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Abstract Atmospheric dispersion modelling requires meteorological inputs over
local domains with possibly complex topographies. These local wind fields may
be difficult to simulate with CFD models, in particular because of their sensitivity
to geometrical features and to model inputs, especially the boundary conditions
which are generally provided by larger-scale models or measurements. Using data
assimilation, a few measurements inside the domain could add information to
the imprecise boundary conditions and thus greatly enhance the precision of the
dispersion simulations. Three data assimilation techniques (3DVar, the back and
forth nudging algorithm, and the iterative ensemble Kalman smoother) have been
adapted to local scale simulations by taking boundary conditions into account
instead of initial conditions for which they are usually applied. Their performances
have been evaluated at small scales, with a simple representation of the atmosphere
into two layers, using 1D solution of the shallow water equations.
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1 Introduction

1.1 Context

Wind fields around industrial sites and in urban neighbourhoods might have very complex
structures, which are sensitive to geometrical features such as topography and buildings.
These wind field structures may be difficult to simulate accurately with CFD models, es-
pecially because of the sensitivity of these models to input data. Yet, these simulations
are important to address various issues related to micrometeorology and dispersion of pol-
lutants. To perform small scale simulations, CFD models – for instance the atmospheric
version of Code_Saturne (Archambeau et al., 2004) – use inputs (initial and boundary con-
ditions) that are meteorological data usually obtained from measurements or larger-scale
model outputs. These data often lack precision, may not contain all necessary information,
and are not adapted to the detailed features of local scale, especially the topography and the
presence of buildings.

A few measurements inside the domain, although very local and potentially perturbed
by, for instance, the buildings, have the potential to greatly enhance the precision of the
simulations and thus the prediction of pollutants concentrations. Using measurements (e.g.,
wind velocity, concentration, etc.) to improve the estimate of the model state is the goal of
data assimilation (DA).

Data assimilation techniques developed so far in meteorology (e.g., Kalnay, 2003; Asch
et al., 2016) are generally applied to large scale simulations that are mainly driven by
initial conditions (IC) and deal with simple geometries without obstacles. The smaller
the domain is, the more sensitive the simulations are to boundary conditions (BC, e.g.
Section 11.3 of Pielke, 2013), such that local scale simulations are dominantly influenced
by boundary conditions (BC). Consequently, the present work aims at developing local-
scale data assimilation techniques that focus on BC rather than IC and may deal with very
complex geometries. To first test these DA methods, we use a simple representation of the
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atmospheric boundary layer into two layers, using the shallow water equations which are
an approximation of the Navier-Stokes equations for shallow flows.

1.2 Data assimilation methods

The goal of data assimilation is to improve the estimate of a model state using all available
information: the a priori state of the system, the observations, the physical model, etc. This
improvement may involve the optimisation of some control variables (z) on which the state
of the system depends. Data assimilation methods thus seek to correct the first guess of the
variables state zb, denoted background, using in particular the available observations.

One of the first and most basic data assimilation method is nudging, which consists in
adding a relaxation term to the dynamical equations (e.g., Section 5.2.2 of Kalnay (2003),
Chapter 4 of Asch et al. (2016)). The relaxation, or feedback term is proportional to the
distance between the observations and the projection of the system state onto the observation
space. An improvement of this method has been recently developed: the back and forth
nudging algorithm (BFN) which consists of consecutive iterations of forward and backward
integrations with nudging (Auroux & Blum, 2005, 2008; Auroux et al., 2013). It has been
tested and proved to converge on simple models where the control variables are the initial
conditions (Auroux, 2008; Auroux et al., 2011; Auroux & Nodet, 2012).

Apart from nudging, data assimilation techniques developed so far and operationally
implemented are generally divided into two classes: statistical (or filtering methods) and
variational methods. The variational methods such as 3D-Var (e.g. Kalnay, 2003; Asch
et al., 2016) are based on the minimisation of a cost function that generally requires the use
of the adjoint of the forward operator.

Recently, ensemble variational methods such as the iterative ensemble Kalman filter
and smoother (IEnKF and IEnKS) (Sakov et al., 2012; Bocquet & Sakov, 2014) have been
developed, combining the advantages of both variational and ensemble-based methods.
The IEnKS is based on the iterative minimisation, using Gauss-Newton method, of a cost
function defined in the ensemble space. In the linear model case, the filtering solution (i.e.
at the end of the data assimilation time window) is equivalent to that obtained with the
ensemble Kalman filter.

Both the BFN algorithm and the IEnKS have the great advantage of avoiding the use of
the adjoint model and the tangent linear of the forward operator (see definitions in Section 2),
and of handling non-linear analyses. Consequently, they have been adapted in the present
study so as to consider boundary conditions as control variables.

1.3 Outline

In Section 2 we present the shallow water model used to represent the atmosphere and test
the data assimilation methods in the present study. We acknowledge that the shallow water
model used here is quite simple and that it is only a first step in the validation process
of the methods, that should be tested on more complex cases. Then we present the three
data assimilation methods studied here: 3D-Var, the back and forth nudging algorithm, and
the IEnKS. In Section 3 we show the results obtained with the three methods with perfect
observations. Afterwards, we compare the performances of the methods, in particular their
sensitivities to observation errors and to background errors. In the last Section, we give
some concluding remarks and perspectives for future work.
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Figure 1: The layer system considered in the present study corresponds to a crude discreti-
sation of the troposphere (light blue line) into two layers of constant density (dark blue
line). The dynamics in the upper layer is neglected and the bottom layer follows the shallow
water equations with a reduced gravity g′ = ∆ρ

ρ0
g.

2 Methods

2.1 Shallow layer model of the atmospheric boundary layer

The shallow water equations (SWE) are derived from the Navier-Stokes equations in the
approximation of a small layer height, compared to horizontal spatial scales. These equations
can be used to represent atmospheric flows if the gravity g is replaced by the reduced
gravity g′ = ρ−ρa

ρ g to account for the small difference of density between the simulated
boundary layer (ρ) and the free atmosphere above (ρa), as shown on Figure 1. Moreover,
the often used discretised ’level’ models – which use, for instance, vertical finite-difference
approximations – to simulate continuously stratified fluid, can be shown to be equivalent to
multi-layer models – where SWE are applied to each layer (Audusse et al., 2006; Pedlosky,
2013). Therefore the simple model described below can be considered as a crude vertical
representation of the atmosphere into two layers. This equivalence between ’level’ models
and ’layer’ models, together with the relative simplicity of the SWE, motivate the use of a
shallow layer model to first test the data assimilation methods for atmospheric local scale
simulations, before applying them to CFD models.

In one dimension, the two state variables of the SWE are the thickness of the fluid layer
(h, here the boundary layer), and the mean horizontal velocity (u) which are related as
follows, if ground friction and diffusion are neglected:

∂X
∂t

+ M
∂X
∂x

= S, (1)

where X =

(
h
u

)
, M =

(
u h
g′ u

)
, and S =

(
0

−g′ ∂zr∂x

)
with zr the bottom topography. The

problem is well-posed if two boundary conditions are prescribed, one on h and one on u
(e.g., Abbott, 1966). The regime of a flow is determined by the value of the Froude number,
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Figure 2: Results of the 1D shallow water equations over a realistic topography. The to-
pography (zr) is shown in black and the absolute height of the fluid (zr + h) is shown in
blue. The fluid area is coloured by the mean vertical velocity (u). The vertical dashed,
red lines show the locations of the two velocity observations assimilated in the following
experiments.

which is the ratio of the flow inertia to the external forces: Fr ≡ u√
gh

. If Fr < 1 the flow is
subcritical, if Fr = 1 it is critical, and if Fr > 1 the flow is supercritical. In what follows,
we consider flows that are subcritical, meaning that their velocities are smaller than the
interface wave velocity. For such flows, the information is propagated downstream and also
upstream. Consequently, it is necessary to specify a boundary condition on each side of the
domain of sizeL (e.g., Alcrudo & Garcia-Navarro, 1993). We thus prescribe the velocity on
the left of the domain: u(x = 0) = uL, and the fluid height on the right: h(x = L) = hR.
These boundary conditions are here considered constant in time and we look for the steady
state obtained with these boundary conditions.

The 1D shallow water equations with topography and without ground friction nor diffu-
sion (Eq. 1) can be solved analytically by the Bernoulli equation (2) (e.g., Goutal & Maurel,
1997) which is based on the energy conservation and states that the sum of the specific
charge (Hs ≡ h+ u2

2g′ ) and the topographic elevation (zr) is conserved over the domain:

u2

2g′
+ h+ zr = H0, (2)

where H0 is the specific charge determined at one point of the domain where the system
state is known.

The resolution of the Bernoulli equation is used to determine the steady state with two
given boundary conditions, when no other forcing than the topography takes action. When
nudging is added to the shallow water equations, the SWE are solved numerically by a
finite-volume method.

Figure 2 shows the results of the 1D shallow water equations with the boundary condi-
tions: uL = 5.5m/s and hR = 154m. This figure illustrates the steady state that is consid-
ered as the reference for the data assimilation experiments.
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2.2 3D-Var

The 3D-Var method seeks the optimal control vector za that minimises a cost function J
(Daley, 1991, e.g.). This cost function combines the distance between z and the first guess
– or background – zb, and the distance between the observations y and the projection of z in
the observation space (H̃(z)). These distances are weighted by the inverse of the background
error covariance matrix (B) and the inverse of the observation error covariance matrix
(R) respectively. These inverses correspond to the confidence placed in each information
(background and observations). The cost function thus reads:

J (z) =
1

2
‖z− zb‖2B−1 +

1

2
‖y− H̃(z)‖2R−1 , (3)

where ‖x‖2A = xTAx.
In what follows, we consider the one-dimensional case at local scale for which the

control vector only includes the two constant boundary conditions:

z =

(
uL

hR

)
. (4)

Here, the forward operator H̃ of the 3D-Var algorithm combines the shallow layer model
M, which gives the steady state of the system given z, and an observation operatorH, which
transforms the model variables into observed variables: H̃ = H ◦M. Because the operator
H̃ includes dynamical evolution (M), the algorithm is similar to 4D-Var, though we keep
the name 3D-Var since we consider steady states. In particular, the cost function considered
here is similar to the one used in the IEnKS (Section 2.4). The minimisation of the cost
function is performed using the L-BFGS-B non-linear, constrained optimisation algorithm
(Byrd et al., 1995), through the ADAO module of the SALOME open-source platform
(http://www.salome-platform.org/). The gradient is estimated using finite differences.

2.3 Back and forth nudging algorithm

The back and forth nudging algorithm (BFN) is an iterative algorithm: iterations of forward
and backward integrations, both with nudging, are performed over a time period T during
which observations are available (Fig. 3). The evolution of the system is governed by the
two equations:





(F) ∂X(f)
k

∂t + M(f) ∂X(f)
k

∂x = S + K
[
y−H(X(f)

k )
]

for 0 ≤ t ≤ T, δt > 0,

(B) ∂X(b)
k

∂t + M(b) ∂X(b)
k

∂x = S− K̃
[
y−H(X(b)

k )
]

for T ≥ t ≥ 0, δt < 0,

(5)

where K and K̃ are gain matrices, the superscripts (f) and (b) refer to forward and backward
variables, and the subscript k refers to the index of the BFN iteration (Auroux & Blum,
2005).

For the shallow water equations considered here, with the changes of variables t̃ =

T − t, X̃ =

(
h
ũ

)
, and M̃ =

(
ũ h
g ũ

)
, where ũ = −u, the backward equation is exactly the

same as the forward equation (1) where u is formally replaced with ũ = −u.
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Xk(t = 0)

uk
L

hk
R




=




X̃k−1(t̃ = T )

−ũk−1(x = 0, t̃ = T )

hk−1(x = L, t̃ = T )




Forward integration

Xk(t = T )

(F) ∂Xk
∂t

+M ∂Xk
∂x

= S+K [y−H(Xk)]

(TF→B)



X̃k(t̃ = 0)

ũk
R

hk
L




=




Xk(t = T )

−uk(x = L, t = T )

hk(x = 0, t = T )




Backward integration

X̃k(t̃ = T )
(B) ∂X̃k

∂t̃
+ M̃ ∂X̃k

∂x
= S+ K̃

[
y−H(X̃k)

]

(TB→F)

Figure 3: Diagram of the kth iteration of the BFN algorithm. The transformations (TF→B)
and (TB→F) shift from forward system to backward system and vice versa. They include a
change of variable t̃ = T − t and an inversion of boundary conditions. In the case of shallow
water equations, the backward integration is equivalent to performing an integration with
positive time steps but with ũ = −u.

Applying the method of characteristics (Abbott, 1966) to the backward equation, it can
be shown that the boundary conditions must be reversed between forward and backward
integrations, and reciprocally (Fig. 3). The boundary conditions that are prescribed upstream
in the forward integrations (here the velocity on the left of the domain,uL) must be prescribed
downstream in the backward integrations (here ũR on the right). Similarly, the boundary
conditions prescribed downstream in the forward integrations (here the height on the right,
hR) must be prescribed upstream in the backward integrations (here hL on the left). The
values of the boundary conditions ũR and hL for the kth backward integration are given
by the system state on the right and left of the domain, respectively, at the end of the kth

forward integration:

ũkR = −uk(x = L, t = T ), (6)

hkL = hk(x = 0, t = T ). (7)

Similarly, before the (k + 1)th forward integration, the boundary conditions are reversed
and updated according to the state of the system at the end of the kth backward integration.

At each iteration of BFN, the control variables that are the boundary conditions (here
uL and hR) are revised. After a sufficient number of BFN iterations, the system converges
toward an analysis state, which depends in particular on the nudging matrices. It is important
to note that the BFN algorithm does not solve the same problem as 3D-Var or the IEnKS.
In fact, the BFN algorithm assimilates several times each observation in order to correct the
system state. Except initially, it does not take into account any information on the background
statistics of errors. In theory, the analysis state obtained at convergence is independent of the
background state (Auroux & Blum, 2005), whereas 3D-Var and the IEnKS seek an optimal
combination of the background and observations.

During each integration (either forward or backward), a conflict might appear between
the prescribed external boundary conditions – i.e. the background – and the internal dynamic
of the system, modified by the nudging. Moreover, the shallow layer model used here
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does not have perfectly transparent boundaries, such that the waves created by the nudging
are spuriously reflected. To avoid these two problems, the length of the period of model
integration, T , has been chosen equal to the time needed for the nudging information
to propagate throughout the domain. If the integration period is too short, the nudging
information does not have time to propagate through the domain, and if it is too long, there is
a mismatch between the prescribed boundary conditions (strong constraint) and the forcing
produced by the nudging and spurious reflected waves might appear. The appropriate length
of the integration period is estimated using the method of characteristics, and the iterations
of forward and backward integrations are performed over this time period.

2.4 Iterative ensemble Kalman smoother

The iterative ensemble Kalman smoother (IEnKS, Bocquet & Sakov, 2014) is an ensemble
variational method of data assimilation. As a variational method, it is based on the minimi-
sation of a cost function. The outcome of the analysis process, za, might differ from the
(unknown) truth, zt, by the analysis error: εa = za − zt. As the IEnKS is an ensemble-based
method, the analysis error space is spanned by a limited number of vectors: the ensemble
members. In fact, the analysis error covariance matrix, defined as as Pa = E

[
εa (εa)

T
]

where E represents the expectation operator, can be directly calculated from the ensemble.
The ensemble is also used in the minimisation of the cost function, to avoid the use of the
adjoint of the model and the observation operator.

Similar to the 3D-Var algorithm, the cost function of the IEnKS measures the distance to
the background and to the observations over a specific time-range, referred to as assimilation
window. The IEnKS considers assimilation time windows of size L∆t with L ≥ 0, and
might assimilate asynchronous observations available over this time window. The iterative
ensemble Kalman filter (IEnKF, Sakov et al., 2012) is the particular case where L = 1. If
L > 1, the analysis is performed at a time tL and optimises the state of the control vector at
any time between the beginning of the assimilation time window (t0) and tL−1. Here, we
are interested in the steady state obtained with some given constant boundary conditions.
Consequently we consider a long data assimilation window – long enough to reach the
steady state – and the observations are only available at the end of this time window. Thus,
we only perform one analysis cycle of the IEnKS.

In the original derivation of the IEnKS and IEnKF (Bocquet & Sakov, 2014; Sakov et al.,
2012), the control vectors include the initial conditions but not the boundary conditions.
Here we are interested in local scale simulations, which are mainly driven by boundary
conditions. Hence, in what follows we perform a similar derivation, albeit including only the
boundary conditions in the control vector. Similar to 3D-Var, we consider here the simple

case of constant boundary conditions, such that the control vector is reduced to z =

(
uL

hR

)
.

However, the method presented here can be generalised to more complex cases where the
control vector includes both the initial and the boundary conditions, and the latest might
vary in time.

We follow a derivation similar to the one in Bocquet & Sakov (2014) where we consider
a perfect model which relates the steady state of the system (Xs) to the boundary conditions
(z):

Xs =M(z) =M (uL, hR) . (8)
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The control vector, i.e. the vector of boundary conditions, is assumed to follow a Gaus-
sian distribution with mean zb, which is the first guess – or background state –, and the
background-error covariance matrix is B. The observations are available at the end of the
data assimilation window, i.e. when the steady state is reached, and are given by the vector
y. The observation likelihood is assumed to follow a Gaussian distribution:

p (y|Xs) = n (y−H(Xs)|0,R) . (9)

Bayes’ rule combined with the aforementioned assumptions give the expression of the
cost function:

J (z) =
1

2
‖z− zb‖2B−1 +

1

2
‖y−H ◦M(z)‖2R−1 . (10)

As previously noticed, this cost function is identical to the one used in 3D-Var (Eq. 3). The
difference between these two methods lies in the fact that for the IEnKS the minimisation
of the cost function is performed within the ensemble space instead of the control space
for 3D-Var. The advantages of this approach are that, in general, the ensemble space is
substantially smaller than the control space and the analysis in the ensemble space does
not require the use of the tangent linear nor the adjoint model. The tangent linear model of
M is a first-order approximation of the evolution, byM, of a perturbation of the control
vector. The adjoint of a linear operator A (typically the tangent linear model) is the linear
operator A∗ such that for any x, y:

〈Ax, y〉 = 〈x,A∗y〉 , (11)

where 〈., .〉 represents the inner product.
We consider an ensemble of N boundary condition vectors, that represents the back-

ground distribution: Eb = {z[i]}i=1...N , where subscript [i] refers to the member index in
the ensemble. The ensemble is centred on the background zb and the departure of each
member from this mean is given by the (normalised) anomaly matrix:

A =
(

1/
√
N − 1

) [
z[1] − zb, z[2] − zb, ..., z[N ] − zb

]
. (12)

The background error covariance matrix can be estimated from the ensemble:

B = AAT. (13)

We seek the combination of the ensemble members that gives the best estimate of z, i.e.
we look for the weight vector wa such that:

za = zb + Awa, (14)

where the ’a’ superscript is used to refer to all the variables obtained at the end of the
analysis cycle.

Replacing (13) and (14) in (10), the cost function in the ensemble space reads:

J̃ (w) =
1

2
‖w‖2 +

1

2
‖y−H ◦M

(
zb + Aw

)
‖2R−1 , (15)
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Background ensemble: Eb = z(0)1T +A. Initialisation: w = 0

mean anomalies

w (z′, Eb′)
z′ = z(0) +Aw

Eb′ = z′1T +AH−1/2

E′s
Model ys

Obs.
operator

dy

Obs.
y

∇J̃ , H∆w

+

wa, za = z(0) + Awa, Ea = za1T + A(Ha)−1/2

until ‖∆w‖ < e

Figure 4: One analysis cycle of the IEnKS. The background ensemble Eb is either obtained
by a forecast ensemble from the previous analysis cycle or given as an input of the method.
The best estimate of the weight vector wa is obtained by minimising the cost function J̃ as
shown by the cycle on the figure: for each value of w, a new ensemble of boundary conditions
Eb′, centred on z′, is generated using the transform method. The model and the observation
operator are applied to this ensemble, which gives an ensemble of simulated observations
with mean ys that can be compared to the observations y. The increment dy = y− ys is
used in the estimation of the gradient and Hessian of the cost function. The weight w is thus
updated following Gauss-Newton algorithm until the convergence criterion is reached. At
the end of the analysis, the best estimate of the control vector za and the analysis ensemble
Ea can be used as a first guess for the next analysis cycle.

where ‖x‖2 = xTx. The minimum of this cost function is reached for the most likely w,
referred to as wa. Due to pre-conditioning by A, as in Liu et al. (2008) and Gu & Oliver
(2007), the calculation of the gradient of the cost function does not require the adjoint nor the
tangent linear ofH ◦M. It only involves the tangent linear of the operator transporting from
the ensemble space to the observation space: Y = [H ◦M]

′
|z A, where [H ◦M]

′
|z represents

the tangent linear model ofH ◦M estimated by perturbations around z. The tangent linear
operator Y, the gradient ∇J̃ and the Hessian H of the cost function are estimated using
the transform method as in Bocquet & Sakov (2012). A schematic representation of one
analysis cycle of the IEnKS is shown on Figure 4.

It is worth noting that in our case with a single analysis cycle, the background ensemble
has to be pre-constructed, satisfying the conditions of being centred on the background
zb and corresponding to the background error covariance matrix B. In cases with several
IEnKS analysis cycles, the background ensemble, and thus B, are given by the analysis
ensemble from the previous analysis cycle.

3 Results

3.1 Experimental setup

3D-Var, the BFN algorithm and the IEnKS are tested on a shallow layer system with
one-dimensional twin experiments (synthetic observations are extracted from the reference
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simulation). The experiments correspond to a channel of lengthL = 2500m with a realistic
topography profile but without diffusion nor ground friction. The reduced gravity is equal to
g′ = 0.5g = 4.905m/s2, which corresponds to a boundary layer twice as dense as the free
atmosphere above. The true state – or reference simulation – is obtained with an upstream
boundary condition equal to ut

L = 5.5m/s and the first guess (or background) corresponds
to the boundary value ub

L = 4.4m/s, i.e. a background error of 20% (Fig. 2). The value
of the downstream boundary condition (hR = 154m) is unchanged between the reference
simulation and the background. In all the cases, we consider the steady state obtained with
constant boundary conditions. The initial state for the data assimilation experiments is the
steady state obtained with the a priori boundary conditions: in Sections 3.2 and 3.3 the same
initial state is used for all the data assimilation experiments (ub

L = 4.4m/s andhR = 154m),
while in Sections 3.2 the background ub

L differs between the experiments and the initial
state varies accordingly. It is noteworthy that for simulations performed until convergence,
the initial conditions does not influence the results, i.e. the steady state.

Two observations of the velocity, located at xo1 = 625m and xo1 = 1875m (see Fig. 2),
are extracted from the reference simulation and are kept exact, i.e. noise-free, in Section 3.2
while they are noisy in Sections 3.3 and 3.4.

As noted in Section 2.3, the BFN does not have the same objective as 3D-Var and the
IEnKS. To allow a quite fair comparison between these methods, we consider cases for
which the uncertainty on the background is substantially larger than on observations. For
3D-Var and the IEnKS, the background error covariance matrix (B) and the observation error
covariance matrix (R) have been chosen diagonal with variances of 1m2/s2 and 10−6m2/s2

respectively. For each value of the left boundary condition, the steady state is obtained
analytically by the resolution of the Bernoulli equation (Eq. 2). Equivalently, we could
have integrated the numerical model during a long enough time until reaching the steady
state. For the IEnKS, we take a background ensemble of 2 members corresponding to a
background error covariance matrix equal to identity, centred on ub, and the convergence
criteria is set to e = 10−3.

For the BFN algorithm, the forward and backward integrations with nudging are per-
formed over a time period T , which corresponds to the time needed for the information
coming from the observations to reach the boundary conditions. Using the method of char-
acteristics we have estimated this time period to be T = 30s. The nudging is applied every
time step (∆t = 0.5s) and the nudging matrices are the same in the forward and backward
integrations: K = kHT where k = 1s−1. This definition of nudging matrices is equivalent
to HTR−1, often used in nudging studies. In fact, here the observations are independently
perturbed by noise such that R is here proportional to the identity matrix: R = rI. More-
over the numerical scheme used to solve the shallow water equations is explicit such that
the nudging coefficient must be smaller than one. In the present study, r = 10−6 and 0.25
(without and with noise), in which case r−1 is too large. Consequently we take the largest
possible value for k, which is 1.

We assume that the BFN algorithm has converged when the relative variation of the
control vector (here the boundary condition uL) between two consecutive iterations is
smaller than 0.05% during 5 consecutive iterations.

3.2 Results with perfect observations

Figures 5a and 5b show the background in blue, the reference simulation in dashed black,
and the observations as red dots.
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(a) Results of the IEnKS with perfect observations
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(b) Results of the BFN algorithm with perfect ob-
servations

Figure 5: Profiles of the velocity obtained: (a) at the end of the IEnKS analysis and (b) after
1, 15, and 33 BFN iterations for the experiment with perfect observations. The simulations
are performed with a shallow layer model without diffusion nor ground friction.

Figures 5a shows the steady state corresponding to the boundary conditions of the 2
ensemble members (dotted, blue curves) and of the one calculated by the IEnKS analysis
(orange curve). In this simple case the IEnKS perfectly recovers the value of the boundary
condition, so does 3D-Var (not shown on the figure).

Figure 5b shows the steady state corresponding to the boundary conditions obtained after
1, 15, and 33 BFN iterations in the experiment with perfect observations. A BFN iteration
consists of one forward and one backward integrations. The BFN algorithm has converged
after 33 iterations, i.e. 66 model integrations over a period of T = 30s, and the boundary
condition obtained is ua

L = 5.54m/s. The relative RMSE between the true state and the
state obtained with this value of boundary condition is equal to 0.68%, when evaluated over
the whole domain.

The results of both the IEnKS and 3D-Var are very good, though these methods have a
slightly higher computational cost. In fact, here the resolution of the Bernoulli equation (2)
is not costly but in general cases where no analytical solution is available, the model should
be integrated over a time window long enough to reach the convergence, and consequently
longer than the period T used in the BFN algorithm. In fact, each iteration of the BFN
algorithm (i.e. one successive forward and backward integrations) requires nearly 30 times
less computational resources than one analysis cycle of IEnKS with two members or one
finite-difference calculation for 3D-Var minimisation. However, the IEnKS and 3D-Var can
be partially parallelised, unlike the BFN algorithm. The IEnKS is here still more efficient
than 3D-Var as the minimisation of the cost function only requires 2 iterations of the Gauss-
Newton algorithm, i.e. this method requires 4 model integrations as we consider 2 ensemble
members. In comparison, 3D-Var in ADAO estimates the gradient by finite-differences
such that each iteration of the optimisation algorithm requires 2 model integrations. Here,
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Figure 6: Boxplots corresponding to the analysis errors obtained with 50 pairs of noisy
observations using the IEnKS, 3D-Var, and the BFN algorithm. The bottom and top of
the boxes represent the 1st and 3rd quartiles, the green line corresponds to the mean, the
dashed orange line to the median, and the ends of the whiskers represent the minimum and
maximum of all the data.

6 iterations are necessary to reach the minimum of the cost function, which corresponds to
12 model integrations.

3.3 Results with noisy observations

In real studies, the observations are never perfect. Consequently, we have analysed the
ability of the data assimilation methods to assimilate noisy observations.

We have generated an ensemble of 50 pairs of observation errors following a Gaussian
distribution with zero mean and a covariance matrix equal to 0.25I, where I is the 2× 2
identity matrix. For 3D-Var and the IEnKS, we thus set the observation error covariance
matrix to R = 0.25I in what follows.

Figure 6 shows boxplots corresponding to the distribution of the analysis errors for the
50 cases with noisy observations, for each data assimilation method. The analysis error is
defined as the difference between the value of the boundary condition given by the analysis
and the true value of the boundary condition:

εa = ua
L − ut

L. (16)

We observe that the three methods have small mean analysis errors (green line) and quite
small dispersions of the errors (blue boxes). The IEnKS and 3D-Var give good results
with small mean analysis errors (respectively −0.07m/s and −0.12m/s) and small stan-
dard deviation (both 0.27m/s). The BFN algorithm gives the smallest mean analysis error
(0.01m/s) though the standard deviation around this mean is larger than for the two other
methods (0.5m/s). This larger variability shows that the BFN algorithm is more sensitive
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to observation errors. It is consistent with the definition of the BFN, which gives a large
importance to observations. If observations are not perfect, the BFN algorithm nudges the
system toward a state that is close to these observations and which might be different from
the true state.

A useful measure of the uncertainty on the analysis is the precision, which is defined as
the inverse of the analysis error variance:

pa =
1

σ2
a

. (17)

Theoretically, the analysis precision is the sum of the precisions of the background and of the
observations (Section 5.4.1 in Kalnay, 2003). The precision of the observations is calculated
using the adjoint of the forward operator H̃, estimated by the IEnKS and 3D-Var using
either the ensemble or finite differences. We deduce the precision of the observations: po =

H̃
T

R−1H̃ ≈ 39s2/m2. In this section, we analyse the sensitivity to the observation errors
only and the background is the same for the 50 experiments. Consequently, we compare the
analysis precisions to the observation precision. Both the IEnKS and 3D-Var give precisions
of 14s2/m2 which is smaller than the theoretical value, especially because the statistical
assumptions are not perfectly satisfied. However, the precisions are not too low neither,
indicating that the methods are not very sensitive to the observation errors. In particular, for
these two methods the absolute value of the analysis error is smaller than the background
error (|εb| = |ub

L − ut
L| = 1.1m/s), showing that the data assimilation methods always help

correct the boundary condition. As mentioned above, the BFN algorithm is intrinsically
more sensitive to observation errors, which is consistent with the smaller analysis precision
of 4s2/m−2.

3.4 Analysis of sensitivity to the background error

We have also analysed the sensitivity of the data assimilation methods to the first guess
ub

L. Similar to the sensitivity analysis to observation error, we have generated an ensemble
of 20 background errors, following a Gaussian distribution with zero mean and a variance
of σ2

b = 1m2/s2, symmetrical with respect to zero. We have also generated 10 pairs of
observation errors, as in Section 3.3. The three data assimilation methods have been tested
on these 200 cases.

Figure 7 shows the analysis error against the background error for the IEnKS (blue
squares), 3D-Var (orange triangles), and the BFN algorithm (green dots). The markers
represent the absolute analysis error, averaged over the 10 pairs of noisy observations for
a same background error, and the errorbars indicate the standard deviation around these
mean values. The absolute values of the background error are represented by the grey
line (y = |x|): in the dotted areas the analysis error is greater than the background error,
indicating that the data assimilation method does not help correct the simulations.

We observe in Figure 7 that the mean analysis errors of 3D-Var and the IEnKS (blue
squares and orange triangles) are proportional to the background error. This is consistent
with the Bayesian framework of these methods. We can also verify that the sensitivity of
the IEnKS and 3D-Var to the background error is quite small here, which is in agreement
with the fact that the background precision is here substantially smaller than the observation
precision. The BFN algorithm does not depend on the background and we can verify that
the mean analysis error (green circles) is nearly constant. For neither of the three methods
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Figure 7: Analysis error against background error for 20 values of background error and for
the three data assimilation methods: the IEnKS (blue squares), 3D-Var (orange triangles),
and the BFN algorithm (green circles). The errorbars are centred on the mean analysis error
and show the standard deviation, calculated over 10 experiments with different pairs of
observation errors and a given background error. The dotted areas correspond to absolute
values of analysis error larger than the background error, i.e. the data assimilation method
has increased the error.

does the sensitivity to observation error – represented by the length of the blue, orange, and
green errorbars – depend on the background error. We can verify here again that the green
error bars are longer than the blue and orange ones, indicating that the BFN algorithm is
more sensitive to observation errors than 3D-Var and the IEnKS.

Except for very small absolute background errors (< 0.4m/s), all the errorbars are
below the grey line (Fig. 7), indicating that in nearly all the cases, the three data assimilation
methods help reduce the error on the boundary condition. The cases with very small |εb|
correspond to cases for which the background are very close to the true state. However, the
background error variance is still larger than the observation error variance (σ2

b = 1m2/s2 >
σo = 0.5m2/s2), which means that the confidence placed in the background is smaller than
the confidence in the noisy observations. Consequently, in 3D-Var and the IEnKS a smaller
weight is given to the background compared to the one given to the observations. As the
observations are noisy, the value of the control vector that is the closest to the observations
might be further away from the true state than the background. Consequently, the analysis
error is somewhat larger than the background error and on Figure 7 the errorbars go over
the edges of the dotted region.

The results with the BFN algorithm are consistent with the independence of the analysis
to the background error and with the quite large sensitivity to observation error, explained
in the previous section.

Another way to measure the sensitivity of the methods to background error is to look at
the mean analysis error and the standard deviation in the ensemble of 20 experiments for
each pair of noisy observations. The IEnKS analysis error depends little on the background
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value: for each pair of noisy observations the mean analysis error is smaller than 0.5m/s
and the standard deviation around this average value is smaller than 0.05m/s. 3D-Var
gives similar results to the IEnKS, even though the standard deviations are slightly larger,
indicating that the method is somehow more sensitive to the background error. This is
consistent with Figure 7 in which the orange triangles follow a line with a larger slope than
the blue squares.

With this measure we can also confirm that the BFN algorithm is more sensitive to
observation error but less to background error than the two variational methods. In fact,
depending on the pair of observations considered, the mean analysis error - calculated over
the 20 analyses obtained with different background errors - vary from 0.12m/s to 1m/s.
The standard deviations around theses means are all around 0.005m/s.

The analysis precision (eq. 17) is a measure of the confidence in the analysis: the
higher the precision, the lower the uncertainty on the analysis. In this section, both the
background and the observations vary, thus the analysis precision should be the sum of the
precisions of the background (pb = 1

σ2
b

= 1s2/m2) and the precision of the observations

(po = 39s2/m−2, Section 3.3). Consequently the analysis precision should theoretically be
equal to pa = pb + po = 40s2/m2 which gives an estimation of the standard deviation for

the analysis velocity at boundary: σa =
√

1
40 = 0.16m/s. Overall, considering all the 200

simulations for each method, the mean absolute analysis error is equal to −0.007m/s for
the IEnKS and 3D-Var and 0.026m/s for the BFN algorithm with precisions of 8s2/m2

for the IEnKS and 3D-Var and 5s2/m2 for the BFN algorithm. The analysis precisions of
all the three methods are greater than the background precision, which confirms that data
assimilation methods improve the estimation of the control vector.

Regarding computational efficiency, the BFN algorithm is always the most cost-effective
because it is not integrated until convergence. The IEnKS is more effective than 3D-Var in
these cases since only two or three iterations of the Gauss-Newton algorithm are necessary
to minimise the cost function whereas for 3D-Var the minimisation by finite differences
requires at least 5 iterations.

4 Conclusion

Variants of the BFN algorithm, 3D-Var, and the IEnKS have been derived for local flows to
take boundary conditions into account instead of the usual initial conditions. The derivations
of 3D-Var and the IEnKS have been performed in a general framework whereas the BFN
derivation is specific to the 1D shallow water equations. In fact, the shallow layer model
offers a quite good representation of geophysical flows and is often used for simple numerical
experiments in meteorology and hydrology. In the present study, we consider a 1D shallow
layer model in order to validate the numerical behaviour of the modified data assimilation
methods before applying them to more complex model and cases.

The first results presented here show the efficiency of these methods to assimilate a few
observations on cases with a complex one-dimensional geometry. The three methods help
correct the boundary conditions, and thus obtain a state that is closer to the true state than
the first guess. It has been shown that even if the observations are noisy and for a quite
large range of background errors, the three methods are nearly always able to improve the
estimation of the boundary conditions.
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The IEnKS and 3D-Var depend little on observation error but depend linearly on back-
ground error. The BFN algorithm is more sensitive to the observation errors but not to the
background. The behaviour of the three methods is in good agreement with theory and high-
lights the fundamentally different data assimilation problem solved by 3D-Var and IEnKS
on one hand and the BFN algorithm on the other hand. Furthermore, the BFN algorithm has
the disadvantage of being sensitive to parameters such as the nudging matrix, the length of
the integration time window, and the location of the observations. Here we have used a very
simple nudging matrix. Further investigation could be performed to develop more complex
observers, as in Auroux & Bonnabel (2011), Apte et al. (2018) or Krstic et al. (2009), in
order to correct fluid height with velocity observations.

In this simple example, the IEnKS is the most efficient data assimilation method as
it gives the smallest analysis error, with the greatest precision, and it requires less model
integrations than 3D-Var. However, the 1D case analysed in the present study is quite simple
and the control vector considered is a singleton. Further investigation on more complex
cases, especially with two horizontal dimensions and vertical profiles of velocity will be
performed to analyse the performances of the methods on larger control vectors. Eventually,
we will apply these methods to more realistic cases with the CFD model Code_Saturne.
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