > Csq(t). In practice, we have also physical constraint
TMin < T.(t) < TP where T" and T"2* denote the minimal and
the maximal crystallizer temperature, respectively. All these con-
straints limit the attainable state space through the control of the
crystallizer temperature. The reachability study will help us to fig-
ure out the limit.

We define the reachability of the crystallization process for the
discrete model as follows.

Definition4.1. ACSD ngy(x;), x; € X, is called reachable if we can find
a sequence of control input Tcr(tj) e [T, T3], j=1,2,...,K,
such that n(x;, tx)=ngy(x;) is satisfied for every x; e X.

In other words, a CSD profile ny(x;), x; € X, is said to be reachable
if there is a sequence of control Ter(t;), j=1, 2, ..., K, which drives
the system state to the profile n, at the time tx. Now we reconsider
the discretized model (19) obtained by the MOC. A simple iteration
gives

n(x;, ) = n(xi_1, ti_1) = n(X;_3, ) =---

Hence another representation of the model is given by

N Rn(tjfi) . .
no, )= "5 =Gy T (23)
n(xi_j, 0) =no(x;_;), i>}],

fori=0,1,...,Nandj=0,1,..., K

From this representation, we observe that the solution of the
model is divided into two parts. The first one determined by the
boundary condition depends on the nucleation rate and growth
rate which are both related to T,.. The second part determined by
the initial condition, obviously cannot be controlled by T.-. Hence,
the desired CSD is expressed in two parts, the controllable part and
the initialization part, as

ne(x;), i<K
na(x;) = . (24)
no(Xi_x), i>K.
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The controllable part represents the generation of new crystals. The
initialization part is equal to the seeding at the beginning of the
batch process.

Back to our objective, according to the desired CSD above, it is
sufficient to find a sequence of Tr(t;),j=1, 2, .. ., K, such that, at tx

Rn(tx_; .
n(x;, tg) = (ki) = n¢(x;), Vi=0,1,...,K-1. (25)
G(tg—i)
From the above equation, the reachability problem is related to the
system state vector at tx_;, Vi=0, 1, ..., K—1. From (4), (10) and

(11), we see that both R,(tx_;) and G(tx_;) depend on the variables
Ctg—i), Ter(tx—i) and Cs(tx—;)-

Gs(tx—i) = C(tx_;)

K—-i-2
KopsAx | o

2Mg

It means that we only need to find a temperature control Te(tx_;)
such that

n(xo, ty_i) = ng(Xo, tx—i), i=1,2,...,K (28)
Note that, if at ty,
N(Xm, tx) = ng(Xm, tx), Vxm € X,

then from (19) and going backward in time we show that, at tx_;,

n(Xm, tx_i) = Nng(Xm, tx_i), VxmeX, i=1,2,...,K (29)

Hence, Cs(tx_;) can be computed from (21) and (27) and given by

= (30)

= Z (Xj3 Ne(Xj4i) + X;’H Ne(Xj1iv1)) +Xp i Ne(Xk—1) + X3y _:No(Xo) + E (Xj3 no(Xj_4i) + Xj3+1 no(Xj_k+iy1)) | »
=0

From (23) the CSD at tx_;, Vi=0, 1, ..., K—1, is described by

Rn(tx_;)
n(xo, ty_;) G(tx_i)
Rn(tyx_i_
n(xq, tg_;) 7(?((“5 'l 11))
i
(X —i-15 t—i) Rn(t1)
n( ., tg_i)= n(Xg_i, t_:) = G(t1) : (26)
1o(xo)
n(xn-1, tx_;)
No(XN—(K—i)—
n(xy. te_s) o(Xn_(k—i)-1)
- - 1o(XN—(K—i))

On the other hand, if a desired CSD is reachable at tx, we can move
backward in time and deduce the desired CSD at each time tx_;,
i=1,...,K, as shown in Fig. 1. Using this fact and according to (18)
and (26), we obtain the expression of the desired CSD at ty_;

ng(Xo, tx—_i) ne(x;)
ng(X1, tx_i) ne(Xiy1)
ng(Xg_i—1, tg—i) ne(xk—1)

nd( . t[(_i) = nd(xK—i! tK—i) = no(Xo) . (27)

ng(Xn_1, tk—i) no(Xn_(k—-i)-1)

ng(xn, tx_;) No(XN—(k—i))
If, at tg_i_1,
n(Xm, tx_i—1) = Ng(Xm, tx_i—1),  VXm € X,
then, at tx_;,
n(xj, tx_i) = n(xj_1, tx—i-1)
=ng(Xj_1, tk—i-1)
=ng(xj, tx_i), Jj=1,2,...,N.

j=K—i

where Cd(tx_;) is the desired solid concentration at tx_; computed
from the desired CSD.
The variable C(tx_;) is computed by using (7) and (30)

(1 — (Ms/ ps)Cs(0))C(0) + C5(0) — C(tx_;)
Cltg_i) = Caltx_i) = ,(31
(ti) = Calti) 1= (Ms/ ps)CA(t ;) GV

where Cy(tk_;) is the desired solute concentration at tx_; computed
from the desired CSD.

Hence the control variable T¢-(tx_;) is the only unknown variable
in Eq. (25). We should verify if the solution T(tx_;) of (25) really
exists. Therefore the reachability problem is reformulated in the
proposition below and can be solved by direct computation.

Proposition4.2. Adesired CSD defined by(24)is reachable if the non-
linear algebraic equation(32)has a solutionTcr(tx_;) € [THR, THX]:

Rn(tx_i) ;
=nc(x;), V i=0,1,...,K, 32
Gl D) (%) (32)

such that

—bp,
lnz(cd(tK,j)/Csat(thi))
+ Ky (Ca(ti—i) — Csar(ti—))'" C (1Y

My
25

Rn(tx_i) = an, exp(

Ken(Calti_i) — Csar(tx i)Y

—AH;
RTcr(tK—i) ’

Gltx_i) =
Gsat(tg—i) = Qsar €XP(

whereCd(ty_;)andC,(tk_;)are defined by(30) and (31), respectively.

Proof. If the algebraic equation above has solutions, at each time
tx_i, a correspondent control T¢(tx_;) can be found by solving the
algebraic equation. Then, we have R,(tx_;)/G(tx_;)=nc(x;) at tg_;.
From the reachability analysis of the discretized model discussed
above, we get n(x;, tx)=ng4(x;), Vx; e X at tg. O

Remark 4.3. The growth rate G(t) only depends on T.(t) because
Cs(t) is known for the desired CSD. Then, if we can find a sequence
of the control Ter(tj),j=1, 2, .. ., K, to drive the system to a desired
CSD, then we can obtain the growth rate G(t) at each moment ¢;.
In this case, we can compute approximately the total process time
from (18):

K
T~AXY (G (33)
j=0
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Online control

Running process

Offline computation

| Desired CSD na( .) |

| Reachability analysis | Measure solute
+ concentration C
Descent look-up table
C,(1) - To(1)
- T1(2)

Find corresponding Ca( i)
Such that Ca(i)=C
In the look-up table

R

Fig. 4. Feedback control algorithm.

5. Control design based on the reachability analysis
5.1. Closed-loop control design

Let us discuss the control problem in the ideal conditions (the
measurements are not corrupted by any noise and the parameters
are exactly known). Given a desired reachable CSD ny(x;), Vx; € X,
we have a sequence of desired control T4 (tx_;), i=0,1, ..., K—1.
To implement our control, it remains to determine ti_; given by
Eq. (20) which is difficult to compute. To avoid solving (20), we
consider the third moment p3. Using Eq. (8), we have

_ Ky ps
Cs =3 Ms

Since, in supersaturation, the growth rate G(t) and the nucleation
rate Ry(t) (defined in (4) and (9), respectively) are always positives,
then w3 is a monotonically increasing function in time (see (14)
and (15)) and so is Cs(t). According to (7), it is easy to show that C(t)
decreases monotonically with time. From (31), we can compute
Cy(tx_;). Using this fact, Td.(tx_;) can be replaced by T4(Cy(tx_;)).
Therefore, we design a closed-loop control by creating a look-up
table between the desired output Cy (inside of t;) and the desired
control T4. as shown in Fig. 4.

5.2. Feedback control facing model uncertainties

In this section, we consider the real conditions as described in
Section 3 (Fig. 3). Concerned with the closed-loop control algorithm
discussed above, the desired control T4(t) is computed by using
the model without parameter disturbance. However the system
can not be driven to the desired CSD by the designed temperature
control if parameter disturbance is big. Hence, we propose using
another state feedback control to compensate the errors resulted
from disturbed parameters.

In the following we assume that an,, bp,, K, and I, are
disturbed by the errors Aan,, Aby,, AKy, and Aly,,. Then the
nucleation rates are given by

(34)

- b Ab
Rn, (t) = (an, + Aap, ) exp ( m + 20, >

Ry (£) = (Kny + AKn, J(C(t) — Coae ()2 A2 )y ez, (35)

T, C, Ho
>

Process

Fig. 5. Feedback control scheme.

The control objective is to design a temperature controller such
that, at t'k, the error

N
D Inlxi, t) — nalxi, 1 (36)
i=0

approaches zero in the presence of parameter uncertainty.

Note that the final time ¢, of the perturbed model could be dif-
ferent from tg of the ideal model because of the formula (33). The
controller design is made based on the discretized model by MOC.
From (17) it is clear that the variation of the CSD along the char-
acteristic curve is null. Consequently, to make approach zero the
quantity in (36), we propose the following temperature feedback
control law

N
e= kiln(xi. ) - nglx. )l ¥ j=K (37)
i=0

where k; is the static feedback gain.

Unfortunately the variable n(x, t) being not measurable, we can
not apply directly the feedback control law (37). We propose to
use zero order moment for the feedback design. According to the
definition of the zero order moment, the moments uo(t]f) and Mg(g-)

can be computed by

N-1

po(t) = % (n(xi, ) + (i1, ), o)
i=0
Ax —

) = 553 o )+ i, ). (39)
i=0

By using (38) and (39), it is easy to see that

N-1
o)~ 1) = 553 (i)~ o, )]+ AX Y [n(xi, ) o, ). (40)
i=1

i=0,i=N

Let us set k; in (37) as follows

szAx’ i—o:

ki = Ky Ax, i=1,2,...,N—-1; (41)
K, A
P Q=N

where Kj, is static feedback gain. Using (40) and (41), the feedback
control law given by (37) can be written as

e = Kp(po(t)) = pg(t)), j=1,2,....K. (42)

Hence the temperature control with the feedback of the zeroth
moment /4o is proposed to correct the parameter uncertainty. To
implement this control, we create a look-up table between Cj, T¢.
and ,ug. By measuring the solute concentration C and the zeroth
moment (1o, the temperature control is given by Ter = T4 + Kp(,ug -
o). The corresponding control scheme is illustrated in Fig. 5.
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5.3. Observer design

In the proposed control scheme, the feedback control needs the
knowledge of the zeroth moment g which is assumed to be mea-
surable. However, in practice, this measurement is expensive and is
often corrupted by errors. Nevertheless, we can measure accurately
the solid concentration C;. Hence, an observer may be designed to
estimate the state it using measurements Cs.

In [28], the author investigated the state and parameter esti-
mation for a class of chemical and biochemical processes, and
evaluated the performance of the different state observers in pres-
ence of model uncertainties. Here we propose an observer for the
moments system constituted of the first four moment equations as
follows

% = 3G(t)ua(t)

dﬂdzt(t) = 2G(t)u1 (1) (43)
dﬂdlt(t) = G(t)o(t)

% = Ru(0).

As Cs(t)is measurable, we can consider that p3(t) is also measurable
according to (8).
Let us introduce the variable t defined by

dt
5 =6 (44)
7(0) = 0. (45)

We assume that the process evolves under the supersaturated con-
dition C(t)> Csqe(t) which implies that G(t) is positive. Hence, T is
a monotonically increasing function of t. From (4) and by assum-
ing that growth rate parameters are exact, we deduced that G(t)
is known. Hence, the time transformation t— 7 defined in (44)
and (45) is invertible. The obtained system with the new time 7
is governed by

[ dus(t) ]

ar 0 3 0 07 |wms0) 0

dua(T)

e 0 0 2 0 |uyr) 0

=|0 00 1 +| O , (46)

d

lt;fm 000 o "M Rn(T)

djto(7) o(T) G(7)

dt

with the output
(1) = ps3(7). (47)

From (4), (10) and (11), we know that the nucleation rate R,(7)and
growthrate G(t) depend on the output £3(7)and the input T (7). By
taking into account nucleation parameter uncertainties, the model
(46) and (47) is written as follows

du(t
BT Aii(2) + Bug(y(z), Ter(0) + Ew(1) (48)
(1) = Cup(7) (49)
0300 0 0
0020 0 0 100 0
As=]0 001 Bu= ol E=|, CM:{ }
00O00O0 1 1

C

Algorithm

Fig. 6. Feedback control scheme with observer.

where
w(t) = [ps(t), 1a(t), 1 (1), po(0)',

8(0). Tu(e)) = ATl

wiz) = B TalD) _ Ra(y(0). Ter()
CO(D). Tar(D))  GO(T). Ter(T))

From (48), it is clear that the system is observable (cf. [29]). The
aim here is to estimate rapidly the state variables and eliminate
the disturbance effect of w(t) stemming from parameter uncer-
tainty. Hence the following high gain observer is proposed (for more
details see [29,30]).

A0 0 0 ks
0 A2 0 O
3 k2
=0 0 XA O —
A K=
0 0 0 A
k4

Then the observer in time area t is governed by

dji R N

% = G(0)A; (1) + G(£)BLg(y(t), Ter(1)) = G(OIAKL (¥(E) — Cu (1)) (51)
where A is a positive constant sufficiently large and the real
constants kq,kp,k3 and k4 are chosen such that (A, +K,C;,) is a Hur-
witz matrix. Integrating the observer in the feedback control loop,

we obtain the control scheme shown in Fig. 6.
6. Results and discussions

In order to illustrate the proposed control, a batch cooling crys-
tallization model without seedings has been considered. The initial
concentration C(t) was assumed to be in the saturated state for
the initial temperature. The parameters used in the simulation are
listed in Table 1. The aim is to apply the designed controller such
that T tracks the desired trajectory T4 for reaching the desired
CSD shown in Fig. 7. This illustration is done on two steps.

(I) The nucleation parameters are exactly known:

Through the Proposition 4.2, a reference table between the
desired solute concentration C; and the desired crystallizer
temperature T4. has been established. The variation of T4 in
terms of Cy was shown in Fig. 8. Using the control algorithm
of Fig. 4, a comparison between the obtained final CSD and
the desired CSD is given in Fig. 9. More precisely, by using the
relative error defined as
Err— Hn(x, T) nd(x)H’ (52)

]
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the relative error was evaluated to be 1.3%. From these results
we are satisfied of the feasibility and the performances of the

Fig. 9. Final CSD with exact nucleation parameters.

proposed controller.
(II) The nucleation parameters are corrupted by errors:

13

x 10

W

% final CSD
desired CSD

0
in

3%

density of population ([nb]/m/m3)
o))

0 0.5 1 1.5 2 25 3 35

size (m) <107

Fig. 10. Final CSD with uncertain nucleation parameters.

We first used the desired control shown in Fig. 8 to drive
the system. Simulation results are shown in Fig. 10, and the
relative error was equal to 85.6%. We observe that the final CSD
was sensitive to the nucleation parameters, and that the two
profiles were totally distinct.

Now we use the control scheme with the correction of 1o shown
in Fig. 5, with the corrector gain K,=-5 x 106, The final CSD
obtained is shown in Fig. 11. The relative error is 0.88%. From these
results, we see that the corrector has efficiently compensated the
errors caused by the uncertain nucleation parameters.

Now, we illustrate the global control scheme given by Fig. 6.
Using the estimated 1t and a corrector gain Kp = —5 x 106, the final
CSD is shown in Fig. 12 and the relative error is 1.47%. From these
results, we see that the corrector using the state feedback and the
high gain observer has efficiently compensated the errors caused
by the uncertain nucleation parameters. However, notice that the
controller’s performances can be damaged if the measures used for
the observer design is corrupted by noise. Usually such a problem
may be solved by filtering action.

3 x 10 ‘ ‘
% final CSD
g desired CSD
=25 1
g
g 2 1
=
2
=15 1
=
o
]
2,
5 1
2
505 ]
0 L L L L
0 0.5 1 1.5 2 2.5 3 3.5
size (m) <107

Fig. 11. Final CSD with uncertain nucleation parameters corrected by .
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Fig. 12. Final CSD with uncertain nucleation parameters corrected by estimated fio.

7. Conclusions

In this paper we have investigated the reachability of desired
crystal size distributions by temperature control for the batch pro-
cess. A control scheme based on the reachability analysis has been
designed to give a temperature trajectory which produces the
desired crystal size distribution at the end of the batch. Further-
more the sensitivity of the final CSD to the nucleation parameters
has been analyzed and it is concluded that, in this case, the com-
puted control could hardly reach the desired CSD in the presence of
parameter uncertainty. An output feedback control law to correct
this uncertainty has been proposed and evaluated by simulations.
By using the observability canonical form, a high gain observer has
been designed to estimate the state which was difficult to measure.
The high gain observer has been incorporated into the design of the
output controller. The simulation results have demonstrated good
performances and efficient correction of the designed controller
facing parameter uncertainty.
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