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Abstract
We propose in this paper a new method processing the projection of an arbitrary size
vector onto the probabilistic simplex or the �1 ball. Our method merges two princi-
ples. The first one is an original search of the projection using a bucket algorithm. The
second one is a filtering, on the fly, of the values that cannot be part of the projection.
The combination of these two principles offers a simple and efficient algorithm whose
worst-case complexity is linear with respect to the vector size. Furthermore, the pro-
posed algorithm exploits the representation of numeric values in digital computers to
define the number of buckets and to accelerate the filtering.

Mathematics Subject Classification 49M30 · 65C60 · 65K05 · 90C25

1 Introduction

Machine learning techniques often involves to use a sparsity constraint which consists
in minimizing the number of non-zero components of a given vector. This constraint
acts as a regularization when the number of unknown parameters is too high with
respect to the number of observations. It is also a mean to select the most relevant
features. Looking for sparsity appears in many applications, including sparse repre-
sentation [6], wavelets soft thresholding [5], Lasso regression [13], survival models
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[14], compressed sensing [2], classification [1] and so on. Minimizing the number
of non-zero components of a given vector, also called the �0 norm minimization, is
generally a very difficult problem. The �0 minimization problem is known to be a
non-convex NP-hard combinatorial problem [11]. Hence, the common solution is to
minimize the �1 norm of the vector [6,13]. To this purpose, it is crucially important
to have a simple algorithm to project a vector onto the �1 ball or, equivalently, onto
the probabilistic simplex [3]. In many applications, for instance in machine learning,
a large number of projections is needed and it is especially crucial to use an algorithm
whose worst-case complexity is as small as possible.

The primary goal of this paper is to compute efficiently the projection of a vector
onto the probabilistic simplex. It is well known that the projection consists to apply a
thresholding operation on the vector. The main difficulty is to compute the threshold
which depends itself on the vector. In fact, the threshold can be taken equal to one of
the values of the input vector but the location of this value is unknown. An usual way
to compute the threshold consists in sorting the vector and to look for the appropriate
threshold. A common way to accelerate this search is to use a pivot which splits
the sorted input vector into two sub-parts. A mathematical condition is then used to
determine whether the sub-part with the highest values contains the threshold. From
thisway, it is then necessary to explore only one of the two sub-parts in order to identify
the threshold. The same cutting principle is applied recursively in the selected sub-part
until the process converges to the threshold. An other efficientmechanism to accelerate
the search is the filtering. A lower bound of the threshold can be maintained during
the whole process. The values of the input vector which are below this lower bound
are ignored, which is called the filtering. Our paper proposes some novel extensions
to the cutting principle and the filtering step.

The contribution of the paper is threefold. First, we propose to split the vectors into a
larger number of sub-parts, called the buckets, in order to estimate more precisely and
faster the threshold. We establish the convergence of this multiple splitting process.
Second, the number of buckets is chosen in function of the number representation in
computers. The computers represent the numbers as a string of digits and we exploit
the length of this string to accelerate the sorting of the vector. Third, using many
buckets allow us to maintain a tight lower bound of the threshold. Each bucket can
be quickly filtered by using this lower bound. We show that the proposed algorithm,
called the filtered bucketing algorithm Bucket F , is faster than the other state-of-the-art
algorithms. The main result of the paper is a projection algorithm whose complexity
is O((d + B) × logB(M)) where d is the size of the input vector, B is the base of the
numeral system used to encode the vector values and M is the bound of the values
which are processed. The values B and M are some a priori fixed constant values. A
preliminary analysis of the proposed algorithm was published partly in [12].

Section 2 recalls the main technical aspects of the projection onto the �1 ball and
the probabilistic simplex. Section 3 presents our main contribution; using a bucket
partitioning to accelerate the calculation of the threshold. Some numerical results are
presented in Sect. 4 which shows the efficiency of the filtered bucketing algorithm.
The conclusion of this paper is given in Sect. 5.
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2 Problem statement

Given a vector y = (y1, y2, . . . , yd) ∈ R
d and a real a > 0, we aim at computing its

projection PBa (y) onto the �1 ball Ba of radius a:

Ba =
{
x ∈ R

d : ‖x‖1 � a
}

, (1)

where ‖x‖1 = ∑d
i=1 |xi |. The projection PBa (y) is defined by

PBa (y) = arg min
x∈Ba

‖x − y‖2, (2)

where ‖x‖2 is the Euclidean norm. as shown in [7] and revisited in [3], the projection
onto the �1 ball can be derived from the projection onto the simplex Δa :

Δa=
{
x ∈ R

d :
d∑

i=1

xi = a and xi � 0, ∀i = 1, . . . , d

}
. (3)

Let the sign function sign(v) defined as sign(v) = 1 if v > 0, sign(v) = −1 if v < 0
and sign(v) = 0 otherwise, for any real value v ∈ R. The projection of y onto the �1
ball is given by the following formula:

PBa (y) =
{
y if y ∈ Ba,

(sign(y1)z1, . . . , sign(yd)zd) otherwise,
(4)

where z = PΔa (|y|) with |y| = (|y1|, |y2|, . . . , |yd |) is the projection of |y| onto Δa .
The fast computation of the projection x = PΔa (y) for any vector y is of utmost
importance to deal with sparse vector surrogates. An important property has been
established to compute this projection. It was shown [3] that there exists a unique
τ = τy ∈ R such that

xi = max{yi − τ, 0}, ∀i = 1, . . . , d. (5)

The projection is almost equivalent to a thresholding operation. The main difficulty is
to compute quickly the threshold τy for any vector y. Let y(i) be the i th largest value
of y such that y(d) � y(d−1) � · · · � y(1). The vector y sorted in decreasing order is
denoted y(↓). It is interesting to note that (5) involves that

∑d
i=i max{yi − τ, 0} = a.

Let S∗ be the support of x , i.e., S∗ = {i |xi > 0}. Then,

a =
d∑

i=1

xi =
∑
i∈S∗

xi =
∑
i∈S∗

(yi − τ).
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It follows that τy = (
∑

i∈S∗ yi − a)/|S∗| where |S∗| is the number of elements of S∗.
The following property allows us to compute the threshold τy . Let

� j (y) =
⎛
⎝

j∑
i=1

y(i) − a

⎞
⎠

/
j (6)

for any j = 1, . . . , d. Then, it was shown that τy = �Ky (y) where

Ky = max{k ∈ {1, . . . , d} | �k(y) < y(k)}. (7)

Looking for Ky , or equivalently y(τy), allows us to find immediately the threshold τy .
The most famous algorithm to compute the projection, which has been presented in
[8], is based on (7). It consists on sorting the values and then finding the first value
satisfying (7). A possible implementation is given in Algorithm 1. The worst case and
average case complexity of this algorithm are O(d log d). Such a complexity was the
motivation for many works that have use different methods such as extraction of the
Ky largest elements using a heap and reducing the complexity to O(d + k log d) [15].

An important turn on the history of these algorithms has been the use of pivot based
search for Ky [9]. Such a method, instead of sorting the elements or extracting the
largest one by one, randomly chooses a pivot p and splits the values into two vectors
y> and y< containing respectively the elements smaller than p and the elements larger
than p. The goal of such a split is that it indicates in which sub-part of the vector Ky is.
If �|y>|(y) � p, then we know that τy > p, thus we can stop processing the elements
of y< and continue to split the values of y>. Otherwise if the value is� p, then τy < p
and we now have to work with the values of y<, and only keep in memory the sum of
the values of y>.

One particularity of this algorithm is that it starts using some information about the
τy that we are looking for. After each iteration, we refine the bounds of its possible
values. Andworkingwith the bounds of τy , especially the lower bound, is themain part
of one of the best current algorithms for finding τy [3,10]. The idea of these algorithm
is to no longer take a random pivot, but to use a lower bound of τy as a pivot. Such
a pivot allows us to only consider the y> part of the vector after a splitting. Let V be
any sub-sequence of y, if we set the pivot to be

p =
∑

yi∈V yi − a

|V | , (8)

thenwe obtain a = ∑
yi∈V (yi − p) �

∑
yi∈V max(yi − p, 0) �

∑d
i=1 max(yi − p, 0).

This implies that p � τy and can be used as a lower bound pivot. The particularity of
such a lower bound pivot p is that ∀yi ∈ y, yi < p �⇒ xi = 0, thus any element
yi lower or equal to p will be discarded during by the algorithm. How to efficiently
process and maintain p is the main difference between these algorithms, they both
have a worst-case complexity of O(d2), but show an observed practical complexity
of O(d) most of the time. A good review of the state of the art can be found in [3].

As stated, most of the state of the art algorithms are based either on sorting the
data, or searching using pivot based search. In this paper we propose the following
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idea, instead of splitting the data into two sub-sequences, we propose to split it into
B sub-sequences. This gives us a better granularity and allows us to find a smaller
sub-sequence to split again at the next iteration, for the same cost. In addition, such a
splitting is naturally compatible with a discarding techniques using lower bounds on
τy , allowing our algorithm to achieve the best running time inmost of our experiments.

Algorithm 1: Sort based algorithm [8]
Data: y, a
u ← sort(y)
K ← max1�k�d {k : (

∑k
r=1 ur − a)/k < uk }

τ ← (
∑K

r=1 ur − a)/K
for i ∈ 1 . . . |y| do

xi ← max(yi − τ, 0)

3 Bucket partitioning

This section describes the bucket-based algorithm which achieves a better worst case
complexity than existing algorithms.

3.1 Principle and convergence of the bucket partitioning

The bucket-based method is based on the existence of Ky in (7). The main idea is to
split recursively the vector y into a hierarchical family of B � 2 ordered sub-vectors
ỹkb with b = 1, . . . , B and k = 1, . . . , k̄. The number of recursive splitting, also called
the number of levels, is k̄. It may depend on y contrary to B which is constant. The
sub-vectors are ordered in the sense that all elements of ỹkb are smaller than the ones
of ỹkb+1 for all b = 1, . . . , B − 1. Each sub-vector ỹkb is called a bucketed vector or
simply a bucket. The goal is to find the bucket which contains y(Ky). We will show
that only one bucket at level k is relevant because only this single bucket is necessary
to identify the bucket which actually contains y(Ky) where Ky is defined in (7). Hence,

all the buckets ỹk+1
b at level k + 1 are contained in a single bucket ỹkbk where bk is

the identification number of the bucket at level k which needs a deeper analysis. By
convention, we assume that ỹ0b0 = y and b0 = 1.

Let us define the process to create and analyze the hierarchical family of buckets.
For any level k + 1 � 1, let us consider the interval I k+1 defined by

I k+1 =
[
min ỹkbk ,max ỹkbk

]
(9)

where min ỹkb , resp. max ỹkb , denotes the minimum element, resp. maximum element,
of bucket ỹkb . Let us consider a partition of I

k+1 into B ordered sub-intervals I k+1
1 , …,

I k+1
B . Let hk+1 : I k+1 
→ {1, . . . , B} be the bucketing function such that hk+1(v) = b
when the real value v belongs to I k+1

b . The bucket ỹkbk is then split into B ordered

sub-vectors ỹk+1
b such that
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(i) ỹk+1
b = (yi )i∈Sk+1

b
,

(ii) Sk+1
b = {i ∈ Skbk : hk+1(yi ) = b},

(iii) max ỹk+1
b < min ỹk+1

b+1 for all b = 1, . . . , B − 1,

with the convention S0b0 = {1, . . . , d}. We get
∣∣SkB

∣∣ � 1 at any level k � 1 because of

the definition of I k+1. The fact that max ỹk+1
b < min ỹk+1

b+1 follows from the fact that
equal values of y necessarily belongs to the same bucket.

Let C0
b0+1 = 0 and, for any k > 0,

Ck+1
b =

{
Ck
bk+1 + ∑

b′�b
∑

i∈Sk+1
b′

yi if bk < B,

Ck−1
bk−1+1 + ∑

b′�b
∑

i∈Sk+1
b′

yi if bk = B,
(10)

be the cumulative sum of buckets ỹk+1
b to ỹk+1

B , including also the cumulative sum of
the buckets kept at previous levels 1, 2, …, k which have been not discarded. Thus,
by definition, Ck+1

b is the cumulative sum of all y(i) for i � Nk+1
b where

Nk+1
b =

⎧⎨
⎩
Nk
bk+1 + ∑

b′�b

∣∣∣Sk+1
b′

∣∣∣ if bk < B,

Nk
bk−1+1 + ∑

b′�b

∣∣∣Sk+1
b′

∣∣∣ if bk = B,
(11)

is the number of elements in the family of buckets ỹk+1
b , …, ỹk+1

B , including also
the number of elements not discarded at previous levels 1, 2, …, k. We adopt the
convention N 0

b0+1 = 0. It follows from (10) and (11) that

�Nk+1
b

(y) = (Ck+1
b − a)/Nk+1

b . (12)

By definition of the buckets, it follows that

min ỹk+1
b:B = y

(Nk+1
b )

(13)

where ỹk+1
b:B is the vector obtained from the concatenation of buckets ỹk+1

b …, ỹk+1
B .

If �Nk+1
B

(y) � min ỹk+1
B = y

(Nk+1
B )

, then Ky < Nk+1
B according to (7). Hence, we

can discard all the remaining buckets ỹk+1
b for b < B and continue the bucket-based

exploration of ỹk+1
B to approximate Ky more accurately. Otherwise, we know that

Ky � Nk+1
B , thus we continue the analysis of the remaining buckets ỹk+1

b . Let bk+1
be the largest b such that

�Nk+1
b

(y) � min ỹk+1
b:B . (14)

When k = 0, the index b1 may not exist if y ∈ Δa : the process is stopped. Otherwise,
if bk+1 exists, then Ky < Nk+1

bk+1
. Hence, we can discard all the remaining buckets ỹk+1

b

for b < bk+1 and continue the analysis with ỹk+1
bk+1

, …, ỹk+1
B . However, by definition

of bk+1, we know that
�Nk+1

bk+1+1
(y) < min ỹk+1

bk+1+1:B . (15)
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Hence, Ky necessarily satisfies Nk+1
bk+1+1 � Ky < Nk+1

bk+1
. To compute Ky , it is then

sufficient to explore only ỹk+1
bk+1

.

From the definition of I k+1, it is easy to verify that the size of the bucket ỹkbk is

strictly decreasing as a function of k since the boundaries of I k are two elements
of the previous bucket ỹk−1

bk−1
and B � 2. After a finite number k̄ of iterations, ỹk̄bk̄

contains only one value or some repetitions, say t0 � 1, of the same value, say v0. It
is straightforward to verify that

Ck̄
bk̄

− a

N k̄
k̄

� v0 ⇐⇒
Ck̄
bk̄

− t0v0 − a

N k̄
k̄

− t0
� v0. (16)

Hence, this last bucket ỹk̄bk̄
can not contain y(Ky). We stop the exploration. It follows

that τy satisfies

τy =
⎧⎨
⎩

�
Nk̄
bk̄+1

(y) if bk̄ < B,

�
Nk̄−1
bk̄−1+1

(y) if bk̄ = B.
(17)

The convergence of the algorithm is established. However, it should be noted that
it can even be stopped sooner. When Ky is at the minimal extremity of a bucket ỹk̄i .
We obtain the following stop criteria:

max ỹk̄i < �
Nk̄
i+1

(y) ∧ min ỹk̄i+1 � �
Nk̄
i+1

(y). (18)

This implies that τy = �k̄
Ni+1

(y). Note that using only this criteria is enough since it
generalizes the case of unicity of the value.

The complexity of this algorithm essentially depends on the choice of the bucketing
functions hk at any level k. This aspect is studied in the next subsection. A possible
implementation is given in Algorithm 2.

Example A synthetic example is given in Fig. 1. The vector y is split using 6 buckets.
Starting from the sub-sequence (bucket) of the largest values ỹ16 , the algorithm checks
if �N1

6
(y) < min ỹ16 . It is true, thus all the values in this bucket belong to S

∗, the bucket
is said in and is colored in green in the diagram. Then algorithm continues and checks
ỹ15 , which is also true, and thus in. Then for ỹ

1
4 , the assertion is false, this implies that it

exists at least one value which does not belong to S∗, the bucket become the bucket to
split and is colored in blue in the diagram. Note that all the remaining buckets in this
layer of buckets are directly discarded, said out and are colored in red in the diagram.
The algorithm continue by spliting the bucket ỹ14 . The same process is made until the

last layer k̄, where the bucket ỹk̄5 has the property to stop the algorithm: τy = �
Nk̄
6
(y).

The algorithm is finished and the node is colored in grey in the diagram.
In Fig. 2, we show how splitting in several buckets shrinks the number of values

that we have to process at each iteration, and allows us to get closer to Ky . The color
code is the same as in Fig. 1.
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y

ỹ11

ỹ12

ỹ13

ỹ14

ỹ15

ỹ16

ỹ21

ỹ22

ỹ23

ỹ24

ỹ25

ỹ26

...

ỹk̄1

ỹk̄2

ỹk̄3

ỹk̄4

ỹk̄5

ỹk̄6

Fig. 1 Principle of “hierarchical bucket filtering”. The vector y is split into 6 buckets. The buckets in green
must be kept to compute the threshold τy . The buckets in red are not involved in the computation of τy .
The bucket in blue must be explored in order to identify its elements which participate to tauy . Hence, the
splitting process is repeated recursively until all the values of y involved in the computation of tauy are
identified

Fig. 2 This figure shows how the algorithm gets closer to Ky after each splitting step. Th goal is to identify
the Ky largest elements of the sorted vector y(↓) which are necessary to compute τy . The support of these
Ky largest elements is S∗. Each splitting step removes the smallest elements not involved in τy and identifies
the bucket which contains the Ky -th largest element. This bucket is then split again into buckets in order to
identify progressively the number Ky . The size of the buckets becomes smaller as the number of splitting
increases

3.2 Implementation and complexity

The efficiency of the bucket algorithm is strongly correlated to the hk function used
to do the partitioning, in this section, we propose an efficient implementation and
highlight its complexity. Let �x� be the function, defined from the real number to
the integer number, returning the lowest integer greater than x . A simple possible
implementation of function hk , using the knowledge that the values of y are in the
interval [α = min ỹkbk , β = max ỹkbk ] is:

hk+1(x) =
⌈
x − α

β − α
∗ B

⌉
. (19)
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This function splits the interval [α, β] into B intervals of equal length. Using this
function, at worst, at each iteration we split the values into two sets, one containing
only one element (for example α) and another containing the remaining ones. Thus
d iterations can be required to fully split the data and the worst-case complexity is
O(d2).

That is why we propose another function, based on the numbers’ encoding instead
of their actual values. Let D be the number of digits used to encode the numbers of y.
Assume that number u is greater than number v if the encoding of u is lexicographically
greater than the one of v. This assumption is true in nowadays computers using positive
double precision values. Consider for instance the numbers u = 1.6250 and v =
0.9375. Ifwe look at the digits,u is lexicographically greater than v. Today’s computers
store the number by first storing the exponent of the first non zero bit of the number,
often using a bias for reaching negative exponent. Then, starting from the next bit on
the right of the first non zero bit, the k next digits are stored. These vector of k bits
is usually called the fraction. For negative numbers, a bit is set to 1, but we consider
here only positive numbers. Consider for instance an exponent given using 3 bits and
4 bits for the fraction. We use here a bias of 3. Consider the numbers:

– 011-1010: the exponent is equal to 3 minus the bias, thus 0; The represented
number is 20 + 2−1 + 2−3 = 1 + 0.5 + 0.125 = 1.625

– 010-1110: the exponent is equal to 2 minus the bias, thus −1; the represented
number is 2−1 + 2−2 + 2−3 + 2−4 = 0.5 + 0.25 + 0.125 + 0.0625 = 0.9375

Using this binary encoding, the number are still lexicographically ordered. It must be
noted that, using encoded numbers over D digits, the number of different numbers is
finite. Moreover, let B be the base of the encoding, the maximum number of compar-
ison needed to compare two numbers u and v is �logB(max(u, v))�. In other words,
it is only necessary to consider the non-zero digits.

Implementation In order to define an efficient function hk , we relax the Eq. (9) and
thus the property ensuring that at each iteration, the number of elements of the bucket
is decreasing. But we ensure that the maximal number of hierarchical iterations is
finite. Here it will be D. Let the function Ek

B , defined for numbers encoded over D
digits in base B, be the function returning the kth digit in the lexicographical order.
The function hk is now defined as follows:

hk(x) = Ek
B(x). (20)

In today’s computers, double precision values are often encoded over 64bits. Using
a base b = 28 = 256, thus defined over 8 binary digits (a Byte), the maximum depth of
the algorithm is log28(2

64) = 8.Moreover, the hk function is strongly computationally
less expensive than ones using divide and multiply operations, making the implemen-
tation highly competitive. Note that the number of buckets is equal to the base too.
Since the maximum number of operations at each iteration is bounded by the number
of values of y. The complexity of applying this method in classical double precision
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implementation in computer is O(d). Note that using a Byte for comparing numbers
is often done while implementing efficient sorting method such as the Radix sort [4].

In the general case, using D digits in a base B, the complexity is O((d + B) × D).
Another way to express this complexity is the following. Let M be the maximal value
that a number can take. The worst-case complexity is then:

O
(
(d + B) × logB(M)

)
. (21)

Complexity analysis Such a complexity is interesting in two points, both the base (B)
and the number of elements (d) have an important impact on the complexity, while
the largest element of the vector (M) only has a logarithmic impact on it. Even if
numbers are often encoded using 8-bits unit words, it may be interesting to see if this
28 = 256 base is worth it. Figure3 shows the impact of these two main factors on
the worst-case complexity. The top plot shows that the more we have elements, the
larger the best base is. For example, for 106 elements, the best possible base seems to
be 105. Of course, such a complexity does not take into account the fact that at each
iteration the number of values change (Table 2 will later show it) and that the range
of values is not necessarily [0, 264 − 1]. Moreover, The second plot shows that using
such a bucket-based algorithm starts to payoff when the size of the vector d is larger
than the base B. Also, this plot shows that using a base 256 seems to be a good fixed
trade-off for the base value.

3.3 Acceleration with filtering

As previously stated, one of the main advantages of the method proposed in [3] is
to filter, while iterating over the values, the values that are known to be zero in the
projection (i.e. xi = 0). This is done by maintaining a lower bound τ ′ of τy and
removing values yi < τ ′ according to (8).

The bucket algorithm is an iterative process of splitting the data. In order to incor-
porate the filtering by lower bound, we need to decompose its iterations by extracting
the first one. This is done by splitting the loop from line 1 in Algorithm 2 into the
loops lines 1 and 5 in Algorithm 3. For the first iteration, we have no prior information
of what could be the lower bound, thus we apply a process close to the first part of
the algorithm proposed in [3] (named Condat in our experiments). We maintain the
lower bound τ ′ of τy while iterating over the values, and discard any value smaller
than this lower bound and use any larger value to update it. This process is shown in
line 1 of the algorithm.

Once the first iteration done,we could directlymap the filtering previously proposed
in [3]. This implies that, at each new iteration, we use most of the remaining values
as an initial guess for the lower bound. Then, we refine this loose bound by removing
values that are dominated by it. We did implement this version of the filtering, and
without too much surprise, we got the same performance as in [3]. However, the fine
grain structure of the bucket algorithm allows us to use exact information collected
on the fly during the iterations. Once the first iteration done, and then at each iteration
over the buckets, we can extract a lower bound by using the �Nk

bk
(y) of the current

bucket (line 4). Thus instead of using an initial lower bound that sum all the elements
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Fig. 3 Bucket-based algorithms Worst-case complexity plot with respect to: (top) the base value, using
M = 264 − 1 and different d. (Bottom) the number of values, using M = 264 − 1 and different bases b
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Algorithm 2: Bucket
Data: y, a

S0b0 ← {1, . . . , d}
ỹ0b0 ← y

C0
b0

← −a

N 0
b0

← 0
1 for k ∈ 1 . . . �logb(D)� do

for b ∈ 1 . . . B do
Skb ← {i ∈ Sk−1

bk−1
: hk−1(yi ) = b}

ỹkb ← (yi )i∈Skb
2 for b ∈ B . . . 1 do

bk ← b
if �Nk

b+1
(y) > max(ỹkb ) then

break loop 1

if �Nk
b
(y) � min(ỹkb ) then

break loop 2

τ ← �Nk
bk

(y)

for i ∈ 1 . . . |y| do
xi ← max(yi − τ, 0)

as an initial guess, we use only the values that we already know that they belong to τ .
Finally, at each pass onto the current bucket to split, we can discard the values that are
lower than τ ′ and update it in an online fashion. A possible implementation is given in
Algorithm 3. This novel implementation of the filtering, due to the bucket structure,
is one of the key points of the better efficiency of our algorithm.

Remark Another interesting property of algorithms Bucket and Bucket F is that, using
prior knowledge, such as the minimum and maximum values or some bounds on these
values, we can avoid some of the first iterations of the algorithm. The exponent is
coded over 11 bits and has a bit of sign before. Using this prior knowledge can prevent
a useless iteration over the bit of sign and the 7 first bits of exponent if we know the
interval of definition of these values. Note that only the left side of the bit encoding
need to be hard-coded as a prior knowledge while the right side is automatically
detected by our algorithms.

4 Experimental evaluation

In these experiments, we defined random vectors of size varying between 105 and 107,
using either uniform or Gaussian distributions. We generated 500 vectors for each
experiment and ran each algorithm independently, and extracted their mean times.
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Algorithm 3: Bucket F

Data: y, a

S0b0 ← {1, . . . , d}
ỹ0b0 ← y

C0
b0

← −a

N 0
b0

← 0
τ ′ ← −a
n ← 0
for i ∈ 1 . . . d do

1 if yi > τ ′ then
n ← n + 1
τ ′ ← τ ′ + (yi − τ ′)/n
if yn − a > τ ′ then

n ← 1
τ ′ ← yi − a

Put yi in bucket h1(yi )

2 for k ∈ 1 . . . �logb(D)� do
3 for b ∈ B . . . 1 do

bk ← b
if �Nk

b+1
(y) > max(ỹkb ) then

break loop 2

if �Nk
b
(y) � min(ỹkb ) then

break loop 3

4 n ← Nk
b ; τ

′ ← �Nk
bk

(y)

for yi ∈ bk do

5 if yi > τ ′ then
n ← n + 1
τ ′ ← τ ′ + (y1 − τ ′)/n
put yi in bucket hk(yi )

τ ← �Nk
bk

(y)

for i ∈ 1 . . . |y| do
xi ← max(yi − τ, 0)
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Fig. 4 Uniform distribution: Projection time comparison, while the d value (size of the vector y to project)
changes from 105 to 106, with a = 1

We show here the performance of the proposed algorithms, Bucket1 and Bucket F

against the algorithm proposed by Condat [3] which is the current best one, and the
one proposed by Michelot in [10], which can be seen as a non dynamic version of
the Condat algorithm (i.e. it updates the lower bound only after the iteration instead
of during).

UniformWe start our experiments with Fig. 4. This figure shows that when a uniform
random distribution is used for vector y, the time needed for projection the vector
grows linearly for all three methods, as a function of the vector size. Moreover, the
Bucket F algorithm seems to perform best on this kind of distribution. In this figure,
it is hard to differentiate Bucket F and Condat , thus the next experiments are going
to focus on this difference.

Gaussian Figure 5 shows that the same kind of results occur while we use a Gaussian
distribution to generate the values of vector y. The time seems to grow linearly with
d, the size of vector y. Moreover, once again, the Bucket F algorithm performs better.
Figure 6 shows that first, when the radius of the simplex ball is small or unit, the
filtering algorithms are the most efficient, but the more the radius grows, the less they
are, and the classical bucket become the best one. Such a result may imply that in
function of the radius size, one should choose to use the filtering or not in the Bucket

1 The code used for these experiments is available at www.perezguillau.me/code/projection.zip. Note that
part of this code is based on the generously provided code from https://www.gipsa-lab.grenoble-inp.fr/
~laurent.condat/software.html.
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Fig. 5 Gaussian distribution: Projection time comparison, while the d value change from 105 to 106, with
a = 1

algorithm. Lastly, when we bias the vector y by adding the value a randomly in one
of its component, the size of K decreases, but the same kind of results seems to show
up. This last result implies that the increasing of Ky is not the only reason of why the
time grows for both filtering algorithms.

Iteration as shown in [3], the number of iterations required by an algorithm is a good
information on its efficiency. Table 1 shows the average number of iterations required
by each algorithm on different types of instances. As we can see, the Bucket based
algorithms are able to find the Ky in a relatively small amount of step, compared
to other algorithms. More importantly, if we consider Table2, we can remark that
Bucket F successfully takes advantage of its bucket design, but also from its efficient
fine grain filtering algorithm. Finally, as we can see, the filtering scheme used in
Condat improves when σ decreases. In contrary, for the bucket algorithms, when
sigma increases, the rangeof values grows and it is easier to split the values into buckets,
according to their encoding, that’s why we have a number of iterations decreasing.

Cumulative Finally, Fig. 7 shows a cumulative plot, using all our instances, of the
number of instances solved by each method as a function of time. As we can see, the
introduction of the filtering for the bucket algorithm drastically changes its perfor-
mance, allowing it to have the best cumulative plot. Moreover, the average percentage
of improvement, in our experiments, of bucket F against its opponent is 14%.

Remarks When we profile the resolution time, we can remark that, for both filtering
algorithms, more than half of the time is spent on the first iteration over y. Moreover,
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Fig. 6 Gaussian law: (top) projection time comparison, while the a value change from 1 to 1024, with
d = 106 and std-dev = 10−3 (when a = 1, K ≈ 3500, when a = 64, K = 14,500). (bottom) Projection
time comparison, while the a value change from 1 to 1024, with a vector generated using d = 106 and
std-dev = 10−3 and by adding a to one of the components of the vector selected randomly (when a = 1,
K ≈ 18, when a = 64, K = 21)
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Table 1 Average number of iterations needed by the algorithm to project a vector of size 106

Law Michelot Condat Bucket F Bucket

Uniform 13.2 6.2 4.0 4.0

Gaussian σ = 0.001 10.0 6.3 3.4 3.6

Gaussian σ = 0.01 12.1 6.6 3.1 3.1

Gaussian σ = 0.1 13.7 7 2.9 2.9

Table 2 Example of number of
values at each iteration required
by the algorithm to project the
vector

Iteration Michelot Condat Bucket F Bucket

0 106 106 106 106

1 500,403 65,656 65,655 999,999

2 212,510 13,315 796 500,628

3 86,122 2950 39 39

4 34,147 669 6 39

5 13,324 143 0 0

6 5107 46 0 0

7 1987 20 0 0

8 750 20 0 0

9 289 0 0 0

10 115 0 0 0

11 55 0 0 0

12 28 0 0 0

13 24 0 0 0

14 24 0 0 0

The vector size is d = 106 at iteration 0 and the values follow a
Gaussian distribution with σ = 0.01

almost the other half is spent building the vector x (i.e., to project the vector y by
applying the threshold), the remaining part of the algorithm is completely flooded
in the global run time. The more we increase the number of elements, the more the
time spent inside the algorithm is uncorrelated to the global time. Figure8 shows this
behaviour for the two fastest algorithms. Such a result also implies that the current
cost of finding Ky is only twice the linear time required to pass through y, thus no
more order of magnitude can be gained using this kind of method.

5 Conclusion

This paper proposes a new projection algorithm based on a bucket decomposition,
that allows a finer grain splitting of the values, with a linear worst-case complexity. It
exploits the representation of numerical values in digital computers to fix the number
of buckets and to assign the values to the buckets. Moreover, an improvement based of
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the filtering principle is also given, increasing the efficiency of the algorithm. Finally,
as shown in the experimental section, our algorithm performs better in practice on the
tested instances, and has better guarantees thanks to its complexity.

Appendix A

See Table3.

Table 3 (Top) Projection time using Gaussian generation with μ = a/d, and σ = 10−3, and a = 1.
(Bottom) Projection time using Gaussian generation with μ = a/d, and σ = 10−3, and a = 64

size Quicksort + simple [8] Radix + simple Heap based [15] Pivot random [9] Pivot median [9]
1E+05 9.61E-03 (1.0E-03) 1.03E-02 (1.2E-03) 1.30E-03 (9.4E-05) 1.11E-03 (5.9E-04) 2.29E-03 (1.9E-04)
2E+05 2.05E-02 (1.2E-03) 2.09E-02 (1.6E-03) 2.30E-03 (2.2E-04) 2.20E-03 (1.2E-03) 4.41E-03 (3.4E-04)
3E+05 3.05E-02 (1.7E-03) 3.22E-02 (2.2E-03) 3.31E-03 (3.6E-04) 3.22E-03 (1.7E-03) 6.58E-03 (5.3E-04)
4E+05 4.52E-02 (3.7E-03) 4.28E-02 (2.5E-03) 4.40E-03 (4.9E-04) 4.45E-03 (2.3E-03) 8.67E-03 (5.5E-04)
5E+05 5.71E-02 (2.8E-03) 5.72E-02 (3.1E-03) 5.53E-03 (5.2E-04) 5.30E-03 (2.7E-03) 1.09E-02 (7.5E-04)
6E+05 6.77E-02 (3.3E-03) 6.97E-02 (3.3E-03) 6.72E-03 (6.2E-04) 6.77E-03 (3.5E-03) 1.30E-02 (7.7E-04)
7E+05 8.14E-02 (3.8E-03) 8.22E-02 (3.5E-03) 7.79E-03 (6.8E-04) 7.84E-03 (4.2E-03) 1.52E-02 (9.9E-04)
8E+05 9.20E-02 (5.9E-03) 9.30E-02 (4.6E-03) 8.82E-03 (7.9E-04) 8.94E-03 (4.7E-03) 1.73E-02 (1.0E-03)
9E+05 9.61E-02 (3.7E-03) 1.05E-01 (4.8E-03) 9.63E-03 (7.5E-04) 9.87E-03 (4.9E-03) 1.97E-02 (1.2E-03)
1E+06 1.07E-01 (3.9E-03) 1.16E-01 (5.4E-03) 1.09E-02 (9.6E-04) 1.08E-02 (5.6E-03) 2.16E-02 (1.0E-03)
1E+07 1.27E+00 (6.5E-02) 1.34E+00 (2.1E-02) 1.09E-01 (3.1E-03) 1.24E-01 (5.5E-02) 2.04E-01 (4.7E-03)
size Michelot [10] Condat [3] Bucket BucketF

1E+05 1.77E-03 (1.4E-04) 7.98E-04 (6.6E-05) 1.08E-03 (1.2E-04) 6.45E-04 (4.8E-05)
2E+05 3.32E-03 (2.6E-04) 1.25E-03 (1.1E-04) 2.18E-03 (2.4E-04) 9.99E-04 (1.1E-04)
3E+05 4.93E-03 (4.7E-04) 1.60E-03 (1.5E-04) 3.29E-03 (3.4E-04) 1.33E-03 (1.3E-04)
4E+05 6.56E-03 (6.6E-04) 1.98E-03 (1.5E-04) 4.46E-03 (4.8E-04) 1.65E-03 (1.7E-04)
5E+05 8.24E-03 (7.4E-04) 2.42E-03 (2.5E-04) 5.60E-03 (5.3E-04) 2.01E-03 (1.8E-04)
6E+05 9.88E-03 (8.1E-04) 2.75E-03 (2.8E-04) 6.62E-03 (7.0E-04) 2.36E-03 (1.9E-04)
7E+05 1.16E-02 (9.2E-04) 3.09E-03 (3.1E-04) 7.53E-03 (6.9E-04) 2.64E-03 (2.5E-04)
8E+05 1.32E-02 (9.3E-04) 3.39E-03 (2.9E-04) 8.55E-03 (7.6E-04) 2.95E-03 (3.0E-04)
9E+05 1.47E-02 (9.5E-04) 3.72E-03 (3.0E-04) 9.45E-03 (7.4E-04) 3.27E-03 (2.6E-04)
1E+06 1.65E-02 (1.1E-03) 4.05E-03 (3.4E-04) 1.05E-02 (9.5E-04) 3.56E-03 (2.7E-04)
1E+07 1.66E-01 (3.9E-03) 2.49E-02 (1.3E-03) 1.43E-01 (6.1E-03) 2.65E-02 (1.6E-03)
size Quicksort + simple Radix + simple Heap based Pivot random Pivot median

1E+05 1.12E-02 (1.3E-03) 1.12E-02 (9.8E-04) 9.26E-03 (8.1E-04) 1.55E-03 (4.3E-04) 2.31E-03 (2.0E-04)
2E+05 2.23E-02 (1.9E-03) 2.26E-02 (1.4E-03) 1.42E-02 (9.5E-04) 3.30E-03 (1.1E-03) 4.48E-03 (3.7E-04)
3E+05 3.16E-02 (2.3E-03) 3.41E-02 (2.0E-03) 1.75E-02 (1.2E-03) 4.84E-03 (1.8E-03) 6.44E-03 (4.3E-04)
4E+05 4.68E-02 (2.2E-03) 4.62E-02 (2.5E-03) 2.04E-02 (1.4E-03) 6.40E-03 (2.2E-03) 8.71E-03 (7.1E-04)
5E+05 5.92E-02 (2.6E-03) 5.73E-02 (3.4E-03) 2.30E-02 (1.5E-03) 7.84E-03 (3.0E-03) 1.09E-02 (7.6E-04)
6E+05 7.21E-02 (2.9E-03) 7.09E-02 (3.3E-03) 2.55E-02 (1.8E-03) 9.58E-03 (3.6E-03) 1.30E-02 (8.5E-04)
7E+05 8.45E-02 (3.2E-03) 8.27E-02 (3.4E-03) 2.77E-02 (1.7E-03) 1.06E-02 (4.1E-03) 1.52E-02 (1.0E-03)
8E+05 9.68E-02 (3.5E-03) 9.55E-02 (3.8E-03) 3.00E-02 (2.0E-03) 1.16E-02 (4.4E-03) 1.73E-02 (1.1E-03)
9E+05 1.09E-01 (3.8E-03) 1.06E-01 (5.0E-03) 3.26E-02 (1.9E-03) 1.25E-02 (4.9E-03) 1.94E-02 (9.9E-04)
1E+06 1.21E-01 (4.1E-03) 1.18E-01 (5.2E-03) 3.51E-02 (1.9E-03) 1.38E-02 (5.6E-03) 2.16E-02 (1.1E-03)
1E+07 1.32E+00 (3.6E-02) 1.28E+00 (4.3E-02) 1.55E-01 (4.7E-03) 1.38E-01 (6.2E-02) 2.04E-01 (4.9E-03)
size Michelot Condat Bucket BucketF

1E+05 3.40E-03 (3.5E-04) 2.04E-03 (2.2E-04) 1.06E-03 (1.0E-04) 2.35E-03 (2.4E-04)
2E+05 5.94E-03 (5.9E-04) 4.15E-03 (4.1E-04) 2.07E-03 (2.1E-04) 4.15E-03 (3.6E-04)
3E+05 7.82E-03 (7.6E-04) 5.96E-03 (5.4E-04) 3.18E-03 (3.0E-04) 5.65E-03 (5.0E-04)
4E+05 1.02E-02 (7.8E-04) 7.65E-03 (6.6E-04) 4.44E-03 (4.6E-04) 7.04E-03 (6.4E-04)
5E+05 1.19E-02 (8.4E-04) 9.11E-03 (6.9E-04) 5.67E-03 (5.9E-04) 8.16E-03 (6.9E-04)
6E+05 1.36E-02 (9.3E-04) 1.06E-02 (9.4E-04) 6.64E-03 (6.4E-04) 9.33E-03 (7.5E-04)
7E+05 1.55E-02 (1.2E-03) 1.17E-02 (7.9E-04) 7.53E-03 (5.7E-04) 1.03E-02 (7.7E-04)
8E+05 1.73E-02 (1.2E-03) 1.29E-02 (8.1E-04) 8.61E-03 (7.4E-04) 1.13E-02 (8.2E-04)
9E+05 1.95E-02 (1.4E-03) 1.40E-02 (8.3E-04) 9.51E-03 (7.2E-04) 1.21E-02 (8.5E-04)
1E+06 2.15E-02 (1.3E-03) 1.51E-02 (9.3E-04) 1.05E-02 (9.3E-04) 1.29E-02 (8.5E-04)
1E+07 1.88E-01 (8.3E-03) 7.33E-02 (9.4E-03) 1.43E-01 (6.3E-03) 6.53E-02 (2.4E-03)

In both tables, the color gradient from red to green shows the running time ordering from worst to best.
Note that the difference in color does not take into account the value, only the position in the ordering
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