Transportation infrastructures in a low carbon world : an evaluation of investment needs and their determinants - Supplementary Material

Vivien Fisch-Romito^{*,1,2} and Céline Guivarch^{,1,3}

¹CIRED, 45 bis avenue de la Belle Gabrielle, Nogent-sur-Marne Cedex 94736, France
²SMASH, 22 rue de Cherbourg, 75015 Paris, France
³École des Ponts—ParisTech, 6-8 Avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455
Marne la Vallée Cedex 2, France

^{*}Corresponding author: vfisch@centre-cired.fr

1 Details on scenario alternatives

1.1 Transport activity

The aim of this parameters set is to represent two alternatives contrasted: (i)continuation of urban sprawl and the lock-in phenomena associated with high freight use in the economy and (ii)a decrease of mobility needs and freight use in order to represent activities relocation, supply-chains organization and teleworking. In the model, freight content is represented by the input-output coefficient of freight sector intermediate consumption by productive sectors. To represent the decrease of transport use for passenger, we supposed a shift of budget allocation from transportation to other sectors.

Parameter	Assumption 1	Assumption 2
Household budget	Constant	0.5% decrease
share allocated to		each year
transportation		
Input-output	Constant in all	1% decrease each
coefficients for	sectors	year
freight use		

Table 1: Alternatives on transport activity determinants

1.2 Transport structure

For the baseline case, the car occupancy value was supposed to converge to the OECD countries values by 2100 in the 12 regions. In a second case, it was assumed that the car occupancy factor will converge to higher value in order to represent emerging new mobility phenomena as car sharing. In each region, the motorization rates increase with per capita income through variable income-elasticity: (a) low for poor households whose access to mobility relies on non-motorized and public modes; (b) high for households with a

medium per capita income (c) low again, because of saturation effects, for per capita income level comparable to that of the OECD. For developing countries, high and low values of income growth multiplier for the motorization rate were studied. About infrastructures policies, we created two alternatives on the evolution of road capacity in the model. In one case the road capacity increases with automobile stock and in another case, this capacity converges to a value corresponding to a threshold per capita. The latter assumption can create congestion in the model causing lower profitability of road car mode.

Parameter	Assumption 1	Assumption 2
Car occupancy	Convergence to	Convergence to 1.89 by 2100
	1.53 by 2100	
Income growth multiplier for	1 (OECD value)	0.6
motorization rate in emerging		
countries		
Road capacity for car	Increase with	Convergence to a value
	automobile stock	corresponding to 7000 pkm
		per capita

Table 2: Alternatives on transport structure determinants

1.3 Transport intensity

High and low values for the learning rate value of the different car technologies (liquid fuel, hybrid, electric) were studied. This parameter has an impact on the investments costs and hence influences the evolution of the vehicle fleet. About the other terrestrial transports (trucks, train and public transports), two values of price elasticity of the sector energy intensity were studied.

Parameter	Assumption 1	Assumption 2
Learning rate for car	0.1	0.2
technologies		
Price elasticity of the energy	-0.2	-0.4
sector intensity for other		
transports		

Table 3: Alternatives on determinants of transports energy intensity

1.4 Transport Fuels

In our numerical exercises with the Imaclim-r modelling framework, biofuels (first and second generation) and Coal-to Liquid fuels represent the main alternatives to refined oil over the 21st century. In our first assumption, we represented a relatively high availability of coal-to-liquids and a relatively low availability of biofuels, whereas it was the contrary in our second assumption, such that we considered one alternative (assumption 1) where alternative fuels were carbon intensive and one alternative (assumption 2) where alternative fuels had a lower carbon content.

Parameters Parameter		Assumption 1	Assumption 2	
subset				
Biofuels	Inertia factor on production	0.75	0.65	
Diorueis	Supply multiplying factor	1	1.2	
Coal to liquids Time scale of reactive		6	20	
	anticipation for production			

1.5 Natural growth drivers

The natural growth rate of the economy defines the growth rate that the economy would follow if it produced a composite good at full employment, like in standard neoclassical models developed after (Solow, 1956). In the IMACLIM-R model, it is given by exogenous assumptions on active population and labor productivity growth. We considered three alternatives corresponding to the Shared Socioeconomic Pathways (SSP)1, SSP2 and SSP3 values (Marangoni *et al.*, 2017).

Parameters	Parameter	Parameter Assumption 1		Assumption 3
subset				
	Growth of the leader	from 2.5% to 1.5%	from 2% to 1%	from 1.4% to
Productivity	from 2001 to 2100			0.4%
rioductivity	Convergence	Low income: 400	Li: 500	Li:800
	speed of the	Medium income : 200	Mi : 300	Mi : 300
	"laggards'	High income : 150	Hi : 200	Hi : 200
	in years			
Population	Growth rate of	SSP1 OECD projection	SSP2 OECD	SSP3 OECD
	population		projection	projection

Table 5: Alternatives on growth factors

1.6 Mitigation challenges determinants

Parameters subset	Parameter	Assumption 1	Assumption 2
	Exogenous energy effi-	0.5%	1%
	ciency rate of the leader at		
	fixed energy prices		
	Other countries' speed of	95 %	70%
	convergence (% of the ini-		
Ŕ	tial gap after 100 years)		
cienc	Asymptotic level of catch-	30 %	85%
y effi	up targeted by the		
merg	laggards (% of the leader's		
End-use energy efficiency	energy efficiency		
Enc	Maximum rate of annual	3% for OECD countries	3% for OECD countries
	induced energy efficiency	4% for others	5.85% for others
	Maximum rate of	1% for OECD countries	1% for OECD countries
	autonomous	1.13% for other	2% for other countries
	energy efficiency	countries	

	Oil	Amount of ultimately re-	3.6 Tb	3.6 Tb
ssil fuels	Gas	Indexation of gas price on oil price	Until 80\$/bl	Always indexed
Availability of fossil fuels		Price growth elasticity to production decrease	1	1
Availab		Price growth elasticity to production decrease	3.5	2.5
	Coal	Price growth elasticity to production decrease	1	1
		Price growth elasticity to production increase	0.8	3
Developm		Asymptote to surface per capita	80-100	60-80
patterns		Households industrial goods consumption saturation level	1.5-3	1.2-2
Availability of LC tech-			20%	No new nuclear
nologies for	Renew.	Maximum market shares	50%	80%
electricity	Rer	Learning rates	5%	15%

Table 6: Alternatives on mitigation challenges determinants

2 Description of the data used in the module investments evaluation

Region	Passenger bus	Passenger rail	Passenger BRT/bus	Passenger high speed	Freight road	Freight rail
				rail		
ASIA	73.4	23.2	0.1	3.5	71.4	28.6
CIS	57.5	42.5	0	0	12	88
MAF	94.4	5.6	0.13	0	88.2	11.8
LAM	98	2	0.9	0	78	22
OECD	55.7	35.5	0.7	8.8	64.7	35.3

Table 7: Mode split (%) of land transport activity (public transport and freight transport) for the past trend scenario, calibrated from different databases¹

Mode	Unit	ASIA	CIS	MAF	LAM	OECD90
Road	lane.km/km2	3	1	1	1	4
Rail and HSR	track.km/km2	0.05	0.05	0.05	0.05	0.1

Table 8: Applied infrastructures density limits for the different regions in the model

¹World Bank (2017), Schafer (1998), Singh (2006), OECD (2017), UIC (2017) for ASIA; OECD (2017), ESCAP (2017) for CIS; World Bank (2017), Schafer (1998), UIC (2016), ITF (2017) for MAF; ITF (2017), Schipper *et al.* (2011) for LAM; UIC (2017), UIC (2016), OECD (2017), European Commission (2016) for OCDE. The overall volume of BRT activity taken from Dulac (2013) has been distributed among the different regions based on the shares of BRT infrastructure in each region (data from EMBARQ (2017).

3 Past trends of investments on transport infrastructures

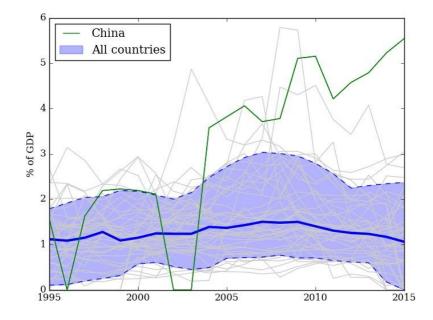


Figure 1: Historical annual investments on transport infrastructures (rail, road and airports) - median(solid line) and 10th and 90th percentile (dashed lines) - Data aggregated by the authors from OECD (2017) and World Bank (2017)

		2015		2050		2080		
			Baseline	LMA	HMA	Baseline	LMA	HMA
	Personal Vehicle	24%	37%	34%	30%	41%	35%	30%
	Air	1%	3%	3%	3%	5%	4%	3%
ASIA	Public transport	40%	49%	50%	51%	44%	45%	41%
	Non Motorized	35%	11%	13%	17%	10%	16%	26%
	Personal Vehicle	64%	68%	66%	61%	67%	47%	44%
	Air	2%	8%	8%	8%	14%	12%	9%
CIS	Public transport	23%	20%	22%	24%	16%	26%	27%
	Non Motorized	11%	4%	4%	7%	3%	15%	20%
	Personal Vehicle	31%	43%	41%	38%	50%	32%	27%
	Air	2%	5%	3%	3%	7%	2%	1%
MAF	Public transport	42%	40%	42%	40%	30%	25%	21%
	Non Motorized	25%	12%	13%	19%	14%	41%	50%
	Personal Vehicle	49%	52%	51%	52%	55%	57%	58%
	Air	5%	10%	10%	9%	12%	8%	6%
LAM	Public transport	38%	36%	36%	37%	30%	31%	30%
	Non Motorized	8%	2%	3%	2%	3%	4%	6%
	Personal Vehicle	81%	69%	69%	70%	62%	66%	67%
OCDE	Air	6%	14%	14%	13%	19%	15%	13%
	Public transport	12%	16%	16%	16%	19%	19%	19%
	Non Motorized	1%	1%	1%	1%	0%	0%	1%

4 Evolution of mode shares over time for the five regions studied

Table 9: Transportation mode shares in the different regions in Baselines, low mitigation ambi- tions (LMA) scenarios and high mitigation ambitions (HMA) scenarios (average values across scenarios sets)

5 Analysis of cumulative investments needs by including correlation between modal shift and climate policy implementation

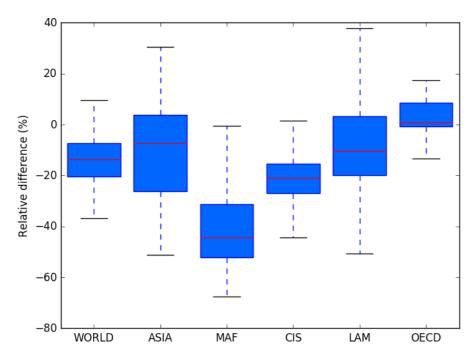
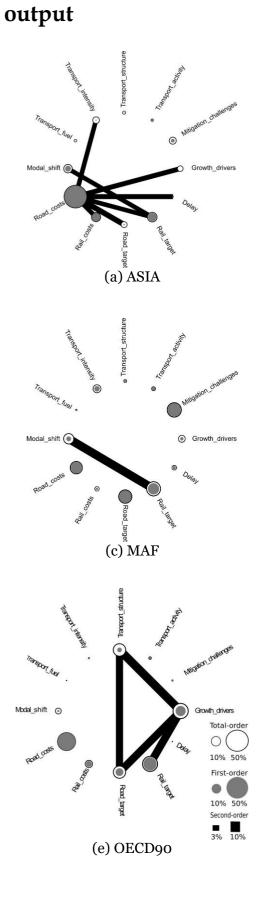



Figure 2: Relative difference in cumulative investment needs between mitigation scenarios with modal shift (from road to rail for public transportation and freight) and baselines scenarios without modal shift

6 Sensitivity analysis with cumulative investments needs as

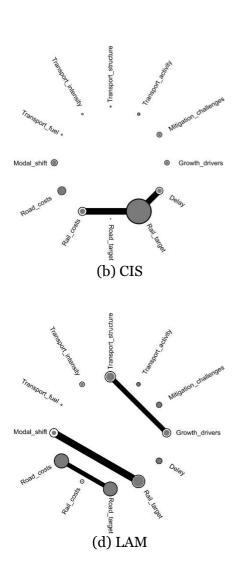


Figure 3: Sobol method global sensitivity analysis results for each region, for the cumulative investments needs. Filled nodes represent the first-order indices and rings the total-order indices. Lines represent second-order indices arising from interactions between inputs. Width of lines indicates the second-order indices. Only the second-order indices greater than 2% of total variance are represented (because of many interactions between parameters for OECD, we choose a threshold of 4% for a better readability).

7 Investment cost for passenger transportation by mode and region

We calculated the marginal investment cost of passenger-kilometer for the mode i in average for the period 2015-2050 using the next formula:

$$Marginal_inv_i = \frac{(Cum_inv_{i,2015-2050} - Constant_maint_inv)}{(pkm_{i,t=2050} - pkm_{i,t=2015)}} \quad \text{with}$$

 $Cum_{inv_{i,2015-2050}}$ the cumulative investments (new built and maintenance) from 2015 to 2050; *Constant_maint_inv* the cumulative investments of maintenance if no new builds is added from 2015 to 2050 (constant activity); $pkm_{i,t}$ the passenger activity for the mode i at the year t. Data of activity for the different infrastructures types (road and rail) have been converted in passenger-kilometers equivalent for the three modes using vehicle occupancy factors applied in the model.

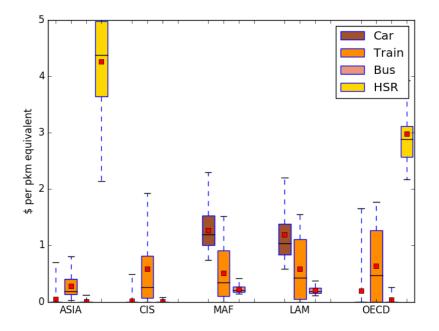
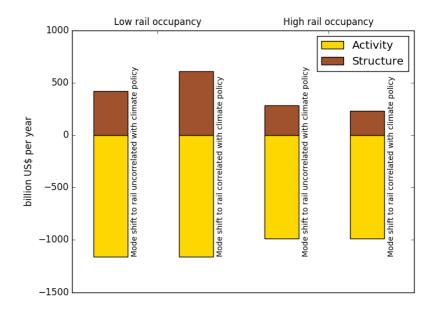



Figure 4: Distribution of marginal investment cost of one passenger-kilometer from 2015 to 2050 for the different regions and modes for passenger activity. Red squares represent the average of the distribution for all scenarios.

8 Contribution of ASIF factors to investments reduction

under low carbon pathways

Figure 5: Decomposition of transport activity and structures effects on global investments needs per year for one scenario. Two rail occupancy rates have been tested. Red edges represent the cases where modal shift to rail is correlated to low carbon policy implementation. Fuel and Intensity factors are not on this figures because we did not consider in this study additional investments related to energy efficiency or infrastructures for the use of alternative fuels

References

- Dulac, John. 2013. Global land transport infrastructure requirements. *Paris: International Energy Agency*, **20**, 2014.
- EMBARQ. 2017. *BRT Data*. data retrieved from http://brtdata.org/ (accessed 10th April 2017.
- ESCAP. 2017. *ESCAP database*. data retrieved from http://data.unescap.org/escap_stat/(accessed 10 April 2017).

European Commission. 2016.EU Transport in figures,2016.data retrieved from https:

//ec.europa.eu/transport/sites/transport/files/pocketbook2016.pdf.

ITF. 2017. *ITF Transport Outlook 2017*. Paris: Organisation for Economic Co-operation and Development.

Marangoni, G., Tavoni, M., Bosetti, V., Borgonovo, E., Capros, P., Fricko, O., Gernaat, D.

E. H. J., Guivarch, C., Havlik, P., Huppmann, D., Johnson, N., Karkatsoulis, P., Keppo, I., Krey, V., Ó Broin, E., Price, J., & van Vuuren, D. P. 2017. Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways. *Nature Climate Change*, **7**(2), 113–117.

OECD. 2017. OECD Stats. data retrieved from http://stats.oecd.org.

- Schafer, Andreas. 1998. The global demand for motorized mobility. *Transportation Research Part A: Policy and Practice*, **32**(6), 455–477.
- Schipper, Lee, Ng, Wei-Shiuen, Gould, Brian, & Deakin, Elizabeth. 2011. Carbon in motion 2050 for north America and latin America. *In: Transportation Research Board 90th Annual Meeting*.
- Singh, Sanjay Kumar. 2006. The demand for road-based passenger mobility in India: 1950-2030 and relevance for developing and developed countries. *European Journal of Transport and Infrastructure Research*, **6**(3), 247–274.

Solow, Robert M. 1956. A contribution to the theory of economic growth. *The quarterly journal of economics*, **70**(1), 65–94.

UIC. 2016. *Railway statistics synopsis 2015*. data retrieved from http://uic.org/Statistics.

UIC. 2017. *High speed database*. data retrieved from http://uic.org/ high-speed-database-maps.

World Bank. 2017. *World Development Indicators 2011*. data retrieved from World Development Indicators, http://data.worldbank.org/indicator/IS.RRS.GOOD.MT.K6.