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Abstract 

Background  

Resonance frequency analyses and quantitative ultrasound methods have been suggested to 

assess dental implant primary stability.  

Purpose 

The purpose of this study was to compare the results obtained using these two techniques 

applied to the same dental implants inserted in various bone phantoms.  

Materials and Methods 

Different values of trabecular bone density and cortical thickness were considered to assess the 

effect of bone quality on the respective indicators (UI and ISQ). The effect of the implant 

insertion depth and of the final drill diameter was also investigated.  

Results 

ISQ values increase and UI values decrease as a function of trabecular density, cortical 

thickness and the screwing of the implant. When the implant diameter varies, the UI values are 

significantly different for all final drill diameters (except for two), while the ISQ values are 

similar for all final drill diameters lower than 3.2 mm and higher than 3.3 mm. The error on the 

estimation of parameters with the QUS device is between 4 and 8 times lower compared to that 

made with the RFA technique. 

Conclusions 

The results show that ultrasound technique provides a better estimation of different parameters 

related to the implant stability compared to the RFA technique. 
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Introduction 

Dental implant stability, which is determinant for the surgical success 1, is determined by the 

quantity and biomechanical quality of bone tissue around the implant 2. Two kinds of implant 

stability may be distinguished. The primary stability occurs at the moment of implant surgical 

insertion within bone tissue. Dental implant primary stability should be sufficiently high in 

order to avoid micromotion at the bone-implant interface after surgery, but should not be too 

high to avoid bone necrosis due to overloading of bone tissue 3. Secondary stability is obtained 

through osseointegration phenomena, a complex phenomenon of a multi-time and multiscale 

nature 3, which strongly depends on the implant primary stability.  

Dental implant stability remains difficult to be assessed clinically because it depends on the 

implant properties (geometry, surface properties...), on the patient bone quality, as well as on 

the surgical protocol. In particular, there is a lack of standardization of the surgical procedures 

used in dental implantology, for example in the choice of the duration between implant insertion 

and loading, which may vary from 0 up to 6 months 4. A compromise should be found in a 

patient specific manner between i) an early (or even immediate 5) implant loading in order to 

stimulate osseointegration phenomena and ii) a late implant loading in order to avoid 

degradation of the consolidating bone-implant interface in early postsurgical stages 6. 

Meanwhile, shortening the time of implant loading has become a challenge in recent implant 

developments to i) minimize the time of social disfigurement and ii) avoid gum loss. As a 

consequence, accurate measurements of implant biomechanical stability are of interest since 

they could be used to improve the surgical strategy by adapting the choice of the healing period 

in a patient-specific manner.  

Assessing the implant stability is a difficult multiscale problem because of the complex 

heterogeneous nature of periprosthetic bone tissue and to remodeling phenomena 7, 8. Different 
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approaches have been used to assess the implant stability in vivo. So far, most surgeons still 

rely on their proprioception because it remains difficult to monitor bone healing in vivo 6. 

Accurate quantitative methods capable of assessing implant stability are required to guide the 

surgeons and eventually reduce the risk of implant failure.  

Magnetic resonance imaging 9 and X-ray based 10 techniques remain of limited interest to 

measure implant stability because of diffraction phenomena occurring at the bone-implant 

interface due to the presence of metal. Therefore, biomechanical methods have been developed, 

their main advantage consisting in the absence of ionizing radiation, inexpensiveness, 

portability and noninvasiveness. The measurement of the insertion torque to assess dental 

implant primary stability has been evoked but such approach remains limited 11 because the 

result is not only related to the properties of the bone-implant interface and because it cannot 

be used for secondary stability assessment. The Periotest (Bensheim, Germany) is a percussion 

test methods 12, 13. Its sensitivity to striking height and handpiece angulation complicates the 

clinical examination 14 and limits the reproducibility of the measurements. The most commonly 

used biomechanical technique is the resonance frequency analysis (RFA) 15, which consists in 

measuring 16 the first bending resonance frequency of a small rod attached to the implant. The 

RFA technique allows to assess the implant anchorage depth into bone 17, marginal bone level 

18 and the stiffness of the bone-implant structure 19, 20. However, RFA cannot be used to identify 

directly the bone-implant interface characteristics 21. No correlation between the implant 

stability quotient (ISQ) and bone implant contact (BIC) nor between ISQ and cortical thickness 

has been evidenced so far 22. Finite element numerical simulation tools showed that the 

orientation and fixation of the transducer have an important effect on ISQ values 20 obtained 

with the older Osstell version with an L-shaped, wired transducer.  

An alternative method has been developed by our group and consists in using a quantitative 

ultrasound (QUS) method 23 to investigate the properties of the bone-implant interface. The 
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principle of the measurement relies on the dependence of ultrasonic propagation within the 

implant on the boundary conditions given by the biomechanical properties of the bone-implant 

interface 24. An in vitro preliminary study was carried out using a prototype titanium cylinder 

shaped implants inserted in bone tissue, showing the sensitivity of the ultrasound response of 

the implant to the quantity of bone in contact with the implant 24. The principle of the 

measurement was then validated experimentally by showing the sensitivity of the echographic 

response of a planar bone-implant interface to healing time using coin-shaped implant models 

25. Significant variations of the ultrasonic response of dental implants embedded in a bone 

substitute biomaterial (a tricalcium silicate-based cement) was shown to occur when the 

implants are subjected to fatigue loading 26. More recently, another in vitro study proved the 

potentiality of QUS methods to assess dental implant primary stability 27. A preclinical 

validation of the device in rabbits was carried out 25, 28 and showed that i) the measurement was 

sensitive to healing time and ii) a significant correlation of the measurement with the bone-

implant contact (BIC) ratio measured with histology. Moreover, finite difference 29 and finite 

element numerical simulations 30, 31 were carried out to understand the interaction between an 

ultrasonic wave and the bone-implant system, leading to a better performance of the device.  

The comparison of the experimental results obtained in a controlled configuration using the 

QUS and RFA techniques would be of interest in order to better assess the performance of the 

different approaches. The aim of the present study is to compare these the RFA and QUS 

methods which have been evoked to assess dental implant stability. To do so, our strategy 

consists in using dental implants inserted in bone mimicking phantoms made of polyurethane 

because it allows to work under standardized and reproducible conditions. Different parameters 

related to the implant stability (such as the density of the bone phantom, the thickness of cortical 

bone, the insertion depth and the drill diameter) were investigated and the related variations of 
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different quantities such as i) the RFA response and ii) the ultrasonic response were 

investigated. 

II) Materials and Methods 

II)1 Bone mimicking phantoms and dental implant 

The bone mimicking phantoms used in the present study were made of rigid polyurethane foam 

(Orthobones®, 3B Scientific, Hamburg, Germany) with different values of bone density and of 

cortical thickness (1 and 2 mm). Cortical bone was modeled by the material type #40 PCF with 

a mass density equal to 0.55 g/cm³. Three types of trabecular mimicking phantoms were 

considered (#10, #20, #30 PCF) with mass density values equal to 0.16 g/cm³, 0.32 g/cm³ and 

0.48 g/cm³, respectively, according to the manufacturer.  

All dental implants used in this study were commercial implants manufactured by Zimmer 

Biomet (Winterthur, Switzerland) under the reference TSVT4B10. The geometrical 

characteristics are a length of 10 mm and an external diameter of 4.1 mm.  

A conical cavity was then created in the block bone test, using color-coded, 10-mm-length 

surgical drills preconized by Zimmer Biomet and used as a reference protocol by dentists. 

Different values were considered for the final drill diameter, as described in details in 

subsection II)3. 

 

 

 

II)2 Measurement methods of dental implant stability 

Two different and complementary methods were used in order to measure the implant stability 

of each implant in each configuration, which are described in subsection II)3. 
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a) Resonance frequency analysis 

For each implant and each configuration, the RFA response of the implant was measured in 

ISQ units (on a scale from 1 to 100) using the Osstell device (Osstell, Göteborg, Sweden). 

Figure 1a shows the configuration of the measurements which were realized using a smart peg 

placed in the implant, as recommended by the manufacturer.  Each measurement was performed 

5 times (in order to assess the reproducibility of the measurements) in two perpendicular 

directions denoted 0° and 90° relatively to an arbitrary axis chosen for each block. The average 

and standard deviation values ISQm and ISQstd of the ten different ISQ values were determined 

for each implant and each configuration.  

 

b) Quantitative ultrasound device 

Figure 1b shows the dedicated QUS device, which consists in a 5 mm diameter planar ultrasonic 

contact transducer (Sonaxis, Besançon, France) generating a 10 MHz broadband (the frequency 

bandwidth is approximately equal to 6–14 MHz) ultrasonic pulse propagating perpendicularly 

to its active surface (monoelement transducer used in echographic mode). The probe was 

attached rigidly to a titanium alloy dental healing abutment which can be screwed into the 

implant so that the measurements are not influenced by positioning problems of the probe 

relatively to the healing abutment, as it was the case in previous studies 26. The QUS device 

was screwed into the implant in order to realize each measurement for each implant and each 

configuration, as shown in Fig. 1b. The ultrasonic probe was linked to a pulser-receiver via a 

standard coaxial cable. A transient recorder was used to record the radiofrequency (rf) signal 

with a sampling frequency equal to 100 MHz.  

For each measurement, the transducer was screwed in the implant with a torque of 0.035N.m, 

which is around 10 times lower than torque values recommended by implant manufacturers 32 
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and the echographic measurement was made instantaneously. The transducer was then 

unscrewed and the same measurement was carried ten times in order to assess the 

reproducibility of the measurements.  

The same signal processing technique as the one used in 26 was used to derive a quantitative 

ultrasonic indicator UI which had been shown to be related with dental implant stability. The 

indicator UI was devised to quantitatively estimate the average amplitude of the signal between 

10 and 120 µs. Therefore, the envelop S(t) of the rf signal s(t) was determined and the indicator 

UI is given by: 

𝑈𝐼 = ∑ 𝑆(𝑖𝑇0)12000
𝑖=1000 ,     (1) 

where T0=0.01 µs corresponds to the sampling period. The time window chosen to determine 

the indicator UI was chosen as follows. The upper bound of the time window equal to 120 µs 

was chosen, which corresponds to a compromise between a sufficient duration to obtain 

pertinent information and the requirement of a sufficient signal to noise ratio for all rf signals. 

Moreover, the time window used to compute the indicator UI starts at a time of 10 µs because 

the amplitude of the envelop of the rf signals before 10 µs is approximately constant due to a 

saturation of the amplitude. 

The average and standard deviation values UIm and UIstd of the indicator UI obtained for the ten 

measurements were determined for each implant and each configuration. 

 

II)3 Experimental protocol  

The effect of varying the different parameters described below on the variation of the ISQ and 

the indicator UI was investigated in this study, as summarized in Figure 2. For each 

configuration described below, the values of the averaged and standard deviation values ISQm 
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and ISQstd (respectively UIm and UIstd) of the ISQ (respectively the ultrasonic indicator UI) were 

measured. 

a) Variation of trabecular bone density 

The effect of modifying trabecular bone properties was first investigated by comparing the 

results obtained with the two methods described in subsection II)2 for implants fully inserted 

in different bone mimicking phantoms having the same cortical thickness equal to 2 mm, which 

corresponds approximately to the clinical situation 33. Three different materials were used to 

mimic trabecular bone (#10, #20 and #30 PCF). Three implants were inserted with a final drill 

of 3.4 mm of diameter in each type of bone mimicking phantom, resulting in a total of 9 

configurations.  

 

b) Variation of cortical bone thickness 

The effect of changing the cortical bone thickness was then investigated because cortical 

thickness is known to be an important determinant of implant stability 11. To do so, two bone 

mimicking phantoms with two different cortical thicknesses (1 and 2 mm) and the same material 

to mimic trabecular bone (#10 PCF) were considered. Again, three implants were fully inserted 

with a final drill of 3.4 mm of diameter in each type of bone mimicking phantom, resulting in 

a total of 6 configurations.  

 

c) Variation of the diameter of the final drill  

The effect of the diameter of the final drill used to machine the cavity in two given bone 

mimicking phantom was investigated. The two phantoms used had the same cortical thickness 

(1 mm) and trabecular bone was mimicked by #10 and #30 PCF. Ten values of diameter of the 
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final drill comprised between 2.7 and 3.6 mm with a step of 0.1 mm were considered. Three 

implants were considered for each diameter tested, leading to a total number equal to 30 

configurations.  

 

d) Variation of the implant insertion depth 

Eventually, the effect of the implant insertion depth was investigated because it corresponds to 

a simple way of imposing a variation of dental implant stability, similarly as what has been 

done in 28. To do so, three cavities were realized in a given bone mimicking phantom (cortical 

thickness of 1 mm and #30 PCF for trabecular bone) with a final drill diameter of 3.4 mm. 

Then, an implant was screwed in each cavity so that half of the implant was inserted into the 

cavity. The average and standard deviation values of the ISQ and of the ultrasonic indicator UI 

were measured. The implant was then screwed by π rad in order to increase the implant surface 

area in contact with bone mimicking phantom. The two measurements described above (ISQ 

and UI) were realized again. The procedure was repeated until the implant was completely 

inserted in bone mimicking phantom, this screwing level is denoted “0”. Then, the implant was 

then unscrewed by π rad in order to reduce the surface area of the implant in contact with bone 

block. The same two measurements (ISQ and UI) were again carried out. The procedure was 

reproduced until the implant was completely detached from the test block.  

 

II)4 Statistical analyses 

A one-way analysis of variance (ANOVA) and Tukey-Kramer tests were performed to evaluate 

the significance of variations of the ultrasonic indicator UI and the ISQ as a function of the 

different configurations. Statistical differences were defined at a 95% confidence level.  
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III) Results 

III)1 Effect of bone density  

Figure 3 shows the results obtained for the nine configurations corresponding to three models 

of trabecular bone quality (#10, #20 and #30 PCF) with the different methods of implant 

stability assessment (ISQ and UI). As shown in Fig. 3, the values of ISQm increase when the 

density of trabecular bone increases, while the opposite behaviour is obtained for the ultrasonic 

indicator UIm. The error bars represent the reproducibility of the ultrasound and RFA 

measurements for each configuration. The average value of UISD (respectively ISQSD) obtained 

for the ultrasonic measurement (respectively RFA measurements) is equal to 0.07 unit 

(respectively 4 ISQ units).  

ANOVA shows a significant effect of bone density on the values of UI (p-value < 10-8) 

and of ISQ (p-value = 0.04). Moreover, Tukey-Kramer tests show that i) the results obtained 

for UI in #10 PCF (respectively #20 PCF) are significantly different than the results obtained 

in #20 PCF, p-value < 10-4 (respectively #30 PCF, p-value < 10-7). The results obtained with 

the RFA measurements are significantly different when comparing implants inserted i) in #10 

PCF and #20 PCF (p-value < 3.9*10-8) and ii) in #10 PCF and #30 PCF (p-value < 2.6*10-8). 

However, the results obtained with RFA measurements in #20 PCF and #30 PCF are not 

significantly different (p-value = 0.93). 

 

III)2 Effect of cortical thickness  

Figure 4 shows the variation of the ISQ and of the UI for different implants inserted in test 

blocks with 1 mm and 2 mm of cortical thickness. Trabecular bone density is equal to #10 PCF.  
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ANOVA shows a significant effect of cortical thickness on the values of the UI (p-value < 10-

9) and on the values of ISQ (p-value = 0.04), although the p-value obtained for ISQ is relatively 

high. 

 

III) 3 Effect of the final drill diameter  

Figure 5 shows the variation of the average and standard deviation values of the ISQ and of the 

UI as a function of the final drill diameter for implants inserted in the same test block with a 

cortical thickness of 1 mm and a density of trabecular density equal to #10 PCF. The results 

show that the values of the UI (respectively ISQ) increase (respectively decrease) as a function 

of the final diameter drill. In order to clarify the figure, we have chosen to present only one 

curve (instead of three) because the other results are qualitatively similar to those shown in Fig. 

5.  

ANOVA shows a significant effect of final drilling diameter on the values of the UI (p < 10-12) 

and on the values of ISQ (p < 10-3). The stars in Fig. 5 indicate the configurations for which the 

results obtained for the UI and for the ISQ are statistically similar, which was obtained using a 

Tukey-Kramer test. The results obtained with Tukey-Kramer test indicate that the UI obtained 

for all final drill diameters are significantly different to the other ones, except for the results 

obtained for the final drill diameters equal to 2.8 and 2.9. However, the results obtained for ISQ 

with all drill diameters lower than 3.3 (respectively higher that 3.2) are statistically similar.  

 

III) 4 Effect of the insertion depth  

Figure 6 shows the average and standard deviations of the ISQ and of the UI for the same 

implant with different values of the penetration depth. The arrows in Fig. 5 indicate the 

evolution of the results when the implant is screwed (from a bone level of -5π rad to 0 rad) and 
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then unscrewed (from a bone level of 0 rad to -4π rad). The UI value is shown to decrease 

during the insertion of the dental implant in the bone block while the UI value increases when 

the implant in unscrewed from the test block. The ISQ values increase during the insertion 

stages and then decrease when the implant is unscrewed. In order to clarify the figure, we have 

chosen to present only one curve (instead of three) because the results obtained using the other 

test block are qualitatively similar to those shown in Fig. 6. 

 

IV) Discussion 

The originality of the present study was to compare two different techniques (RFA and 

ultrasound measurements) in order to investigate the primary stability of dental implants 

inserted in artificial bone blocks (Orthobones®). Different stability conditions were considered 

by varying different parameters such as the type of bone block (trabecular bone density, cortical 

thickness), the final diameter drill and the insertion depth, in order to simulate different 

situations mimicking variations of dental implant primary stability.  

 

IV) 1 Physical interpretation and comparison with the literature 

The values of the ISQ are shown to increase when i) trabecular density increases (see Fig. 3), 

ii) cortical thickness increases (see Fig. 4), and iii) the insertion depth increases (see Fig. 6). 

These results are in agreement with previous studies 11, 14, 17, 34 and can be explained by the 

higher rigidity of the block-implant system induced by an increase of trabecular density, of 

cortical thickness and of implant insertion depth.  

 

The values of the UI are shown to decrease when i) trabecular density increases (see Fig. 3), ii) 

cortical thickness increases (see Fig. 4), iii) the final diameter drill decreases (see Fig. 5) and 
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iv) the insertion depth increases (see Fig. 6). These results are in agreement with previous 

papers by our group that showed that i) the UI also increases when a dental implant is unscrewed 

in a bone sample in ex vivo 27 as well as in silico 31 studies, ii) the UI decreases when the Bone-

Implant contact ratio increases for in vivo measurements 28 and iii) the UI decreases when 

trabecular bone quality increases and when cortical thickness increases for in silico 

measurements 29-31. The aforementioned results can be explained by the fact that the UI is 

related to the amplitude of the echographic response of the implant, which depends on the 

boundary conditions applied to the implant external surface. The implant acts as a wave guide 

in which the acoustical energy is trapped 29-31. When bone quantity and quality increase around 

the implant surface, the gap of mechanical properties between the implant and its environment 

decreases, which induces an increase of the transmission coefficient. Therefore, the ultrasound 

energy decreases faster since ultrasound may propagate in the surrounding medium, resulting 

in a faster decrease of the implant echographic response. This physical interpretation may 

qualitatively explain the results corresponding to the variation of the UI obtained herein. 

Figure 6 shows that the values of the UI (respectively ISQ) are lower (respectively higher) for 

the same insertion value during the screwing phase compared to the unscrewing phase. These 

results may be explained by damage and wear phenomena occurring during the implant 

insertion, which lead to a higher bone-implant contact ratio during the screwing phase compared 

to the unscrewing phase, thus explaining the lower (respectively higher) values of UI 

(respectively ISQ) during the insertion phase compared to the unscrewing phase. 

The results obtained in the present study depend on the displacement of the implant surface 

generated by the ultrasound transducer, which is difficult to measure using an experimental 

approach because accessing the surface of an implant embedded in a bone mimicking phantom 

remains a difficult task. However, the analysis of the interaction between an ultrasonic wave 

and a dental implant in a situation similar to the one described herein was carried out in previous 
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in silico studies by our group 29,30,31. Briefly, the importance of the lateral wave was evidenced 

in preliminary studies considering simple cylindrical shaped implants 29,30. In a more recent 

study considering the geometry of an actual dental implant 31, the sensitivity of the ultrasonic 

indicator to changes occurring around 30 µm around the implant surface was evidenced. 

 

IV) 2 Comparison between the RFA and QUS methods 

The results obtained in this study allow to compare quantitatively the ultrasound and RFA 

approaches to assess dental implant primary stability in controlled configurations.  

a) Drill diameter 

As shown in Fig. 5, the values obtained for the UI are significantly different when all final drill 

diameters vary between 2.7 mm and 3.6 mm (except for 2.8 and 2.9 mm) whereas the values 

obtained for the ISQ are similar when the final drill diameter varies between 2.7 mm and 3.2 

and when it varies between 3.3 and 3.6. This results show that the ultrasound device can 

discriminate implants inserted in test blocks with a wider range of final diameter size compared 

to the RFA measurements.  

 

b) Sensitivity analysis 

The results can be analyzed in order to determine the sensitivity of QUS and RFA methods to 

the different parameters related to the implant stability. To do so, a simple two step method is 

described in what follows (refer to 27 for further details on this method) and constitutes a simple 

approach in order to estimate the sensitivity of both methods to a variation of a given parameter 

X related to the implant primary stability. Note that X may correspond to trabecular bone 

density, to cortical thickness or to the implant insertion depth. The sensitivity of the ISQ to 
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variations of the final drill diameters was not investigated herein because the results obtained 

with the RFA techniques are weakly sensitive to the drill diameter (see subsection a) above). 

The first step is to perform a linear regression analysis of the average value of the ISQ 

(respectively of the UI) as a function of the parameter X by analyzing the results shown in Fig. 

3-6, which leads to the following approximated relations:  

𝐼𝑆𝑄̃ = 𝑎𝐼𝑆𝑄𝑋 + 𝑏𝐼𝑆𝑄     (2) 

𝑈𝐼̃ = 𝑎𝑈𝐼𝑋 + 𝑏𝑈𝐼,    (3) 

where X is the investigated parameter, 𝐼𝑆𝑄̃ and 𝑈𝐼̃ are the approximated values of the ISQ and 

the UI respectively and 𝑎𝐼𝑆𝑄 and  𝑏𝐼𝑆𝑄 (respectively 𝑎𝑈𝐼 and  𝑏𝑈𝐼) are the coefficients found by 

applying a linear regression analysis to the variation of the ISQ (respectively the UI) as a 

function of X.  

The second step of the method consists in using the averaged reproducibility error 

corresponding to a given configuration in combination with the linear regression analyses 

corresponding to Eqs. 2 and 3, in order to assess the error realized on the estimation of the 

parameter X, noted in what follows XISQ (respectively XUI) for the error realized using the RFA 

(respectively ultrasound) technique: 

XISQ = ISQstd / aISQ     (4) 

XUI = UIstd / aUI    (5) 

As expected, the error on the estimation of the parameter X increases when the reproducibility 

error (given by ISQstd and UIstd) increases and when the sensitivity of the method (given by 

𝑎𝐼𝑆𝑄 and 𝑎𝑈𝐼) decreases. 
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Table 1 shows the values of the error made on the determination of the trabecular density, of 

the cortical thickness and of the insertion depth obtained by applying the aforementioned 

procedure on the data shown in Fig. 3, 4 and 6 respectively. As shown in Table 1, the error 

made on the estimation of the trabecular density using the ultrasound method is more than four 

times lower compared to that using the RFA analysis, which was obtained by analyzing the 

results obtained in Fig. 3. Note that the values of ISQ obtained for #20 and #30 PCF test blocks 

were not significantly different, while the results obtained for the UI for #20 and #30 PCF test 

blocks were significantly different. Therefore, the quantitative ultrasound method is more 

sensitive than the RFA method to retrieve the trabecular density.  

Table 1 also shows the results corresponding to the error realized on the cortical thickness 

estimation using the data shown in Fig. 4. The results indicates that the error realized on the 

estimation of the cortical thickness using the ultrasound method is approximately eight times 

lower compared to that using the RFA analysis. Note that the values of ISQ obtained with 

cortical thicknesses equal to 1 and 2 mm were not significantly different while the results 

obtained for the UI obtained with cortical thicknesses equal to 1 and 2 mm were significantly 

different. Therefore, the quantitative ultrasound method is more sensitive the RFA analysis to 

retrieve the cortical thickness. 

Table 1 shows the results corresponding to the error realized on the insertion level estimation 

using the data shown in Fig. 5. The results indicates that the error realized on the estimation of 

the insertion level using the ultrasound method is approximately four times lower compared to 

that using the RFA analysis. Therefore, the quantitative ultrasound method is more sensitive 

the RFA analysis to retrieve the cortical thickness. 

 

As shown in Table 1, the performances of the quantitative ultrasound device to retrieve dental 

implant primary stability are better than the performances of RFA technique in the simple 
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configurations considered herein. These results can be explained by the fact the ultrasound 

device is sensitive to bone properties at the intimate contact with the implant, which is precisely 

the important parameter determining the implant stability 1, 35, 36. More specifically, it has been 

shown in a previous in silico study 30 that the ultrasound technique is sensitive to the bone 

properties at a distance lower than around 30 µm. In the case of the RFA technique, the 

frequency response of the implant is sensitive to the biomechanical properties of the bone-

implant interface as well as to the surrounding medium since the entire test block is likely to be 

excited by the RFA device. Although the amplitude of the displacement field induced by the 

RFA method is small compared to the implant size, the excitation mode corresponds to the first 

resonance of the bending mode, which indicates that a vibration is induced by the transducer. 

This vibration is applied to the bone-implant system as a whole (and not only to the implant 

interface) through the implant surface. However, in the case of the QUS device, the excitation 

induced by the transducer differs from the RFA device because propagation phenomena should 

be considered 31, instead of resonance effects. The ultrasound wave propagating within the 

implant 31 is therefore sensitive to its interface only, which has been quantified in 31. 

Moreover, the results obtained with the RFA device depend on the direction of solicitation, 

which is not the case of the ultrasound device. In the case of the RFA method, the dependence 

of the results on the orientation of the transducer has been explained by the anisotropic nature 

of bone tissue but it remains difficult to extract useful information from such variation 37, 38. 

 

IV) 3 Limitations of the study 

The main limitation of this study is that bone mimicking phantoms were considered, which 

allows to work under standardized and reproducible conditions. Note that both techniques had 

been validated previously independently in vivo 28, 34. However, the artificial bone blocks are 

adapted to mimic the healthy jaw bone because the mean bone mineral density was 0.31 g/cm³ 
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for the posterior maxilla and 0.55 g/cm³ for the anterior maxilla 39. For healthy jaw bone, the 

mean cortical thickness for the mandible is 2.22±0.47 mm and the mean cortical bone thickness 

for the maxilla is 1.49±0.34 mm 33. Further in vivo validations should be carried out clinical 

studies should also be made.  

Another limitation consists in the fact that only one implant type was used in this study, because 

the goal was to investigate the effect of variations of the implant stability on the UI and on the 

ISQ. It would be of interest to carry out the same study with other implant types. However, 

previous studies 26, 28 have shown the validation of the ultrasound device using other implant 

types.  

The present study does not address the important clinical question corresponding to the 

determination of the extent to which the RFA and QUS methods can actually accurately 

measure an important information from a clinical point of view. The question of the relationship 

between the accuracy of each method versus the precision needed in the context of implant 

stability remains open and is not in the scope of the present study. Further clinical studies are 

needed to determine whether either method (RFA or QUS) can accurately measure a clinically 

relevant information. 

Conclusion 

This study allows to compare the results obtained with two different approaches aiming at 

estimating primary dental implant stability, which are realized with the same implants under 

various configurations. Namely, we considered a variation of the following parameters: i) 

trabecular bone density, ii) cortical thickness, final drill diameter and iv) penetration depth. All 

results are consistent and can be explained by physical analyses of the biomechanical 

phenomena occurring around the implant. Moreover, we found that ultrasound technique 

provides a better estimation of different parameters related to the implant stability compared to 
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RFA techniques. Therefore, the present study paves the way for the development of an 

ultrasonic device to estimate dental implant stability that could be used in the clinic provided 

further in vivo investigations.   
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Tables 

 

Estimated 

parameter X 

Indicator a b 

Indicator 

standard 

deviation 

Error on 

the 

estimation 

Trabecular 

density 

ISQ 0.55 56.50 1.5 2.73 

UI -0.13 4.73 0.08 0.6 

Cortical 

thickness 

ISQ 3.6 54.4 1.1 0.31 

UI 2.70 8.70 0.1 0.04 

Insertion 

depth 

ISQ 7 73.9 1 0.16 

UI -2.5 0.1 0.1 0.04 

 

Table 1. Results obtained for the linear regression analysis (a and b), the average standard 

deviation of each indicator and for the error realized on the estimation of each parameter X.  
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Figure Legends 

Figure 1: Description of the experimental protocol. Measurement realized using a) the 

resonance frequency analysis device, which leads for a given implant to an average and standard 

deviation value of the score (ISQm and ISQstd) and b) the quantitative ultrasound device, which 

leads for a given implant to an average and standard deviation value of the score (UIm and UIstd).  

 

Figure 2: Summary of the experimental protocol describing the parameters investigated in this 

study. For each series of experiments, the parameters which vary are indicated in bold.  

 

Figure 3: Variation of the values of the ISQ and of the UI for implants inserted in test blocks 

with different values of the trabecular density (#10, #20 and #30 PCF). Three implants are 

considered per test block. 

 

Figure 4. Variation of the values of the ISQ and of the UI for 3 implants inserted in a test block 

with a cortical thickness of 1 mm and for 3 implants inserted in a test block with a cortical 

thickness of 2 mm.  

 

Figure 5. Variation of the values of the ISQ and of the UI for implants inserted in cavities 

obtained with different values of the final drill diameter. The stars indicate the results that are 

statistically similar. The errorbars correspond to reproducibility of each measurement.  
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Figure 6. Variation of the ultrasonic indicator and ISQ values for different screwing levels 

corresponding to the same implant inserted in a test block with 1 mm of cortical thickness and 

a trabecular bone density of #30 PCF.   
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