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Space-time wave packets are propagation-invariant pulsed beams that travel in free space without
diffraction or dispersion by virtue of tight correlations introduced into their spatio-temporal spectrum.
Such correlations constitute an embodiment of classical entanglement between continuous degrees of
freedom. Using a measure of classical entanglement based on the Schmidt number of the field, we
demonstrate theoretically and experimentally that the degree of classical entanglement determines
the diffraction-free propagation distance of ST wave packets. Reduction in the degree of classical
entanglement manifests itself in an increased uncertainty in the measured spatio-temporal spectral
correlations.

Propagation-invariant wave packets are pulsed beams that
are diffraction-free and dispersion-free in free space1,2. Un-
derlying their wide variety is a common feature: their spa-
tial and temporal frequencies are tightly correlated3,4, and
we thus denote them ‘space-time’ (ST) wave packets5,6. An
idealized delta-function correlation between the spatial and
temporal frequencies implies an infinite propagation dis-
tance but concomitantly an infinite energy, whereas finite-
energy realizations have a finite propagation distance ex-
ceeding the usual Rayleigh range over which the beam size
is relatively stable. Such wave packets have been previously
realized via nonlinear phenomena7,8, approaches tradition-
ally exploited in producing Bessel beams (e.g., axicons or
annular apertures)9,10, and spatio-temporal filtering11,12.
We have recently introduced an experimental strategy that
enables precise synthesis of ST wave packets in the form of
light sheets via a phase-only spatio-temporal modulation
scheme that encodes arbitrary spatio-temporal spectral cor-
relations into the field13. Exploiting this approach, we have
demonstrated non-accelerating ST Airy wave packets14, ex-
tended propagation distances15, self-healing16, broadband
ST wave packets via refractive phase plates17, and arbitrary
control over the group velocity in free space18.

Because the unique characteristics of ST wave packets
stem from tight spatio-temporal spectral correlations, they
are an embodiment of so-called ‘classical entanglement’19,20.
In analogy to quantum entanglement characterizing multi-
partite quantum states that cannot be factored into the
sub-Hilbert spaces associated with each particle, classi-
cal entanglement is a feature of optical fields that can-
not be factorized with respect to their degrees of freedom
(DoFs). To date, most work on classical entanglement has
focused on discretized DoFs, such as polarization and spa-
tial modes20,21, whereas studies of classical entanglement
between continuous DoFs have been lacking.

Here we show that the propagation-invariant distance
of a ST wave packet is related to the degree of classical
entanglement as quantified by the Schmidt number of the
field’s spatio-temporal profile. We show that the degree of
classical entanglement is determined by the ‘spectral un-
certainty’: the unavoidable ‘fuzziness’ in the association
between the spatial and temporal frequencies underlying

the wave packet, which renders its energy and propagation
distance finite5. We confirm experimentally these findings
by synthesizing ST wave packets with controllable spec-
tral uncertainty and measuring the propagation-invariant
distance as the degree of classical entanglement is varied.

In quantum mechanics, starting from a pure entangled
multi-partite state, tracing out the other particles results in a
mixed single-particle state22. For example, a two-photon en-
tangled state displays high two-photon interference visibil-
ity, but no single-photon interference can be observed23,24.
We consider here the analogous phenomenon occurring in
classical optical fields when multiple DoFs are considered.
Specifically, we examine the spatial coordinate x and time t
of a scalar optical field E(x,t) that is uniform along y; i.e.,
a light sheet. The analogue to quantum entanglement is
the fact that E(x,t) might not be a separable product of
functions of x and t.

A simple measure of non-separability or classical entan-
glement can be devised for two DoFs by assessing the
lack of coherence in one DoF after tracing out the other.
By expressing the field as a Schmidt decomposition25,26,
that is, a weighted sum of separable products E(x,t)=
∑n
√

cngn(x)hn(t), and tracing out the temporal DoF, the
mutual intensity of the field is

J(x1,x2)=
∫

dtE(x1,t)E∗(x2,t)=∑
n

cngn(x1)g∗n(x2), (1)

and the time-averaged intensity is I(x)=J(x,x)=
∑ncn|gn(x)|2. Here we assume

∫
dth∗n(t)hm(t)=δnm and

cn≥0 without loss of generality. The so-called spatial co-
herent modes gn are also orthonormal,

∫
dxg∗n(x)gm(x)=δnm.

The square of the overall degree of coherence27,28, which is
analogous to the purity in quantum mechanics22, is then
defined as

µ2=

∫∫
dx1dx2|J(x1,x2)|2

[
∫

dxI(x)]2
=

∑nc2
n

(∑ncn)
2 . (2)

A simple interpretation of this measure follows from con-
sidering the case where there is only N non-zero equal-
magnitude coefficients cn, whereupon µ2=1/N. That is,
the Schmidt number N=1/µ2 gives the effective number
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of coherent modes involved. Here, µ2=1 denotes complete
separability with one coherent mode in the Schmidt decom-
position, while µ2=0 corresponds to maximally entangled
DoFs and thus complete incoherence upon tracing out one
of the DoFs. Therefore, the overall coherence of the field
after time-averaging determines how non-separable the
spatial and temporal DoFs are. In this Letter we consider
propagating fields that depend also on the longitudinal
spatial coordinate z. However, we focus on ‘propagation-
invariant’ fields that are independent of this DoF or nearly
independent.

Consider the plane-wave expansion of a generic scalar
field E(x,z,t) propagating from negative to positive z in free
space,

E(x,z,t)=
∫∫

dkxdωẼ(kx,ω)ei{kx x+kz(kx ,ω)z−ωt}, (3)

where kx and kz are the transverse and longitudinal com-
ponents of the wave vector, ω is the temporal frequency,
and k2

z(kx,ω)=(ω/c)2−k2
x. It is easy to show that at z=0

we have

µ2=

∫ ∫
dkxdk′x|H̃(kx,k′x)|2∣∣∣∫ dkx H̃(kx,kx)

∣∣∣2 , (4)

where H̃(kx,k′x)=
∫

dωẼ(kx,ω)Ẽ∗(k′x,ω), and we normalize
the spectrum

∫∫
dkxdω|Ẽ(kx,ω)|2=1 such that the denom-

inator in Eq. 4 is unity. We are interested in cases where
the spatial frequencies kx are tightly correlated to the tem-
poral frequencies ω. Motivated by the realistic spectra
synthesized in13, we introduce the following decomposi-
tion of the spectrum Ẽ(kx,ω)→Ẽ(kx)g̃(ω−Ω(kx)), where
Ω(kx)=c

√
k2

x+k2
o, c is the speed of light in vacuum, ωo

is the optical carrier frequency, ko=
ωo
c , and g̃(·) is a nar-

row spectral function of width δω and normalized such
that

∫
dω|g̃(ω)|2=1. In the ideal limit of perfect correlation

we have g̃(ω)→δ(ω). This limit corresponds to the spe-
cial case of an ideal propagation-invariant field where kz is
held constant kz=ko (Refs.5,6), which introduces entangle-
ment between the spatial and temporal DoFs, whereupon
E(x,z,t)=eikoz∫ dkx Ẽ(kx)ei{kx x−Ω(kx)t}. For any z, the mu-
tual intensity and the intensity are each the sum of two
contributions,

J(x1,x2)=
∫

dkx|Ẽ(kx)|2
√

k2
o/k2

x+1eikx(x2−x1)

+<
{∫

dkx Ẽ(kx)Ẽ∗(−kx)
√

k2
o/k2

x+1eikx(x1+x2)

}
,(5)

I(x)=
∫ ∞

0
dkx I0(kx){1+η(kx)cos[2kxx−φ(kx)]}, (6)

where

I0(kx)=
√

k2
o/k2

x+1
[
|Ẽ(kx)|2+|Ẽ(−kx)|2

]
, (7)

η(kx)=2|Ẽ(kx)Ẽ∗(−kx)|/
(
|Ẽ(kx)|2+|Ẽ(−kx)|2

)
, (8)

φ(kx)=−arg[Ẽ(kx)Ẽ∗(−kx)]. (9)

Because 0≤η≤1, it is clear that the transverse intensity pro-
file is composed of a uniform pedestal

∫
dkx I0(kx) plus a

continuous superposition of sinusoidals that can be used
to construct any desired functional form through standard
Fourier theory on top of that pedestal, with the constraint
that the magnitude of the largest feature of the constructed
function is not larger than the height of the pedestal. This re-
sult is easy to understand: for each temporal frequency we
have the superposition of two plane waves with spatial fre-
quencies ±kx, whose intensity is precisely the non-negative
sum of a constant and a sinusoidal. Since the interference
between different temporal frequency components is erased
by the time average, we have the superposition of the cor-
responding spatial intensity distributions.

Calculating the measure µ2 for this idealized case is in-
volved, and is best done by first evaluating the spatial inte-
grals and then the temporal average. One finds that µ2=0;
i.e., the Schmidt number is infinite and the degree of entan-
glement is maximal. This is consistent with the fact that
the field is an idealization with infinite extent. Note that
this result is independent of the particular form of Ẽ(kx) and
depends solely on the fact that a perfect (delta-function)
correlation exists between kx and ω.

We now relax the requirement of perfect delta-function
correlation between kx and ω and introduce an uncer-
tainty in their association, and take the simple form of
a Gaussian function for the spectral uncertainty g̃(ω)∝
exp{− 1

2 (
ω−ωo

δω )2} whereupon

µ2=
∫ ∫

dkxdk′x|Ẽ(kx)|2|Ẽ(k′x)|2exp
{
− [Ω(kx)−Ω(k′x)]2

2(δω)2

}
.

(10)
Taking a Gaussian spatial spectrum Ẽ(kx)∝
exp{−k2

x/(2∆2
x)} and making the approximation

Ω(kx)−ωo≈k2
x/(2k2

o),

µ2=
1

π∆2
x

∫ ∫
dkxdk′xexp

{
− k2

x+k′2x
2∆2

x

}
exp

{
− (k2

x−k′2x )2

8k4
o(δω)2/ω2

o

}
,

(11)
and simplifying the integrals yields the expression

µ2=
1

2
√

π

∫ ∞

0

e−t√
t(1+ t

2κ2 )
dt=

1√
2π

K0(κ
2)eκ2

κ, (12)

where K0 is the 0th-order modified Bessel function of the
second kind, κ= δω/ωo

∆2
x/k2

o
= δω

∆ω is the ratio of the spectral uncer-
tainty δω to the full spectral bandwidth ∆ω, and normally
κ�1. As shown in Fig. 1(a), the Schmidt number N=1/µ2

is now finite and drops with increasing κ, indicating that
the degree of classical entanglement of the field increases with
reduced uncertainty.

Concomitantly with the drop in the degree of classical
entanglement, the field now features z-dependent axial dy-
namics. To examine these dynamics, we evaluate the time-
averaged intensity I(x,z)=

∫
dt|E(x,z,t)|2 after making use
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Figure 1 | (a) Calculated Schmidt number N=1/µ2 as a
function of κ. (b) Calculated I(0,z) and the approximation
I(0,z)≈exp{−(κ z

zR
)2}. The intensity drops by half at

z≈zR/κ; i.e., classical entanglement – which is related
monotonically to κ – increases the propagation distance.

of the Gaussian forms for Ẽ(kx) and g̃(ω) utilized above,
whereupon

I(x,z)=∆x

∫ ∞

0
dt

e−t√
t(1+ t

κ2 )
exp

{
−
(
√

t z
zR
−x∆x)2

1+ t
κ2

}
, (13)

where zR=
ko
∆2

x
is the Rayleigh range of a Gaussian beam of

spatial bandwidth ∆x and frequency ωo. For small spectral
uncertainty κ�1, the field on axis is I(0,z)∝̃exp{−(κ z

zR
)2},

and the approximation improves for smaller κ [Fig. 1(b)].
That is, the Rayleigh range is extended by a factor equal to
1/κ, which is related monotonically to the Schmidt number,
demonstrating that the degree of classical entanglement
dictates the propagation distance of this ST wave packet.
Furthermore, Eq. 13 indicates that the pedestal now has a
finite width that is related to the propagation distance.

We now proceed to demonstrating experimentally that
the spectral uncertainty δω, and thus the degree of classical

Figure 2 | Schematic depiction of the optical setup for
synthesis and analysis of a ST wave packet. The inset
provides a key for the optical components. The various
sections of the setup are identified with differently colored
backgrounds.

entanglement, determines the propagation-invariant dis-
tance. The setup for synthesizing the ST wave packets is
shown in Fig. 2. The spectrum of pulses from a femtosec-
ond Ti:Sa laser (Tsunami, Spectra Physics; central wave-
length ∼800 nm) is spread spatially with a diffraction grat-
ing (1200 lines/mm and area 25×25 cm2) and collimated by
a cylindrical lens before impinging on a spatial light mod-
ulator (SLM; Hamamatsu X10468-02) that imparts a phase
distribution to associate each pair of spatial frequencies
±kx with a single wavelength λ. The phase distribution
is designed to produce the particular ST wave packets for
which kz=ko. The retro-reflected field from the SLM passes
through the cylindrical lens back to the grating, whereupon
the ST wave packet is formed as the pulse is reconstituted.
The ST wave packet is characterized in the spectral domain
where we obtain the spatio-temporal spectrum |Ẽ(kx,λ)|2
by implementing a spatial Fourier transform to the spread
spectrum, and in physical space where we record the time-
averaged intensity I(x,z)=|

∫
dtE(x,z,t)|2.

In all cases, the temporal bandwidth is ∆λ∼0.7 nm and
the spatial bandwidth is ∆kx∼0.3 rad/µm (half-width at
half-maximum), corresponding to a transverse width of
the spatial profile of ∆x≈8 µm. The spectral uncertainty
δλ is varied in the range 20 to 80 pm by limiting the il-
luminated area on the diffraction grating from 25 mm to
5 mm to change the grating’s spectral resolving power. Two
examples of measured ST wave packets are presented in
Fig. 3. Data for an ST wave packet having a spectral un-
certainty of δλ=80 pm [Fig. 3(a)-(c)] shows that the spatio-
temporal spectrum |Ẽ(kx,λ)|2 conforms to theory [Fig. 3(a)],
the axial evolution of the intensity I(x,z) [Fig. 3(b)] reveals
a propagation-invariant distance of ∼5 mm and a narrow
pedestal [Fig. 3(c)]. Reducing δλ to 26 pm [Fig. 3(d)] re-
sults in an increase in the propagation distance to ∼15 mm
[Fig. 3(e)] without changing ∆x, and a concomitant increase
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Figure 3 | Measurements of the dependence of the propagation-invariance distance on the spectral uncertainty δλ. (a)
Measured spatio-temporal spectrum |Ẽ(kx,λ)|2 for δλ=80 pm. (b) Measured axial propagation of the time-averaged
intensity I(x,z). The white curve is the axial intensity I(0,z). (c) Axially averaged intensity I(x)=

∫
dzI(x,z) from (b). (d)-(f)

Same as (a)-(c), with δλ=26 pm.

in the width of the pedestal [Fig. 3(f)]. Measured values of
the propagation distance while varying δλ – but holding ∆λ

and ∆kx fixed – are plotted in Fig. 4. The data points fit a 1
x -

relationship as expected from the theoretical 1
κ -dependence

of the propagation distance.

Figure 4 | Measured and calculated propagation-invariant
distance while varying the spectral uncertainty δλ for fixed
temporal and spatial bandwidths, ∆λ and ∆kx, respectively.
For small values of spectral uncertainty, δλ∝̃κ.

The framework that we have introduced can be extended
to other ST wave packets beyond those having a fixed axial
wave vector component kz=ko. Indeed, rigid transport of

the field envelope |E(x,z,t)|=|E(x,0,t−z/vg)| implies that
ω−ωo=(kz−ko)vg, where vg is the group velocity. This
constraint indicates that kx and ω are related through the
equation of a conic section13. It can be shown that the linear
correlation between kz and ω entails that µ2=0, indicating
perfect entanglement. A full classification of ST wave pack-
ets is provided in29, and it is important to study the impact
of classical entanglement on the propagation-invariance of
these various classes.

In conclusion, we have shown theoretically that the de-
gree of classical entanglement – quantified by the Schmidt
number of the field – determines the propagation-invariant
distance of ST wave packets. The time-averaged intensity
of ST wave packets comprises a narrow spatial feature
atop a broad pedestal. Reduction in classical entanglement
manifests itself in an increase in the uncertainty of the field
spatio-temporal spectral correlations, and is accompanied
by a decrease in the propagation distance and a narrowing
of the pedestal without changing the transverse beam
width atop the pedestal. We have verified these predictions
experimentally by synthesizing ST wave packets with
controllable spectral uncertainty.
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