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Abstract—This interdisciplinary work focuses on the interest of
a new proximal algorithm (ADRS ) for supervised classification
of live cell populations growing in a thermostated imaging station
and acquired by a Quantitative Phase Imaging (QPI) camera.
This type of camera produces interferograms that have to be
processed in order to extract features derived from quantitative
linear retardance and birefringence measurements. We monitor
cell cycling in different populations with both a classical fluores-
cent DNA intercalating agent imaging on the one hand and QPI
without any cellular manipulation nor treatment on the other
hand. We show that the accuracy of the classification of these
cells in different phases of the cell cycle is equivalent, if not
better, when using QPI features as compared to fluorescence
imaging features. This is a very important finding since we
demonstrate that it is now possible to very precisely follow cell
growth under regular culture conditions without any bias. No dye
or any kind of markers are necessary for this live monitoring,
thus the cells normal physiology is not at all affected by this non
invasive procedure. Any studies requiring analysis of cell growth
or cellular response to any kind of treatment could benefit from
this new approach.

I. PROBLEM STATEMENT

Cell cycle is a biological process ultimately resulting in
cell division, yielding two daughter cells with the same exact
genetic content. This highly regulated process is of the utmost
importance and is a direct reflection of cell growth. It consists
of four phases:
i) the mitotic phase per se (M-Phase), in which nuclei lose their
membrane, nucleoli disappear and chromosomes are physically
sorted to be equally split among two identical daughter cells.
These new cells then enter:
ii) G1 phase, in which cell nucleus gets reorganized following
cell division. The entry into G1 phase requires the passage of
a checkpoint ("Spindle checkpoint") where cells verify that
division occurred as planned. If not, cells cannot proceed to
G1. G1 phase is associated with the formation of nucleoli,
sub-nuclear structures that produce ribosomal RNAs required
for the synthesis of proteins from transcribed DNA, as well as
for the normal physiology of the cell. DNA transcription into
RNA restarts in order to support cellular functions. Following
G1 phase and after another checkpoint validating their well

being, the cells proceed to:
iii) S phase, where DNA is replicated. This phase is associated
with an increase in cell size and mass. After chromosomes
have been duplicated, cells enter:
iiii) G2 phase, where there is a last checkpoint before entering
M-Phase again.
While monitoring cell cycling allows to directly follow cell
growth, no method is currently available to do so without
interfering with normal cell growth. Indeed, either Fluorescence-
Activated Cell-Sorting (FACS) that requires non-physiological
cell handling or cell labelling with exogenously expressed
fluorescent proteins are used. We investigated whether high-
resolution quadri-wave lateral shearing interferometry, that
allows quantitative linear retardance and birefringence mea-
surements on biological samples could allow non invasive
monitoring of cell cycle in populations. This Quantitative Phase
Imaging (QPI) strategy, that has been presented in [19, 6],
only requires short bursts of low intensity white light, whose
effect on cell physiology appears negligible. The optical phase
difference measured when photons exit a biological sample is
a direct reflection of the dry mass present in the sample being
analyzed. It has been shown for example that the mass increase
associated with cellular cell cycle progression (2N toward 4N
chromosomes) can be accurately determined [1]. In addition,
the characteristic cell rounding associated to late G2 phase is
also easily detected by QPI.
Biologists partners investigated how reliable this approach
would be to monitor a live cell population under the microscope.
They first setup a controlled system in which HeLa cells were
synchronized in early S phase (double thymidine block) and
late G2/mitosis (nocodazole block) [16]. Cells were classically
labeled with Hoechst 33342 in order to visualize nuclei by
fluorescence of the dye. Multiple fields were then acquired in
parallel with a regular CMOS camera (Zyla 5.5) to visualize
the blue Hoechst fluorescence, and with a SID4Bio camera in
order to acquire quantitative phase images. The goals are the
following:

• To identify a feature footprint (phase and fluorescence) for
each subtype of cells (control, "nocodazole" ,"thymidine").
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• To figure out if phase footprint only can predict automati-
cally the subtype of cells.

In the next section, we provide a robust classification method
to identify these different populations from features extracted
from QPI acquisitions.

II. SUPERVISED CLASSIFICATION AND FEATURE SELECTION

A. Modelization

In this paper we consider methods where feature selection
is embedded in a classification process [14]. It is well-known
that classification in high dimension suffers from the curse
of dimensionality. In order to overcome this issue, the main
idea of the following methods is to project data in a low
dimensional space. A popular approach for selecting sparse
features in supervised classification is the Least Absolute
Shrinkage and Selection Operator (LASSO). formulation
[13]. However, an issue is that using an `2 norm for the data
is not robust to outliers. In this paper, we cope with this
problem by minimizing an `1 norm both on the penalty term
and the loss function. In this case, the criterion is convex
but not gradient Lipschitz. Thus, we propose to use the
Douglas-Rachford splitting method for the minimization of
our criterion. This splitting was successfully used in signal
processing [10, 8]. However, for classification, we cannot
apply straightforwardly Douglas-Rachford since the proximal
operator for the affine transform Y − XW involved in the
criterion is not available. We present in the next sections the
two approaches: minimizing the `2 norm and then minimizing
the `1 norm.
Let X be the m× d matrix made of m line cells x1, . . . , xm
belonging to the d-dimensional space of features. Let
Y ∈ {0, 1}m×k be the label matrix where k > 2 is the
number of clusters. Each line of Y has exactly one nonzero
element equal to one, yij = 1 indicating that the sample xi
belongs to the j-th cluster. Let W ∈ Rd×k be the projection
matrix, k � d. The basic idea is to project data on a low
dimensional space X ∗W with a strict control on the sparsity
of W. The goal is to compute the projection matrix, W ∈ Rd×k.

B. Minimizing the Frobenius norm

This result in an optimization problem minimizing the within
sum of squares in the clusters (Frobenius norm) with an `1
penalty in order to promote sparsity: a method called LASSO
(Least Absolute Shrinkage and Selection Operator).

min
W

1

2
‖Y −XW‖2F + λ‖W‖1 (1)

To solve this problem, we use a gradient-projection method. It
belongs to the class of proximal splitting methods [17, 10, 4]
using separately the convexity properties of the Frobenius cost
on one hand, and of the convex constraint ‖W‖1on the other.
We use the following forward-backward scheme to generate a
sequence of iterates for any fixed step γ ∈ (0, 2/σ2

max(X)).

Algorithm 1 Forward-Backward splitting
Input: X,Y,W0, N, γτ
for n = 1 : N do
V ←W − γ ∗XT (XW − Y )
W ← proxf(V, τ)

end for
Output: W
µ← centroids(Y,XW )
Output: W,µ

where proxf(V, τ) denotes the proximity operator of the `1
norm (soft thresholding) [10]

soft(x, τ) = x+ τ if x < −τ,
= 0 if x ∈ [−τ, τ ],
= x− τ otherwise.

C. Minimizing the `1 norm

It is well known that the quadratic Frobenius loss criterion is
not robust to outliers, so we propose to minimize instead the `1
loss cost, with an `1 penalty regularization to promote sparsity
and induce feature selection. So, given the matrix of labels
Y , we consider the following convex supervised classification
problem:

min
W
‖Y −XW‖1 + λ‖W‖1 (2)

The cost is the sum of two `1 norms, which suggests to use
a Douglas-Rachford splitting method [11, 10, 9] that is able
to cope with mere convex functions, one still has to be able
to compute their proximity operators. Now, while the prox
of the `1 norm is well known and expressed in terms of soft
thresholding, there is no explicit expression for the prox of
the `1 norm of the affine transform Y − XW . We propose
to introduce the auxiliary variable ( see [5] for more details)
ζ := (Y −XW )/λ in Rm×k and to minimize under the affine
constraint:

min
W
‖W‖1 + ‖ζ‖1

XW + λζ = Y. (3)

The sum of the two `1 norms is equal to the single `1 norm of
the augmented variable W̃ := (W, ζ) ∈ R(d+m)×k. Let C be
the affine subset of (d+m)× k matrices such that X̃W̃ = Y
where X̃ := [X λIm] ∈ Rm×(d+m). The problem can be
recast as a minimization under the affine constraint

min
W
‖W̃‖1

X̃W̃ = Y (4)

Thus we get the following algorithm
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Algorithm 2 Supervised classification Douglas-Rachford algo-
rithm. The operators soft and proj denote the soft thresholding
and projection operators , respectively, we use medoid [18]
instead of classical centroids.

1: Input: X , λ, Y , γ, τ , V , N
2: X̃ ← [X λIm]
3: for n = 0, . . . , N do
4: W̃ ← soft(V, τ)
5: V ← V + γ(proj(2W̃ − V, X̃, Y )− W̃ )
6: end for
7: (W, ζ)← W̃
8: µ← medoids(Y,XW )
9: Output: W,µ

Definition of proj: Let A be an m×n matrix of rank m < n,
and let b be a vector in Rm. The orthogonal projection proj
of z ∈ Rn on the subspace on the affine subspace {x ∈
Rn | Ax = b} is

proj(z,A, b) = z −AT (AAT )−1(Az − b). (5)

Feature selection is achieved by means of the `1 sparsity
inducing penalty cost. A feature i ∈ {1, . . . ,m} is then selected
if the corresponding line in the matrix of weights W is not zero
(‖W (i, :)‖ 6= 0). The set of non zero coefficients of matrix W
is the signature of the process.

III. QUANTITATIVE PHASE IMAGING

In this paper, we focus on the interest to use quantitative
phase imaging to make high content screening experiments.

A. Optical Path Difference

When light propagates through a sample, its interaction with
matter creates local delays due to the change of its velocity by
a factor named refractive index. The accumulated delay relates
to the phase of the light complex electromagnetic field:

A (~r) =
√
I (~r)ejϕ(~r)

where A is the field amplitude, I the field intensity and ϕ the
field phase. In the projective approximation, where the field
depth is much larger than the sample thickness, the field phase
is related to the refractive index field n by

ϕ (~r) =
2π

λ

∫
n (~r, z) dz

where z is the propagation direction. Phase is often identified
to the Optical Path Difference W (OPD), independent upon
the wavelength defined as:

W =
λ

2π
ϕ =

∫
ndz

B. Phase Imaging with a wave front sensor

The phase field is not easily revealed since standard cameras
are only sensitive to the field intensity. Zernike first proposed
to create contrast from phase information and DIC or Nomarski
imaging is now widely implemented on microscopes. However
the phase value is not easily retrieved from these techniques.

Digital holography [12, 15] was the first method to obtain
Quantitative Phase Images (QPI) in microscopy. In this paper,
we propose to use a wave front sensor to produce QPI images. A
wave front sensor directly measures the phase and the intensity
of imaged field. Using a wave front sensor for QPI makes
the implementation on a microscope straightforward since it
replaces a standard video camera at any of exit port of a
microscope and is compatible with any illumination means.
The wave front sensor used for these experiments is based on
QuadriWave Lateral Shearing Interferometry (QLSI) [19, 6]
and is developed by PHASICS (SID4 Bio). This technique
improves the definition (ie the number of measurement points
per camera pixels) of standard wave front sensing techniques
like Shack-Hartmann.
The incident light field is sampled by a diffraction grating,
which generates four tilted replicas of the field (see Fig. 1).
They interfere on a camera chip placed a few millimeters
downstream. The recorded camera image is a pattern made of
a deformed grid which fundamental period is the same as the
diffraction grating period p.

Fig. 1: Illustration of the QLSI principle. Top : Side view of
the interferometer. The light impinging from the left diffracts
through a diffraction grating and then interferes on the camera
detector. Bottom : perspective view of the interferomter. The
diffraction grating is made from the Modified Hartmann Mask
principle, where a grid of holes is phase modulated by π every
other hole. Interference fringes (here two interference patterns
cross which leads to dot-like fringes) are deformed by phase
gradients.

It was shown [6] that the grid deformation is proportional
to the OPD spatial derivative∂W

∂x . The interference field Iint
is given by:

Iint (x) = I (x)

[
1 + cos

(
2π

p
x+

2πz

p

∂W

∂x

)]
where z is the distance between the grating and the camera
chip. Here is the equation is given in 1D for sack of simplicity
whereas it is easily to 2D. The OPD gradient field is recovered
from Fourier filtering around the fundamental frequency 1

p
and finally numerically integrated. As seen in the equation
above, the inteferogram field is independent of the wavelength
which makes this techniques achromatic, which means it is
compatible with white light and LED illumination.
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C. QPI features

To feed the classification with QPI features, phase images
containing cells are first segmented. Then every cell is measured
to determine morphological and quantitative features (see
Fig. 2). Morphological features are those commonly used for
white light or fluorescence images. They include cell surface,
ellipticity, circularity, convexity and solidity.
Quantitative features are analog to radiometric features and
are related with the pixel values. It is important here to
mention that pixel values are rather different from gray level
values. The latter are only to be considered relatively, whereas
quantitative phase imaging values are calibrated and relate
to physical parameters, namely the local mass density (mass
per unit of surface). Therefore values are consistent from one
image from another. In this study, we used 6 QPI features
: dry-mass, average density, Max OPD, Mean OPD, OPD
Median, OPD standard deviation. Other features describing
mass inhomogeneities (texture features for instance) could also
be included.
We here mentioned dry-mass and density which not direct OPD
features. However it was shown by [3] that the mass volume
density ρ is proportional to the refractive index n:

n = nmedium + αρ

It was also shown that α is almost constant for any intracellular
components (lipids, proteins, DNA...). Since the OPD is the
integral of the refractive in one direction, it is proportional to
the mass surface density. Therefore the average OPD inside
the cell is rescaled by a factor α and is the identified to the
average mass surface density:

α ' 0.19 pg/µm3

Similarly if the OPD is integrated over the cell surface, we
obtain a figure proportional to the call dry-mass. The cell dry-
mass is the mass of the cell excluding water, which is the
surrounding medium.

m =

∫∫∫
ρ =

1

α

∫∫
OPD

Fig. 2: Features extracted from QPI images of segmented cells.
Left : Morphological features as defined in CellProfiler software
[7]. Right : QPI features based on QPI image pixel values.

IV. EXPERIMENTAL RESULTS

First, both visible (fluorescent labeling) and phase images
were processed with software (CellProfiler for fluorescent
images [7], and BioData (Phasics) for QPI to extract multiple
features stored as matrix (the X matrix defined in section II),
in which each line corresponds to a detected cell/nuclei and

each column displays the values of a specific feature (diameter,
phase value, . . . ) for all the cells. In our experiment we have
d = 77 features: 64 features for fluorescent images and 13
features for QPI images. The following work was done on
the widely used HeLa cells, an immortalized line derived in
1953 from an epidermoid carcinoma of the cervix [21]. The
results presented here remain valid on other cell types (data not
shown). Hoechst 33342 labeling allows nuclei visualization by
fluorescence, and to clearly detect in a proliferating population
mitotic structures where chromosome condensation reaches a
peak (Fig. 3, Panel A, arrows). Interferogram processing of
the same field acquired via QPI produces the image shown in
Panel B, where cells have been segmented. One can clearly
see that the two mitotic cells visualized by nuclear staining
correspond to cells with a high density signal, as pointed by
the two red arrows. In addition to the mitotic events, a third
cell (green and red dots) also present a higher density reflecting
a higher dry mass, thus a higher DNA content. This cell is
likely in late G2.

Fig. 3: "Fluorescence versus Phase imaging", Panel A: Fluores-
cence labeling of nuclei, Panel B: Phase imaging. The arrows
point to cells in M phase, clearly visualized both in fluorescence
and phase imaging. The equatorial plate, corresponding to
chromosome alignment during metaphase can be seen in
phase imaging in the upper right pointed cell. Big dots point
to a cell not particularly different from the other ones in
fluorescence imaging, but which is clearly denser in phase
imaging, indicating a cell with duplicated chromosomes close
to entering mitosis.

There are two approaches to evaluate the contribution of the
features. The first one considers classical dotplots using two
specific features (see Fig. 4). The second machine learning
approach uses the matrix W as signature (a linear combination
of features) (see Fig. 5). Thus we can plot the data in the
projected space (k× k) using signature rather than considering
sets of two specific features.
In a first classical approach, we took advantage of the powerful
topcat application [22] to obtain dotplots in which x and y axes
were chosen among the features available for both fluorescence
and phase images. This demonstrated that cells arrested in
mitosis by Nocodazole block or early S by Thymidine treatment
form homogeneous populations. More interestingly yet, we
found that features from QPI alone were very effective in
separating the different populations (see Fig. 4). As expected,
some of the cells from the control population presented feature
values similar to those of the 2 blocked populations, since there
are cells in early G1 as well as cells in mitosis in the control.
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Fig. 4: "Dot-plot visualization of Surface versus Phase Max
QPI features of mixed Control+Thymidine+Nocodazole cell
populations". Red: Control cells; Green: thymidine treated cells:
Blue: nocodazole treated cells. This dotplot demonstrates that
Phase features allow the separation of the different populations
according to their localization in the cell cycle. Interestingly, M
phase cells (blue) form a characteristic sub-population, allowing
for an accurate calculation of the proportion of cells in mitosis,
i.e. the determination of the proliferation status of the cell
population monitored.

Fig. 5: The machine learning approach uses the matrix W in
the projected k × k space as signature. It is a global signature
evaluation as opposed to the pair wise topcat approach. This
figure shows that the same data as that presented in Fig. 4 is
accurately clustered in the projected space. Red: Control cells;
Green: Thymidine treated cells; Blue: Nocodazole-treated cells.

Very interestingly, we observed that not only did our ADRS
classification method gives very high accuracy results when
performed on all available features from both fluorescent
imaging and QPI analyses, but also that this accuracy was at

Accuracy Mean Control Noco Thym
ADRS all features 92.97 93.69 93.23 91.68
Lasso all features 91.4 94.09 90.81 89.53
ADRS QPI only 91.86 95.99 91.83 88.34
ADRS fluo only 89.24 87.66 89.90 90.05

TABLE I: Accuracy with Phasics + Fluorescence features with
Zscore normalization. 3000 cells (sampling on control), 77
features and k = 3 clusters. According to matrix w the 4 main
phase discriminant features are:
Phase-avg(nm),
Surface-density(pg/micron2),
Surface(micron2),
Phase-median(nm).

least as good when only Phase features were used, as compared
to fluorescent only features (see Table I). This indicates that
analysis of QPI is at least as efficient as classical fluorescent
imaging in extracting features that are characteristic of cell
positions in their cycles. Phenotypic comparison performed
with topcat visualization tool demonstrated these similarities
(see Fig. 6).

Fig. 6: "Fluorescence versus Phase imaging, details", Panel A:
Fluorescence (left) and phase (right) imaging of a control cell
in S phase, similar to the one seen in Panel C below. Nucleoli
(blue lines) are clearly visible in fluorescence, and also readily
visible with phase imaging. Panel B: This control cell is in
metaphase (second stage of mitosis), and is not very different
from the nocodazole-blocked cell seen in Panel D. The blue
line points to the equatorial phase (chromosome alignment
during metaphase), which is also distinguishable with phase
imaging. Panel C: Cell blocked with thymidine in early S
phase, with clearly visible nucleoli (blue lines). Panel D: Cell
blocked during mitosis with nocodazole. The blue lines point
to a few of the chromosomes stuck by nocodazole in prophase,
the first stage of mitosis. Chromosome visualization in phase
imaging is possible but difficult as compared to fluorescence
imaging (where labelling is chromosome specific). However,
the phase analysis of the image unambiguously indicates a
bona fide mitotic cell.

V. CONCLUSION

This work demonstrates that Quantitative Phase Imaging
(QPI) is a very powerful and non invasive way for biologists
to monitor live cell populations with a relatively standard
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imaging station consisting of an automated microscope in a
CO2 thermostated and water-saturated incubation chamber.
Classically, biologists interested in following cell populations
under live conditions have to rely on either "vital" labeling,
such as the DNA intercalating agent Hoechst 33342, or
exogenously expressed proteins tagged with a fluorescent
domain. However, it is well known that "vital" dyes are quick
to alter cell physiology, as seen with Hoechst 33342 mentioned
above [20]. Similarly, while very useful, fluorescent fusion
proteins result in many possible artifacts and toxicity, and thus
cannot be considered as physiological [2] The camera used
in this study does not capture classical photonic images, but
rather records interferograms of the live cells by measuring
regular white light phase gradients created when going through
the biological samples. From these interferograms, several
cell features are extracted. Mathematical treatment of these
features allows for a very accurate supervised classification
of existing sub-populations. This means that without any
treatment to the cells, biologists are now able to calculate the
proportion of cells going through mitosis, in a way reminiscent
of the widely used FACS systems. But contrarily to FACS
analyses, the cells remain untouched in culture during the
whole process, that can theoretically last as long as needed.
In other words, all questions dealing with cell growth and
phenotypic changes in cell populations can now be addressed in
real time, and evolution in time of the population is accessible.
A straightforward application, among others, would be live
real time pharmaceutical screening of molecule banks.
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