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Introduction

Let (T n ) n≥0 be the Padovan sequence, recursively defined by

T n+3 = T n+1 + T n , n ≥ 0
and the initial values T 0 = 0, T 1 = 1, T 2 = 1. In this paper we consider a prime p, and give information on the index ω p of first occurence of p as divisor of any T n in the sequence. The principal result is that ω p ≤ t p ≤ p rp -1, where t p is the period modulo p of (T n ) n≥0 , and r p = 1, 2, 3 the degree of the extension R p /F p , R p being the splitting field of the polynomial T (X) = X 3 -X -1 mod p associated to the Padovan sequence. We give also some technical precisions (using in particular class field theory), examples, and identities relative to the sequence (T n ) n≥0 . Many questions remain open.

Definitions

We consider the sequences recursively defined by x n+3 = x n+1 + x n , n ≥ 0. The choice of (x 0 , x 1 , x 2 ) determines the sequence : usually the Cordonnier-Padovan sequence is determined by the conditions x 1 = x 2 = x 3 = 1, corresponding to the choice x 0 = 0 denoted here by (T n ) n≥0 : the Padovan sequence. It is convenient for us to extend T -1 = 1, T -2 = 0, T -3 = 0. It appears as sequence A000931 in Sloane's Online Encyclopedia of Integer Sequences [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences Notices[END_REF]. This sequence is also cited in [START_REF] Shannon | Properties of Cordonnier[END_REF] 

as (R n ) n≥0 : R n = T n-2 .
The other choice (3, 0, 2) gives the Perrin sequence (P n ) n≥0 [1].

The first few terms of the sequence are n -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 T n 0 0 1 0 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37 49 65 86 114 151 The associated generating series is n≥0

T n X n = 1 -X 1 -X 2 -X 3
Let K be a field, and consider

T K = {(x n ) n≥0 : x n ∈ K, x n+3 = x n+1 + x n , ∀n ≥ 0}
This is a 3-dimensional K-vector space, with explicit evident isomorphism :

K 3 ϕ -→ T K (x 0 , x 1 , x 2 ) -→ (x n ) n≥0
The K 3 -basis {(0, 1, 0), (1, 0, 1), (0, 1, 1)} gives the T K -basis {(T n-2 ) n≥0 , (T n-1 ) n≥0 , (T n ) n≥0 }.

Basis of T K

We want to find a basis of T K of geometrical progressions (x n ) n≥0 , i.e.

x n+3 = x n+1 + x n ∀n ≥ 0 this is equivalent to x 3 = x + 1 ; so we have to solve the equation T (x) = 0 in K, where

T (X) = X 3 -X -1 ∈ K[X]
The general case is when T admits 3 distinct roots α, β, γ ∈ K: there exist c α , c β , c γ ∈ K such that (3.1)

T n = c α α n + c β β n + c γ γ n , n ≥ 0
corresponding to a K-linear system whose (Van der Monde) determinant is

δ = 1 1 1 α β γ α 2 β 2 γ 2 = (α -β)(β -γ)(γ -α)
and whose solution is

(3.2) T n = α + 1 (α -β)(α -γ) α n + β + 1 (β -α)(β -γ) β n + γ + 1 (γ -α)(γ -β) γ n
Since 1 + α = α 3 we have the useful equivalent expression

(3.3) -δT n = (β -γ)α n+3 + (γ -α)β n+3 + (α -β)γ n+3 Remark 3.1. If T has a double root α = β, a basis of T K is {(α n ) n≥0 , (nα n-1 ) n≥0 , (γ n ) n≥0 }
obtained by derivation of α n with respect to the "variable" n :

nα n-1 + (n -1)α n-2 = nα n+1 -α n-2 = α n+1 (n -α -3 ) = α n+1 (n -(1 -α -2 )). But T (α) = 3α 2 -1 = 0 so α -2 = 3 : nα n-1 + (n -1)α n-2 = α n+1 (n + 2) proving that (nα n-1 ) n≥0 lies in T K .
Remark 3.2. For the Perrin sequence (P n ) n≥0 mentioned above we have P n = α n + β n + γ n : if p is prime we have P p = α p + β p + γ p = (α + β + γ) p = 0 in the splitting field of T mod p : so that n prime =⇒ n|P n

Perrin [1] observed that, reciprocally, for many, many, non prime n we have n |P n : indeed the first counterexample is the "pseudoprime" n = 271441 : n = 521 2 .

Calculus of the roots

α, β, γ of T (X) = X 3 -X -1 4.1. Rational case. If K = Q, then
T is irreducible and separable. Its discriminant is Disc(T ) = -23 < 0, so there exists one real root, and two complexes. Cardano's method gives explicitly the real root :

ψ = 3 1 2 + 1 6 23 3 + 3 1 2 - 1 6 23 3
Here ψ 1, 324718... is the plastic number, a Pisot number (greater than 1, and conjugate less than 1 : here β = γ and βγ = 1/ψ < 1). Consequently by 3.1 lim n→+∞ T n+1 Tn = ψ.

Finite case.

Here K = F p is the Galois field with p elements, and we read modulo p :

T (X) = X 3 -X -1 ∈ F p [X]
We need the following lemma, which expresses two roots rationaly from the third and the discriminant.

Lemma 4.1. Let α, β, γ ∈ F p be the roots of T (X) = X 3 -X -1 i) δ = (α -β)(β -γ)(γ -α) verifies δ 2 = Disc(T ) = -23 mod p, ii) • if p = 2, 23 : (4.1) β, γ = 1 2 [-α ± α 2α + 3 δ] • if p = 2 : β = α 2 , γ = α 2 + α, • if p = 23 : α = 3, β = γ = 10. Proof. i) Classically Disc(X 3 + pX + q) = [(α -β)(β -γ)(γ -α)] 2 = δ 2 = -4p 3 -27q 2 .
ii) For p = 2, 23 : direct calculation. Else one uses the relations (4.2)

α + β + γ = 0 αβ + βγ + γα = -1 αβγ = 1 α 3 = α + 1
On the one hand β + γ = -α, on the other hand δ = 0, so

β -γ = δ (α-β)(γ-α) = . . . = -δ 2α+3 ; since p = 2, β = 1 2 [(β + γ) + (β -γ)]
and the formula follows.

Define R p = F p (α, β, γ) as the splitting field of T over F p , and r p = [R p : F p ] his degree. There exist three cases : 

• if T has a root α ∈ F p 1. either -23 is a square in F p : δ ∈ F p ,
• if T is irreducible in F p [X] let α ∈ F p be a root of T , then R p = F p (α) = F p 3 and
In short α ∈ F p R p = F p r p = 1 if -23 square mod p T irreducible R p = F p 3 r p = 3 if -23 not square mod p α ∈ F p R p = F p 2 r p = 2 5. Prime divisors in the sequence (T n ) n≥0
We are interested in the first occurence of the prime p in the Padovan sequence. In the case of the Fibonacci sequence (F n ) n≥0 , the answer is easy, linked with the order of Φ/Φ mod p (where Φ is the golden ratio, Φ the conjugate of Φ) : this is a divisor of p -1 or p + 1 according to p ≡ ±1, p ≡ ±2 mod 5. Here it is much more complicated.

We adopt the following notations

• t p = period of the sequence (T n ) n≥0

• Ω p = {n ≥ 1 : 

p divide T n } • ω p = min Ω p : index of first occurence of p in the sequence (T n ) n≥1 • A p = Ω p ∩ {1, 2, . . . , t p } • a = o(α), b = o(β), c = o(γ) (orders in R × p : divisors of p rp -1) 5.1. Principal results. Theorem 5.1. Let R p = F p (α, β, γ), r p = [R p : F p ], r p = 1, 2, 3 1 
t p = b = c • b divide (p + 1)a • ω p ≤ (p + 1)o(α 3 ) -3 ♣ if r p = 3 : t p = a = b = c divide p 3 -1 p-1 = p 2 + p + 1. Corollary 5.2.
For every prime p there exists n ≥ 1 such that p divides T n , and the index ω p verifies : ω p ≤ p 3 -4.

Proof. By definition t p = min{n ≥ 1 : T n ≡ 0, T n+1 ≡ 1, T n+2 ≡ 1 mod p}. Along the proof we denote t p = t.

1) Since T t = 0, T t+1 = 1, T t+2 = 1, by "redshift" we deduce T t-1 = 1, T t-2 = 0, T t-3 = 0.

2) Let n ∈ Ω p : n = ut + v, 0 ≤ v ≤ t -1 ; we have T t = T 0 , T t+1 = T 1 , T t+2 = T 2 , so induction gives T t+m = T m , then (induction on u) T ut+m = T m ; so here

T n = T v ; n ∈ Ω p ⇒ T n = 0, so T v = 0 and v ∈ Ω p ∩ {1, . . . t} = A p . 3) Let s = LCM {a, b, c} ; p = 23 ⇒ δ = 0. Apply 3.3 : -δT s-3 = β -γ + γ -α + α -β = 0, so T s-3 = 0. Similarly -δT s-2 = (β -γ)α + (γ -α)β + (α -β)γ = 0, so T s-2 = 0, and T s = T s-2 + T s-3 = 0. 3.3: -δT s-1 = (β -γ)α 2 + (γ -α)β 2 + (α -β)γ 2 = -δ, so T s-1 = 1. Hence T s = 0, T s+1 = 0, T s+2 = 1 ⇒ t ≤ s
On the other hand, following 3.1 

T t = c α α t + c β β t + c γ γ t = 0 T t+1 = c α α t+1 + c β β t+1 + c γ γ t+1 = 1 T t+2 = c α α t+2 + c β β t+2 + c γ γ t+2 = 1 This proves that (c α α t , c β β t , c γ γ t ) is solution of the system    x + y + z = 0 αx + βy + γz = 1 α 2 x + β 2 y + γ 2 z = 1 Its determinant is (α -β)(β -γ)(γ -α) = δ = 0 and its unique solution is (c α , c β , c γ ) ; so necessarly c α α t = c α c β β t = c β c γ γ t = c γ c α = 0 since α = -1 : T (-1) = -1 = 0 ; we conclude that α t = β t = γ t = 1,

5)

♣ r p = 1 ⇔ p = x 2 + 23y 2 see below 5.3 ♣ r p = 2 : α ∈ F p , β, γ = 1 2 [-α ± α 2α+3 √ -23] are conjugate in F p ( √ -23) hence have same order b = c ; moreover α = 1
βγ ⇒ α b = 1 : a|b and t p = b = c. The Frobenius x -→ x p coincides with the conjugation :

β p = γ, β p+1 = βγ = 1
α , and 

β (p+1)a = 1 : b|(p + 1)a. Let m ≥ 1 : α m(p+1) = α 2m (α p-1 = 1); β m(p+1) = α -m , γ m(p+1) = α -m ; by 3.3 : -δT m(p+1)-3 = (β -γ)α 2m + (γ -α)α -m + (α -β)α -m = (β -γ)α -m (α 3m
: i) α n = β n = γ n ii) p|T n-3 and p|T n-2 . Proof. i) =⇒ ii) : by 3.3.
ii) =⇒ i) : by hypothesis and 3.3 :

(5.1) (α -β)γ n = (γ -β)α n + (α -γ)β n and (5.2) (α -β)γ n+1 = (γ -β)α n+1 + (α -γ)β n+1 5.1 =⇒ (α -β)γ n+1 = (γ -β)α n γ + (α -γ)β n γ=(by 5.2)(γ -β)α n+1 + (α -γ)β n+1 ; so (γ -β)α n (α -γ) + (α -γ)β n (β -γ) = 0, and (γ -β)(α -γ)(α n -β n ) = 0 ; p = 23 =⇒ α n = β n .
In the same way β n = γ n .

For example if p = 7 we have α 16 = β 16 = γ 16 = 2, so 7|T 13 and 7|T 14 .

Examples.

p roots and orders t p ω p A p √ -23 r p α a = 13 3 β = α + 1 b = 13 13 6 6, 10, 11, 13 The last three elements of A p are predicted by the theorem.

±1 3 γ = α -1 c = 13 α = 5 a = 6 7 β = 1 + 2 √ -2 b =

5.3.

The sequence (T n ) n≥0 and class field theory.

We refer to the text [START_REF] Evink | Helminck Tribonacci numbers and primes of the form p = x 2 + 11y 2 Math Slovaca[END_REF] which gives similar results for the Tribonacci sequence.

Here

K = Q( √ -23) : the class number is h K = 3, the ring of integers is O K = Z[ √ -23]. Denote by R = Q(X 3 -X -1) ⊂ C the splitting field of T (X) = X 3 -X -1, and α ∈ C a root of T . R 2 3 Q(α) = E K = Q( √ -23) 3 2 Q 1-O E = Z[α] : indeed Disc(α) = Disc(T ) = -23 is squarefree. 2-Every p = 23 is unramified in R/Q : by Kummer-Dedekind theorem (O E = Z[α]) p in unramified in E, also in the Galois closure R of E. 3-P 23 = √ -23O K is unramified in R/K: we have T mod 23 = (X -3)(X -10) 2 ; By Kummer- Dedekind 23O E = P 1 P 2 2 with 3 = e 1 f 1 + e 2 f 2 , so e = 1 = f 1 = 1, e 2 = 2, f 2 = 1. R/K is Galois; we have P 23 O R = (Q 1 . . . Q g ) e , ef g = 3 ; then e = 1 : else e = 3 ; let P|P 23 in R : e R/Q (P) = e R/K (P).e K/Q (P 23 ) = 3 × 2 = 6, and e R/Q (P) = e R/E (P).e E/Q (P 1 orP 2 )=[1 or 2]× [≤ 3]
necessarily e R/E (P) = 2, and e E/Q (P i ) = 3(i = 1, 2), but e E/Q (P i ) = 1 or 2 : contradiction. 4-K being imaginary, R/K is unramified at infinity : so R/K is abelian unramified and [R : K] = 3 = h K ; we conclude that R is the Hilbert class field of K.

5-Application :

• if p = 23 with r p = 1 we have T mod p = (X -α)(X -β)(X -γ) ∈ F p [X] : Kummer-Dedekind shows that pO E = P 1 P 2 P 3 : p is totally decomposed in E, and idem in the Galois closure R of E, a fortiori in K : pO K = P 1 P 2 , and P 1 , P 2 are totally decomposed in the Hilbert class field R ; by the Artin reciprocity law P 1 is a principal ideal :

P 1 = (x + y √ -23)O K ; norm : p = x 2 + 23y 2 .
• Reciprocally if p = x 2 + 23y 2 we have pO K = (x + y √ -23)O K .(x -y √ -23O K ) : p is totally decomposed in K. By Artin reciprocity law , (x + y √ -23)O K being principal, we conclude it is totally decomposed in R, and also in E : pO E = P 1 P 2 P 3 and Kummer-Dedekind show that r p = 1. We have proved Theorem 5.5. r p = 1 ⇐⇒ p = x 2 + 23y 2

Clearly p = 23 is not a problem for the assertion! 6. Some identities for (T n ) n≥0

6.1.

For all m (T m+n ) n≥0 ∈ T K , so there exist u, v, w ∈ K such that T m+n = uT n + vT n-1 + wT n-2 . Applying this for n = 0, n = 1, n = 2, we obtain the system

   v = T m u + w = T m+1 u + v = T m+2
Easy calculations give :

(6.1) T m+n = T m-1 .T n + T m .T n-1 + (T m+1 -T m-1 ).T n-2

As application let m = n :

T 2n = 2T n-1 T n + (T n+1 -T n-1 )T n-2
if p|T n-2 and p|T n-1 also p|T 2n . On can verify that p = 7|T 13 and p|T 14 , so p|T 30 .

6.2.

The well-know formula related to the Fibonacci sequence F n+1 F n-1 -F 2 n = (-1) n ("Fibonaccipuzzle") can be proved like this : one prove first that Φ n = F n Φ + F n-1 , and the analog with Φ conjugate of Φ ; since Φ.Φ = -1, one has (Φ.Φ) n = (-1) n = (F n Φ + F n-1 )(F n Φ + F n-1 ) and the identity follows. We use here the same idea. As (α n ) n≥0 ∈ T K , there exist u, v, w ∈ K such that α n = uT n +vT n-1 +wT n-2 : easy calculations give (6.2)

α n = (α 2 -1)T n + T n-1 + (1 + α -α 2 )T n-2

and the analog for β n , γ n . Write now α n β n γ n = 1:

  and s = LCM {o(α), o(β), o(γ)} divides t, and finally s = t = t p . 4) The case p = 23 is different (cf 3.1) : here 3T n = 4.3 n -4.10 n + 8.n.10 n-1 ; we have to solve the equation (-2) n = 9n + 1 giving n = 503 and t 23 = 506 = 22 × 23.

  -1). The choice m = o(α 3 ) gives m(p+1)-3 ∈ Ω p . Example : p=7, α = 5, α 3 = -1, hence 2(7+1)-3 = 13 ∈ Ω p . ♣ r p = 3 : α, β, γ are conjugate so a = b = c ; by Frobenius x -→ x p : α p = β or γ, α p 2 = γ or β, and αβγ = 1 = αα p α p 2 : a = b = c|1 + p + p 2 . Remark 5.3. The analog of the theorem may be done for the Tribonacci sequence : ω p ≤ p 3 -2; r p = 1 for p = 47, 53, 269, . . . ; r p = 2 for p = 13, 17, 19, . . . ; r p = 3 for p = 3, 5, 23 . . . It may happen that two consecutive terms are divisible by p. Proposition 5.4. If p = 23, the following assertions are equivalent

  and by the lemma 4.1 β, γ ∈ F p : R p = F p and r

p = 1 CASE 1 (examples p = 23, 59, 101, 173, 211) 2. or -23 is not a square : by the lemma 4.1 β, γ ∈ F p (δ) = F p 2 ; R p = F p 2 and r p = 2 CASE 2 (examples p = 5, 7, 11, 17)

The left member is a polynomial

n-2 homogeneous of degree 3 : a + b + c = 3, and the c abc are symmetric polynomials in α, β, γ, so poynomials in the elementaries symmetric functions s 1 = α+β +γ = 0, s 2 = αβ +βγ +γα = -1, s 3 = αβγ = 1. After long calculations we find

We have many questions ! Q 1 -In the case r p = 1 it seems that b = c = 2a : is it true ? Q 2 -In the case r p = 2 it seems that b = c = (p + 1)a : is it true ?