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ON THE PADOVAN SEQUENCE

ALAIN FAISANT

Abstract. The aim of this article is to give some properties of the so-called Padovan sequence
(Tn)n≥0 defined by

Tn+3 = Tn+1 + Tn for all n ∈ N, T1 = T2 = T3 = 1

that is divisibility properties, periods, identities.

1. Introduction

Let (Tn)n≥0 be the Padovan sequence, recursively defined by

Tn+3 = Tn+1 + Tn, n ≥ 0

and the initial values T0 = 0, T1 = 1, T2 = 1. In this paper we consider a prime p, and give
information on the index ωp of first occurence of p as divisor of any Tn in the sequence. The
principal result is that ωp ≤ tp ≤ prp − 1, where tp is the period modulo p of (Tn)n≥0, and
rp = 1, 2, 3 the degree of the extension Rp/Fp, Rp being the splitting field of the polynomial
T (X) = X3 −X − 1 mod p associated to the Padovan sequence. We give also some technical
precisions (using in particular class field theory), examples, and identities relative to the sequence
(Tn)n≥0. Many questions remain open.

2. Definitions

We consider the sequences recursively defined by xn+3 = xn+1 + xn, n ≥ 0.
The choice of (x0, x1, x2) determines the sequence : usually the Cordonnier-Padovan sequence is
determined by the conditions x1 = x2 = x3 = 1, corresponding to the choice x0 = 0 denoted here
by (Tn)n≥0 : the Padovan sequence. It is convenient for us to extend T−1 = 1, T−2 = 0, T−3 = 0.
It appears as sequence A000931 in Sloane’s Online Encyclopedia of Integer Sequences [4].
This sequence is also cited in [2] as (Rn)n≥0 : Rn = Tn−2.

The other choice (3, 0, 2) gives the Perrin sequence (Pn)n≥0 [1].
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2 ALAIN FAISANT

The first few terms of the sequence are
n -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Tn 0 0 1 0 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37 49 65 86 114 151

The associated generating series is∑
n≥0

TnX
n =

1−X
1−X2 −X3

Let K be a field, and consider

TK = {(xn)n≥0 : xn ∈ K,xn+3 = xn+1 + xn,∀n ≥ 0}

This is a 3-dimensional K-vector space, with explicit evident isomorphism :

K3 ϕ−→ TK
(x0, x1, x2) 7−→ (xn)n≥0

The K3-basis {(0, 1, 0), (1, 0, 1), (0, 1, 1)} gives the TK-basis {(Tn−2)n≥0, (Tn−1)n≥0, (Tn)n≥0}.

3. Basis of TK
We want to find a basis of TK of geometrical progressions (xn)n≥0, i.e.

xn+3 = xn+1 + xn ∀n ≥ 0

this is equivalent to x3 = x+ 1 ; so we have to solve the equation T (x) = 0 in K, where

T (X) = X3 −X − 1 ∈ K[X]

The general case is when T admits 3 distinct roots α, β, γ ∈ K: there exist cα, cβ, cγ ∈ K such
that

(3.1) Tn = cαα
n + cββ

n + cγγ
n, n ≥ 0

corresponding to a K-linear system whose (Van der Monde) determinant is

δ =

∣∣∣∣∣∣
1 1 1
α β γ
α2 β2 γ2

∣∣∣∣∣∣ = (α− β)(β − γ)(γ − α)

and whose solution is

(3.2) Tn =
α+ 1

(α− β)(α− γ)
αn +

β + 1

(β − α)(β − γ)
βn +

γ + 1

(γ − α)(γ − β)
γn

Since 1 + α = α3 we have the useful equivalent expression

(3.3) −δTn = (β − γ)αn+3 + (γ − α)βn+3 + (α− β)γn+3
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Remark 3.1. If T has a double root α = β, a basis of TK is

{(αn)n≥0, (nα
n−1)n≥0, (γ

n)n≥0}

obtained by derivation of αn with respect to the “variable” n :
nαn−1 + (n− 1)αn−2 = nαn+1 − αn−2 = αn+1(n− α−3) = αn+1(n− (1− α−2)).
But T ′(α) = 3α2 − 1 = 0 so α−2 = 3 : nαn−1 + (n − 1)αn−2 = αn+1(n + 2) proving that
(nαn−1)n≥0 lies in TK .

Remark 3.2. For the Perrin sequence (Pn)n≥0 mentioned above we have Pn = αn + βn + γn :
if p is prime we have Pp = αp + βp + γp = (α + β + γ)p = 0 in the splitting field of T mod p :
so that

n prime =⇒ n|Pn
Perrin [1] observed that, reciprocally, for many, many, non prime n we have n 6 |Pn : indeed the
first counterexample is the “pseudoprime” n = 271441 : n = 5212.

4. Calculus of the roots α, β, γ of T (X) = X3 −X − 1

4.1. Rational case.
If K = Q, then T is irreducible and separable. Its discriminant is Disc(T ) = −23 < 0, so there
exists one real root, and two complexes. Cardano’s method gives explicitly the real root :

ψ =
3

√
1

2
+

1

6

√
23

3
+

3

√
1

2
− 1

6

√
23

3

Here ψ ' 1, 324718... is the plastic number, a Pisot number (greater than 1, and conjugate

less than 1 : here β = γ and βγ = 1/ψ < 1). Consequently by 3.1 limn→+∞
Tn+1

Tn
= ψ.

4.2. Finite case.
Here K = Fp is the Galois field with p elements, and we read modulo p :

T (X) = X3 −X − 1 ∈ Fp[X]

We need the following lemma, which expresses two roots rationaly from the third and the
discriminant.

Lemma 4.1.
Let α, β, γ ∈ Fp be the roots of T (X) = X3 −X − 1
i) δ = (α− β)(β − γ)(γ − α) verifies δ2 = Disc(T ) = −23 mod p,
ii)
• if p 6= 2, 23 :

(4.1) β, γ =
1

2
[−α± α

2α+ 3
δ]

• if p = 2 : β = α2, γ = α2 + α,

• if p = 23 : α = 3, β = γ = 10.
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Proof.
i) Classically Disc(X3 + pX + q) = [(α− β)(β − γ)(γ − α)]2 = δ2 = −4p3 − 27q2.
ii) For p = 2, 23 : direct calculation. Else one uses the relations

(4.2)

α+ β + γ = 0
αβ + βγ + γα = −1
αβγ = 1
α3 = α+ 1

On the one hand β + γ = −α, on the other hand δ 6= 0, so β − γ = δ
(α−β)(γ−α) = . . . = −δ

2α+3 ;

since p 6= 2, β = 1
2 [(β + γ) + (β − γ)] and the formula follows. �

Define Rp = Fp(α, β, γ) as the splitting field of T over Fp, and rp = [Rp : Fp] his degree.
There exist three cases :
• if T has a root α ∈ Fp

1. either −23 is a square in Fp : δ ∈ Fp, and by the lemma 4.1 β, γ ∈ Fp : Rp = Fp and
rp = 1 CASE 1 (examples p = 23, 59, 101, 173, 211)

2. or −23 is not a square : by the lemma 4.1 β, γ ∈ Fp(δ) = Fp2 ; Rp = Fp2 and rp = 2
CASE 2 (examples p = 5, 7, 11, 17)

• if T is irreducible in Fp[X]

let α ∈ Fp be a root of T , then Rp = Fp(α) = Fp3 and rp = 3 : indeed Fp(β),Fp(γ) are cubic

extensions of Fp, so are equal, to Fp3 ; moreover in this case −23 is a square in Fp : −23 = δ2

is a square in Fp3 , so in Fp :

CASE 3 (examples : p = 2, 3, 13, 29, 31).

By quadratique reciprocity −23 is a square in Fp if and only if p is a square mod 23, that is

p ≡ 0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 mod 23

In short
α ∈ Fp Rp = Fp rp = 1

if − 23 square mod p
↗
↘

T irreducible Rp = Fp3 rp = 3

if − 23 not square mod p α ∈ Fp Rp = Fp2 rp = 2

5. Prime divisors in the sequence (Tn)n≥0

We are interested in the first occurence of the prime p in the Padovan sequence. In the case of
the Fibonacci sequence (Fn)n≥0, the answer is easy, linked with the order of Φ/Φ mod p (where
Φ is the golden ratio, Φ the conjugate of Φ) : this is a divisor of p − 1 or p + 1 according to
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p ≡ ±1, p ≡ ±2 mod 5. Here it is much more complicated.

We adopt the following notations

• tp = period of the sequence (Tn)n≥0
• Ωp = {n ≥ 1 : p divide Tn}
• ωp = min Ωp : index of first occurence of p in the sequence (Tn)n≥1
• Ap = Ωp ∩ {1, 2, . . . , tp}
• a = o(α), b = o(β), c = o(γ) (orders in R×p : divisors of prp − 1)

5.1. Principal results.

Theorem 5.1.
Let Rp = Fp(α, β, γ), rp = [Rp : Fp], rp = 1, 2, 3
1) for all p : tp − 3, tp − 2, tp ∈ Ap, hence ωp ≤ tp − 3
2) Ωp = Ap + Ntp
3) if p 6= 23 : tp = LCM{a, b, c}, and it divides prp − 1
4) if p = 23 : t23 = 506 = p(p− 1), and rp = 1
5) moreover :
♣ rp = 1 if and only if p = x2 + 23y2

♣ if rp = 2 : • α ∈ Fp, and tp = b = c
• b divide (p+ 1)a
• ωp ≤ (p+ 1)o(α3)− 3

♣ if rp = 3 : tp = a = b = c divide p3−1
p−1 = p2 + p+ 1.

Corollary 5.2. For every prime p there exists n ≥ 1 such that p divides Tn, and the index ωp
verifies : ωp ≤ p3 − 4.

Proof. By definition tp = min{n ≥ 1 : Tn ≡ 0, Tn+1 ≡ 1, Tn+2 ≡ 1 mod p}. Along the proof we
denote tp = t.

1) Since Tt = 0, Tt+1 = 1, Tt+2 = 1, by “redshift” we deduce Tt−1 = 1, Tt−2 = 0, Tt−3 = 0.

2) Let n ∈ Ωp : n = ut+ v, 0 ≤ v ≤ t− 1 ; we have Tt = T0, Tt+1 = T1, Tt+2 = T2, so induction
gives Tt+m = Tm, then (induction on u) Tut+m = Tm ; so here Tn = Tv ; n ∈ Ωp ⇒ Tn = 0, so
Tv = 0 and v ∈ Ωp ∩ {1, . . . t} = Ap.

3) Let s = LCM{a, b, c} ; p 6= 23⇒ δ 6= 0. Apply 3.3 : −δTs−3 = β − γ + γ − α+ α− β = 0,
so Ts−3 = 0.
Similarly −δTs−2 = (β− γ)α+ (γ−α)β+ (α−β)γ = 0, so Ts−2 = 0, and Ts = Ts−2 +Ts−3 = 0.
3.3: −δTs−1 = (β − γ)α2 + (γ − α)β2 + (α− β)γ2 = −δ, so Ts−1 = 1. Hence

Ts = 0, Ts+1 = 0, Ts+2 = 1⇒ t ≤ s

On the other hand, following 3.1

Tt = cαα
t + cββ

t + cγγ
t = 0

Tt+1 = cαα
t+1 + cββ

t+1 + cγγ
t+1 = 1

Tt+2 = cαα
t+2 + cββ

t+2 + cγγ
t+2 = 1
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This proves that (cαα
t, cββ

t, cγγ
t) is solution of the system x + y + z = 0
αx + βy + γz = 1
α2x + β2y + γ2z = 1

Its determinant is (α − β)(β − γ)(γ − α) = δ 6= 0 and its unique solution is (cα, cβ, cγ) ; so
necessarly

cαα
t = cα

cββ
t = cβ

cγγ
t = cγ

cα 6= 0 since α 6= −1 : T (−1) = −1 6= 0 ; we conclude that αt = βt = γt = 1, and
s = LCM{o(α), o(β), o(γ)} divides t, and finally s = t = tp.

4) The case p = 23 is different (cf 3.1) : here 3Tn = 4.3n − 4.10n + 8.n.10n−1 ; we have to
solve the equation (−2)n = 9n+ 1 giving n = 503 and t23 = 506 = 22× 23.

5)
♣ rp = 1⇔ p = x2 + 23y2 see below 5.3
♣ rp = 2 : α ∈ Fp, β, γ = 1

2 [−α± α
2α+3

√
−23] are conjugate in Fp(

√
−23) hence have same order

b = c ; moreover α = 1
βγ ⇒ αb = 1 : a|b and tp = b = c.

The Frobenius x 7−→ xp coincides with the conjugation : βp = γ, βp+1 = βγ = 1
α , and

β(p+1)a = 1 : b|(p+ 1)a.

Let m ≥ 1 : αm(p+1) = α2m(αp−1 = 1);βm(p+1) = α−m, γm(p+1) = α−m ; by 3.3 :
−δTm(p+1)−3 = (β − γ)α2m + (γ − α)α−m + (α − β)α−m = (β − γ)α−m(α3m − 1). The choice

m = o(α3) gives m(p+1)−3 ∈ Ωp. Example : p=7, α = 5, α3 = −1, hence 2(7+1)−3 = 13 ∈ Ωp.

♣ rp = 3 : α, β, γ are conjugate so a = b = c ; by Frobenius x 7−→ xp : αp = β or γ, αp
2

= γ or

β, and αβγ = 1 = ααpαp
2

: a = b = c|1 + p+ p2. �

Remark 5.3. The analog of the theorem may be done for the Tribonacci sequence :
ωp ≤ p3−2; rp = 1 for p = 47, 53, 269, . . . ; rp = 2 for p = 13, 17, 19, . . . ; rp = 3 for p = 3, 5, 23 . . .

It may happen that two consecutive terms are divisible by p.

Proposition 5.4. If p 6= 23, the following assertions are equivalent :
i) αn = βn = γn

ii) p|Tn−3 and p|Tn−2.

Proof.
i) =⇒ ii) : by 3.3.
ii) =⇒ i) : by hypothesis and 3.3 :

(5.1) (α− β)γn = (γ − β)αn + (α− γ)βn and

(5.2) (α− β)γn+1 = (γ − β)αn+1 + (α− γ)βn+1

5.1 =⇒ (α − β)γn+1 = (γ − β)αnγ + (α − γ)βnγ=(by 5.2)(γ − β)αn+1 + (α − γ)βn+1 ; so
(γ−β)αn(α−γ)+(α−γ)βn(β−γ) = 0, and (γ−β)(α−γ)(αn−βn) = 0 ; p 6= 23 =⇒ αn = βn.
In the same way βn = γn. �
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For example if p = 7 we have α16 = β16 = γ16 = 2, so 7|T13 and 7|T14.

5.2. Examples.

p roots and orders tp ωp Ap
√
−23 rp

α a = 13
3 β = α+ 1 b = 13 13 6 6, 10, 11, 13 ±1 3

γ = α− 1 c = 13
α = 5 a = 6

7 β = 1 + 2
√
−2 b = 48 48 9 9, 13, 14, 16, 25, 29 ±

√
−2 2

γ = 1− 2
√
−2 c = 48 30, 32, 41, 45, 46, 48

α = 6 a = 10
11 β = −3 + 2

√
−1 b = 120 120 25 25, 35, 43, 64, 87, 98 ±

√
−1 2

γ = −3− 2
√
−1 c = 120 104, 113, 117, 118, 120

α = 4 a = 29
59 β = 13 b = 58 58 42 42, 51, 55, 56, 58 ±6 1

γ = 42 c = 58

The last three elements of Ap are predicted by the theorem.

5.3. The sequence (Tn)n≥0 and class field theory.
We refer to the text [3] which gives similar results for the Tribonacci sequence.
Here K = Q(

√
−23) : the class number is hK = 3, the ring of integers is OK = Z[

√
−23]. Denote

by R = Q(X3 −X − 1) ⊂ C the splitting field of T (X) = X3 −X − 1, and α ∈ C a root of T .

R
2↗ ↖ 3

Q(α) = E K = Q(
√
−23)

3↖ ↗ 2

Q
1- OE = Z[α] : indeed Disc(α) = Disc(T ) = −23 is squarefree.
2- Every p 6= 23 is unramified in R/Q : by Kummer–Dedekind theorem (OE = Z[α]) p in
unramified in E, also in the Galois closure R of E.
3- P23 =

√
−23OK is unramified in R/K: we have T mod 23 = (X−3)(X−10)2 ; By Kummer-

Dedekind 23OE = P1P
2
2 with 3 = e1f1 + e2f2, so e = 1 = f1 = 1, e2 = 2, f2 = 1.

R/K is Galois; we have P23OR = (Q1 . . .Qg)
e, efg = 3 ; then e = 1 : else e = 3 ; let P|P23 in

R :
eR/Q(P) = eR/K(P).eK/Q(P23) = 3× 2 = 6, and
eR/Q(P) = eR/E(P).eE/Q(P1orP2)=[1 or 2]× [≤ 3]

necessarily eR/E(P) = 2, and eE/Q(Pi) = 3(i = 1, 2), but eE/Q(Pi) = 1 or 2 : contradiction.
4- K being imaginary, R/K is unramified at infinity : so R/K is abelian unramified and
[R : K] = 3 = hK ; we conclude that R is the Hilbert class field of K.
5- Application :
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• if p 6= 23 with rp = 1 we have T mod p = (X − α)(X − β)(X − γ) ∈ Fp[X] : Kummer-
Dedekind shows that pOE = P1P2P3 : p is totally decomposed in E, and idem in the
Galois closure R of E, a fortiori in K : pOK = P1P2, and P1,P2 are totally decom-
posed in the Hilbert class field R ; by the Artin reciprocity law P1 is a principal ideal :
P1 = (x+ y

√
−23)OK ; norm : p = x2 + 23y2.

• Reciprocally if p = x2 + 23y2 we have pOK = (x + y
√
−23)OK .(x − y

√
−23OK) : p is

totally decomposed in K. By Artin reciprocity law , (x + y
√
−23)OK being principal,

we conclude it is totally decomposed in R, and also in E : pOE = P1P2P3 and Kummer-
Dedekind show that rp = 1.

We have proved

Theorem 5.5. rp = 1⇐⇒ p = x2 + 23y2

Clearly p = 23 is not a problem for the assertion!

6. Some identities for (Tn)n≥0

6.1.
For all m (Tm+n)n≥0 ∈ TK , so there exist u, v, w ∈ K such that Tm+n = uTn + vTn−1 +wTn−2.

Applying this for n = 0, n = 1, n = 2, we obtain the system v = Tm
u + w = Tm+1

u + v = Tm+2

Easy calculations give :

(6.1) Tm+n = Tm−1.Tn + Tm.Tn−1 + (Tm+1 − Tm−1).Tn−2

As application let m = n :

T2n = 2Tn−1Tn + (Tn+1 − Tn−1)Tn−2
if p|Tn−2 and p|Tn−1 also p|T2n. On can verify that p = 7|T13 and p|T14, so p|T30.

6.2.
The well-know formula related to the Fibonacci sequence Fn+1Fn−1−F 2

n = (−1)n (“Fibonacci-
puzzle”) can be proved like this : one prove first that Φn = FnΦ + Fn−1, and the analog with
Φ conjugate of Φ ; since Φ.Φ = −1, one has (Φ.Φ)n = (−1)n = (FnΦ + Fn−1)(FnΦ + Fn−1) and
the identity follows. We use here the same idea.
As (αn)n≥0 ∈ TK , there exist u, v, w ∈ K such that αn = uTn+vTn−1+wTn−2 : easy calculations
give

(6.2) αn = (α2 − 1)Tn + Tn−1 + (1 + α− α2)Tn−2

and the analog for βn, γn. Write now αnβnγn = 1:
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[(α2 − 1)Tn + Tn−1 + (1 + α− α2)Tn−2] . . .

. . . [(β2 − 1)Tn + Tn−1 + (1 + β − β2)Tn−2].[(γ2 − 1)Tn + Tn−1 + (1 + γ − γ2)Tn−2] = 1

The left member is a polynomial P (Tn, Tn−1, Tn−2) =
∑

(a,b,c) cabcT
a
nT

b
n−1T

c
n−2 homogeneous

of degree 3 : a+ b+ c = 3, and the cabc are symmetric polynomials in α, β, γ, so poynomials in
the elementaries symmetric functions s1 = α+β+γ = 0, s2 = αβ+βγ+γα = −1, s3 = αβγ = 1.
After long calculations we find

(6.3) T 3
n + T 3

n−1 + T 3
n−2 − TnT 2

n−1 − T 2
nTn−2 + T 2

n−1Tn−2 + 2Tn−1T
2
n−2 − 3TnTn−1Tn−2 = 1

7. Questions

We have many questions !
Q1− In the case rp = 1 it seems that b = c = 2a : is it true ?
Q2− In the case rp = 2 it seems that b = c = (p+ 1)a : is it true ?
Q3− When rp = 3 : a = b = c ; some examples show that a = 1 + p+ p2 : is it true ?
Q4− What is the exact arithmetical nature of ωp, of Ap ?
Q5− Primitive divisors : the computations give many exceptions :

n = 5, 7, 10, 11, 12, 13, 14, 16, 21, 23, 32, 33, 45, ...

Are there finitely many ?
Q6− Tn is prime for

n = 4, 5, 6, 8, 9, 15, 20, 31, 38, ...

Are there infinitely many ?
Q7− We find the following square in (Tn)n≥0 :

T10 = 9, T12 = 16, T16 = 49

Are there finitely many squares ?
Observe that

√
9 = 3 = T6,

√
16 = 4 = T7,

√
49 = 7 = T9 : is it a coincidence ?

Finally the author thanks F. Nuccio for his (im)pertinent galoisian observations !

♣
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