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Abstract: This paper provides a practical connection between the Strehl ratio as an optical 
performance metric and manufacturing parameters for diamond machined optics. The choice 
of fabrication parameters impacts residual mid-spatial frequency groove structures over the 
part’s surface, which reduce optical performance. Connections between the Strehl ratio and the 
fabrication parameters are studied using rigorous Rayleigh-Sommerfeld simulations for a 
sample optical system. The connections are generalized by incorporating the shape of diamond-
machined groove structures and the effects of optical path differences for both transmissive and 
reflective optics. This work validates the analytical representation of the Strehl ratio as a Fourier 
transform of a probability density that relates to surface errors. The result is a practical tool that 
can be used to guide the choice of machining parameters to achieve a targeted optical 
performance. 

 

1. Introduction 
The development of computer-controlled sub-aperture fabrication techniques has opened new 
perspectives to the future of optics as well as new challenges [1-2]. Aspheric and freeform 
surfaces fabricated with such deterministic turning, milling, grinding, and polishing methods 
leave structured mid-spatial frequency (MSF) surface errors with ‘signatures’ that can be 
identified with the specific fabrication processes [3-4]. Studies show that MSF errors can cause 
image artifacts and otherwise degrade optical performance [5-8]. In this paper, we address 
surface errors resulting from diamond machining processes, which appear primarily as cusp-
shaped grating-like patterns as shown in Fig. 1. 

 
Fig. 1. Primary MSF residuals resulting from (a) diamond turning, (b) diamond raster milling, 
(c) Cross section of the assumed MSF residuals. Λ represents the spacing between groove 
structures, R is radius of the diamond tool tip, and PV is the peak to valley of the residual surface 
structure. 



The specification of MSF errors on optical surfaces is sometimes overlooked by optical 
designers. This is partially due to limitations of commonly-used surface specs for these types 
of errors [9], and partially because the impacts of MSF errors on optical performance are often 
underestimated or not well understood. Such errors can cause confusion between designers and 
manufacturers when a part does not perform as expected, even though it meets the requested 
surface specifications [10]. Therefore, to avoid poor performance, optical surfaces are often 
over-specified, which unnecessarily adds to manufacturing cycle times and costs. This 
motivates the present work, which uses a semi-empirical approach to connect the Strehl ratio 
(SR) directly to fabrication parameters for well-structured MSF errors from diamond machining 
processes. 

A recent theoretical approach [11-12] expressed the SR and the Optical Transfer Function 
(OTF) in terms of the Fourier transform of a probability density that is related to the statistics 
of the MSF structures. For the cases of diamond turned or milled surfaces, the circular cusps 
typically left behind are approximated as parabolic segments in order to attain an analytic 
expression for the SR, which can be written as: 
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Here ∅ is the maximum optical phase difference resulting from the groove structures, and erf 
is the error function. This analytic expression is useful for further theoretical analysis; the goal 
in these prior works was to provide intuition on the behavior of the SR. In contrast, in this paper 
we provide prescriptive rules of thumb for optical manufacturers to optimize fabrication 
parameters based on SR. The semi-empirical approach proposed here also demonstrates a 
useful method to establish connections for additional surface error types that are difficult to 
describe analytically, providing a baseline for further work in this area. We now discuss a semi-
empirical approach for connecting the SR to fabrication parameters for diamond machined 
optics. 

2. Model and Approach. 
As a first step towards understanding behavioral changes in the SR with respect to fabrication 
parameters, we solve the problem for a case-specific situation. We developed a MATLAB™ 
toolbox with three main operations: (1) Synthesizing a lens model with desired form; (2) 
synthesizing a MSF texture (from either turning or milling) based on the input fabrication 
parameters and adding it to the surface of the lens; and (3) calculating the Point Spread Function 
(PSF), OTF, and the SR of the resulting composite structure using rigorous Rayleigh-
Sommerfeld simulations (RSS), The SR is defined as [13]: 
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Toolbox calculations were tested and compared to Rayleigh-Sommerfeld-based simulations 

within VirtualLab™ with excellent agreement. Standardized results are obtained by evaluating 
the performance of a diffraction-limited optic (prior to adding MSF errors) located at the 
aperture stop, similar to performance evaluation assumptions within Zygo’s Mx™ software. 

This toolbox enables us to assess changes in optical performance with respect to fabrication 
parameters. Our goal is to find general connections for reflective or transmissive optics for any 
wavelength or material without the need for more rigorous simulations. To this end, we first 
explore a specific case and then generalize the results. 



In the case study, we assume a 4 mm diameter f/25 PMMA (n=1.4934) lens at the pupil 
with plane wave illumination at λ=532nm. The diamond tool’s tip radius, R, is set to 1 mm in 
this example. The machining feed per revolution (for diamond turning) or step-over (for 
diamond raster milling), collectively represented as 𝛬, is kept variable. A pixel size of 𝛿𝑥 =
0.3𝜇𝑚 was used for the RSS to enable SR values accurate to three decimal points. Fig. 2 
compares the simulation results of the SR versus 𝛬 for both diamond-milled and diamond-
turned surfaces. As we will discuss later in the paper, the difference between the performance 
of diamond-milled and diamond-turned surfaces are not reflected in SR simulations. 

 
Fig. 2. The impact of diamond machined MSF errors on the SR with respect to groove spacing 
for the specific case study. Simulation results indicate similar SR values for diamond-milled and 
diamond-turned optics (RMSE=0.000172). 

From a manufacturing perspective, increasing 𝛬 is desirable as doing so reduces the 
required manufacturing time and cost. However, as expected, Figure 2 shows that increasing 𝛬 
leads to a lower SR. In practice, 𝛬 is normally chosen to be small enough to meet a required 
root mean square (RMS) surface deviation that guarantees the smooth surface requirements. 

We now generalize our results. Surface imperfections create wavefront distortions since an unwanted 
surface height leads to an undesired optical phase difference. An optical path difference of one 
wavelength, l results in a phase difference of 2p. Therefore, for a surface height of ℎ(𝑥, 𝑦), the optical 
phase difference ∅(𝑥, 𝑦) equals: 
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where  𝑘 = 2𝜋/𝜆, 𝐴 = 𝑛7 − 𝑛9 (in transmission) or 2𝑛9 (in reflection), with 𝑛7 being the refractive 
index of a transmissive material, and 𝑛9 the ambient refractive index.  

For diamond machined surfaces, it is straightforward to determine the relationship between the peak-
to-valley (PV) of the residuals and the machining parameters: 
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where the approximation using the Taylor series expansion is valid for 𝑅 ≫ 𝛬. It is obvious that an 
increase in groove spacing results in a surface error with larger PV, which imparts a larger optical phase 
difference on the incident wavefront and lowers the SR, as seen in Fig. 2. By substituting PV, in Eq. (4), 



for ℎ = 𝑃𝑉 cos 𝜃B in Eq. (3), where 𝜃B is the incident angle, we calculate the maximum optical phase 
difference imparted on the wavefront to be: 
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Equation (5), although conceptually intuitive, is an important outcome that enables a connection between 
the manufacturing parameters and optical performance. We note that the coordinate-dependent height 
function, ℎ(𝑥, 𝑦), has been replaced with a constant PV. This is justified since the diamond cusp surface 
shape is implicitly contained within the optical performance simulations shown in Fig. 2. 

Next, we substitute the application parameters used in the case-specific example of Fig. 2 into Eq. (5), 
with no approximation, and perform a Gaussian fit [14] over the new data set to obtain Eq. (6), which 
gives a general relation between the SR and ∅ for diamond-machined surfaces: 
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We note from Fig. 3 that the fit is excellent for ∅ < 4.7	𝑟𝑎𝑑 with a Root Mean Square Error 
(RMSE) of 0. 0036. We assert that this limit is sufficient for practical purposes since larger 
errors correspond to rough surfaces which fail basic RMS surface requirements and 𝑆𝑅 <
0.125.  However, higher-order polynomial fits can be performed for larger values of ∅  if 
required. Figure 3 shows the resulting plot of the SR vs ∅. 

 
Fig. 3. SR versus optical phase difference (∅). The red curve represents Eq. (6). 

 
To provide a predictive tool we must invert Eq. (6): 
 

 3.24 log ( ) .e SRf » -   (7) 
 

This expression presents ∅  as a function of 𝑆𝑅 . Equation (7) provides a useful predictive tool for 
designers to quantify required surface specifications and for manufacturers to guide the choice of 
machining parameters based on the target SR.  

We now present three example applications of the semi-empirical models. We note that SR values 
are given to several decimal places only to enable comparison of the model results. 



 
Example 1: Predicting the SR from machining parameters for a lens. Consider a 5mm 

diameter f/10 focusing element made of Germanium (𝑛 = 4.0242) for use at λ=4µm. The lens 
is diamond-turned with 𝛬 =50µm and R= 1.5 mm. Table 1 compares the on-axis prediction with 
simulation results. 
 

Table 1. Predicted SR versus Simulated SR for Example 1. 

𝛬 
(µm) 

R 
(mm) 

∅ 
(𝑟𝑎𝑑) SR Predicted SR RSS ∆ 

50 1.5 0.990 0.910 0.914 0.004 
 
As you can see from table 1, after simulating the performance (𝛿𝑥 = 0.3𝜇𝑚) and calculating the SR, 

∆= 𝑆𝑅OPP − 𝑆𝑅QRSTBUVST  is negligible. Therefore, Eq. (6) predicts SR without the need for more 
rigorous simulations.  

 
Example 2: Predicting the SR from machining parameters for a mirror. Assume a 3mm diameter 

f/15 focusing mirror operating at λ=480nm. The mirror is diamond-milled with 𝛬 =25µm and R= 1 mm. 
In Table 2, we compare the predicted SR with the Rayleigh-Sommerfeld simulated SR (𝛿𝑥 = 0.3𝜇𝑚) 
for three different field angles. 

 
Table 2. Predicted SR vs simulated SR for different field angles. 

𝜃B  (degrees) ∅ 
(𝑟𝑎𝑑) SR Predicted SR RSS ∆ 

0 2.05 0.670 0.669 0.001 
21 2.19 0.633 0.630 0.003 
30 2.36 0.588 0.583 0.005 

 
In Table 2, predicted results are in excellent agreement with more rigorous, time consuming 

simulations for all field angles with negligible differences.  
 
Example 3: Determination of machining parameters for a required SR value. Consider an 8mm 

diameter f/5 diamond-turned PMMA (𝑛 = 1.4883) lens working	at λ = 650	nm .  Assuming a 
diamond tool with R =0.5mm, we would like to find the maximum groove spacing 𝛬 that results in an 
optic with on-axis SR = 0.9. Solving Eq. (7) for SR=0.9 gives the maximum permitted optical phase 
difference of ∅ = 1.05	𝑟𝑎𝑑. Substituting this value into Eq. (5) predicts	L ≈ 29.82𝜇𝑚. To facilitate 
the performance simulation of this optic within MATLAB™, we slightly modify L to 29.85𝜇𝑚  to 
generate an integer number of cusp errors per aperture and reduced the simulation resolution from 𝛿𝑥 =
0.3𝜇𝑚 to	𝛿𝑥 = 0.6𝜇𝑚	to overcome computational challenges. PSF and SR simulations confirm the 
accuracy of the semi-empirical model with simulated 𝑆𝑅 = 0.899 ≈ 0.9 . In practice, the groove 
spacing could be rounded downward slightly (for example, to 29 µm) to provide additional performance 
margin and to simplify manufacturing setup.  

3. Discussion. 
The presented models can be used as tools to guide both the quantification of MSF surface 

specifications by optical designers and the choice of diamond machining parameters by manufacturers. 
As discussed previously, determination of the maximum groove spacing 𝛬 for a given tool radius R that 
will still provide the required optical performance is desirable, as doing so reduces required manufacturing 
cycle time and cost.  

For example, in diamond turning the groove spacing is determined by both the rotation rate of the 
machining spindle and the velocity (feed rate) of the diamond tool orthogonal to the axis of rotation. The 
resulting feed per revolution is then given by [4]: 
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Table 3 illustrates a range of representative manufacturing parameters for diamond-turning the lens 

in Example 3 compared to a mirror with the same f/# and application parameters. The approximation in 
Eq. (5) helps to simplify these types of calculations. The differences in parameters for the lens and 
‘equivalent’ mirror result from the optical phase differences between the transmissive and reflective cases. 
Note that we have rounded the groove spacing down to the nearest integer value, which simplifies 
manufacturing setup and provides additional performance margin. 

 
Table 3. Sample manufacturing parameters for Example 3. 

 SR 𝛬 Lens 

(𝜇𝑚) 
𝛬 Mirror 

(𝜇𝑚) 
R 

(mm) 
Spindle 
(rpm) 

Feed Lens 

(mm/min) 
Feed Mirror 

(mm/min) 
I 0.9 51 25 1.5 1500 76.5 37.5 
II 0.9 47 23 1.25 1750 82.25 40.25 
III 0.9 42 20 1 2000 84 40 
IV 0.9 29 14 0.5 1000 29 14 
V 0.9 29 14 0.5 2000 58 28 

 
We note that there are other sources of MSF errors that occur in diamond-machined optical surfaces 

besides the ‘cusp’ shapes that we have considered, including, for example, asynchronous error motions, 
external and self-induced vibration, thermal drift, materials effects, and so on. [4, 15-18]. These additional 
error sources are also connected to the feed rate and spindle speed. With the guidance of the presented 
models, a manufacturer can use their expertise to select the best combination of tool radius, feed rate, and 
spindle speed that gives the required result at minimal time and cost while also minimizing other sources 
of error. 

The use and limitations of the SR as an optical performance metric for diamond machined optics is 
worthy of additional consideration. Fig. 2 suggests that the optical performance of diamond-turned and 
diamond-milled components with equivalent groove spacing 𝛬 will be quite similar. While this is 
generally true for very high-quality optics, the performances of turned and milled components deviate as 
the groove spacing increases due to the difference in symmetry of the residual surface structures [10, 12]. 
For such cases, other performance measurements, such as a 2D Modulation Transfer Function (MTF), 
would represent optical performance more effectively than the SR. Such relationships and performance 
metrics are currently being studied and will be considered in more detail in future publications. 

Figure 4 compares the semi-empirical model of Eq. (6) with the analytic model of Eq. (1) and a 5th 
order polynomial fit over the full range of ∅ values. This figure shows that the semi-empirical approach 
developed in this paper agrees very well with the analytic model based on prior work [11-12]. The close 
agreement supports the validity of both approaches. However, Eq. (6) is designed to be more 
succinct, user-friendly and invertible to Eq. (7) to enable a predictive model for both 
manufacturer and designer, which is not the case with Eq. (1). 



 
Fig. 4. Comparison of the semi-empirical and analytic SR expressions, given by Eq. (6) and (1), 
respectively. For ∅	< 4.7 rad, the two models differ by a RMSE of 0.0058. 
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