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In  the  paper,  we  investigate  the  controllability  of  crystallization  processes  by  reachability  analysis.  Crys-
tallization  processes  are  governed  by  hyperbolic  partial  differential  equations.  Given  a  desired  crystal
size distribution,  we  study  its reachability  by  the  temperature  control  from  the  initial  condition  without
seeding.  When  the desired  crystal  size  distribution  is  reachable,  we construct  an  admissible  control  steer-
ing the  state  to the  desired  distribution.  Our  construction  is  developed  based  on the  discretized  model.  To
ensure that  the  desired  distribution  be  reached  facing  model  uncertainty,  we  propose  an  output  feedback
control  law  to correct  errors  resulted  from  disturbed  parameters  of  the  model.
eachability analysis
opulation balance
rystal size distribution
yperbolic partial differential equations
utput feedback control
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. Introduction

In many industries, crystallization is the most common way
or producing high value chemicals with high purity, desired sizes
nd desired shapes. It is usually used by separation and purifica-
ion processes in pharmaceutical, chemical and food industries. The

athematical description of crystallization processes is essentially
ased on the population balance equations (PBE), coupled with

ntegral differential algebraic equations. The obtained dynamical
odels are described by a first order partial differential equation

PDE) in which the important state variable, crystal size distribution
CSD), depends on both time and crystal size. The CSD determines
he quality of the crystallization products, and it also affects the
roduction efficiency of the subsequent products when the crys-
allization products are the semi-products. Hence we have for the

ain objective to develop a method of controlling the crystallizer
tate to obtain the desired CSD. In the present work, our study is
ocused on the batch cooling crystallization.
Recently many control problems have been investigated for
atch cooling crystallization (cf. [1,2]). Among these studies, two
ain directions have been identified: the first is based on the

∗ Corresponding author at: Université Lyon 1, LAGEP, CNRS UMR  5007, 43 Boule-
ard du 11 novembre 1918, F-69622 Villeurbanne, France. Tel.: +33 4 72 43 18 90;
ax:  +33 4 72 43 18 99.

E-mail address: xu@lagep.univ-lyon1.fr (C.-Z. Xu).

959-1524/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.jprocont.2012.10.002
robustness analysis, which mainly deals with the impact of distur-
bances and model uncertainty on the quality of control strategies
(see [3,4]); the second is the optimization approach, which stud-
ies and optimizes some crystallization property factors such as the
mean crystal size, the ratio between nucleated crystal mass and
seed crystal mass (see [5–7]). Meanwhile the two  approaches have
been combined together to solve the optimization problem facing
model uncertainty (see [8,9]).

To design a control scheme for a given system, studying con-
trollability is an important step. The controllability analysis is a
necessary expedient to the control design and may  help us to
develop wise control strategies. However there exist few studies on
the controllability of crystallization processes. In [10], Semino and
Ray have investigated the controllability of the PBE and demon-
strated some controllability results for a continuous crystallizer
controlled by using feed concentration without constraint. In [11]
the controllability of the feed-batch Draft-Tube crystallizer has
been examined by using the evaporation of solvent. Vollmer and
Raisch have tackled the controllability problem of batch crystal-
lization with a system inversion approach and gave a feed-forward
control [12]. Their approach consists to work essentially on a
finite-dimensional moment model. The approach that we con-
sider here is essentially based on the method of characteristics

for the hyperbolic PDE model. We  have been inspired by the
work of Li and Rao [13]. Therefore the controllability problem
remains an interesting and open problem for general crystallization
processes.

dx.doi.org/10.1016/j.jprocont.2012.10.002
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
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The present paper deals with the controllability of a batch cool-
ng crystallization process using the temperature control. We like to
now if a given crystal size distribution is reachable by the tempera-
ure control. When the desired crystal size distribution is reachable,
e like to know how to construct an admissible temperature con-

rol strategy steering the state to the desired distribution. To do so,
e use the reachability analysis carried out in the first step, and
e are able to plan a temperature control trajectory to achieve the
efined objective. The control design resorts to a feedback control
cheme obtained by the reachability analysis. Furthermore another
eedback control law is added to the closed-loop system to compen-
ate the model uncertainties. To make possible the application of
ur feedback control laws, we provide a simple high-gain observer
o estimate the zeroth moment which is an unknown quantity of
he control laws.

The paper is organized as follows. In Section 2, the batch crys-
allization model will be presented. Section 3 gives a discretized

odel with the method of characteristics (MOC). In Section 4,
he reachability of desired CSD for a batch cooling crystalliza-
ion will be studied. Based on the reachability analysis, feedback
ontrol laws will be proposed, by taking into account nucleation
arameter uncertainty, to achieve targeted CSD facing perturbed
arameters. To realize the proposed feedback control, a high gain
bserver is designed to estimate the zeroth moment which is an
nknown quantity of the control law. In Section 6, numerical sim-
lation results will be presented to illustrate the performances of
he proposed control strategies. The last section is devoted to our
onclusions.

. Dynamical models of batch crystallization

The considered model is based on the ideal batch cooling crys-
allizer on supersaturation, where breakage and aggregation of
rystals are neglected [14,15]. The growth rate is assumed to be
ndependent of crystal size according to the McCabe hypothesis
15]. The model is governed by the following population balance
quation

∂n(x, t)
∂t

+ G(t)
∂n(x, t)

∂x
= 0, (x, t) ∈ R

2
+, (1)

ith initial and boundary conditions:

(x, 0) = n0(x) (2)

(0, t) = Rn(t)
G(t)

, (3)

here n(x, t), Rn(t), G(t), x and t represent crystal size density,
ucleation rate, growth rate, crystal size and time, respectively.

The growth rate is independent of crystal size and given by:

(t) = Ms

2�s
Kc�(C(t) − Csat(t))J , (4)

here Ms, �s and J are molar mass of crystal, density of the solute of
rystal and constant exponent, respectively. The variables C(t) and
sat(t) represent the solute concentration and saturated solute con-
entration, respectively. � denotes the effectiveness factor relating
he actual mass flux of solid integrated in the crystal structure to the

aximum theoretical flux that would be integrated in the absence
f diffusive limitation [16]. The variable � is the solution of the
ollowing equation

K
c

Kd
(C(t) − Csat(t))J−1� + �1/J − 1 = 0, (5)

here Kd and Kc are positive constants, denoting global mass trans-
er coefficient and growth coefficient, respectively. The variable
ontrol 22 (2012) 1856– 1864 1857

Csat(t) is a function of the crystallizer temperature and defined by
Van’t Hoff formula (see [14,17])

Csat(t) = asat exp

(
−�Hf

RTcr(t)

)
, (6)

where asat, �Hf, R and Tcr(t) are the saturation constant, the fusion
enthalpy, the universal constant of perfect air and the crystallizer
temperature, respectively.

In the batch crystallizer, the total mole of solute in the suspen-
sion is constant. According to the mole balance, the variable C(t) is
given by the algebraic relation

C(t) = (1 − (Ms/�s)Cs(0))C(0) + Cs(0) − Cs(t)
1 − (Ms/�s)Cs(t)

. (7)

The variable Cs(t) is the concentration of solid in the suspension
defined by

Cs(t) = Kv�s

Ms

∫ ∞

0

x3n(x, t)dx, (8)

where Kv is the shape factor. When the crystal is assumed to be
spherical, Kv is equal to �/6. We  notice that, at supersaturated state,
C(t) > Csat(t) and hence growth rate G(t) is always positive and � ∈ (0,
1). Given C(t) and given Csat(t), � can be computed by solving (5).

The nucleation rate Rn(t) can be expressed as sum of primary
nucleation Rn1 (t) and secondary nucleation Rn2 (t) (see [18] and
[14]), i.e.

Rn(t) = Rn1 (t) + Rn2 (t). (9)

The primary nucleation part is given by

Rn1 (t) = an1 exp

(
−bn1

ln2(C(t)/Csat(t))

)
, (10)

and represents the kinetics of the crystal formation when no crystal
is inserted into the solution, where an1 and bn1 are primary nuclea-
tion constant parameters. The secondary nucleation part is given
by

Rn2 (t) = Kn2 (C(t) − Csat(t))In2 Cs(t)Jn2 , (11)

and represents the kinetics of the crystal formation attributable to
the influence of the existing crystals in the solution, where Kn2 , In2
and Jn2 are the secondary nucleation parameters which are positive
constants.

The heat balance is described by

3∑
i=1

Cpini(t)
dTcr(t)

dt
= −�HcVT

dCs(t)
dt

− UA(Tcr(t) − Tj(t)), (12)

where Cp1, Cp2 and Cp3 are the molar heat capacity of the solid,
solute in the solution and the solvent, respectively, n1, n2 and n3
denote the mole number of the solid, solute in the solution and
the solvent, respectively, and �Hc, VT, U, A and Tj are crystalliza-
tion enthalpy, the total suspension volume, the overall heat transfer
coefficient, contact surface through the jacket wall and jacket tem-
perature, respectively. In practice, the jacket temperature Tj(t) is
considered as control variable for the process.

The CSD can be also characterized by its moments:

�i(t) =
∫ ∞

xin(x, t)dx, i = 0, 1, 2, . . . . (13)

0

The moments from zero order to third order represent the total
number, the total size, the total surface and the total volume of the
crystals per unit volume of suspension, respectively.
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By differentiating these moments, we obtain the following ODE
ystem:

d�i(t)
dt

= iG(t)�i−1(t), i = 1, 2, . . . (14)

d�0(t)
dt

= Rn(t), (15)

here G(t) and Rn(t) have been defined in (4) and (9).
Since these equations form a closed system, we can compute the

ynamic evolution of the system with the energy balance and the
olar balance. In particular, the system (14) and (15) for i = 1, 2, 3

s decoupled from the rest.
The control strategy is elaborated based on cooling the crys-

allizer temperature to obtain the supersaturation such that the
ucleation and growth of the crystals take place. Hence, we assume
hat the jacket temperature Tj(t) is our control input variable and
hat Tcr(t), C(t), Cs(t) are our measurable output variables [1].  The
ontrolled output is the crystal size distribution n(x, t).

. Discretized model

Much effort has been invested to develop appropriate numer-
cal schemes for crystallization process simulation. Among these
umerical techniques, we can cite: the moment method which con-
ists, by finding a condition of closure, to solve the moments system
nd to reconstruct the crystal size distribution [19–21];  the finite
ifference method which consists to approximate the continuous
ystem by discrete system and to study the variation of the state
ariable at each node [14]; the finite volume method which stud-
es the conservation law of each discretized volume instead of the
ode [22]; the finite element method which approximates the solu-
ion of the PDE with piecewise low order polynomials [23]; and the

ethod of characteristics studying the variation of the state vari-
ble along the characteristic curves and proposing a discretization
trategy based on the finite differences method [24].

Among these methods, the finite differences method (FDM) is
idely used to simulate such processes. The advantages of this
ethod are that it is easy to implement and that we get directly

 nice structure from the discretized model. However, the main
isadvantage is that we need numerous meshes to get an accurate
umerical simulation. Furthermore, a finer mesh will increase the
omputational time and numerical oscillations which may  affect
he solution accuracy and the schema stability [25,26]. Hence, to
liminate these problems, we choose the method of characteristics
MOC) [13,24].

.1. Method of characteristics

The model described by the PBE is discretized by the method
f characteristics as presented in [27] and [24]. From the defini-
ion, along a characteristic curve the total derivative of n(x, t) with
espect to t is given by

dn(x, t)
dt

= ∂n(x, t)
∂t

+ ∂n(x, t)
∂x

dx

dt
. (16)

ince the characteristic curve defined in xt-plane satisfies the rela-
ion dx/dt = G(t) and from Eq. (1),  the variation of n(x, t) along the
haracteristics curve is given by

dn(x, t)
dt

= ∂n(x, t)
∂t

+ ∂n(x, t)
∂x

G(t) = 0.
ence, the variation of n(x, t) along a characteristics curve is
educed to two ordinary differential equations

dn(x, t)
dt

= 0 (17)
Fig. 1. The method of characteristics in xt-plane.

dx

dt
= G(t). (18)

Since the growth rate G(t) is independent of x, the characteristic
curves are parallel along the direction of x in the xt-plane. Hence,
the crystal size is discretized with the fixed step �x, and the mesh
is created so that the characteristics curves meet mesh nodes at
every time step. Consequently, the problem is reduced to find the
time step �tj−1 beginning at tj−1 as illustrated in Fig. 1.

Let X = {x0, x1, x2, . . .,  xN} denote the discrete size set and let ñ(tj)
be the discretized state

ñ(tj) = [n(x0, tj), n(x1, tj), · · ·,  n(xN, tj)]
T .

We assume that xN is equal to or greater than the biggest crys-
tal size during the process, the crystal is formed at neglected size
(i.e. x0 = 0), and ∀xi, xi−1 ∈ X, a fixed step �x  = xi − xi−1 is used to
discretize the crystal size between 0 and xN. Then the discretized
model is described by

ñ(tj) = Añ(tj−1) + B
Rn(tj)
G(tj)

, (19)

where

A  =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0
...

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

tj = tj−1 +
∫ j�x

(j−1)�x

1
G(t(�))

d�.

(20)

In the discretized model, the concentration of solid Cs in (8) is
obtained by trapezoidal numerical integration as follows

Cs(tj) = Kv�s�x

2Ms

N−1∑
i=0

(x3
i n(xi, tj) + x3

i+1n(xi+1, tj)). (21)

Notice that, as drawn in Fig. 1, the CSD is constant along the diagonal

mesh nodes or n(xi, tj) = n(xi−1, tj−1). The time equation (20) can be
solved by using the following moment equations

dt

dx
= 1

G(t)
,

d�3

dx
= 3�2,

d�2

dx
= 2�1,

d�1

dx
= �0,

d�0

dx
= Rn(t)

G(t)
. (22)
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Table  1
Parameters used in the simulations.

Parameter Unit Value

Ms kg · mol−1 146.14 × 10−3

�s kg · m−3 1360
VT m3 0.3 × 10−3

J Dimensionless 2.00
Kc mol1−J · m3J−2 · s−1 1.57 × 10−2

Kd m · s−1 0.85 × 10−3

Kv Dimensionless �/6
an1 [nb] · m−3 · s−1 1.5 × 1012

bn1 Dimensionless 1.063

Kn2
[nb] · m3(In2 +Jn2 −1)

s  · mol(In2 +Jn2 ) 1.44 × 103

In2 Dimensionless 1.968
Jn2 Dimensionless 1
asat mol  · m−3 7.492 × 10−6

R J · K−1 · mol−1 8.314
�Hf J · mol−1 32,424.6
�HC J · mol−1 −48, 000
Cp1 J · K−1 · mol−1 372
Cp2 J · K−1 · mol−1 75.33
Cp3 J · K−1 · mol−1 75.33
U W · m−2 · K−1 1000
A  m2 2.2 × 10−2
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.2. Parameter sensitivity

In practice, the nucleation parameters and the growth param-
ters are obtained from experimental results in the ideal
nvironment condition. However the parameters of nucleation
inetic are sensitive to the environment and hence it is difficult
o accurately measure the nuclei number and consequently the
arameters are known with uncertainty. Therefore it is necessary
o analyze the influence of these parameters. To do so, we  sim-
late the process with different nucleation parameters denoted

 = [an1 , bn1 , Kn2 , In2 ]. The three cases 	, 	 + 10 % 	 and 	 − 10 % 	 are
onsidered, respectively. The parameters used in the simulation are
ummarized in Table 1.

The evolutions of the nucleation rate and the final CSD are shown
n Figs. 2 and 3, respectively. From the numerical simulations it is
een that the nucleation rate is highly sensitive to the variation of
he nucleation parameters, hence the disturbance in these param-
ters greatly affects the final CSD. In conclusion, the control design
or the crystallization process must take into account the nucleation
arameter uncertainties.
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Fig. 2. Evolution of the nucleation rate with different nucleation parameters.
x 10

Fig. 3. Final CSD with different nucleation parameters.

4. Reachability analysis of the batch cooling crystallization

Without loss of generality, we assume that the crystallizer tem-
perature Tcr(t) is completely controllable by the jacket temperature
Tj(t) (see the heat balance equation (12)). Hence the variable Tcr(t)
can be used as control variable instead of Tj(t).

From (19), it is clear that if the part Rn(tj)/G(tj) is completely
controllable by Tcr(t), then we  can show that the system is glob-
ally controllable. However Rn(tj) and G(tj) have their physical
constraints and the system model is under the supersaturation
condition C(t) > Csat(t). In practice, we have also physical constraint
Tmin

cr ≤ Tcr(t) ≤ Tmax
cr where Tmin

cr and Tmax
cr denote the minimal and

the maximal crystallizer temperature, respectively. All these con-
straints limit the attainable state space through the control of the
crystallizer temperature. The reachability study will help us to fig-
ure out the limit.

We define the reachability of the crystallization process for the
discrete model as follows.

Definition 4.1. A CSD nd(xi), xi ∈ X, is called reachable if we can find
a sequence of control input Tcr(tj) ∈ [Tmin

cr , Tmax
cr ], j = 1, 2, . . . , K ,

such that n(xi, tK) = nd(xi) is satisfied for every xi ∈ X.

In other words, a CSD profile nd(xi), xi ∈ X, is said to be reachable
if there is a sequence of control Tcr(tj), j = 1, 2, . . .,  K, which drives
the system state to the profile nd at the time tK. Now we reconsider
the discretized model (19) obtained by the MOC. A simple iteration
gives

n(xi, tj) = n(xi−1, tj−1) = n(xi−2, tj−2) = · · ·
Hence another representation of the model is given by

n(xi, tj) =

⎧⎨
⎩ n(0, tj−i) = Rn(tj−i)

G(tj−i)
, i < j

n(xi−j, 0) = n0(xi−j), i ≥ j,

(23)

for i = 0, 1, . . .,  N and j = 0, 1, . . .,  K.
From this representation, we observe that the solution of the

model is divided into two parts. The first one determined by the
boundary condition depends on the nucleation rate and growth
rate which are both related to Tcr. The second part determined by
the initial condition, obviously cannot be controlled by Tcr. Hence,
the desired CSD is expressed in two parts, the controllable part and
the initialization part, as
nd(xi) =
{

nc(xi), i < K

n0(xi−K ), i ≥ K.
(24)
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he controllable part represents the generation of new crystals. The
nitialization part is equal to the seeding at the beginning of the
atch process.

Back to our objective, according to the desired CSD above, it is
ufficient to find a sequence of Tcr(tj), j = 1, 2, . . .,  K, such that, at tK

n(xi, tK ) = Rn(tK−i)
G(tK−i)

= nc(xi), ∀ i = 0, 1, . . . , K − 1. (25)

rom the above equation, the reachability problem is related to the
ystem state vector at tK−i, ∀ i = 0, 1, . . .,  K − 1. From (4), (10) and
11), we see that both Rn(tK−i) and G(tK−i) depend on the variables
(tK−i), Tcr(tK−i) and Cs(tK−i).

From (23) the CSD at tK−i, ∀i = 0, 1, . . .,  K − 1, is described by

( . , tK−i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n(x0, tK−i)

n(x1, tK−i)

...

n(xK−i−1, tK−i)

n(xK−i, tK−i)

...

n(xN−1, tK−i)

n(xN, tK−i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rn(tK−i)
G(tK−i)

Rn(tK−i−1)
G(tK−i−1)

...
Rn(t1)
G(t1)

n0(x0)

...

n0(xN−(K−i)−1)

n0(xN−(K−i))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

n the other hand, if a desired CSD is reachable at tK, we  can move
ackward in time and deduce the desired CSD at each time tK−i,

 = 1, . . .,  K, as shown in Fig. 1. Using this fact and according to (18)
nd (26), we obtain the expression of the desired CSD at tK−i

d( . , tK−i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nd(x0, tK−i)

nd(x1, tK−i)

...

nd(xK−i−1, tK−i)

nd(xK−i, tK−i)

...

nd(xN−1, tK−i)

nd(xN, tK−i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nc(xi)

nc(xi+1)

...

nc(xK−1)

n0(x0)

...

n0(xN−(K−i)−1)

n0(xN−(K−i))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

f, at tK−i−1,

(xm, tK−i−1) = nd(xm, tK−i−1), ∀xm ∈ X,

hen, at tK−i,

Cs(tK−i) = Cd
s (tK−i)

= Kv�s�x

2Ms

⎡
⎣K−i−2∑

j=0

(x3
j nc(xj+i) + x3

j+1nc(xj+i+1)) + x3
K−i−1nc(
n(xj, tK−i) = n(xj−1, tK−i−1)

= nd(xj−1, tK−i−1)

= nd(xj, tK−i), j = 1, 2, . . . , N.
ontrol 22 (2012) 1856– 1864

It means that we only need to find a temperature control Tcr(tK−i)
such that

n(x0, tK−i) = nd(x0, tK−i), i = 1, 2, . . . , K. (28)

Note that, if at tK,

n(xm, tK ) = nd(xm, tK ), ∀xm ∈ X,

then from (19) and going backward in time we  show that, at tK−i,

n(xm, tK−i) = nd(xm, tK−i), ∀xm ∈ X, i = 1, 2, . . . , K. (29)

Hence, Cs(tK−i) can be computed from (21) and (27) and given by

) + x3
K−in0(x0) +

N−1∑
j=K−i

(x3
j n0(xj−K+i) + x3

j+1n0(xj−K+i+1))

⎤
⎦ ,

(30)

where Cd
s (tK−i) is the desired solid concentration at tK−i computed

from the desired CSD.
The variable C(tK−i) is computed by using (7) and (30)

C(tK−i) = Cd(tK−i) = (1 − (Ms/�s)Cs(0))C(0) + Cs(0) − Cd
s (tK−i)

1 − (Ms/�s)Cd
s (tK−i)

, (31)

where Cd(tK−i) is the desired solute concentration at tK−i computed
from the desired CSD.

Hence the control variable Tcr(tK−i) is the only unknown variable
in Eq. (25). We  should verify if the solution Tcr(tK−i) of (25) really
exists. Therefore the reachability problem is reformulated in the
proposition below and can be solved by direct computation.

Proposition 4.2. A desired CSD defined by(24)is  reachable if the non-
linear algebraic equation(32)has a solutionTcr(tK−i) ∈ [Tmin

cr , Tmax
cr ]:

Rn(tK−i)
G(tK−i)

= nc(xi), ∀ i = 0, 1, . . . , K, (32)

such that

Rn(tK−i) = an1 exp(
−bn1

ln2(Cd(tK−i)/Csat(tK−i))
)

+ Kn2 (Cd(tK−i) − Csat(tK−i))
In2 Cd

s (tK−i)
Jn2

G(tK−i) = Ms

2�s
Kc�(Cd(tK−i) − Csat(tK−i))

J

Csat(tK−i) = asat exp(
−�Hf

RTcr(tK−i)
),

whereCd
s (tK−i)andCd(tK−i)are defined by(30) and (31), respectively.

Proof. If the algebraic equation above has solutions, at each time
tK−i, a correspondent control Tcr(tK−i) can be found by solving the
algebraic equation. Then, we have Rn(tK−i)/G(tK−i) = nc(xi) at tK−i.
From the reachability analysis of the discretized model discussed
above, we get n(xi, tK) = nd(xi), ∀ xi ∈ X at tK. �

Remark 4.3. The growth rate G(t) only depends on Tcr(t) because
Cs(t) is known for the desired CSD. Then, if we  can find a sequence
of the control Tcr(tj), j = 1, 2, . . .,  K, to drive the system to a desired
CSD, then we  can obtain the growth rate G(t) at each moment tj.
In this case, we  can compute approximately the total process time
from (18):
T ≈ �x

K∑
j=0

(G(tj))
−1. (33)
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implement this control, we  create a look-up table between Cd, Tcr
Fig. 4. Feedback control algorithm.

. Control design based on the reachability analysis

.1. Closed-loop control design

Let us discuss the control problem in the ideal conditions (the
easurements are not corrupted by any noise and the parameters

re exactly known). Given a desired reachable CSD nd(xi), ∀ xi ∈ X,
e have a sequence of desired control Td

cr(tK−i), i = 0, 1, . . .,  K − 1.
o implement our control, it remains to determine tK−i given by
q. (20) which is difficult to compute. To avoid solving (20), we
onsider the third moment �3. Using Eq. (8),  we have

s = �3
Kv�s

MS
.

ince, in supersaturation, the growth rate G(t) and the nucleation
ate Rn(t) (defined in (4) and (9),  respectively) are always positives,
hen �3 is a monotonically increasing function in time (see (14)
nd (15)) and so is Cs(t). According to (7),  it is easy to show that C(t)
ecreases monotonically with time. From (31), we can compute
d(tK−i). Using this fact, Td

cr(tK−i) can be replaced by Td
cr(Cd(tK−i)).

herefore, we design a closed-loop control by creating a look-up
able between the desired output Cd (inside of ti) and the desired
ontrol Td

cr as shown in Fig. 4.

.2. Feedback control facing model uncertainties

In this section, we consider the real conditions as described in
ection 3 (Fig. 3). Concerned with the closed-loop control algorithm
iscussed above, the desired control Td

cr(t) is computed by using
he model without parameter disturbance. However the system
an not be driven to the desired CSD by the designed temperature
ontrol if parameter disturbance is big. Hence, we propose using
nother state feedback control to compensate the errors resulted
rom disturbed parameters.

In the following we assume that an1 , bn1 , Kn2 and In2 are
isturbed by the errors �an1 , �bn1 , �Kn2 and �In2 . Then the
ucleation rates are given by

˜n (t) = (an + �an ) exp

(
bn1 + �bn1

)
(34)
1 1 1

ln2(C(t)/Csat(t))

˜n2 (t) = (Kn2 + �Kn2 )(C(t) − Csat(t))(In2+�In2 )Cs(t)Jn2 . (35)
Fig. 5. Feedback control scheme.

The control objective is to design a temperature controller such
that, at t′

K , the error

N∑
i=0

[n(xi, t′
K ) − nd(xi, tK )]2 (36)

approaches zero in the presence of parameter uncertainty.
Note that the final time t′

K of the perturbed model could be dif-
ferent from tK of the ideal model because of the formula (33). The
controller design is made based on the discretized model by MOC.
From (17) it is clear that the variation of the CSD along the char-
acteristic curve is null. Consequently, to make approach zero the
quantity in (36), we  propose the following temperature feedback
control law

e =
N∑

i=0

ki[n(xi, t′
j) − nd(xi, tj)], ∀ j ≤ K (37)

where ki is the static feedback gain.
Unfortunately the variable n(x, t) being not measurable, we  can

not apply directly the feedback control law (37). We  propose to
use zero order moment for the feedback design. According to the
definition of the zero order moment, the moments �0(t′

j
) and �d

0(tj)
can be computed by

�0(t′
j) = �x

2

N−1∑
i=0

(n(xi, t′
j) + n(xi+1, t′

j)), (38)

�d
0(tj) = �x

2

N−1∑
i=0

(nd(xi, tj) + nd(xi+1, tj)). (39)

By using (38) and (39), it is easy to see that

�0(t′
j
) − �d

0(tj) = �x

2

∑
i=0,i=N

[n(xi, t′
j
) − nd(xi, tj)] + �x

N−1∑
i=1

[n(xi, t′
j
) − nd(xi, tj)]. (40)

Let us set ki in (37) as follows

ki =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Kp�x

2
, i = 0;

Kp�x,  i = 1, 2, . . . , N − 1;

Kp�x

2
, i = N,

(41)

where Kp is static feedback gain. Using (40) and (41), the feedback
control law given by (37) can be written as

e = Kp(�0(t′
j) − �d

0(tj)), j = 1, 2, . . . , K. (42)

Hence the temperature control with the feedback of the zeroth
moment �0 is proposed to correct the parameter uncertainty. To

d

and �d
0. By measuring the solute concentration C and the zeroth

moment �0, the temperature control is given by Tcr = Td
cr + Kp(�d

0 −
�0). The corresponding control scheme is illustrated in Fig. 5.
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.3. Observer design

In the proposed control scheme, the feedback control needs the
nowledge of the zeroth moment �0 which is assumed to be mea-
urable. However, in practice, this measurement is expensive and is
ften corrupted by errors. Nevertheless, we can measure accurately
he solid concentration Cs. Hence, an observer may  be designed to
stimate the state �0 using measurements Cs.

In [28], the author investigated the state and parameter esti-
ation for a class of chemical and biochemical processes, and

valuated the performance of the different state observers in pres-
nce of model uncertainties. Here we propose an observer for the
oments system constituted of the first four moment equations as

ollows

d�3(t)
dt

= 3G(t)�2(t)

d�2(t)
dt

= 2G(t)�1(t)

d�1(t)
dt

= G(t)�0(t)

d�0(t)
dt

= Rn(t).

(43)

s Cs(t) is measurable, we  can consider that �3(t) is also measurable
ccording to (8).

Let us introduce the variable 
 defined by

d


dt
= G(t) (44)

(0) = 0. (45)

e assume that the process evolves under the supersaturated con-
ition C(t) > Csat(t) which implies that G(t) is positive. Hence, 
 is

 monotonically increasing function of t. From (4) and by assum-
ng that growth rate parameters are exact, we deduced that G(t)
s known. Hence, the time transformation t → 
 defined in (44)
nd (45) is invertible. The obtained system with the new time 

s governed by

d�3(
)
d


d�2(
)
d


d�1(
)
d


d�0(
)
d


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 3 0 0

0 0 2 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�3(
)

�2(
)

�1(
)

�0(
)

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

0

0

0
Rn(
)
G(
)

⎤
⎥⎥⎥⎥⎦ , (46)

ith the output

(
) = �3(
). (47)

rom (4), (10) and (11), we know that the nucleation rate Rn(
)and
rowth rate G(
) depend on the output �3(
) and the input Tcr(
). By
aking into account nucleation parameter uncertainties, the model
46) and (47) is written as follows

d�(
)
d


= A��(
) + B�g(y(
), Tcr(
)) + E�w(
) (48)

(
) = C��(
) (49)

⎡
0 3 0 0

⎤ ⎡
0
⎤ ⎡

0
⎤

A� =
⎢⎢⎣

0 0 2 0

0 0 0 1

0 0 0 0

⎥⎥⎦ , B� = ⎢⎣ 0

0

1

⎥⎦ , E� = ⎢⎣ 0

0

1

⎥⎦ , C� =
[

1 0 0 0
]

,

Fig. 6. Feedback control scheme with observer.

where

�(
) = [�3(
), �2(
), �1(
), �0(
)]T ,

g(y(
), Tcr(
)) = Rn(y(
), Tcr(
))
G(y(
), Tcr(
))

w(
) = R̃n(y(
), Tcr(
))
G(y(
), Tcr(
))

− Rn(y(
), Tcr(
))
G(y(
), Tcr(
))

.

From (48), it is clear that the system is observable (cf. [29]). The
aim here is to estimate rapidly the state variables and eliminate
the disturbance effect of w(
) stemming from parameter uncer-
tainty. Hence the following high gain observer is proposed (for more
details see [29,30]).

d �̂(
)
d


= A��̂(
) + B�g(y(
), Tcr(
)) − �K�(y(
) − C�, �̂(
)), (50)

where

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

� 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 �4

⎤
⎥⎥⎥⎥⎥⎥⎦

, K� =

⎡
⎢⎢⎢⎢⎢⎣

k1

k2

k3

k4

⎤
⎥⎥⎥⎥⎥⎦ .

Then the observer in time area t is governed by
d �̂(t)

dt
= G(t)A��̂(t) + G(t)B�g(y(t), Tcr (t)) − G(t)�K�(y(t) − C��̂(t)) (51)

where � is a positive constant sufficiently large and the real
constants k1,k2,k3 and k4 are chosen such that (A� + K�C�) is a Hur-
witz matrix. Integrating the observer in the feedback control loop,
we  obtain the control scheme shown in Fig. 6.

6. Results and discussions

In order to illustrate the proposed control, a batch cooling crys-
tallization model without seedings has been considered. The initial
concentration C(t) was  assumed to be in the saturated state for
the initial temperature. The parameters used in the simulation are
listed in Table 1. The aim is to apply the designed controller such
that Tcr tracks the desired trajectory Td

cr for reaching the desired
CSD shown in Fig. 7. This illustration is done on two  steps.

(I) The nucleation parameters are exactly known:
Through the Proposition 4.2,  a reference table between the

desired solute concentration Cd and the desired crystallizer
temperature Td

cr has been established. The variation of Td
cr in

terms of Cd was shown in Fig. 8. Using the control algorithm
of Fig. 4, a comparison between the obtained final CSD and
the desired CSD is given in Fig. 9. More precisely, by using the

relative error defined as

Err =
∥∥n(x, T) − nd(x)

∥∥∥∥nd(x)
∥∥ , (52)
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the relative error was evaluated to be 1.3%. From these results

we are satisfied of the feasibility and the performances of the
proposed controller.

II) The nucleation parameters are corrupted by errors:
Fig. 10. Final CSD with uncertain nucleation parameters.

We  first used the desired control shown in Fig. 8 to drive
the system. Simulation results are shown in Fig. 10,  and the
relative error was equal to 85.6%. We  observe that the final CSD
was  sensitive to the nucleation parameters, and that the two
profiles were totally distinct.

Now we use the control scheme with the correction of �0 shown
in Fig. 5, with the corrector gain Kp = −5 × 10−6. The final CSD
obtained is shown in Fig. 11.  The relative error is 0.88%. From these
results, we see that the corrector has efficiently compensated the
errors caused by the uncertain nucleation parameters.

Now, we illustrate the global control scheme given by Fig. 6.
Using the estimated �0 and a corrector gain Kp = −5 × 10−6, the final
CSD is shown in Fig. 12 and the relative error is 1.47%. From these
results, we  see that the corrector using the state feedback and the
high gain observer has efficiently compensated the errors caused
by the uncertain nucleation parameters. However, notice that the
controller’s performances can be damaged if the measures used for
the observer design is corrupted by noise. Usually such a problem
x 10

Fig. 11. Final CSD with uncertain nucleation parameters corrected by �0.
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. Conclusions

In this paper we have investigated the reachability of desired
rystal size distributions by temperature control for the batch pro-
ess. A control scheme based on the reachability analysis has been
esigned to give a temperature trajectory which produces the
esired crystal size distribution at the end of the batch. Further-
ore the sensitivity of the final CSD to the nucleation parameters

as been analyzed and it is concluded that, in this case, the com-
uted control could hardly reach the desired CSD in the presence of
arameter uncertainty. An output feedback control law to correct
his uncertainty has been proposed and evaluated by simulations.
y using the observability canonical form, a high gain observer has
een designed to estimate the state which was difficult to measure.
he high gain observer has been incorporated into the design of the
utput controller. The simulation results have demonstrated good
erformances and efficient correction of the designed controller
acing parameter uncertainty.
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