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Abstract

In this article, we propose an approach suitable for modeling isothermal fa-
tigue in amorphous polymers. The theory is formulated in a rate form within
continuum mechanics framework without the need to measure damage changes
per loading cycles. Using the approach, contribution of ratcheting to fatigue
of polycarbonate (PC) was investigated and the results were compared to pre-
vious experimental observations. When subjected to uniaxial stress-controlled
cyclic loadings, ratcheting deformation apparently occurs and increases with
mean stress and amplitude. The development of ratcheting deformation shows
an initial growth followed by a decrease to almost a constant growth rate which
occupies majority of the total lifetime. Ratcheting behavior under multiaxial
stress states was also investigated based on finite element analyses of a dogbone-
shaped test specimen. The results show that fatigue damage develops at the sites
following closely the localized plastic deformation and increases with ratcheting
deformation during cyclic loadings. The results indicate that the ratcheting
behavior can be exploited in the evaluation of the entire fatigue lifetime.

Keywords: fatigue damage, amorphous polymers, ratcheting, endurance
surface, FEM

1. Introduction

Manufacturers of polymer materials are interested in the assurance of com-
ponents lifetime, especially when the lifetime cannot be easily inspected or may
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lead to a catastrophe in service, Maxwell et al. (2005). The total annual loss
of engineering components due to fatigue failure has been assessed to be the
most dominant causing significant financial losses. Thus, design against fatigue
constitutes an integral part of mechanical engineering analysis. Examples of me-
chanical components that are manufactured from polymers and may experience
fatigue during their service life are from fields such as sporting goods, automo-
tive glazing, marine structures, aeronautics, and armour. The design of such
constructions could benefit from capable models and the strong computational
capability currently available. Moreover, due to the costly and time-consuming
testing of long-term fatigue life, which still suffers from its sensitivity to environ-
mental conditions and previous operation histories, there is a need to develop
approaches that can simulate tests well.

Knowledge of the ultimate behavior of amorphous glassy polymers has de-
veloped rapidly while only a little of this research has been devoted to fatigue
behavior, its modeling, and testing, cf. Krairi and Doghri (2014, p. 176). Spe-
cific features of these matters are seen e.g. from Lesser (2002); Janssen et al.
(2008b); Drozdov (2011); Del Vecchio et al. (2014); Lugo et al. (2014); Xi et al.
(2015); Mortazavian and Fatemi (2015). To explore microstructural characteris-
tics of polymers with regard to their fracture toughness, the damage mechanisms
ahead of the crack tip have been paid considerable attention, see Li and Chandra
(2003); Pijnenburg et al. (2005); Pasta (2011) including references therein. Much
research has also devoted to the investigation of fatigue crack propagation in
polymers and their compounds, see Fang et al. (2008); Nittur et al. (2013);
Ravi Chandran (2016); Kanters et al. (2016) to mention a few. However, these
fracture mechanics approaches do not consider the crack initiation stage which
may cover over 95% of the total fatigue life of amorphous polymers, Marissen et al.
(2001); Janssen et al. (2008b); Lugo et al. (2014).

Fatigue failure of amorphous polymers in their glassy state (termed amor-
phous glassy polymers) is generally attributed to a two-step process. In the first,
initiation step, failure is typically attributed to deficiencies or impurities pro-
ducing significant stress concentrations which exceed the strength limits of the
material, Marissen et al. (2001); Lu and Kim (2007); Drozdov (2011). During
repeated loadings, those defects can nucleate and grow during the service life at
stress levels well below the nominal yield strength, Kanters et al. (2016). Under
such conditions, fatigue is influenced by the localized yield-like deformation pro-
cess which provides fatigue crack initiation sites and thus controls most of the
fatigue life (cycles N to failure) and is of specific interest in the applied fatigue
stress S (S-N curve), Lemaitre and Desmorat (2005); Ravi Chandran (2016).

The second, propagation step is characterized by the damage growth through
the coalescence of micro-cracks and propagation of small cracks to form large
cracks which ultimately lead to component failure, Lesser (2002); Lemaitre and Desmorat
(2005); Drozdov (2011); Nittur et al. (2013); Lawrimore et al. (2016). However,
the duration of the initiation step is invariably orders of magnitude greater than
the propagation period and thus plays the most important role in the fatigue
behavior, Janssen et al. (2008b); Lugo et al. (2014). Based on this observation,
the influence of crack propagation in the material behavior is often omitted in
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the fatigue models.
Although the literature concerning the fatigue damage in amorphous poly-

mers is still scarce, an extensive research has been devoted to investigation
of damage mechanisms of several polymers under monotonic loadings and re-
peated loading loops producing large inelastic deformations. Zäıri et al. (2011);
Holopainen (2014); Seeling and Van der Giessen (2015); Krairi and Doghri (2014);
Lawrimore et al. (2016) represent the recent research literature of this field. This
research also has relevance for fatigue since the failure kinetics of such polymers
shows many similarities under cyclic and static (creep) loadings, Janssen et al.
(2008b); Lugo et al. (2014). However, material subjected to cyclic loadings may
fail at stress levels substantially lower than observed under monotonic loadings,
Abdel-Karim (2005); Drozdov (2011). When the stress is below the (static) yield
strength, the material response is primarily (visco)elastic but may ultimately
fail after a number of load cycles due to the accumulation of plastic strains,
Kang (2008). This behavior is known as ratchetting (cyclic creep) which closely
contributes to the fatigue of polymers under cyclic loadings, i.e. rapidly grow-
ing ratcheting strain (cyclic creep strain) reduces fatigue life, Liu et al. (2008);
Zhang et al. (2015). Xi et al. (2015) conducted experiments on polycarbonate
(PC) polymers and showed that the polymers with large molecular weights are
more prone to ratcheting than those with lower weights. Loading conditions,
such as mean stress, amplitude, and temperature, influence also ratcheting de-
velopment, Kang (2008); Zhang et al. (2015); Lu et al. (2016). Although a lot
of approaches are proposed for the simulation of ratcheting behavior, they are
rarely aimed at amorphous polymer materials or require modeling of hysteresis
loop action leading to a large number of material parameters to be defined,
Liu et al. (2008). Based on a ratcheting model for metals Liu et al. (2008) pro-
posed a simple approach that captures exactly the steady ratcheting strain be-
havior of polymethyl methacrylate (PMMA) under different temperatures and
loading conditions. However, this model is only indended to the description
of ratcheting accumulative rates at steady stage, while the initial ratcheting
behavior and the behavior prior to ultimate failure are neglected. Based also
on metals, Liu et al. (2010) proposed a stress-based, multiaxial fatigue failure
model suitable for the investigation of fatigue-ratcheting interaction. Although
the model provides good predictions, it suffers from its restriction to a reduced
region of both mean stress and shear mean stress.

It is largely acknowledged that ratcheting deformation is triggered by accu-
mulated plastic stretching present in cyclic processes, Liu et al. (2008). How-
ever, the accumulation manner of ratcheting strains or ratcheting vs viscous
(elastic or plastic) deformation are still open questions, at least in amorphous
polymers. Also, through existing literature in the field, Li et al. (1995); Lesser
(2002); Kang (2008); Lugo et al. (2014); Mortazavian and Fatemi (2015); Ravi Chandran
(2016), key morphological or microstructural mechanisms that could explain the
origin of the plastic deformation and subsequent progress of fatigue damage un-
der cyclic loadings are presently unclear.
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Research design

This article continues by introducing a model suitable for predicting fa-
tigue in amorphous glassy polymers and by discussing the phenomenon through
theory. The governing constitutive model employed is an extension of the cel-
ebrated Boyce-Park-Argon (BPA) model for predicting inhomogeneous plastic
deformation in amorphous polymers, Boyce et al. (1988). Thereafter, Section
2.4 describes the proposed, multiaxial fatigue model and its numerical treatment
in detail. Modeling of fatigue behavior per se is based on an appealing model
introduced in Ottosen et al. (2008), which model is formulated in continuum
mechanics framework by using evolution equations that make the definition of
damage changes per cycle redundant, i.e. cycle-counting techniques do not need
to be applied. The approach is calibrated to data taken from both cold draw-
ing experiments and isothermal fatigue tests on dogbone-shaped PC-specimens.
Section 3 is dedicated to the evaluation of the proposed approach. The stud-
ies involve tangible examples for ratcheting behavior, and the model results are
compared with previous research results. The article closes with the conclusions
as well as with the limitations and future research avenues.

2. The model

2.1. Kinematics - basics

The Kröner-Lee decomposition,

F = F eF p, (1)

of the deformation gradient F is applied, i.e. F p and F e define the plastic and
elastic contribution, respectively, cf. the original paper Boyce et al. (1988). The
symmetric, positive definite stretch tensor v is given by

F = vR, (2)

and R is the rotation tensor. Motion of a material body is defined through the
velocity field v that defines the spatial velocity gradient l, i.e.

l := grad(v) = Ḟ F−1. (3)

In particular, the accent dot means the material time derivative and the quan-
tities in the intermediate placement will be highlighted by the bar. The split
(1) in (3) further provides expressions for the elastic and plastic contributions
of l, Boyce et al. (1988); Holopainen (2013).

For later use, the elastic and plastic deformation are given in terms of sym-
metric elastic and plastic deformation tensors defined as

C̄e := F e,TF e, C̄p := F pF p,T (4)

where the tensor transpose is marked by the letter T.
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Figure 1: Deformation of a solid body and the mappings between different configura-
tions, N̄ , N̄ p, NR, and N e. In accordance with the BPA model, Boyce et al. (1988),
Re is chosen to be unity when the elastic intermediate configuration N e coincides with
N̄ .

The elastic deformation in the spatial configuration is defined by the elastic
Finger tensor,

be := F eF e,T. (5)

The polar decomposition of F e allows definition of the alignment of the
elastic relaxed placement by the symmetric elastic stretch ve :=

√
be and the

rotation Re, i.e.
F e = veRe. (6)

Similar to (6),
F p = V̄ pRp (7)

where Rp is the plastic rotation and V̄ p governs the plastic stretching defined
in the relaxed intermediate placement, see Fig. 1.

2.2. Constitutive model

Polymer materials show the time-dependent behavior under both monotonic
and cyclic loadings, Lesser (2002); Anand and Ames (2006). This viscous effect
is due to the macromolecular characteristic of polymers, i.e. the polymer chains
need a relaxation time to attain their equilibrium state after deformation. A
consequence is that the fatigue behavior is different from elastic metals, i.e. a
model’s ability to follow the viscous (viscoelastic-plastic) behavior of polymers
is mandatory.

For convenience, the governing constitutive model for amorphous polymers
is briefly reviewed, see Holopainen (2013). The model is an extension of the
celebrated non-affine 8-chain model proposed in Boyce et al. (1988) termed here
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Figure 2: Idealized structure of chain network according to the 8-chain model in a) its
initial and b) deformed state. The base vectors N̄α are the unit eigenvectors of V̄ p.
The dimension of the undeformed element is a0 and λ̄p denotes the plastic chain stretch
which emerges in the direction m̄. The unit vector m̄ is defined by the angles θ̄ and ϕ̄,
whereas the plastic network stretch λp

ec is related to the direction N̄ := 1/
√
3
∑

α N̄α.

the BPA model. The idealized chain network according to this model is depicted
in Fig. 2.

The extended model (EBPA model) captures creep and recovery through the
Kelvin-Voigt element that involves an elastic spring 2) and a viscous dashpot
3) as shown in Fig. 3. Its configuration with the elastic spring 1) predicts the
stress relaxation. The second Kelvin-Voigt-like element comprises a viscoplas-
tic dashpot 4) arranged parallel with a nonlinear spring 5) that results in the
anisotropic material behavior at large strains.

The split of F e into a viscous and an elastic component is applied, i.e.

F e = F e
1F

e
2 (8)

where F e
1 and F e

2 define the elastic stretching in the spring 1) and 2), respec-
tively, see Fig. 3 and Holopainen (2013) for a more detailed account. The polar
decomposition of F e

1 and F e
2 allows definition of the orientation of the elastic

intermediate placement as

F e
1 = ve

1R
e
1 and F e

2 = ve
2R

e
2 (9)

where Re
1 and Re

2 are the elastic rotations and ve
1 and ve

2 are the elastic stretch
tensors, defined in the current deformed and the elastic intermediate placement,
respectively. Furthermore, the elastic deformation is given by the two deforma-
tion tensors,

be1 := F e
1F

e,T
1 = (ve

1)
2 and be2 := F e

2F
e,T
2 = (ve

2)
2. (10)

The product decompositions (1) and (8) in (3) yields

sym(l) =: d = de + dp = de
1 + de

2 + dp (11)

where

de
1 := sym(Ḟ e

1F
e−1
1 ), de

2 := sym(F e−T
1 l̄e2F

e−1
1 ), dp := sym(F e−TL̄pF e−1)

and
l̄e2 := Ḟ e

2F
e−1
2 , L̄p := Ḟ pF p−1. (12)
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Thermodynamics

Based on the so-called dissipation inequality thermodynamics of the model
is investigated. Two potential functions termed the Helmholtz free energy ϕ and
the dissipation potential φ are needed for the treatment, Lemaitre and Chaboche
(1994). Assuming that isothermal conditions prevail, the specific Helmholtz’ free
energy is given by the following elastic, plastic, and damage contributions

ϕ = ϕ̂(be1, b
e
2, C̄

p, D) = ϕe,1(be1, D) + ϕe,2(be2, D) + ϕp(C̄p) (13)

where ϕe,1, ϕe,2, and ϕp account for the evolving stress in the springs 1), 2),
and 5) shown in Fig. 3. The free energy also considers the degradation of the
material through a damage variable D evolving from an initial value (typically
zero) to one.

In terms of the internal power W
int and the rate ϕ̇, the power of local

dissipation in the current placement is governed by

D = W
int − ϕ̇ := τ : de

1 + τ : de
2 + τ : dp − ϕ̇ ≥ 0 (14)

where the operator : is defined by the tensor trace asA : B := trace(ABT). The
dissipation power can also be defined by a complementary dissipation potential
φ given in terms of the viscoelastic, viscoplastic, and the degradation parts as

φ(τ2, τ̃ , Y ) := φve(τ2) + φvp(τ̃ ) + φd(Y )

where τ2 and τ̃ are driving stresses in the dashpot 3) and 4), see Fig. 3, and Y
stands for a driving force for damage. Using the proposed dissipation potential,
the dissipation power is defined as

D =
∂φve(τ2)

∂τ2
: τ2 +

∂φvp(τ̃ )

∂τ̃
: τ̃ +

∂φd(Y )

∂Y
Y. (15)

The rate of the free energy ϕ̇ in (14) becomes

ϕ̇ =
∂ϕe,1

∂be1
: ḃe1 +

∂ϕe,2

∂be2
: ḃe2 +

∂ϕp

∂C̄p
: ˙̄Cp +

∂ϕ

∂D
Ḋ. (16)

Taking advantage of (10), and using symmetry of ∂ϕe/∂be1 yield the following
expression

∂ϕe,1

∂be1
: ḃe1 = 2

∂ϕe,1

∂be1
be1 : de

1. (17)

In accordance with (17),

∂ϕe,2

∂be2
: ḃe2 = 2

∂ϕe,2

∂be2
be2 : de

2 (18)

and
∂ϕp

∂C̄p
: ˙̄Cp = 2sym(

∂ϕp

∂C̄p
C̄p) : D̄p =: B̄ : D̄p = β : dp (19)
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Figure 3: Demonstration of the model: elastic springs 1) and 2), a viscoelastic dash-
pot 3), a viscoplastic dashpot 4), and a Langevin spring 5). Difference between the
Kirchhoff stress τ and the backstress β defines the driving stress τ̃ .

where B̄ is a backstress representing the plastic work reserved in the material,
and β is its counterpart given in the current placement, i.e.

β = F eB̄F e,T. (20)

Substituting (17), (18), and (19) into (14) and taking (15) into account, yield(
τ − 2

∂ϕe,1

∂be1
be1

)
: de

1 +

(
τ − 2

∂ϕe,2

∂be2
be2

)
: de

2 −
∂φve

∂τ2
: τ2 + (τ − β) : dp−

∂φvp(τ̃ )

∂τ̃
: τ̃ − (

∂ϕ

∂D
Ḋ +

∂φd

∂Y
Y ) = 0.

(21)
Since equation (21) has to be fulfilled with all possible thermodynamically ad-
missible processes, the following constitutive equations

τ = 2
∂ϕe,1

∂be1
be1, (22)

and

Ḋ =
∂φd

∂Y
(23)

with the additional equations,

τ : de
2 = 2

∂ϕe,2

∂be2
be2 : de

2 +
∂φve

∂τ2
: τ2, (24)

and

(τ − β) : dp =
∂φvp(τ̃ )

∂τ̃
: τ̃ =: −ṡ, (25)

are obtained. In (23), the formula Y = −∂ϕ/∂D for the thermodynamic force
Y was defined.
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Taking advantage of (22) and (24), the power of dissipation takes the form

D =
∂φve

∂τ2
: τ2 + τ̃ : dp + Y Ḋ ≥ 0. (26)

It will be shown later that the condition (26) is fulfilled by the model.

Specific potential functions

The chains in polymer are assumed to be randomly oriented when isotropic
strain energy functions

ϕe,1 = (1−D)(
1

2
κ1(I

e,1
1 )2+2μ1J

e,1
2 ), ϕe,2 = (1−D)(

1

2
κ2(I

e,2
1 )2+2μ2J

e,2
2 ), (27)

where κ1, κ2, μ1, and μ2 are the bulk and the shear moduli, are used. The
integrity 1 −D describes the degradation of the material. This reduction is in
agreement with experimental observations which show a notable stress decay
prior to complete failure, cf. e.g. Lemaitre and Desmorat (2005). The logarith-
mic invariants present in (27) are defined as

Ie,11 := trace(lnve
1) = ln Je,1, Ie,21 := trace(lnve

2) = ln Je,2,

Je,1
2 := 1/2(lnve

1)
dev : (lnve

1)
dev, Je,2

2 := 1/2(lnve
2)

dev : (ln ve
2)

dev

where Je,1 := det(ve
1) and Je,2 := det(ve

2). The notation, dev, refers to the
deviatoric component, defined as (·)dev := (·) − 1/3trace((·))i for all second
order tensors (·) where i is the identity.

Making use of functions (27) reveals that −Y = ∂ϕ/∂D is always positive
in (26), i.e. the free energy needed for a damage increase constantly reduces.

The first part of the dissipation potential is defined to be as

φve := 1/2τ2 : η
−1 : τ2 (28)

where η is a constant, symmetric isotropic fourth order tensor defined subse-
quently. Defining also that τ2 := η : de

2, it follows from (22), (24), (27), and
(28) that the elastic constitutive law is based on the equilibrium

τ = (1−D)Le
1 : lnve

1 = η : de
2 + (1−D)Le

2 : lnve
2, (29)

where L
e
1 and L

e
2 stand for the standard fourth order elastic stiffness tensor,

i.e. generally L
e := 2μ(I + (3κ − 2μ)/(6μ)i ⊗ i) in which the tensor I is the

fourth order identity. In subsequent treatments, the bulk modulus κ and the
shear modulus μ will be replaced by the Young’s modulus E and the Poisson’s
ratio ν.

The viscous damper in (29) is given by

η = η1(I− 1/3i⊗ i) + η2i⊗ i (30)

where η1 and η2 are the viscosities that govern elastic shear and volumetric de-
formation, respectively, Reese and Govinjee (1998). The notation ⊗ here means
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the standard tensor product, i.e. the components of η in an orthonormal coor-
dinate system take the form

ηijkl =
η1
2

(δikδjl + δilδjk − 2/3δijδkl) + η2δijδkl. (31)

For the sake of simplicity, a usual assumption that the latter term in (30) and
(31) vanishes is done, i.e. η2 = 0, cf. Boyce et al. (1988); Reese and Govinjee
(1998). Then, only a few new material parameters, E2, ν2, and η1 := η, enter
the proposed model.

The rate of the plastic deformation dp is taken to align with the spatial
normalized direction of τ̃dev, i.e.

dp := γ̇pn, n :=
τ̃dev

√
2τ

, τ̃dev := τdev − βdev, τ :=

√
1

2
τ̃dev : τ̃dev (32)

in which the use of the deviatoric components reveals that Jp := det(F p) = 1,
i.e. the plastic deformation is incompressible. It then follows that J = Je :=
det(F e). The development of the plastic deformation is governed by a positive
plastic shear strain rate γ̇p, see Boyce et al. (1988); Holopainen (2013) for a
more detailed account. From (32) follows then that τ̃ : dp =

√
2τ γ̇p ≥ 0.

Function of the viscoplastic dashpot is defined by the following evolution
equation

ṡ1 = h1(1− s1/sss)γ̇
p, s1(0) = s0, (33)

where h1 and sss are positive material parameters. In (33), s1 > sss when
ṡ1 < 0. Although −ṡ1 �= −ṡ =

√
2τ γ̇p ≥ 0 in (25), ṡ1 also fulfills the condition

(26) for the dissipation inequality.
In terms of a non-affine plastic network stretch,

λp
ec :=

√
trace(C̄p)/3, (34)

the orientational hardening is governed by the backstress

B̄ =
CR

3λp
ec

√
NL

−1(
λp
ec√
N

)C̄p (35)

where CR and N are material parameters. When evaluating the inverse of the
Langevin function L present in (35), the Pade approximation is employed.

By substitution of (28) and (32) to (26), the power of local dissipation be-
comes

D = de
2 : η : de

2 +
√
2τ γ̇p + Y Ḋ ≥ 0, (36)

i.e. the dissipation inequality is always fulfilled since Y ≥ 0 and Ḋ ≥ 0.

2.3. Numerical treatment of the constitutive model

Since long-term periods are investigated, an Euler backward method, which
enables large time steps, is applied. This method is reported to be efficient for
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the modeling of rate-dependent solids, Weber and Anand (1990). To compress
the notation, the index n+1 for the updated state is neglected, and the quantities
solely at the known state tn are symbolized by n.

In analogy with the BPA model, the elastic deformation is presumed to be
irrotational and therefore the elastic rotation Re is identity. Moreover, W̄ p

is nonzero and is calculated by introducing an algorithmic plastic spin W̃ p,
Wallin and Holopainen (2012). Due to the imposed symmetry of F e, W̃ p is
skew-symmetric (’skew’), and the priori assumption that F e

1 in the decomposi-
tion (8) is symmetric (’sym’) determines the orientation of the elastic relaxed
placement. Referring to Wallin and Holopainen (2012), the formula

F e = FF p−1
n exp(−ΔtL̃p), (37)

in which L̃p = D̄p + W̃ p, is employed for the update of F e. The tensorial
exponent is numerically computed by exploiting the Pade approximation.

According to the stress equilibrium (29), the viscoelastic stretching evolves
as

de
2 =

1−D

η
(Le

1 : lnve
1 −L

e
2 : lnve

2). (38)

It is assumed that the total deformation (deformation gradient F ) is priori
known, which is the situation in standard finite element codes. Then, the system
of nonlinear equations are completed by the integration of the internal rate
variables defined by (33), (37), and (38), respectively, i.e.

R1 : = F e,T − FF p−1
n exp

(
−ΔtL̃p

)
,

R2 : = skew(F e),

R3 : = sym(W̃ p),

R4 : = skew(F e
1 ),

R5 : = lnve
2 − lnve

2,n − d(lnve
2)/dt,

R6 : = (s1 − s1,n − ṡ1Δt)/sss

(39)

where the relation between d ln(ve
2)/dt and de

2 by (38) is determined e.g. in
Hoger (1987).

The residuals R2 and R4 consist of only upper (lower) non-diagonal com-
ponents and the residuals R3 and R5 consist of a maximum of six equations.
Solution of (39) is discussed in the Appendix.

2.4. Fatigue model

Fatigue failure of polymers is generally due to either mechanically or ther-
mally dominated mechanisms, Lesser (2002); Janssen et al. (2008b). The in-
terest here is placed on the mechanically dominated fatigue, where the mate-
rial ultimately fractures brittly. Mechanical modes that occur at relatively low
stresses and frequencies are characterized by the two-step process described in
Introduction.
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When dealing with fatigue under complex variable loadings, a suitable dam-
age rule constitutes an integral part of the analysis. Various approaches for
fatigue analysis under such conditions exist and three representative groups
can be identified: energy approach, strain approach, and stress approach, cf.
Wang and Yao (2004); Ottosen et al. (2008); Nittur et al. (2013). The stress
approach, which has generally been used for mechanically dominated, ulti-
mately brittle and high-cycle fatigue, is considered as a basis of the proposed
model. Many of these approaches represents fatigue-limit criteria in which
the fatigue limits are described under an infinite number of identical cycles.
For finite life predictions these models are equipped with cumulative damage
theories, which determine the damage growth per cycle and thus require that
the loading is comprised of well-defined cycles, Lemaitre and Desmorat (2005);
Ottosen et al. (2008). To define equivalent, representative cycles for load his-
tories, cycle-counting methods need to be applied, Fatemi and Yang (1998);
Mortazavian and Fatemi (2015). However, it is often challenging to extract a
standard cycle from a complex load spectrum, which makes the cycle-counting
approaches difficult for demanding practical applications. Another way is to
formulate the model within the continuum damage mechanics (CDM) frame-
work exploiting an incremental formalism without the need to measure dam-
age changes per loading cycles, Lemaitre and Desmorat (2005); Ottosen et al.
(2008); Krairi and Doghri (2014).

An appealing model suitable for describing a mechanically dominated fa-
tigue behavior was proposed by Ottosen et al. (2008). According to this model,
uniaxial and multiaxial stress states for arbitrary loading histories are treated in
a unified manner by using incremental expressions, thus avoiding cycle-counting
methods. Only few macroscopical quantities and a single parameter set are used,
which characteristic makes the model simple and suitable for practical applica-
tions. By exploiting this evolution equations based fatigue modeling concept, a
model for predicting fatigue of amorphous glassy polymers is proposed.

The model relies on the concept of an evolving damage variable and an en-
durance surface which can shift in the space of stress, see Ottosen et al. (2008).
Although the original approach is aimed at the metal fatigue, its formulation is
also suitable for polymers that show similar fatigue characteristics:

- the process of fatigue failure is comprised of three stages ( 1) nucleation
and progress of voids and micro-cracks around local inhomogeneities, 2)
stable crack growth, 3) unstable cracking leading to failure), cf. Sec. 1;

- defects can nucleate and grow during the service life at stress levels well
below the nominal yield strength;

- most of the fatigue life is spent in the 1st stage;

- crack growth during stages 2) and 3) shows a marked resemblance between
polymers and metals;

- asymptotic behavior at the extremes of lifetime, i.e. the endurance limit
exists and fatigue under this limit is suppressed,

Lugo et al. (2014); Ravi Chandran (2016); Kanters et al. (2016). The model
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should also predict a decreasing fatigue life with an increasing particle size,
which property is typical for both metals and polymers, Lugo et al. (2014).
However, this microstructure-based fatigue modeling is out of the scope of this
work. Given fatigue characteristics are the important prerequisites for the pro-
posed model extension.

For many amorphous glassy polymers such an endurance surface can be de-
termined, i.e. the cyclic lifetime increases with a decreasing accumulation of ap-
plied stress suggesting a well-defined plateau when ultimate failure finally takes
place at finite numbers of cycles just above the endurance limit, Lu and Kim
(2007); Lugo et al. (2014). Wöhler curves are commonly used to illustrate these
characteristics and to identify polymers’ endurance limits. Examples of poly-
mers showing an endurance limit are PC, PMMA, and amorphous polyamide
6,6 (PA-6,6), Lesser (2002); Lu and Kim (2007); Ravi Chandran (2016).

The endurance surface is considered as a function of the stress history and
its movement in the stress space is modeled with a reduced deviatoric stress
measure that determines the center of the endurance surface. In contrast to the
plasticity theories for metals where the endurance surface may lie inside the yield
surface, amorphous polymers do not show an explicitly defined yield surface and
the fatigue damage development is always induced by the propagation of plastic
deformation. Also, since the polymer chains start to align with the loading
direction at relatively low stresses and plastic strains, polymer materials show
an anisotropic response that is in the model described by the backstress β, (35).

When reducing loadings, the effect of the backstress decreases and under
high-cycle-fatigue (HCF) loadings, the presence of another backstress quantity,
α (defined subsequently), is mandatory for governing the fatigue of virtually
elastic responses (cf. e.g. steels). Furthermore, many polymers are susceptible
to fatigue only once the yield strength is almost reached. In the beginning of such
cyclic loadings, plastic deformations and backstress β are low, and backstress α
dominates fatigue and defines the endurance surface. During continued cyclic
loadings, however, plastic deformation may accumulate (ratcheting) and then
increases the influence of the backstress β in relation to α. Therefore, the
endurance function,

β =
1

σ0
(τ̄ + aI1 − σ0), (40)

where

τ̄ =
√
3J2(τdev − βdev − α) =

√
3
2 (τ

dev − βdev −α) : (τdev − βdev −α)

(41)
is proposed. The endurance function also includes the first stress invariant
I1 = tr τ that reflects the effect of hydrostatic stress 1/3trτ , i.e. the hydrostatic
tension enhances the fatigue development while fatigue is suppressed under hy-
drostatic compression. The parameter a in (40) is considered as positive and
dimensionless, and it defines in uniaxial cyclic loading, the slope of the Haigh-
diagram. The last parameter σ0 corresponds to the endurance limit for infinite
fatigue life as mean stress is zero.
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Figure 4: Alternating stress state for (nonproportional) loading (left). The endurance surface
tracks the current stress point (cf. (42)) and then moves between the states A and B (generally
not fixed) (right). Peripheries of the endurance surfaces in the initial and final state are
highlighted by the dashed and solid lines, respectively. Notation d denotes the increment.

The endurance surface in the deviatoric plane is spherical as illustrated in
Fig. 4. As shown, it is the α + βdev tensor that defines the center of the
endurance surface. Once an alternating loading is applied, the endurance surface
tracks the current stress since the movement ofα+βdev always is in the direction
of τdev − βdev − α, i.e. the α+ βdev tensor stores the load history and results
in the movement of the endurance surface. It then follows that the evolution of
α is governed by a rule

α∇ = C(τdev − βdev −α)β̇ − βdev,∇ (42)

where
α∇ = α̇− lα−αlT

is an objective stress rate consistent with the rate of the backstress βdev,∇ and
the rate of the deviatoric Kirchhoff stress τdev,∇ defined subsequently in Sec.
2.5.

In (42), a single material parameter C was introduced. Hydrostatic stress
influences also the evolution of α, which effect is included to (42) through the
rate β̇ of the endurance surface (40).

Since α is considered an overall driving force for fatigue damage, it only
evolves once the current stress is crossed the endurance surface and recedes
from it, i.e. the condition

β ≥ 0, β̇ ≥ 0 ⇒ Ḋ ≥ 0, α∇ �= 0 (43)

holds. This situation is demonstrated in Fig. 4.

Demonstration of the model

Considering uniaxial stress states when the only nonzero stress component
is τ := τ11, while the relation between the backstress components are βdev :=

14



βdev
11 = −2βdev

22 = −2βdev
33 and α := α11 = −2α22 = −2α33. Then, the effective

stress (41) takes a simple form as

τ̄ = κ(τ − 3

2
(βdev + α)) (44)

where the parameter κ controls the sign, i.e. κ = 1 as (τ − 3
2 (β

dev + α)) > 0
and κ = −1 as (τ − 3

2 (β
dev + α)) < 0. Moreover, the fatigue limit criterion of

the endurance surface (40) reduces to a form given as

β =
1

σ0

{
κ(τ − 3

2
(βdev + α)) + aτ − σ0

}
= 0, (45)

which form can be expressed as

τ =
1

κ+ a

{
κ
3

2
(βdev + α) + σ0

}
, (46)

representing the limit (stress limit) of the endurance surface below which fatigue
damage does not accumulate, Lesser (2002).

Under a proportional loading where the stress varies linearly between arbi-
trary stress states τ (A) and τ (B) (stress path pierces the center of the endurance
surface, see Fig. 4), one can show that the endurance surface (40) in a high cycle
regime (β → 0) will reduce to the form given in Sines (1959), see Ottosen et al.
(2008, Eqs. 8-11) for a more detailed account. Moreover, when the stress state
is uniaxial, the fatigue limit criterion of (40) further reduces to

τa + aĨ1 − σ0 = 0 (47)

where τa is the stress amplitude and Ĩ1 := 1
2 (I1(τ(A)) + I1(τ(B))) is the mean

value of the traces.
Assuming also that the stress ranges periodically between τ(A) = τm + τa

and τ(B) = τm − τa. In such a situation, Ĩ1 = τm in (47), which indicates that
the variation between the fatigue stress amplitude and mean stress is linear.
Considering further that Ĩ1 does not alter, (47) then implicates that the mean
shear stress does not effect on the fatigue development. As long as the stress is
under the static yield limit and the mean stress is positive or virtually zero, pre-
vious observations for many metals, amorphous polymers, and their compounds
indicate that the linear relation (47) is in good agreement with experiments, cf.
Janssen et al. (2008a, Figure 11a) and Ottosen et al. (2008) with the references
therein.

Referring to Fig. 4 and Fig. 5 for an alternating uniaxial loading, the
concept is further demonstrated. During loading from state 1 to 2, the stress
point recedes from the endurance surface when damage evolves, i.e. β > 0 and
β̇ > 0, cf. (43). Between the states 2 and 3, the stress path has crossed the
surface and is in the space within the surface. Then, β̇ < 0 when damage and
the backstress do not evolve, i.e. Ḋ = 0 and α∇ = 0 until the path again pierces
the endurance surface at state 3. It then follows that α3 = α2. From state 3 to
4, damage again evolves since β > 0 and β̇ > 0. When loading from state 4, the
damage development is inhibited until state 5 is reached, i.e. α5 = α4.
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Figure 5: Alternating uniaxial loading and demonstration of a damage development
during cycling is indicated by a double curve. The time periods for damage devel-
opments depend on the applied loading and the endurance surface inherent to the
material at hand.

Damage evolution

Despite possible strain hardening and subsequent directional damage fields
especially in large deformations, the fatigue behavior is described by a scalar
valued quantity so as to keep the model simple. Assuming damage increases
only if β > 0 and β̇ > 0, an exponential form

Ḋ = K exp(f(β;L1, L2, ϑ))β̇ ≥ 0, (48)

with the values 0 ≤ D ≤ 1, is valid for the damage evolution law, i.e. it satisfies
the dissipation inequality (26). In (48), K, L1, L2, and ϑ are positive material
parameters and thus, the damage evolution equation (48) shows that damage
increases with the distance from the endurance surface.

Many amorphous glassy polymers (such as PC) show only a moderate ac-
cumulation of the applied stress as the cyclic lifetime reduces. To capture such
a behavior, a function f having two linear asymptotes for positive β is defined,
i.e.

f(β;L1, L2, ϑ) = L1β − L2

[
β +

L2

ϑ
(exp(−ϑβ/L2)− 1)

]
,

which has the asymptote L1β when β → 0 (HCF-regime) and (L1 −L2)β when
β is large (LCF-regime). The curvature ϑ determines how rapidly the second
asymptote is reached.

Let x, t0, and tc be the material placement, initial time instant, and the
final, critical time instant, respectively. Then, D = D(x, t0) := D0 ≥ 0 is an
initial value, while D(x, tc) = Dc = 1 represents a local fatigue failure right
prior to a rapid progress of small cracks to a form of large cracks (rupture).

2.5. Numerical treatment of the fatigue model

To integrate the evolution equations (42) and (48), the function (40) for β
needs to be differentiated. Assuming that the current deformation gradient F
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and an increment for the strain tensor Δε can be extracted during incremental
calculations. The increment of the strain tensor relies on the relation (3), i.e.

Δε =
1

2
(Δl +ΔlT) (49)

which defines the increment ΔF := ΔtḞ as

Δl := ΔFF−1. (50)

Then, based on (1) and (3) one obtains

Δl := Δle + F e−TΔL̄pF e−1 (51)

where
Δle := ΔF eF e−1, and ΔL̄p := Δt(D̄p + W̃ p) (52)

are the incremental presentations for the elastic and plastic velocity gradient,
respectively. Owing to the symmetry of ΔF e finally at the integration interval,

ΔF e =
1

2

(
(Δε− F e−TΔL̄pF e−1)F e + F e(Δε− F e−TΔL̄p,TF e−1)

)
. (53)

Substituting (53) into (52) and then the obtained result into (51) gives the
expressions for Δle and Δl, respectively.

The differentiation of β given by (40) yields

Δβ =
1

σ0 + Cτ̄

[
3
2

(τdev − βdev −α)

τ̄
: Δτdev,∇ + a trace(Δτ∇)

]
(54)

where Δβ := Δtβ̇ and Δτ∇ := Δtτ∇ is an objective stress increment defined
below.

According to (42),

Δα∇ = C(τdev − βdev −α)Δβ −Δβdev,∇ (55)

where Δα∇ = Δtα∇,

Δβ∇ := Δtβ∇ = FΔ

(
F−1βF−T

)
FT = Δβ −Δlβ − βΔlT, (56)

and
Δβ := F eΔB̄∇F e,T +Δleβ + βΔle,T. (57)

The increment ΔB̄∇ of the backstress in the relaxed placement is obtained by
taking the increment of (35). The inverse Langevin function included in ΔB̄∇

is approximated by the Pade-approximation when its derivative with respect to
its argument is given by

ξec :=
d

dX
L
−1(X)

∣∣∣∣
X=

λp
ec√
N

=

( λp
ec√
N

)4
+ 3

(
1− ( λp

ec√
N

)2)2 . (58)
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Differentiation of (34) yields

∂λp
ec

∂C̄p
=

1

6λp
ec
Ī (59)

and its substitution into the incremental expression of (35) leads to the form

ΔB̄∇ =
CR

√
N

3λp
ec

L
−1(

λp
ec√
N

)

[
(

χecξec

3
√
Nλp

ec

− 1

3(λp
ec)2

)trace(ΔL̄pC̄p)C̄p+2sym(ΔL̄pC̄p)

]
(60)

where χec := 1/L−1(λp
ec/

√
N).

The non-linear system of equations for fatigue are completed by the integra-
tion of the internal rate variables defined by (42) and (48), i.e. Rα = [Rα,1 Rα,2]
where

Rα,1 : = α−αn −Δtα∇,

Rα,2 : = D −Dn −ΔtḊ.
(61)

The treatment of the nonlinear systems given in (39) and (61) is discussed
in the Appendix.

2.5.1. Stress increment

A glance at (49) reveals that Δl = Δε+ω̃ when the stress increment becomes

Δτ∇ = FΔ(F−1τF−T)FT = Δτ − ω̃τ − τω̃T = c : Δε (62)

where

c := c
ε − c

ω :=
dτ

dF
: (i 	 F )− (τ 	 i+ i	 τ ) − c

ω (63)

is the algorithmic tangent stiffness (ATS) tensor in which c
ε : Δε := Δτ and

c
ω : Δε := ω̃τ + τω̃T. The non-standard tensor product in (63) is defined as

(A	B)ijkl = 1/2(AilBjk +AikBjl).

Due to the imposed symmetry of F e, the elastic spin vanishes, and thus, ω̃ :=
F e−TW̃ pF e−1 in (62). In view of (29),

dτ

dF
= L

e
1 :

(
(1 −D)

∂(lnve
1)

∂ve
1

:
dve

1

dF
− lnve

1 ⊗
dD

dF

)
(64)

where the derivative of the tensor logarithm is determined following Miehe
(1998). The details for obtaining the terms dve

1/dF and dD/dF set out in
the Appendix.

The stress increment (62) represents an appealing objective time derivative
of the Kirchhoff stress termed the convected rate. In user-defined material model
subroutines of commercial finite-element packages, the objective stress rate and
the corresponding stress increment required in the equilibrium iterations may
differ from that presented in (62). A usual one is the Jaumann rate, σ∇J, and
its incremental representation based on (62) is given by

Δσ∇J := Δtσ∇J = Je−1Δτ∇ +Δε	 σ + σ 	Δε− trace(Δε)σ. (65)
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Figure 6: Testing arrangement (right) and shots of a dogbone-shaped specimen at
u = 10 mm, 20 mm, 30 mm, and 40 mm (left). The displacement at y = 0 is
restrained. The details of the testing arrangement is defined in ASTM-D638 and ISO
527-2.

3. Applications and discussion

3.1. Constitutive model parameters

The model introduced in Section 2.2 was first calibrated to data obtained
from cold drawing tests on dogbone-shaped PC-specimens. Fig. 6 shows the
specimens’ geometry. The un-notched test specimens comply with ISO 527 and
were fabricated from Lexan� 223R PC-polymer by injection-molding. The tests
were conducted by the Instron c© 5967 machine controlled by Blue Hill 3 soft-
ware. During drawing, the applied load f and the elongation u were monitored.
To prevent a temperature rise owing to the dissipative heating, a low crosshead
speed u̇ = 2 mm per a minute was applied. Repeated unloadings to varying
stress levels were conducted at an equable rate 1 kN/min. For the implemen-
tation, a finite-element method is applied, and the specimen was meshed with
linear solid elements. Resulting responses and the observed data for overall
f − u -responses are shown in Fig. 7. A more detailed account for the test pro-
gram involving repeated loading cycles is found from Holopainen (2013). The
calibrated parameters based on the least squares fitting are presented in Table
1.

Uniaxial compression - non-monotonic loading

As an introduction to fatigue, let us consider a simple, uniaxial non-monotonic
compression case involving few cycles. Anand and Ames (2006) conducted such
cyclic as well as monotonic tests on PMMA. The proposed model was also cal-
ibrated to those tests under monotonic loadings. Figure 8 shows the model
predictions for uniaxial cyclic compression loading in which the loading cycles
comprise the straining up until the logarithmic strain of 20% is reached and a
subsequent unloading to zero strain.

The development of the backstress is also shown. The model predicts increas-
ing backstress during both the loading and unloading, which then smoothly re-
duces during the subsequent period to zero strain. Therefore, in addition to the
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Figure 7: Overall f − u responses predicted by the model with calibrated material
parameters and measured from the experiment. The unloadings are performed to
f = 60 N and f = 1000 N followed by the dwell period of t = 120 s.
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Figure 8: The compressive true stress vs logarithmic strain response under cyclic load-
ing for PMMA (left). The solid line and dash-and-dot line curve with markers are
the model response and experimental data taken from Anand and Ames (2006). The
undermost loop shows the stabilized behavior. The plot in right shows the evolution
of the backstress βdev . The calibrated material parameters for PMMA are E = 2300
MPa, s0 = 121 MPa, sss = 63.3 MPa, h1 = 184 MPa, and γ̇0 = 5.6 · 1015 s−1. The
rest are equal with those given in Table 1.

viscoelastic constitutive treatment, the model predicts nonlinear stress-strain
relationship during both the loading and unloading followed by a continued
elongation at a constant stress termed dwelling, Wallin and Holopainen (2012).
In contrast to a purely elastic deformation, viscous deformation results in a loss
(dissipation) of mechanical energy which is equal to the area of the hysteresis
loops through loading cycles. Fig. 8 also shows that the model predicts the
Bauchinger effect, which stabilizes during few cycles leading to the saturated
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state of hardening when the predicted stress-strain response matches well with
the experimentally measured response.

3.2. Fatigue model parameters

Once the constitutive model parameters were found, the parameters for mod-
eling fatigue were determined from in situ measurements taken from Janssen et al.
(2008a) and Janssen et al. (2008b). The material employed in the tensile fatigue
test is a quenched PC (Lexan� 101R and 161R), and the specimen geometry
used for fatigue studies is a common dogbone-shaped, injection molded ten-
sile specimen (ASTM D638-IV), Foster (2015). Isothermal test conditions for
mechanically induced fatigue have included uniaxial stress submitted to load
control at the room temperature of 23◦C. Referring to Janssen et al. (2008b),
the fatigue failure occurs in the gauge section. The test specimen is also termed
a uniaxial tensile bar, and it will be shown later that the stress state in that
region is virtually uniaxial, i.e. the only nonzero stress component employed in
the calibration is given by

σ = σm + σa sin(ωt) (66)

representing an average true stress somewhere in the gauge section. In (66),
ω denotes the frequency, t is time, σm is mean stress, and σa is the stress
amplitude.

Since fatigue tests are both costly and time consuming, an accelerated life
testing with a high mean stress has been applied, Lesser (2002); Maxwell et al.
(2005); Lu and Kim (2007); Zhang et al. (2015). In the referred test, see Janssen et al.
(2008b), the stress waveform is sinusoidal, and the maximum stress is allowed

Table 1: Constitutive model parameters for PC fitted to data taken from the cold
drawing experiments on a dogbone-shaped test specimens. The remaining viscoelastic
constitutive parameters are E = 2000 MPa, E1 = 1000 MPa, η = 1.5 · 104 MPas, and
ν = 0.37.

Parameter s0 sss h1 γ̇0 A CR N α

Unit ......... MPa MPa MPa s−1 MPa−1K MPa
Value ......... 96 76 720 5.6 · 1015 240 14 2.2 0.08

Table 2: Fatigue model parameters for PC. The fit was performed to experimentally
observed fatigue data given in Janssen et al. (2008a) and Janssen et al. (2008b).

Parameter σ0 a C K · 105 L1 L2 ϑ

Unit ......... MPa
Value ......... 34.0 0.46 0.05 8.50 7.60 3.80 2.63
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Figure 9: Fatigue strengths of PC under the application of the high mean stress σm = σa+2.2
MPa (left). The solid line denotes the model result, and the marker � refers to data points
taken from Janssen et al. (2008b) (Fig. 6b). The upper and lower horizontal dashed lines refer
to the static tensile yield strength σy and an estimated endurance limit, respectively. Haigh-
diagram for the endurance limit according to the model (right). The parameter a determines
the slope in the diagram, and the dashed curve represents the expected experimental behavior.
A tangent line for the loading σmax = σy at σm = 35 MPa is also represented.

to vary, while the minimum stress is kept at 2.2 MPa. To guarantee isothermal
testing conditions, a low frequency of 2 Hz has been used.

First, the parameter a, which is the slope of the Haigh-diagram near zero
mean stress, was determined, see the endurance function (40). Unfortunately,
data which account for this region of the amplitude-mean stress relationship are
not available, and the value of a is fitted to an expected experimental curve
shown in Fig. 9(right). For many materials, however, the slope of the Haigh-
diagram is not constant, but reduces towards the zero mean stress, Ottosen et al.
(2008). The slope of the curve at high mean stresses is extracted from data
given in Janssen et al. (2008a) (Fig. 11a therein). The data show observed
mean stresses 55-70 MPa for a wide range of fatigue lives as two low stress
amplitudes of 5 MPa and 10 MPa have been applied. In this amplitude region,
the relationship between the mean stress and amplitude appears to be unaltered,
i.e. the addition of 5 MPa in the stress amplitude reduces the mean stress
virtually the same degree for all observed fatigue lives. Thus, a is almost unity.
The predicted Haigh-diagram is also shown in Fig. 9 (right). According to (47),
the variation between mean stress and the fatigue strength is linear, and the
slope of the line is given in terms of the parameter a.

The fatigue limit σ0 for zero mean stress and the remaining parameters C,
K, L1, L2, and ϑ were calibrated to data shown in Fig. 9 by using the concept
analogous to that given in Ottosen et al. (2008) (section 5 therein). According
to this concept, the equations for the backstress and damage are first integrated
in order to define the damage accumulation per a loading cycle and the number
of cycles n needed to reach fatigue failure. This expression for n is then used in a
single object function to be minimized. The least squares fitting, which utilizes
the Nelder-Mead simplex algorithm, is employed. The least squares error of
number of cycles n that leads to fatigue failure is chosen as the object function,
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Figure 10: Lifetime of PC using R-values of 0.7, 0.4, and 0.1 (left). The solid, dashed, and
dotted curves represent the corresponding responses, specified by the thick black and thin
red curves for the model results and data fittings taken from Kanters et al. (2016) (Lexan�
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taken from Janssen et al. (2008b) are highlighted by the solid and dashed curve, respectively.

i.e.

min F :=

Î∑
i=1

(w(i))2

(
1− ln(n(i))

ln(n
(i)
em)

)2

(67)

where Î denotes the count of data points, w(i) are the weights, and n(i) and

n
(i)
em denote the predicted and recorded number of cycles, respectively. All data

points shown in Fig. 9 are used in the calibration.
The calibrated parameters and model responses are depicted in Table 2 and

Fig. 9, respectively. Although the model governs only the crack initiation
step, inaccuracy of the model response is small since this step typically covers
over 95% of the total fatigue life, Marissen et al. (2001); Janssen et al. (2008a).
The results indicate that the cyclic lifetime smoothly decreases with increasing
accumulation of applied stress. Reducing the stress level, a transition in the
failure mode takes place from ductile to brittle, and ultimate failure can finally
be reached after finite numbers of cycles at the stress level right above the
expected endurance limit.

3.3. Results - uniaxial stress state

Based on the calibrated parameters in Tables 1 and 2, time-to-failure versus
maximum stress is shown in Fig. 10. Due to a slightly different PC used in the
tests, a small distinction between the model responses and data can be observed
at low fatigue lifetimes, especially under the low stress ratio R (the ratio between
the smallest and largest stresses). The bigger R is, the lower is the maximum
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Figure 11: The cyclic true stress (solid line) and the endurance surface (limits are
highlighted by the dashed and dash-and-dot lines) during the first few stress cycles
(left). The damage development during the first two cycles is indicated by the double
curve. Development of damage variable according to (48) (right).

stress for a short time-to-failure whereas curves show opposite trend at high
fatigue lifetimes. Moreover, the difference between the curves seems to reduce
with increasing lifetimes, cf. Kanters et al. (2016), i.e. the responses show an
asymptotic behavior at the extremes of lifetime and almost equal endurance
limits.

Some data for the fatigue strengths in compression are also available, cf.
Janssen et al. (2008b). Under such conditions (a notable negative mean stress),
the linear relationship between the effective stress and the hydrostatic stress
in the expression of the endurance surface (40) is unsuitable, and the slope
parameter a of the Haigh-diagram needs to be modified, see Fig. 9. Here,
trivially a negative value a = −0.17 is used. Despite the calibration process only
for tension, this elementary modification yields the model result that reflects well
the available experimental data for a heavy compression, see Fig. 10(right).
The results show that the fatigue strengths for the compression loading are
substantially greater than under tension.

The predicted endurance surface (46) under a sinusoidal cyclic tension is
shown in Fig. 11. Once the periodic loading is applied, the endurance surface
tracks the current stress point and reaches its periodic state since the movement
of α always is in the direction of τdev−βdev−α, cf. equation (42) along with the
plots in Fig. 4. During continued cycling, damage always develops as the stress
state recedes from the endurance surface, i.e the upper limit of the endurance
surface in Fig. 11 shows an increase and the stress is greater than this limit.
A strong initiation of damage is due to the high mean stress applied, see Fig.
11(right).

Figure 12 further shows a periodically increasing development of the loga-
rithmic strain in the beginning of cyclic tension. Since the stress always remains
below the yield strength of the present polymer material, plastic deformation
is initially low and the total strain and its elastic plus viscoelastic component
are virtually overlapping at this phase. In tensile test specimens, the growth of
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Figure 13: Lifetime of PC under static (creep) loading σ = σm. The solid line is the model
result, and the markers � are data points taken from Janssen et al. (2008b) (Fig. 3a).

viscoelastic and plastic strains leads to a notable elongation that may cause a
plastic instability termed necking and is finally followed by a brittle rupture as
shown in Janssen et al. (2008b).

The proposed approach also provides time-to-failure predictions under fixed
stress levels (σ = σm) in a reasonable accuracy, see. Fig. 13. At room tem-
perature, aging kinetics has not influence on lifetimes in this regime, and the
experimental results show almost a linear response. The model tends to over-
estimate higher lifetimes which characteristic is due to a rise of the endurance
surface at mean stresses far above the ones applied in the calibration.

Almost a fully reversed uniaxial loading case consisting of cycling in the fre-
quency of 2 Hz is also studied. The maximum stress up almost to the tensile
yield strength is applied. Under this loading, damage increases rapidly lead-
ing to an ultra-low fatigue life as depicted in Fig. 15, cf. Drozdov (2011);
Del Vecchio et al. (2014). Once the material response has stabilized, hysteresis
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Figure 15: Periodic development of the compressive strain (dashed line) and its plastic
component εp (solid line) with a low mean stress and a high stress amplitude (left).
Damage development up to the final failure (right).

loops demonstrated in Fig. 14 show a shift and Bauchinger effect similar to that
observed in metals. A slightly reducing area of the loops indicates a progressive
increase in energy-dissipation and a suppression of the irreversible work during
evolving fatigue, cf. Lesser (2002); Janssen et al. (2008b); Drozdov (2011). This
result is a consequence of neglected temperature effects and physical aging, both
of which being relevant assumptions under the applied low frequency loadings.

The shift of hysteresis loops and the development of the plastic strain shown
in Fig. 15 refer to ratcheting (cyclic creep), i.e. constantly accumulated plas-
tic strain develops as the cyclic loading continues, cf. Lemaitre and Desmorat
(2005); Kang (2008); Del Vecchio et al. (2014); Xi et al. (2015). The model is
able to simulate ratcheting since the inverse Langevin function (35) accounts
for the extensibility of polymer chains generating an asymptotically growing
backstress and strain hardening as the plastic stretches increase.

To further demonstrate the minute ratcheting behavior of the PC applied,
similar to that used in Xiong et al. (2014); Xi et al. (2015), the uniaxial ratch-
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Data curve (blue color) for a PC-polymer is taken from Lu et al. (2016) (left). The
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Figure 17: Prediction of the ratcheting strain responses (black lines) with different
mean stresses at the frequency of ω = 1 Hz and at room temperature (left). Cor-
responding data curves (blue color) for PC-7030PJ polymer are taken from Xi et al.
(2015). Development of fatigue damage (right).

eting strain is defined as a mean strain,

εr =
εmax + εmin

2
(68)

where εmax and εmin denote the maximum and minimum logarithmic strain in
each cycle, respectively.

The characteristics of ratcheting strain development under different loadings
are shown in Figs. 16, 17, and 18. Three different stages can be observed. In
the first stage, ratcheting strain accumulates rapidly, but then the growth rate
reduces to a nearly constant value. The accumulation of ratcheting strain and
the duration of this stage depend strongly on the applied stress level and appear
more evidently under low stresses. In the second stage, ratcheting strain shows
a steady accumulative region which occupies most of the fatigue life, i.e. the
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Figure 18: Prediction of the ratcheting strain responses with different amplitudes at
the frequency of ω = 1 Hz and at room temperature (left). Development of the fatigue
damage (right).

duration of this stage reflects the entire fatigue life. The third stage occurs
solely at high stress levels during which the cyclic creep growth rate shows a
marked increase prior to ultimate failure. The predicted accumulative behavior
of ratcheting strain well corresponds with experimentally observed behavior of
amorphous polymers, cf. Kang (2008); Liu et al. (2008); Xi et al. (2015).

Fig. 16(right) then shows the strain behavior as the stress is kept as constant
after 30 seconds or 800 seconds. Under the long hold (dwell) time, the response
shows evidently (static) creep while neither recovery nor creep occur after 800
seconds. This behavior is in line with experimental results, i.e. the appearance
of creep progressively vanishes during loading cycles, see Dreistadt et al. (2009)
for a more detailed account. Since the applied constant stress levels are low,
fatigue damage becomes suppressed and lifetime explodes when compared to
the original cyclic loading.

The impact of mean stress on the ratcheting behavior is shown in Fig. 17.
The cyclic creep accumulation rate is initially high but rapidly reduces to almost
zero. The greater the mean stress is, the more rapidly the ratcheting strain
increases and finally reaches asymptotically its constant state. Experimental
results show similar characteristics, see Figs. 16, 17, and Xi et al. (2015). When
also compared to the observed lifetimes under the high creep loadings present
in Fig. 13, it is not a surprise, that the fatigue development is suppressed under
the applied low stress amplitudes, see Fig. 17(right).

Numerical investigations also indicated that the stress amplitudes ranging
between σa = 10...30 MPa have not a marked influence on ratcheting under
the applied mean stresses shown in Fig. 17. It means that ratcheting is more
prone to the applied mean stress than to the amplitude, cf. Xi et al. (2015).
However, when subjected to low mean stresses, substantially below the stress
amplitudes, the development of the ratcheting strain is greatly influenced by
the stress amplitude, see Figs. 16 and 18.

An interesting observation is that the damage evolution resembles closely
the development of ratcheting strain, see Figs 17 and 18, i.e. ratcheting strain
can be exploited in the evaluation of the entire fatigue lifetime.
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Figure 19: Damage development in a test specimen right after 140 cycles (left). Prediction
of the ratcheting strain εr in the middle of the specimen (thin black curve) (top right). For
a comparison, also the predicted ratcheting strain under homogeneous deformation (uniaxial
stress) is shown (thick black curve). Corresponding damage developments represented on a
logarithmic scale (bottom right).

3.4. Multi-axial stress state - fatigue of a dogbone-shaped specimen

Due to the localization of the plastic deformation, damage grows unevenly,
leading to a reduced fatigue life somewhere in the material. Thus, it is of interest
to investigate the fatigue damage development of the entire test specimen by
using a finite-element method. The same test specimen’s geometry and finite
element mesh are applied as previously introduced in Section 3.1, see Fig. 6. In
accordance with the fatigue testing discussed in Section 3.2, the displacement
at y = 0 is fastened by a clamp and the evenly distributed loading at y = L is
controlled by a sinusoidal waveform of the frequency 2 Hz and the mean and
amplitude stress 14.85 MPa and 13.75 MPa, respectively. The corresponding
average stress state in the gauge section is twofold. Under fatigue loadings, the
advantage of adaptive concepts cannot be benefited, and time steps of 0.01 s
are used to accurately capture the sinusoidal fatigue signal. Obviously, large
computation times can be expected already in LCF-regime.

In the analysis, the specimen does not suffer from impurities or imperfec-
tions, which is the case in practise, when the fatigue damage progresses most
intensively between the gauge section and clamps, see Fig. 19. Since experi-
ments show final failure somewhere in the gauge section, a small notch or the
like would be required to simulate tests more realistically. Fatigue damage also
starts with the formation of an oblate region in the middle of the specimen.
Li et al. (1995) reported agglomeration of similar crazing zones in PC under
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cyclic tension. Although not shown here, the damage development in the spec-
imen closely follows the fields of increasing localized plastic deformation. The
result implicates that the localized plastic deformation is a precursor that pro-
vides crazing initiation sites which then control the fatigue propagation in the
material, cf. Li et al. (1995); Lesser (2002); Lugo et al. (2014).

The predicted development of ratcheting strain in the middle of the specimen
is also shown in Fig. 19. Ratcheting strain has been calculated approximatively
by dividing the overall displacement u by the grip-to-grip distance H , see Fig.
6, and then applying (68). It appears that the multiaxial stress path causes
an additional hardening that makes ratchetting strain lower and its develop-
ment more linear compared to the development under the uniaxial stress state.
This characteristic is also observed in experimental testing, see Lu et al. (2016).
In addition, the development of the plastic deformation under cyclic loadings
(ratcheting) is susceptible to the specimens geometry.

In the gauge section, the axial (longitudinal) stress component is orders of
magnitude greater than others, i.e. a uniaxial stress state is representative as
it was presumed in the calibration. Depending on the load level, specimen will
show a rapid rupture after neck initiation (ultra low cycle fatigue) or brittle
fracture after hundreds or tens of thousands of cycles, (Janssen et al., 2008b,
Fig. 4). Since ratcheting strain becomes suppressed during the applied loading,
the damage distribution shown in Fig. 19 represents the latter case. The differ-
ence between the damage responses seems to be a consequence of the ratcheting
strain accumulation which initially is substantially greater under the uniaxial
stress state. However, once ratcheting strain has increased much enough, dam-
age growth under the multiaxial stress shows a tendency towards the lifetime
predicted under the uniaxial stress state.

4. Conclusions

High cycle fatigue approach for metals present in Ottosen et al. (2008) was
extended for the modeling of fatigue in amorphous polymers. The proposed
approach covers mechanically dominated fatigue behavior intrinsic to polymers
of amorphous classes, and is formulated in a continuum mechanics framework
by using evolution equations that make the definition of damage changes per
cycle redundant, i.e. cycle-counting techniques do not need to be applied. The
approach takes into account of the influence of plastic deformations on fatigue,
and the development of plastic deformations is based on the celebrated 8-chain
Boyce-Parks-Argon (BPA) model where the description of the transformation
from a single chain deformation to the continuum deformation relies on chain
stretching due to the plastic deformation. Since the relaxation time of the poly-
mer chains to attain their equilibrium state after deformation is also affected
by the viscoelastic effects, the BPA model was enriched by a viscoelastic ele-
ment. The approach was calibrated to data taken from both non-monotonic
cold drawing experiments and accelerated isothermal fatigue tests on dogbone-
shaped PC-specimens.
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Ratcheting behavior of polycarbonate (PC) was investigated and a com-
parison was made with fatigue tests at various mean stresses and amplitudes.
Three regions of ratcheting strain could be observed. In the first stage, ratch-
eting strain accumulates rapidly, but then the growth rate reduces to a nearly
constant value. In the second stage, ratcheting strain shows a steady accumula-
tive region which occupies most of the fatigue life, i.e. ratcheting behavior can
be exploited in the evaluation of the fatigue lifetime. The third stage occurs
solely at high stress levels during which the cyclic creep growth rate shows a
marked increase prior to ultimate failure. In each stage, ratcheting strain in-
creases with both the applied mean stress and amplitude, although it is more
prone to mean stress.

Also, finite element studies of a dogbone-shaped test specimen were per-
formed for analyzing a compromise between inhomogeneous plastic deformations
and fatigue in PC. The results show that

- fatigue damage increases at the sites of localized plastic deformation,
which behavior is microscopically manifested by crazing;

- an apparent ratcheting deformation is observed during the stress-controlled
cyclic loading;

- multiaxial stress path results in an additional hardening that makes the
ratchetting strain lower and its development more linear compared to the
development under uniaxial stress;

- damage development obeys the increase of the ratcheting strain closely,
i.e. the ratcheting strain is an important indicator of fatigue.

Validated by the experiments, the proposed approach was able to predict
fatigue characteristics of PC under different loadings. The results indicate that
ratcheting obviously contributes to fatigue and it can be exploited in evaluation
of the entire fatigue life of amorphous polymers. To ensure practical signifi-
cance, the approach needs a low number of material parameters and thus, is
well suitable for numerical solution methods.

However, the proposed approach could be further extended. For instance,
in low cycle regime, the influence of energy dissipation and subsequent rise in
temperature increase when a temperature-dependent material behavior should
be considered in the modeling. In the literature, an accelerated (uniaxial) fatigue
testing of a high mean stress has been paid considerable attention, and more
data that also account for directional fatigue properties, multiaxial ratcheting,
and rate dependence of amorphous polymers under various loading situations
are needed. One limitation with regard to the fatigue damage modeling on
the micro-level is the presumption of material homogeneity, while real polymers
show a diffuse microstructure. Moreover, several details for fatigue damage
development are quite ambiguous at the moment. Important supplements to be
involved in the modeling are certain morphological and microstructural changes,
such as crazing and disentanglement of a chain network.
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Appendix A.

Solution of the nonlinear systems

The proposed algorithm for a solution of the systems (39) and (61) is based
on an assumption that those two systems are considered uncoupled, i.e. they
are solved in succession. A benefit of the proposed concept is that the integra-
tion of the viscoelastic-plastic constitutive model and the fatigue model can be
implemented by using suitable numerical schemes, not necessarily one and the
same. Concerning e.g. an increasing fatigue damage prior to final failure, an
explicit integration of the fatigue model may provide an efficient solution with-
out the dependency on the step size which is a weakness of implicit solution
procedures. Since both the models are rate-dependent and long-term periods
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are investigated, the algorithmic update is demonstrated by using an implicit
(backward Euler) scheme.

When solving the system (39), the state variables are given in the vectorized
form, i.e.

Y := [F e W̃ p F e
1 s1]. (A.1)

Using the Newton-Raphson procedure, the solution is Y i+1 = Y i +ΔY where
the increment is defined as

ΔY = −J−1R, and J :=
∂R

∂Y
(A.2)

is the Jacobian. The vectorized form R := [R1 R2 R3 R4 R5 R6] consists of
the residuals introduced in (39).

For a solution of the system (61), fatigue state variables are also expressed
by exploiting the vectorized form, i.e.

Yα := [α D]. (A.3)

The solution is Y i+1
α = Y i

α + ΔYα where the increment ΔYα is calculated in
common with (A.2).

ATS-tensor

Based on the fact that the residualsR in (39) vanish finally at the integration
interval for all F , i.e. R(Y (F ),F ) = 0, one obtains

dY

dF
= −

(
∂R

∂Y

)−1
∂R

∂F
=: −J−1 ∂R

∂F
. (A.4)

Using (A.4), one can extract dve
1/dF that is consistent with the applied inte-

gration method. In accordance with (A.4), one obtains dYα/dF from (61), and
thus all components for the calculation of the ATS-tensor (63) are available.
The overall implementation of the scheme is given in Table 3.
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Table 3: Solution procedure based on the Kröner-Lee decomposition and the evolution equa-
tions based fatigue model.

1. Load data: F , Δε, Yn := [F e
n W̃ p

n F e
1,n s1,n], Yα,n := [αn Dn].

2. Initialize: k = 0, F p|k=0 = F e−1
n F , F e

2 |k=0 = F
e−1
1,n F e

n .

3. Update the internal variables:

(i) Compute σn from (29).

WHILE ‖R‖ > tol

(ii) Compute D̄p by (32).

(iii) Compute ṡ1 by (33).

(iv) Compute the residuals R according to (39), and the Jacobian J := ∂R/∂Y .

(v) Update:, Y ← Yn +ΔY by (A.2) and set k← k + 1.

END WHILE LOOP

(vi) Compute βn by (35) and (20).

(vii) Compute β by (40) and Δβ by (54) taking (62) into account.

IF β ≥ 0 and Δβ ≥ 0 THEN fatigue evolves

WHILE ‖Rα‖ > tol

(viii) Compute Ḋ from (48) and α∇ from (42) taking (56), (57), and (60) into account.

(ix) Compute the residuals Rα according to (61), and the Jacobian Jα := ∂Rα/∂Yα.

(x) Update internal variables, Yα ← Yα,n +ΔYα by analogy to (A.2).

END WHILE LOOP

ELSE

(xi) α∇ = 0, Ḋ = 0.

END IF

4. Store variables: Y := [F e W̃ p F e
1 s1], Yα := [α D] and proceed to

the equilibrium iteration for F and Δε.
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