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Abstract
Purpose – This paper aims to propose numerical-based and experiment-based identification processes,
accounting for uncertainties to identify structural parameters, in a wave propagation framework.

Design/methodology/approach – A variant of the inhomogeneous wave correlation (IWC) method is
proposed. It consists on identifying the propagation parameters, such as the wavenumber and the wave
attenuation, from the frequency response functions. The latters can be computed numerically or
experimentally. The identification process is thus called numerical-based or experiment-based, respectively.
The proposed variant of the IWC method is then combined with the Latin hypercube sampling method for
uncertainty propagation. Stochastic processes are consequently proposed allowing more realistic
identification.

Findings – The proposed variant of the IWC method permits to identify accurately the propagation
parameters of isotropic and composite beams, whatever the type of the identification process in which it is
included: numerical-based or experiment-based. Its efficiency is proved with respect to an analytical model
and the Mc Daniel method, considered as reference. The application of the stochastic identification processes
shows good agreement between simulation and experiment-based results and that all identified parameters
are affected by uncertainties, except damping.

Originality/value – The proposed variant of the IWC method is an accurate alternative for structural
identification on wide frequency ranges. Numerical-based identification process can reduce experiments’ cost
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without significant loss of accuracy. Statistical investigations of the randomness of identified parameters
illustrate the robustness of identification against uncertainties.

Keywords Structural identification, Damping, Uncertainties, Honeycomb sandwich structure,
Inhomogeneous wave correlation, Latin hypercube sampling

Paper type Research paper

1. Introduction
Structural identification forms an ever growing emphasis in engineering applications, such
as vibroacoustics (Ablitzer et al., 2014; Cherif et al., 2015; Roozen et al., 2017b). Special
attention is paid by the scientific community to the damping phenomenon on which any
vibration problem is directly dependent. Modeling and identifying damping is obviously
necessary when designing and dimensioning structures. Numerical simulations become
more and more inevitable to reduce the cost of experimental identification processes. In the
literature, most works focus on the modal-based numerical approaches. Nevertheless, these
approaches reach their limits in mid and high frequencies where great modal density exists.
This disadvantage makes their use of limited interest. As alternatives, in a wave
propagation framework, other methods based on the wavenumber space (k-space) analysis
for parameter identification are introduced (Ichchou et al., 2008a). The most frequently used
methods are the Mc Daniel method (McDaniel et al., 2000) and the inhomogeneous wave
correlation (IWC) method (Berthaut et al., 2005).

The Mc Daniel method consists on adjusting iteratively, for each frequency, the
wavenumber and the damping. The wavenumbers for the neighboring frequencies are
considered as initial estimate. The Mc Daniel method was used by McDaniel and Shepard
(2000) to identify the damping of a freely suspended beam which is excited by an arbitrary
transient load. Its efficiency was proved with respect to modal approaches. Indeed, modal
descriptions of the structural response, such as half-power point method and many
variations of modal analysis and testing, permit to estimate the damping loss factor only
near resonance frequencies. However, the Mc Daniel method is capable to estimate the loss
factor at any frequency, even if the latter varies significantly over the frequency range of
interest, and the resonance frequencies are not close enough to track the variations. The
extension of the method to two-dimensional applications was proposed by Ferguson et al.
(2002). The authors combined a continuous Fourier transform with a least square
minimization to identify a single dominant homogeneous wave when using a windowed
field far away from the near-field sources which would otherwise create disturbances.

The principle of the IWC method is to correlate the vibratory field with an
inhomogeneous wave. To extract the parameters in each direction of propagation and thus
eliminate the near-field sources, a correlation index is introduced. It depends on propagation
parameters and permits to build a frequency and direction-dependent dispersion equation
from a space vibratory field. In the literature, Berthaut et al. (2005) and Ichchou et al., (2008b)
proved the ability of the IWC method to identify accurately structural parameters of
isotropic and anisotropic ribbed panels and plates. Obtained results illustrated the
dependence of the loss factor on the wave direction. However, it does not depend on
boundary conditions, on geometry and on source location. The efficiency of the IWCmethod
was also illustrated by Ichchou et al. (2008a) for honeycomb beams and panels identification
with bending load at wide frequency band. Inquiété (2008) used the IWC method to identify
the phase velocity of a quasi-isotropic laminated composite plate. Caillet et al. (2007)
estimated the elasticity modulus of a plate using the IWC method with respect to a modal
approach. Rak et al. (2008) applied both Mc Daniel and IWC methods to identify the
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damping of a homogeneous beam covered with viscoelastic layers. The efficiency of these
methods is proved with respect to standard Oberst tests. The use of an incorrect model of
the wave field in the IWC method (Rak et al., 2008) leads to unreliable identification of
parameters, which is illustrated by negative values of the loss factor for lower frequencies.
However, the Mc Daniel method enabled correct estimation of the loss factor within wide
frequency range. Chronopoulos et al. (2013) identified the wave propagation characteristics
of a composite panel for a wide frequency range. The IWC method identification was based
on the vibratory data measured experimentally and was compared to the wave finite
element method estimation. The IWCmethod has recently been used by Cherif et al. (2015) to
identify the damping of orthotropic honeycomb panels, based on experimental and
numerical (FEM) results. Its efficiency was proved with respect to other classical
methodologies.

As mentioned in Berthaut (2004) and Inquiété (2008), the IWC method allows accurate
parameter identification at mid and high frequencies when high modal overlap occurs. In
fact, in this case, energy is distributed in all propagation directions. At low frequencies,
when lowmodal overlaps occur, the IWCmethod reaches its limits. Some recent works focus
on the improvement of the identification accuracy at low frequency ranges. VanBelle et al.
(2017), for instance, proposed an extended form of the IWC method to validate, through
experimental measurements of dispersion curves on a manufactured metamaterial sample,
the dispersion curves calculated numerically with the unit cell approach. The principle of the
extended IWC is to take into account the experimental excitation location when expressing
the correlated inhomogeneous wave. This allows better estimates of the attenuation.
Moreover, to improve the wavenumber estimates, Roozen et al., (2017a) proposed to use only
half of the measurement data in the IWC, called wave fitting approach, either to the left or to
the right of the excitation position. This effect is due to the disturbing influence of the
measurement data on the left of the excitation point when fitting the right running waves,
and vice versa. Accurate identifications of the wavenumber were achieved using the wave
fitting approach and the Prony method, compared to the spatial Fourier approach.
Particularly, smoother estimate of the wavenumber was obtained when using the mean of
left and right running waves, compared the use of only right or left running wave.

The main purpose of this work is to construct an identification model adapted to the
complexity of dynamic systems for any considered frequency domain. The proposed
identification model is a variant of the classical IWC method based on a summation of
inhomogeneous waves, accounting for both forward and backward propagating waves. In
the context of a numerical-based identification process, the proposed IWC-variant uses as
inputs frequency response functions (FRFs), which are computed numerically, to identify
propagation parameters such as damping, wavenumber, wave attenuation and phase
velocity. It efficiency is evaluated through its comparison to an analytical model, the
classical IWCmethod and theMc Daniel method, which is considered as reference.

Far from the idealization based on deterministic modeling, uncertainties can affect
design parameters, loading, modeling processes, etc. To achieve realistic models, it is
inevitable to account for uncertainties. Quantifying and propagating uncertainties permits
to evaluate their impact and obtain an agreement between design models and experimental
analyses. Two main approaches can be used to quantify uncertainties depending on their
classification: parametric or non-parametric. A special emphasis is paid in this work to
parametric uncertainties (e.g. geometrical parameters and loading forces). Parametric
uncertainties can be quantified according to possibilistic or probabilistic frameworks.
According to the former, uncertainties are, for instance, modeled by intervals, whereas
according to the latter, random variables, for example, quantify the variability of uncertain
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parameters. In this case, probabilistic methods, also called stochastic methods, allow
propagating uncertainties to evaluate stochastic impact of uncertain input parameters on
output responses if direct problems are considered and inversely if inverse problems are
considered. Several stochastic methods are introduced in the literature. The most commonly
used methods are the sample-base ones. TheMonte Carlo simulations (MCS) (Fishman, 1996;
Rubinstein and Kroese, 2008) and the Latin hypercube sampling (LHS) (McKay et al., 1979;
Helton and Davis, 2003) are frequently used. Both methods are based on a succession of
deterministic evaluations corresponding to a set of realizations of random variables and
allow obtaining accurate results through simple implementations. The LHS method permits
to reduce the prohibitive computational time required by the MCS without a significant loss
of accuracy. In fact, partitioning the variability space into regions of equal probability and
selecting one sampling point in each region allow reducing the number of samples.

Combining the LHS method with the above-cited parameter identification methods
(classical IWC, IWC-variant and Mc Daniel) allows constructing three stochastic
identification processes. The main stochastic identification process, coupling the LHS
method and the IWC-variant method, is compared to the two other processes to evaluate the
efficiency of the proposed IWC-variant and the effect of uncertainties on its identification.

In the present paper, we focus on parameter identification of beam structures. A
sandwich composite beam of honeycomb core is particularly considered. This choice is due
to the growing industrial integration of composite materials, in particular for high-
technology sectors, resulting from their interesting mechanical and material properties, high
energy dissipation and resistance/weight ratios.

An experimental validation of the numerical-based identification results is then carried
out through an experiment-based identification process using as inputs FRFs which are
measured experimentally.

2. Theoretical backgrounds
2.1 Mc Daniel method
The main aim of the Mc Daniel method (McDaniel et al.,2000; McDaniel and Shepard, 2000)
is to estimate complex wavenumbers and amplitudes of waves which are propagated
through damped structures, such as beams, plates and shells. The principle of the Mc Daniel
method is to iteratively adjust, for each frequency, the wavenumber to approximate
accurately the response. It considers the wavenumbers for neighboring frequencies as initial
estimations. It uses the wave dispersion relations containing information about structure
viscoelastic properties which are difficult to measure experimentally. The most important
property is the loss factor which can only be estimated around resonant frequencies using
the modal approach and at any frequency owing to theMc Daniel method.

Mathematically, let us consider a harmonic displacement field which depends on space
coordinates:

u ¼ < Ue�iv tf g; (1)

where<{.} refers to the real part andU to the displacement amplitude.
The Mc Daniel method consists on solving the linear differential equation of motion of

the neutral axe or surface of the structure which takes the form:

�v 2Uþ L Uf g ¼ 0; (2)

where L{U} is a linear operator containing the displacement derivatives with respect to the
space coordinate x.
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Taking into account boundary conditions:

Lb uf gj x¼xbð Þ ¼ < Be�iv tf g; (3)

where xb represents boundaries and B is complex valued, the solution of equation (2) is
expressed as:

U xð Þ ¼
XN
n¼1

Fneiknx þ Bneikn L�xð Þ� �
; (4)

where N is the number of different waves. Each wave n is characterized by a wavenumber
kn of complex value, containing positive real and imaginary parts, and an amplitude Fn or
Bn according to forward or backward propagation, respectively, computed using boundary
conditions.

The wavenumber is computed according to the type of the propagated wave through the
structure. In flexural, longitudinal and torsion wave case, respectively, the wavenumber is
expressed as:

kf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rAv 2

E vð Þ 1� ih vð Þ� �
I

4

s
; kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rv 2

E vð Þ 1� ih vð Þ� �
s

; kt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rv 2

G vð Þ 1� ih vð Þ� �
s

;

(5)

where E(v ) and G(v ) = E(v )/2(1 þ v) are the real parts of the Young and shear modulus,
respectively, r is the mass density, I the inertia moment, A the area of the transversal
section and h (v ) the material loss factor.

The loss factor depends on the wavenumber and can consequently be identified, in the
flexural wave case as:

h ¼
����= kf 4

� �
< kf 4
� � ����; (6)

whereI{.} and<{.}correspond, respectively, to the imaginary and real parts.
In longitudinal and torsion wave cases, the loss factor is expressed as:

h ¼
����= ki2

� �
< ki2f g

����; (7)

where the index i refers to indexes l or t according to longitudinal or torsion cases,
respectively.

To verify the validity of the initially supposed wavenumber, it is compared to the
obtained wavenumber through the error function defined as:

« 2 kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

m¼1
r xmð ÞjUmes xm;vð Þ � U xm;vð Þj2XM

m¼1
r xmð ÞjU xm;vð Þj2

vuuut ; (8)

whereM is the number of considered measurement points, r (xm) the coherence function and
Umes(xm, v ) and U(xm, v ) are the measured and real wave fields, respectively. To minimize
this error, an optimization algorithm varying the wavenumber is applied.
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2.2 Inhomogeneous wave correlation method
The principle of the IWC method is to project the vibratory field on inhomogeneous waves.
In fact, damped propagating waves are fully identified from a spatial displacement field and
by correlation with inhomogeneous waves (complex wavenumber and known direction).
Consequently, the dispersion equation is completely reconstructed, and the wave
attenuation is measured using the IWCmethod.

Mathematically, the IWC method uses a harmonic field û(x, y), calculated either from a
harmonic excitation or from a temporal Fourier transform:

u x; y; tð Þ ¼
ðþ1

0

û x; yð Þeiv tdv : (9)

Propagation parameters are computed by correlating the vibratory field of the structure
u(x, y, v ), denoted here û(x, y) where the v -dependence comprises in the hat ˆ, with an
inhomogeneous wave:

uIWC ¼ A uð Þe�ik uð Þ 1þig uð Þð Þ xcos uð Þþysin uð Þð Þ; (10)

where u is the wave direction, g the wave attenuation andA(u ) the amplitude of the wave.
The correlation is performed through an IWC criterion defined, like a modal assurance

criterion (Ewins, 1984), as:

IWC kIWC ; g IWC ; uð Þ ¼

����
ðð

S
û:u*IWCdxdy

����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðð
S
û:û*:dxdy�

ðð
S
uIWC :u*IWC :dxdy

r ; (11)

where u*IWC is the complex conjugate of the wave uIWC. This criterion represents the wave
contribution in the field û(x, y) or also the ratio of the energy carried by the wave and the
total energy contained in the field. Maximizing the IWC correlation criterion leads to
optimizing the wavenumber and damping identification.

For numerical discrete analysis, integrals in equation (11) are replaced by weighted
discrete sums:

IWC k; g ; uð Þ ¼

����Xn
r iû:u

*
IWCSi

����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n
r ijûj2Si:

X
n
r ijuIWC j2Si

q ; (12)

where Si is the elementary surface of the structure around a measurement pointMi, r i is the
coherence of measurement data at pointMi (r i = 1 (if the coherence is not available) and n is
the number of measurement points.

In practice (Berthaut, 2004; Berthaut et al., 2005; Ichchou et al., 2008a, 2008b; Inquiété,
2008), the algorithm of application of the IWCmethod consists on putting the direction u , for
each frequency iteration, into a discrete set of values u j. For each direction u j, the maximum
of the IWC criterion is located at a couple of values (kj,g j) of the wavenumber and the wave
attenuation, respectively. The triplet (u j, kj, g j) corresponding to vanishing waves (g j> 1) is
removed.
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2.3 Proposed variant of the inhomogeneous wave correlation method
As found in literature, the classical form of the IWCmethod reaches its limits and thus gives
inaccurate identification, especially for damping, at low frequencies. Modal overlap is,
indeed, not sufficiently high to allow energy covering all propagation directions (Berthaut,
2004; Inquiété, 2008). To overcome such limits, some improved and extended forms of the
IWC method were proposed in literature (Section 1). For instance, VanBelle et al. (2017)
extended the IWC method with the experimental excitation location. The authors proposed
to define an inhomogeneous wave including the excitation location to obtain a better
estimate of the attenuation. Moreover, Roozen et al., (2017a) proved that the identification
accuracy is improved when using only half the space-time data set. This effect was verified
in the context of both Prony method and wave fitting approach, which refers in literature to
the IWC method, and is due to the disturbing influence of the measurement data on the left
of the excitation point when fitting the right running waves, and vice versa. The authors
compared both results of using right running wave, left running wave and the mean of these
twowave types. The latter allowedmore accurate identification of the wavenumber.

In the same context, a variant of the IWC method is proposed in this paper. It is based on
a sum of inhomogeneous waves, of the form:

uIWCV ¼ e�ik uð Þ 1þig uð Þð Þ xcos uð Þþysin uð Þð Þ þ eik uð Þ 1þig uð Þð Þ xcos uð Þþysin uð Þð Þ; (13)

which accounts for both right (e–ik) and left (eik) running wave components.
The classical form of the IWC method considers only one term corresponding to forward

propagating (incident) wave (e–ik) [equation (10)] and neglects the term corresponding to
backward propagating (reflected) wave (eik) and two other terms corresponding to
evanescent waves (e–ik and ek). Note that the Mc Daniel method accounts for both incident
and evanescent waves, thus for the four wave types mentioned above (e–ik, eik, ek and ek). To
improve the identification allowed by the IWC method, especially for damping, and to
overcome the lack of terms in its classical form, the proposed variant accounts for both
forward and backward traveling waves (e–ik and eik).

The correlation between the vibratory field and the proposed wave is performed through
the IWC criterion [equations (11) and (12)] which must be maximized to optimize the
wavenumber and damping identification.

3. Analytical-numerical model of an isotropic beam
In the present study, only examples of beam structures are considered. The wave direction
is, hence, fixed. Identification methods need FRFs at each point location, as primary input.
The primary outputs are the wavenumber and the wave attenuation. These parameters
being identified, the others can be calculated: phase velocity and damping loss factor. It is
important to note that the input FRFs can be either experimental or numerical. Identification
process is then called either experiment-based or numerical-based, respectively.

Let us consider an example of an isotropic beam which geometrical and mechanical
properties are presented in Table I. Damping is introduced into the system using a complex
Youngmodulus given byE= E0(1þ ih ).

Table I.
Geometrical and

mechanical
properties of the
isotropic beam

b(m) h(m) v E0(GPa) r (kg.m–3) F0(N)

0.029 0.015 0.29 210 7,800 10

7



The analysis is performed over a large frequency range. Two boundary condition
configurations are considered: clamped-free beam and freely suspended beam. Two loading
configurations are considered in this study: membrane and flexural loading. The harmonic
displacement field U(x, t) is computed, in each measurement point of the beam, using an
analytical-numerical model. Identification is then performed using the aforementioned
methods, in both deterministic and stochastic cases.

3.1 Deterministic identification
3.1.1 Membrane loading. If a membrane loading is considered, the equation of motion, also
called the wave propagation equation, is expressed as:

�ES
@2U x; tð Þ

@x2
þ rS

@2U x; tð Þ
@t2

¼ F x; tð Þ; (14)

where F = F0e
iv t. U(x, t) refers to beam membrane deformation where x is the longitudinal

direction. E is the Youngmodulus, r the density and S the cross section.
The solution of equation (14) takes the form:

U x; tð Þ ¼ u xð Þeiv t; (15)

wherev is the angular frequency and u(x) is expressed as:

u xð Þ ¼ A1e�ikx þ A2eikx: (16)

The longitudinal wave equation (16) is a sum of traveling (incident) wave moving in the –x
sense and deflected wave moving in the þx sense. A1 represents thus the incident wave
coefficient, whereas A2 stands for the reflected wave coefficient. These unknown constants
can be evaluated in terms of boundary conditions.

This longitudinal wave case implies defining analytically the wavenumber as:

k vð Þ ¼ v

cw
; (17)

where cw ¼
ffiffiffi
E
r

q
is the wave (phase or propagation) velocity.

The wave attenuation g , representing the spatial damping, is related to the structural
damping loss factor h (Lyon and DeJong, 1995) by:

h ¼ 2cg
cw

g ; (18)

where cg is the group velocity defined as cg ¼ @v
@k . Consequently, cg ¼ v

k ¼ cw and h = 2g .
Computing the constants A1 and A2 according to the clamped-free beam configuration

(clamped boundary: U(x = 0, t) = 0; free boundary: ES @U x¼L;tð Þ
@x ¼ �F0eiv t) leads to the

following expression of the harmonic displacement field:

u xjð Þ ¼ F0

iESkl e�ikL þ eikLð Þ e
�ikxj � F0

iESkl e�ikL þ eikLð Þ e
ikxj : (19)

For a freely suspended beam configuration (ES @U x¼ 0;tð Þ
@x ¼ 0 and ES @U x¼L;tð Þ

@x ¼ F0eiv t), the
harmonic displacement field is expressed as:
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u xjð Þ ¼ � F0

iESkl e�ikL � eikLð Þ e
�ikxj � F0

iESkl e�ikL � eikLð Þ e
ikxj : (20)

The variant of the IWC method is applied to identify the wavenumber and the wave
attenuation, compared to the analytical model, the Mc Daniel method and the classical IWC
method. Then, equations (17) and (18) permit to identify the damping loss factor and the
phase velocity.

The variation of the identified wavenumber and phase velocity according to frequency is
illustrated by Figure 1. Identification is performed using the analytical model, the Mc Daniel
method, the IWC method and the IWC-variant, for the clamped-free and freely suspended
boundary conditions’ configurations.

Good agreement is shown between the estimates of the IWC-variant, the analytical model
and the Mc Daniel method. At low frequencies, the IWC-variant provides an alternative to
the classical IWC method which estimates propagation parameters accurately only at mid
and high frequencies. Varying boundary conditions does not affect the efficiency of the IWC
variant. More detailed illustration is shown in Table II which lists phase velocities computed
at some frequencies.

The group velocity, which determines the velocity of propagation of the energy
transported by the wave, is then constant: cg ¼ @v

@k ¼ cw ¼ ffiffiffiffiffiffiffiffiffi
E=r

p ¼ 5:1887 103. Hence,
energy moves with the same velocity, independently of frequency: non-dispersive wave
propagation occurs.

Figure 2 shows the variation of the wave attenuation and the damping loss factor
according to frequency, for both clamped-free and freely suspended boundary conditions’
configurations.

High oscillations affect the estimates of the classical IWC method, especially at low
frequencies, around analytical and Mc Daniel estimates. This divergence results in an error
exceeding 100 per cent, on the damping loss factor, as shown in Figure 4. The convergence
of the method is faster at high frequencies. On the other hand, fluctuations are attenuated
andmore accurate results are obtained when applying the IWC-variant.

Errors on identified parameters are illustrated by Figures 3 and 4. The IWC-variant is at
first compared to the MC Daniel method, considering the analytical model as reference, and
then to the classical IWCmethod, theMCDaniel method being the reference.

As shown in Figure 4, the errors of the Mc Daniel method are very less. Its efficiency is
thus verified, which allows considering its estimates as reference. The errors of the IWC-
variant estimates oscillate around the Mc Daniel errors. Oscillations are small and strongly
attenuated compared to those affecting the estimates of the classical IWC method. Varying
boundary conditions does not affect the accuracy of the IWC-variant estimates.

As mentioned in theoretical part, more accurate identification is obtained for maximal
IWC criterion. We propose thus to calculate an objective function, which consists on
computing the maximal IWC criterion for each frequency step. The objective function of the
classical IWC method is compared to the objective function of the IWC-variant (Figure 5).
The maximal IWC criterion of the latter is greater than the maximal IWC criterion of the
former and tends to the theoretical limit which is 1. Greatest difference between objective
functions is obtained at the lowest frequencies. Difference is inversely proportional to
frequency. These comparisons confirm that the IWC-variant is an interesting alternative to
the classical IWCmethod, at low frequencies in particular.

In membrane loading case, the efficiency of the proposed IWC-variant is proved,
compared to the classical IWC method, with respect to the Mc Daniel method and the
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Figure 1.
Variation of the
wavenumber and the
phase velocity of (a)
clamped-free beam
and (b) freely
suspended beam,
according to
frequency, identified
using the analytical
model, the Mc Daniel
method, the IWC
method and the IWC-
variant

10



analytical model, considered both as reference. This efficiency is independent of applied
boundary conditions.

3.1.2 Flexural loading. If a flexural loading is considered, the wave propagation equation
is expressed as:

EI
@4U x; tð Þ

@x4
þ rS

@2U x; tð Þ
@t2

¼ F x; tð Þ; (21)

where F = F0e
iv t. I ¼ bh3

12 is the second moment of area and S the transverse cross section.
Equation (21) is based on the Euler–Bernoulli beam theory which is based on the hypothesis:
the shear deformations of the cross section and the rotational inertia effect are neglected.

The solution of equation (21) takes the form:

U x; tð Þ ¼ u xð Þeiv t: (22)

The deflection u(x) of the beam is expressed as:

u xð Þ ¼ A1eikx þ A2e�ikx þ A3e�kx þ A4ekx; (23)

where A1 is the coefficient of the wave propagating to the left, A2 is the coefficient of the
wave propagating to the right, A3 is the coefficient of the evanescent wave decaying to the
right andA4 is the coefficient of the evanescent wave decaying to the left.

In flexural wave case, the analytical wavenumber is:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rSv 2

EI
4

r
: (24)

Here, the damping loss factor is expressed as Lyon and DeJong (1995):

h ¼ 2cg
cw

g ; (25)

where cg is the group velocity defined as cg ¼ @v
@k . Consequently, cg ¼ 2 v

k ¼ 2
ffiffiffiffiffiffiffiffi
EIv 2

rS
4
q

and
h = 4g .

Similar to membrane loading case, two boundary conditions’ configurations are
considered here: clamped-free beam and freely suspended beam.

According to the clamped-free beam configuration [clamped boundary: (x = 0, t) = 0 and
@U x¼ 0;tð Þ

@x ¼ 0; free boundary: EI @2U x¼L;tð Þ
@x2 ¼ 0 and @3U x¼L;tð Þ

@x3 ¼ F
EI�, the constants A1 – A4

are solutions of the system [D]{Aj} = {f} also expressed as:

Table II.
Phase velocity

computed using the
analytical model, the
Mc Daniel method,

the IWC method and
the IWC-variant at

some frequencies, for
the clamped-free

beam configuration

Method
Frequencies (Hz)� 104

0.16 0.24 0.56 0.8 1.6 2.88 3.6 4.4

Analytical 5.189
Mc Daniel 5.190
IWC 5.893 5.357 5.221 5.229 5.187 5.185 5.191 5.176
IWC-variant 5.187 5.189 5.195 5.178 5.187 5.195 5.191 5.202
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Figure 2.
Variation of the wave
attenuation and the
damping loss factor
of (a) clamped-free
beam and (b) freely
suspended beam,
according to
frequency, identified
using the analytical
model, the Mc Daniel
method, the IWC
method and the IWC-
variant
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The harmonic displacement field is consequently of the form:

u xjð Þ� � ¼ eikxj e�ikxj e�kxj ekxj
� �

Aj
� �

: (27)

When freely suspended beam configuration is considered EI @2U x¼ 0;tð Þ
@x2 ¼ 0

�
, @

3U x¼ 0;tð Þ
@x3 ¼ 0,

EI @2U x¼L;tð Þ
@x2 ¼ 0 and @3U x¼L;tð Þ

@x3 ¼ F
EIÞ, equation (26) takes the form:
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Figure 6 illustrates the variation of the wavenumber and the phase velocity according to
frequency computed using the analytical model, the Mc Daniel method, the classical IWC
method and the IWC-variant, for the two boundary conditions’ configurations.

In presence of membrane loading and flexural loading, very good agreement is
found between the estimates of the IWC-variant, the analytical model and the Mc
Daniel method. The shapes of the curves of the identified wavenumber and phase
velocity agree very well. Less accurate results are obtained for the identified wave
attenuation and damping loss factor, as shown in Figure 7. The IWC-variant results
oscillate around those of the analytical model and the Mc Daniel method. These
oscillations are strongly attenuated compared with the oscillations of the results of
the classical IWC method. This is also shown through the comparison of the errors of
the IWC-variant estimates and those resulting from the classical IWC method, with
respect to the Mc Daniel estimates, as shown in Figure 8. Small errors are, in fact,

Figure 3.
Errors on the wave
attenuation and the

wavenumber
identified using the
Mc Daniel method

and the IWC-variant,
with respect to those

identified
analytically, for a

clamped-free beam
configuration
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Figure 4.
Errors on the wave
attenuation and the
wavenumber
identified using the
classical IWCmethod
and the IWC-variant,
with respect to those
identified using the
Mc Daniel method,
for (a) clamped-free
beam and (b) freely
suspended beam
configurations
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Figure 5.
Objective function

variation according to
frequency, associated

to the IWCmethod
and the IWC-variant,

for configurations
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obtained on damping loss factor using the IWC-variant. Regarding the wavenumber,
the IWC-variant estimates are less accurate, especially at low frequencies, for both
clamped-free and freely suspended boundary conditions’ configurations.

In flexural loading case, dynamic flexural stiffness can also be identified. It is defined by
D ¼ sv 2

k4 , where s ¼ M
S is the mass density andM = rSh is the global mass of the structure.

The identified dynamic flexural stiffness is illustrated in Figure 9 which compares the
results of the different applied methods. The approximations of the IWC-variant agree very
well with those of the analytical model and the Mc Daniel method. Small errors are detected
at low frequencies.

The comparisons of the objective functions computed for the IWC-variant and the
classical IWC method are illustrated in Figure 10. The maximal values of the IWC
criterion achieved using the IWC-variant are always greater than those obtained by
the classical IWC method, especially at low frequencies. The accuracy of the classical
IWC method depends on the frequency range: it increases proportionally to
frequency. However, nearly constant maximal values of the IWC criterion are kept,
owing to the IWC-variant, along considered frequency range.

To recapitulate, the analytical model was considered as reference for this example. This
permits to confirm the efficiency of the Mc Daniel method, already proved in the literature.
TheMc Daniel method is hence considered as reference thereafter.

The efficiency of the proposed IWC-variant to identify accurately propagation
parameters is proved. It neither depends on boundary conditions nor on loading type. The
IWC-variant represents an interesting alternative to the classical IWC method, especially at
low frequencies where the latter reaches its limits.

Figure 6.
Variation of the
wavenumber and the
phase velocity of (a)
clamped-free beam
and (b) freely
suspended beam,
according to
frequency, identified
using the analytical
model, the Mc Daniel
method, the IWC
method and the IWC-
variant
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To achieve more realistic structural identification, accounting for uncertainties is inevitable.
The efficiency of the proposed IWC-variant being verified in deterministic case, its
evaluation in presence of uncertainties is the purpose of the following section.

3.2 Identification in presence of uncertainties
Several types of uncertainties could be considered in this study. Only parametric
uncertainties are considered here. Measurement points’ coordinates are supposed to be
uncertain. Actually, if some measurement points do not match the associated displacement
fields, howwould this affect the identified parameters?

The variability of the measurement points’ coordinates is modeled, in a probabilistic
framework, by random variables. Themeasurement points’ vector is thus expressed as:

xs ¼ x 1þ d xjð Þ; (29)

where x is the vector containing the mean coordinates of the measurement points, d x is the
dispersion value and j is a Gaussian random variable.

The effects of the randomness of the measurement points’ coordinates on the identified
parameters, which vary also randomly, are investigated through stochastic uncertainty
propagation methods. In the present paper, the LHS method is used. In total, 1,000 samples of
randomvariable are considered. Thus, 1,000 successive deterministic simulations are generated.

The combination of the LHS method with either Mc Daniel method or IWC-variant leads
to two stochastic identification processes, the one including the Mc Daniel method being
considered as reference.

Figure 7.
Variation of the wave
attenuation and the
damping loss factor
of (a) clamped-free
beam and (b) freely
suspended beam,

according to
frequency, identified
using the analytical

model, the Mc Daniel
method, the IWC

method and the IWC-
variant
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To quantify the variability of the identified parameters, several statistical post-processing
evaluations are performed: means, envelopes, standard deviations and dispersions. An
envelope refers here to extreme statistics, and dispersion is computed by the ratio between
standard deviation andmean.

Note that only clamped-free boundary conditions’ configuration is considered here.
Flexural andmembrane loading configurations are studied.

3.2.1 Flexural loading. Statistical evaluations quantifying the variability of the identified
wavenumber and damping loss factor are illustrated in Figures 11 and 12, respectively.

Figure 8.
Errors on the
wavenumber and the
wave attenuation
identified using the
classical IWCmethod
and the IWC-variant,
with respect to those
computed using the
Mc Daniel method,
for (a) clamped-free
beam and (b) freely
suspended beam
configurations

Figure 9.
Variation of the
dynamic stiffness of
(a) clamped-free beam
and (b) freely
suspended beam,
according to
frequency, identified
using the analytical
model, the Mc Daniel
method, the IWC
method and the IWC-
variant
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Very good agreement is obtained between results of stochastic identification processes
including either the Mc Daniel method or the IWC-variant. The efficiency of the proposed
IWC-variant is not affected by uncertainties: the method is subsequently robust against
uncertainties.

Regarding the variability of the wavenumber [Figure 11(b)], the envelope is larger when
frequency increases. This is also illustrated by the increasing standard deviation in
Figure 11(c). As the mean and the standard deviation increase similarly, a nearly constant
dispersion is obtained [Figure 11(d)]. Note that a given dispersion value, 5 per cent, on
measurement points’ coordinates leads to a dispersion of nearly 5 per cent on the identified
wavenumber.

Contrary to the wavenumber, no variability is found for the damping loss factor
(Figure 12). This can be deduced from perfect superposition of the mean, maximal and
minimal curves and the null standard deviation (<10�16) and dispersion (<10�14). The
damping loss factor is, hence, not affected by uncertainties.

The results of the IWC-variant are compared to those obtained using the Mc Daniel method
through errors’ computation. Indeed, Figure 13 shows that the errors obtained on the means of
the wavenumber and the damping loss factor, computed using the stochastic identification
process including the IWC-variant are around those obtained in deterministic case, with respect
to the results of the stochastic identification process including the Mc Daniel method. This
comparison illustrates the efficiency of the proposed IWC-variant in both deterministic and
stochastic case. Themethod allows robust identification against uncertainties.

3.2.2 Membrane loading. In this section, clamped-free boundary conditions’
configuration and membrane loading are considered. Statistical evaluations of the
wavenumber and the damping loss factor are illustrated in Figures 14 and 15, respectively.

Very good agreement is obtained between the estimates of the stochastic identification
process using the Mc Daniel method and that including the proposed IWC-variant. The
envelope width and the standard deviation of the wavenumber [Figure 14(b)-(c)] increase
with frequency. When measurement points’ coordinates are dispersed by 5 per cent, a nearly
constant dispersion of about 5 per cent is obtained on the wavenumber [Figure 14(d)].

As obtained in flexural loading case, the damping is not affected by uncertainties
(Figure 15). The mean, maximal and minimal curves are perfectly superposed, and null
standard deviation and dispersion values are obtained.

As shown in Figure 16, the errors computed on the means of the wavenumber and the
damping loss factor computed using the identification process including the IWC-variant,

Figure 10.
Objective function

variation according to
frequency, associated

to the IWCmethod
and the IWC-variant,

for configurations
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with respect to the errors resulting from the process based on the Mc Daniel method, are
around those obtained in deterministic case. Subsequently, as deduced in the flexural
loading case, the proposed IWC-variant is robust against uncertainties.

4. Composite beammodel
Given the growing emphasis on industrial integration of composite materials in
engineering applications, the proposed deterministic and stochastic identification
processes are applied here to identify propagation parameters of a sandwich

Figure 11.
(a) Mean,
(b) envelope, (c)
standard deviation
and (d) dispersion of
the wavenumber
computed using the
identification process
combining the LHS
methodwith theMc
Daniel method and
the IWC variant for
d x= 5%, in flexural
loading case

Figure 12.
Envelope and
dispersion of the
damping loss factor
computed using the
identification process
combining the LHS
methodwith theMc
Daniel method and
the IWC variant for
d x= 5%, in flexural
loading case
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composite beam with aluminum honeycomb core (Plate 1). The width of the beam is
0.029 m. The thickness of the core plate is 0.011 m. The face plates are made of 6-ply
carbon-fiber composite oriented according to the directions [45 �45 45 45 �45 45],
respectively. Materials’ properties of all components are listed in Table III. The beam
is freely suspended and a flexural loading is applied.

To verify the efficiency of the proposed IWC-variant in estimating the propagation
parameters of the sandwich beam structure, two types of identification processes are
applied. The process using FRFs which are computed numerically is called numerical-based
identification process. If FRFs are measured experimentally, the identification process is
called experiment-based.

4.1 Numerical-based identification
The identification processes, applied in this section, are numerical based. The FRFs,
computed numerically at each measurement point, are used as inputs. As was done in the
isotropic beam case, the efficiency of the proposed IWC-variant is verified, first, in
deterministic case. Stochastic properties and effects are then investigated, and the
robustness of the IWC-variant identification against uncertainties is then evaluated.

4.1.1 Deterministic numerical-based identification. Figure 17 illustrates the displacement
field of the sandwich beam computed numerically at several measurement points.

Following the identification of the wavenumber and the wave attenuation, the other
propagation parameters can then be calculated, namely, the phase velocity and the damping
loss factor. The comparisons of the IWC-variant estimates of the aforementioned parameters
with those identified using the Mc Daniel method and the classical IWC method are
illustrated in Figures 18 and 19.

As illustrated in Figures 18 and 19, small oscillations affect the curves of the IWC-variant
estimates compared to those obtained by the classical IWC method. The curves follow the
same trend and have nearly the same order of magnitude throughout the whole frequency
band. Comparing these figures, it can be deduced that the wavenumber and phase velocity
estimates are more accurate than those of the wave attenuation and the damping loss factor.

Figure 13.
Errors on the means
of the wavenumber

and the damping loss
factor computed

using the
identification process
combining the LHS

methodwith the IWC-
variant, with respect
to those computed

using the
identification process
combining the LHS
methodwith the Mc
Daniel method for

d x= 5%, in flexural
loading case
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This is also illustrated by the comparisons of the errors computed on the identified
wavenumber and wave attenuation using the IWC-variant and the classical IWC method,
with respect to the estimates of the Mc Daniel method (Figure 20). Errors’ fluctuations are
also attenuated when applying the IWC-variant, especially for higher frequencies where
results converge faster.

The efficiency of the proposed IWC-variant can also be illustrated through the
comparison of its objective function to that of the classical IWC method (Figure 21). The
maximal IWC criterion values achieved by the IWC-variant are much more important than

Figure 14.
(a) Mean,
(b) envelope, (c)
standard deviation
and (d) dispersion of
the wavenumber
computed using the
identification process
combining the LHS
methodwith theMc
Daniel method and
the IWC-variant for
d x= 5%, in
membrane loading
case

Figure 15.
Envelope and
dispersion of the
damping loss factor
computed using the
identification process
combining the LHS
methodwith theMc
Daniel method and
the IWC-variant for
d x= 5%, in
membrane loading
case
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those obtained by the classical IWC method. The difference is large at low frequencies but
decreases at high frequencies. Note that the more elevated the IWC criterion is, the more
accurate the identification is.

The variation of the identified dynamic flexural stiffness is shown in Figure 22.
Oscillations are attenuated using the IWC-variant, and more accurate identification is
obtained at higher frequencies.

As obtained for the isotropic beam case, the comparison of the IWC-variant estimates
with those provided by the Mc Daniel method shows good agreement. The fluctuations
affecting the shapes of the identified parameters’ curves using the classical IWC method are

Plate 1.
Honeycomb-core
sandwich beam

Table III.
Material properties of
the sandwich beam

components

Properties

Material
Young modulus

(GPa) Poisson’s ratio
Shear modulus

(GPa)
Density
(Kg m–3)

Type Reference E1 E2 E3 v12 v13 v23 G12 G13 G23 r

Face plates Vicotex G803/914 60.27 60.27 5 0.029 0.35 0.35 5 5 5 1594
Core plate 5056 3.1 3/16.001 0.415 0.267 0.668 0.29 0.3 0.3 0.131 0.310 0.137 49.65

Figure 16.
Errors on the means
of the wavenumber

and the damping loss
factor computed using

the identification
process combining the
LHSmethod with the

IWC-variant, with
respect to those

computed using the
identification process
combining the LHS
methodwith theMc
Daniel method for

d x= 5%, in
membrane loading

case
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attenuated when the IWC-variant is used. More accurate identification and more smooth
curves are obtained. The efficiency of the proposed IWC-variant identification being proved,
it can thus be considered as an alternative to the classical IWCmethod.

4.1.2 Numerical-based identification in presence of uncertainties. Stochastic analysis
allows evaluating the effects of the randomness of the measurement points’ coordinates on
the variability of the identified parameters of the composite beam. Statistical evaluations
are, indeed, performed to quantify each parameter’s variability. The identification methods
are thus combined with the statistical LHS method. A dispersion level d x = 3 per cent is
considered here. Statistical investigations are, first, performed on the wavenumber and the
phase velocity as shown in Figures 23 and 24, respectively.

As deduced in isotropic beam case, stochastic parameters’ variability is proportional to
frequency. As shown through Figures 23(b) and (c) and 25(b) and (c), most important
variability corresponds to the highest frequencies. Envelopes, representing extreme
statistics, are larger and standard deviations are greater. Furthermore, for a dispersion level

Figure 17.
Variation of the
sandwich beam
displacement field
according to variation
of frequency and
measurement points

-

-

-

-

Figure 18.
Variation of the
wavenumber and the
phase velocity of the
sandwich beam
according to
frequency, identified
using the numerical-
basedMc Daniel
method and IWC-
variant
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of 3 per cent on the measurement points’ coordinates, the identified wavenumber and phase
velocity are dispersed by nearly 3 per cent. Comparing the IWC-variant estimates to those
obtained by the Mc Daniel method, convergence is faster for the highest frequencies, as
illustrated in deterministic case (Figures 23 to 26).

Effects of uncertainties on dynamic flexural stiffness are illustrated by statistical post-
processing evaluations shown in Figure 27. Nearly constant variability is obtained. For a
dispersion level of 3 per cent on the measurement points’ coordinates, the dynamic flexural
stiffness is dispersed by nearly 12 per cent. Output variability is here four times greater than
that imposed on input. Hence, the dynamic flexural stiffness is the most affected by
uncertainties.

Very good agreement is found between the estimates of the IWC-variant and the Mc
Daniel method. Results are less accurate at low frequencies.

4.2 Experiment-based identification
Experiment-based identification processes are applied in this section. The FRFs are thus
computed experimentally.

In practice, an electrodynamic shaker Bruel & Kjær 4809 is used to excite mechanically
the freely suspended beam. The vibratory response is measured using a Scanning Laser
Vibrometer (Ometron VPIþ), as shown in Figures 28 and Plate 2. The phase reference is
obtained by a force transducer Bruel & Kjær 8001. Both signals are sampled with a Hewlett–
Packard Paragon 35654A.

Figure 19.
Variation of the wave
attenuation and the
damping loss factor

of the sandwich beam
according to

frequency, identified
using the numerical-

basedMc Daniel
method and IWC-

variant

Figure 20.
Errors on the

wavenumber and the
wave attenuation of
the sandwich beam
identified using the

IWCmethod and the
IWC-variant, with

respect to those
identified using the
Mc Daniel method
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4.2.1 Deterministic experiment-based identification. The wavenumber and the wave
attenuation are here calculated based on the experimentally measured FRFs. The phase
velocity and the damping loss factor are then deduced. Comparisons of the IWC-variant
estimates of the aforementioned parameters and the dynamic stiffness with those
identified using the Mc Daniel method and the classical IWC method are illustrated in
Figures 29 and 30, respectively.

The results show the identification sensitivity to measurement disturbance and noise,
especially at high frequencies, due to experimental conditions.

Regarding the variation of the wavenumber and the phase velocity, the oscillations of the
classical IWC method estimates are strongly attenuated when applying the IWC variant, as
shown in numerical simulations. The results of the Mc Daniel method and the IWC-variant
follow the same trend throughout the whole frequency band. Inaccurate estimates are
obtained by the classical IWC method, especially for wave attenuation and damping loss
factor.

Moreover, comparing the objective functions shows that higher values of the maximal
IWC criterion are achieved by the IWC-variant (Figure 31).

Figure 21.
Objective function
variation according to
frequency, associated
to the IWCmethod
and the IWC-variant

Figure 22.
Variation of the
dynamic stiffness of
the sandwich beam
according to
frequency, identified
using theMc Daniel
method, the
numerical-based IWC
method and IWC-
variant
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Figure 23.
(a) Mean, (b)

envelope, (c) standard
deviation and (d)
dispersion of the

wavenumber of the
sandwich beam

computed using the
identification process
combining the LHS
methodwith the Mc
Daniel method and
the IWC-variant for

d x= 3%

Figure 24.
(a) Mean,

(b) envelope, (c)
standard deviation

and (d) dispersion of
the phase velocity of
the sandwich beam
computed using the

identification process
combining the LHS
methodwith the Mc
Daniel method and
the IWC-variant for

d x= 3%
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The experiment-based results confirm the ability of the proposed IWC-variant to identify
accurately the propagation parameters of the composite beam, which has been proven by
numerical-based identification results. The comparison between the experiment-based and
the numerical-based identification estimates is illustrated in Figure 32.

The estimates of the numerical-based identification process are in agreement with those
of the experiment-based one. Note that fluctuations on experiment-based results are due to
measurement disturbance and noise. The efficiency of the proposed IWC-variant is thus
proved whatever the type of the identification process in which it is included: numerical-
based or experiment-based process. Either method can then be considered as predictive tool
for propagation parameters’ identification of composite materials.

Regarding the computational time gain achieved by the numerical-based process, it can
be considered as an alternative to the experiment-based one which leads to more expensive
identification.

4.2.2 Experiment-based identification in presence of uncertainties. The study is extended
in this section to presence of uncertainties. Measurement points’ coordinates are supposed to
vary randomly. Actually, this randomness can be due to measurement errors which can be
committed by engineer and can also result from measuring tools and conditions. Hence,
uncertainties on measurement points’ coordinates could be one of the most influential
parameters on experimental results’ accuracy. The resulting randomness of the identified
parameters is statistically investigated as illustrated in Figures 33-36.

Figure 25.
Envelope and
dispersion of the
damping loss factor
of the sandwich beam
computed using the
identification process
combining the LHS
methodwith theMc
Daniel method and
the IWC-variant for
d x= 3%

Figure 26.
Envelope and
dispersion of the
wave attenuation of
the sandwich beam
computed using the
identification process
combining the LHS
methodwith theMc
Daniel method and
the IWC-variant for
d x= 3%
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Figure 27.
(a) Mean, (b)

envelope, (c) standard
deviation and (d)
dispersion of the
dynamic flexural
stiffness of the
sandwich beam

computed using the
identification process
combining the LHS
methodwith the Mc
Daniel method and
the IWC-variant for

d x= 3%

Figure 28.
Experimental set-up
for measuring FRFs
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The IWC-variant estimates are in agreement with those of the Mc Daniel method. As shown in
simulation results, some oscillations affect the IWC-variant estimates at low frequencies.

Furthermore, in agreement with simulation results, no variability is obtained on the
wave attenuation and the damping loss factor (null dispersions and envelopes) (Figure 35).
These parameters are thus not affected by uncertainties. Statistical quantifications of the
randomness of the wavenumber, the phase velocity and the dynamic flexural stiffness are in
very good agreement with those obtained with the numerical-based identification process.
Indeed, comparing Figures 33, 34 and 36 with Figures 23, 24 and 27, one can deduce the
conformity between dispersion values, in particular: for the aforementioned parameters,
respectively, nearly 3, 3 and 12 per cent of dispersion values are obtained.

To recapitulate, the obtained results prove the efficiency of the proposed IWC-variant to
identify accurately the propagation parameters, whatever the type of the identification
process in which it is integrated: experiment-based or numerical-based process. The
proposed IWC-variant can thus be considered as an alternative to the classical IWC method,
especially at low frequencies.

Furthermore, in both deterministic and stochastic cases, the proposed method leads to
accurate identification, which proves its robustness against parametric uncertainties.

Statistical investigations of the identified parameters’ variability show that the
randomness of the measurement points’ coordinates does not affect the estimates of the
wave attenuation and the damping loss factor. However, the wavenumber and the phase
velocity vary randomly with dispersions nearly equal to that imposed at input. A four times
greater dispersion is obtained on the dynamic flexural stiffness. One can deduce from these
results that errors on measurement points’ coordinates are very influential on identified
parameters, except damping. Therefore, one must reduce these errors as possible and so
address each point to its displacement field, to reduce the obtained variability on identified
parameters.

5. Conclusion
The present paper proposed a variant of the IWC method for structural parameter
identification. While the principle of the classical form of the IWC method is correlating the
displacement field with an inhomogeneous wave, a projection of the displacement on a sum
of inhomogeneous waves is ensured by the proposed variant of the method.

Varying boundary conditions and loadings proved the independence of the
efficiency of the proposed approach of these aspects. Some limits of the classical IWC
method are overcome by the proposed variant. The classical IWC method gives
inaccurate identification at low frequencies, as the modal overlap is not sufficiently

Plate 2.
FRFs measurement
setup of freely
suspended composite
honeycomb sandwich
beamwith
electrodynamic
shaker and scanning
laser vibrometer
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Figure 29.
Variation of the
wavenumber,

the phase velocity,
the wave attenuation
and the damping loss

factor of the
sandwich beam

according to
frequency, identified
using the experiment-

basedMc Daniel
method and IWC-

variant
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high to allow energy covering all propagation directions. This identification’s
inaccuracy is improved when applying the proposed IWC-variant. Moreover, high
oscillations of identification curves are obtained by the classical IWC method. The
proposed variant permits to attenuate these oscillations and allows identifying
structural parameters without significant loss of accuracy with respect to the analytical
model and the Mc Daniel method considered, both, as reference. The efficiency of the
proposed method was evaluated on both isotropic and sandwich beam structures.

Figure 30.
Variation of the
dynamic stiffness of
the sandwich beam
according to
frequency, identified
using the experiment-
basedMc Daniel
method, IWCmethod
and IWC-variant

Figure 31.
Objective function
variation according to
frequency, associated
to the experiment-
based IWCmethod
and IWC-variant
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Figure 32.
Comparison of the

wavenumber,
the phase velocity,

the wave attenuation
and the damping loss

factor of the
sandwich beam,

identified using the
Mc Daniel method

and the IWC-variant,
integrated into both

experiment and
numerical-based

identification
processes
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Figure 33.
(a) Mean, (b)
envelope, (c) standard
deviation and (d)
dispersion of the
wavenumber of the
sandwich beam
computed using the
experiment-based
identification process
combining the LHS
methodwith theMc
Daniel method and
the IWC-variant for
d x= 3%
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Figure 34.
(a) Mean, (b)

envelope, (c) standard
deviation and (d)
dispersion of the

phase velocity of the
sandwich beam

computed using the
experiment-based

identification process
combining the LHS
methodwith the Mc
Daniel method and
the IWC-variant for

d x= 3%
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Figure 35.
Envelopes and
dispersions of (a) the
wave attenuation and
(b) the damping loss
factor of the
sandwich beam
computed using the
experiment-based
identification process
combining the LHS
methodwith theMc
Daniel method and
the IWC-variant for
d x= 3%
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Figure 36.
(a) Mean, (b)

envelope, (c) standard
deviation and (d)
dispersion of the
dynamic flexural
stiffness of the
sandwich beam

computed using the
experiment-based

identification process
combining the LHS
methodwith the Mc
Daniel method and
the IWC-variant for

d x= 3%
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To achieve more realistic identification, parametric uncertainties were taken into account.
Random variation was supposed on measurement points’ coordinates, which can be due,
actually, to measurement errors, committed by engineer or resulting from measuring tools
and conditions. To analyze the uncertainty effect on identified parameters, a stochastic
identification process combining the LHS uncertainty propagation method with the IWC-
variant was proposed and compared to the identification process combining the LHS
method with the Mc Daniel method. Statistical investigations of results illustrated the effect
of uncertainties of measurement points’ coordinates on all identified parameters except
damping which is quantified through the wave attenuation and the loss factor.

The experimental validation of the obtained numerical results, in both deterministic and
stochastic case, was carried out for the composite beam example. The identification
methods, which were used initially in a numerical-based process, were then included into an
experiment-based identification process, using as inputs experimentally measured
responses.

The extension of the study to other types of uncertainties is an interesting perspective. In
the context of parametric uncertainties, identification could be sensitive to some parameters
more than others. Other uncertain parameters could also be considered with the aim of either
sensitivity or uncertainty analysis.

Study is limited, in this work, to beam structure examples. Its extension to 2D composite
structures is another interesting perspective, on which works in progress are focusing.
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