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Abstract

In this paper, we explain why the chaotic model (CM) of Bahi and Michel (2008)
accurately simulates gene mutations over time. First, we demonstrate that the
CM model is a truly chaotic one, as defined by Devaney. Then, we show that
mutations occurring in gene mutations have the same chaotic dynamic, thus
making the use of chaotic models relevant for genome evolution.

Keywords: Genome evolution models, Mutations, Mathematical topology,
Devaney’s chaos

1. Introduction

Codons are not uniformly distributed in the genome. Over time, mutations
have introduced some variations in their frequency of apparition. It can be at-
tractive to study the genetic patterns (blocs of more than one nucleotide: din-
ucleotides, trinucleotides...) that appear and disappear depending on mutation
parameters. Mathematical models allow the prediction of such an evolution, in
such a way that statistical values observed in current genomes can be recovered
from hypotheses on past DNA sequences. A first model for genome evolution
was proposed in 1969 by Thomas Jukes and Charles Cantor [20]. This first
model is very simple, as it supposes that each nucleotide A,C,G, T has the
probability m to mutate to any other nucleotide, as described in the following
mutation matrix,

¨

˚

˚

˝

1 ´ 3m m m m

m 1 ´ 3m m m

m m 1 ´ 3m m

m m m 1 ´ 3m

˛

‹

‹

‚

In this matrix, the coefficient in row 3, column 2 represents the probability
that the nucleotide G mutates in C during the next time interval, i.e., P pG Ñ
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Cq. This first attempt has been followed up by Motoo Kimura [21], who has
reasonably considered that transitions (A ÐÑ G and T ÐÑ C) should not have
the same mutation rate as transversions (A ÐÑ T , A ÐÑ C, T ÐÑ G, and
C ÐÑ G), leading to the following mutation matrix.

¨

˚

˚

˝

1 ´ a ´ 2b b a b

b 1 ´ a ´ 2b b a

a b 1 ´ a ´ 2b b

b a b 1 ´ a ´ 2b

˛

‹

‹

‚

This model was refined by Kimura in 1981 (three constant parameters, to make
a distinction between natural A ÐÑ T , C ÐÑ G and unnatural transversions),
Joseph Felsenstein [16], Masami Hasegawa, Hirohisa Kishino, and Taka-Aki
Yano [19] respectively. The differences between these models are in the number
of parameters they use, but all of the latter manipulate constant parameters.
However, they all are rudimentary as they only allow to study nucleotide evo-
lution, not genetic patterns mutations. From 1990 to 1994, Didier Arquès and
Christian Michel proposed models based on the RY purine/pyrimidine alphabet
[4, 3, 5, 8, 6, 1]. These models have been abandoned by their own authors in
favor of models over the tA,C,G, T u alphabet. More precisely, in 1998 Didier
Arquès, Jean-Paul Fallot, and Christian Michel proposed a first evolutionary
model on the tA,C,G, T u alphabet that is based on trinucleotides [2]. With
such a model, the mutation matrix now has a size of 64ˆ 64 (there are 64 trin-
ucleotides). This model comprises 3 parameters p, q, r that correspond, for a
given trinucleotide XY Z, to the probability p of mutation of the first nucleotide
X , the mutation probability q of Y , and the probability r that Z mutates. As
for the nucleotides based models, this new approach has only taken into account
constant parameters. In 2004, Jacques M. Bahi and Christian Michel published
novel research work in which the 1998 model was improved by replacing con-
stants parameters by new parameters dependent on time [12]. In this way, it
has been possible to simulate a gene evolution that is non-linear. However, the
following years, these researchers returned to models embedding constant pa-
rameters, probably due to the fact that the 2004 model leads to poor results:
only one of the twelve studied cases allows to recover values that are close to re-
ality. For instance, in 2006, Gabriel Frey and Christian Michel proposed a model
that uses 6 constant parameters [18], whereas in 2007, Christian Michel used a
model with 9 constant parameters that generalize those of 1998 and 2006 [23].
Finally, Jacques M. Bahi and Christian Michel have recently introduced in [10],
a last model with 3 constant parameters, but whose evolution matrix evolves

over time. In other words, trinucleotides that have to mutate (modifying trin-
ucleotide content without changing their location) are not fixed, but they are
randomly picked among a subset of potentially mutable trinucleotides. This
model, called “chaotic model” (CM), allows good recovery of various statistical
properties detected in the genome. Furthermore, this model fits well with the
hypothesis of some primitive genes that have mutated over time.

In this paper, we ask why the CM model yields such good results. Obviously,
it is reasonable to assume that not all of the trinucleotides have to mutate each
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time as, for instance, the stop codons that have very small mutation probabili-
ties. However, such a biological claim is not sufficient to explain the success of
the CM model to accurately simulate the dynamics of mutations in genomes.
Our proposal is that the dynamics of genomes evolution is indeed chaotic, as
defined by the Devaney’s formulation [15, 14]. This is why linear non-chaotic
models of evolution are far from what they attempt to model, leading to a poor
accuracy in their prediction. By contrast, we have recently established that
discrete dynamical systems in chaotic iterations satisfy Devaney’s definition of
chaos [11]. Thus the CM model, which is the first mutation model based on
chaotic iterations [10] (considering that the set of trinucleotides that can pos-
sibly mutate evolve over time), uses a chaotic dynamical system to describe a
chaotic behavior, leading to a model of the same nature as the phenomenon
under study. We finally demonstrate that, in contrast to inversions, mutations
occurring in genomes have a chaotic dynamics. So at least one type of genomes
reorganization process is chaotic, according to the formulation of such a behavior
in the mathematical theory of chaos.

The remainder of this research work is organized as follows. In Section 2, the
CM model of genomes evolution is recalled and its performances are synthesized.
Then, in the next section, basic recalls concerning chaotic iterations and De-
vaney’s chaos are given. Genomics mutations are formalized through a discrete
dynamical system and studied in Section 4. In particular, they are proven to be
chaotic according to Devaney. Other categories of genomics rearrangements are
investigated too, namely transpositions and inversions. This research work ends
with a conclusion section, where the contribution is summarized and intended
future work is listed.

2. The CM Model of Genome Evolution

In this section, the CM model is presented, its capability to reasonably ap-
proximate mutations into genomes is recalled, and its relationship with chaotic
iterations is stated.

2.1. Gene mutations shown as chaotic iterations

When considering the model of 2007 with 9 constant parameters [23] that
generalizes the models of 1998 and 2006 ([2] and [18] respectively), all of the

trinucleotides have to mutate at each time. These models do not take into ac-
count the low mutability of the stop codons. Furthermore, they do not allow
mutation strategies to be applied to certain given codons, while the other codons
do not mutate. This is why the model with 3 constant parameters and a chaotic
strategy has been proposed in [10, 13]. In this model, the set of trinucleotides
is divided into two subsets at each time t: the first one comprises trinucleotides
that can possibly mutate at time t, whereas in the second set, trinucleotides
cannot change at the considered time. The trinucleotides that mutate with
replacement at time t are randomly picked following a uniform distribution on
the set of all possible subsets of trinucleotides (other distribution of probabilities
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like discrete Poisson process have not been regarded by these authors). Con-
sequently, the size and the constitution of the subset of mutable trinucleotides
change at each time t. This subset is denoted by Jptq, and this new model has
been called “chaotic model” CM by the authors of [10, 13], as opposed to the
former “standard model” of 1998 [2], due to its relationship with the chaotic
iterations recalled below. Since the trinucleotides that do not mutate in the
chaotic model are not derived from the mutation of other trinucleotides (as, at
each iteration, we focus only on the subset of trinucleotides that are allowed
to mutate at the considered time), their probabilities of occurrence are con-
stant. Conversely, mutation parameters of the mutable trinucleotides are the
same as the 1998 model: p, q, and r with p ` q ` r “ 1, for each of the three
nucleotide sites. Let Piptq the probability of occurrence of the trinucleotide i

at time t. Let Aptq be the mutation matrix at time t, whose element pi, jq is
P ptqpi Ñ jq: the probability that the i´th trinucleotide (ordered in lexicla or-
der) mutates into the j´th one. For instance, in line 1 and column 2, there is
P ptqp1 Ñ 2q “ P ptqpAAA Ñ AACq. The previous remarks lead to the following
formulation:

$

’

&

’

%

P 1
i ptq “ 0 if i R Jptq,

P 1
i ptq “

64
ÿ

j“1

pAptq ´ IqjiPjptq if i P Jptq.

Obviously, this new model is a generalization of the 1998 version. Indeed, if
we suppose that Aptq “ A for every t, then denoting Jptq is the set of all the
trinucleotides at time t, the latter system can be summarized to its second
line, which is exactly the 1998 model. As the number of mutable trinucleotides
changes over time, the mutation matrix is not constant, which leads to the fact
that the resolution method used in the standard model cannot be applied here.
To solve the system, authors of [10, 13] have considered discrete times small
enough to be sure that the mutation matrix does not change between ti and
ti`1, where the length of rti, ti`1s is small enough compared to the mutation rate.
Let Apkq be the (constant) mutation matrix during the time interval rtk´1, tks.
To compute P 1

i ptk´1q, authors of [10, 13] have considered that:

d Piptk´1q

dt
“

Piptkq ´ Piptk´1q

h
,

where h “ tk ´ tk´1 is supposed small and constant. By putting this formula
into the previous system, these authors have finally obtained:

$

’

&

’

%

Piptkq “ Piptk´1q if i R Jptkq,

Piptkq “ h

64
ÿ

j“1

pApkq ´ IqjiPjptk´1q ` Piptk´1q if i P Jptkq.

This model has been called the “discrete time chaotic evolution model CM” in
[10, 13]. We will show that this discrete version is, indeed, a gene evolution
model that uses chaotic iterations. To understand the interest of this discrete
time chaotic evolution model, we must firstly recall the discovery by Michel et

al. of a C3´code and its properties [7].
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2.2. Relevance of the CM model

A computation of the frequency of each trinucleotide in the 3 frames of
genes, in a large gene population (protein coding region) of both eukariotes and
prokaryotes, it was established in 1996 that the distribution of trinucleotides in
these frames is not uniform [7]. Such a surprising result has led to the definition
of 3 subsets of trinucleotides, denoted by X0, X1, and X2. These sets are defined
as follows. For each of the 60 trinucleotides different from AAA, TTT , CCC,
GGG, computes its frequency in the reading frame R0, in the frame R1 obtained
by a shift of 1 nucleotide to the left of R0, and in the frame R2 obtained by a shift
of 2 nucleotides. If the considered trinucleotide is more frequent in R0 (resp.
R1, R2), put it in X0 (resp. X1, X2). This procedure is repeated, with small
variations, until X0, X1, and X2 are respectively made-up of 20 trinucleotides.
These sets are linked by the following permutation property: X1 “ tPptq, t P
X0u, X2 “ tPptq, t P X1u, where P is defined for all trinucleotide t “ n0n1n2

by Pptq “ n1n2n0. Additionally, if we denote c : N ÝÑ N the complementary

function defined on the set of nucleotides N “ tA, T,C,Gu by: cpAq “ T ,
cpT q “ A, cpCq “ G, cpGq “ C, and for all words of nucleotides u and v, cpuvq “
cpvqcpuq, then we have cpX0q “ X0, cpX1q “ X2, and cpX2q “ X2, which is
referred to the “complementarity property”. More details about the research
context, the constitution of these sets, and their properties (C3 code, rarity,
largest window length, higher frequency of “misplaced” trinucleotides, flexibility)
can be found in [10, 13]. Among other things, it has been proven that X0 occurs
with the highest probability (48.8%) in genes (reading frames 0), whereas X1

and X2 occur mainly in the frames 1 and 2 respectively. In other words, X0 is
not pure in the reading frame (its probability is less than 1): it is mixed with X1

and X2. Such a property has been explained by authors of [10, 13] as follows.
Suppose that X0 represents the set of trinucleotides used to build the gene of the
last common ancestor of the considered set of species. Random mutations have
introduced noise during evolution, leading to a decreased probability of X0 [10,
13]. Another fundamental property is asymmetry in the sense that codes X1 and
X2 satisfy P pX1q ă P pX2q. The standard and chaotic models (with particular
strategies for the stop codons) can explain both the decreased probability of
the code X0 and the asymmetry between the codes X1 and X2 in genes, by the
following procedure. Construct the “primitive” genes, i.e., genes before random
substitutions, with trinucleotides of the circular code X0. Starting from this
initial condition, the systems (standard or chaotic) are launched, iterating their
processes until a stop condition is checked. By doing so, and for rates chosen
carefully, it is possible to be close to the current frequency of each of the three
codes X0, X1, and X2 in genes. In this situation, CM models largely outperform
the standard models, being closer to the observed probabilities for X0, X1, and
X2 discussed above. In particular, the chaotic model called “CMTAA” with low
mutability of the stop codon TAA, matches as much as possible the probability
discrepancy between the circular codes X1 and X2 observed in reality. For
further details, the reader is referred to [10, 13].

All the properties described before show that the gene mutation prediction
is suitable to describe these phenomena. This kind of manifestation of chaos in
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genomics is somewhat surprising and needs, in our opinion, to be further inves-
tigated, determining whether more fundamental reasons can justify the success
of chaotic models to well simulate genome evolution. In the following section,
we will propose some reasons explaining why chaos is related to genomes. More
precisely, we will show that some genome evolution mechanisms, as modeled in
the present article, are chaotic according to Devaney. To achieve this goal, we
first need to recall the bases of the mathematical theory of chaos.

3. Basic Remainders

Let us now rigorously introduce the notions of Devaney’s chaos and of chaotic
iterations, with their respective links.

3.1. Devaney’s chaotic dynamical systems

Consider a topological space pX , τq and a continuous function f : X Ñ X .

Definition 1 Function f is said to be topologically transitive if, for any pair of
non empty open sets U, V Ă X , there exists k ą 0 such that fkpUq X V ‰ H.

Definition 2 The point x P X is a periodic point for f of period n P N
˚ if

fnpxq “ x.

Definition 3 Function f is said to be regular on pX , τq if the set of periodic
points for f is dense in X : for any point x in X , any neighborhood of x contains
at least one periodic point.

Definition 4 Function f is said to be chaotic on pX , τq if f is regular and
topologically transitive.

In cases where the topology τ can be described by a metric d, the chaos property
is strongly linked to the notion of “sensitivity”, defined on a metric space pX , dq
by:

Definition 5 Function f has sensitive dependence on initial conditions if there
exists δ ą 0 such that, for any x P X and any neighborhood V of x, there exists
y P V and n ě 0 such that d pfnpxq, fnpyqq ą δ. Then δ is called the constant

of sensitivity of f .

Indeed, Banks et al. have proven in [14] that when f is chaotic on pX , dq, then f

has the property of sensitive dependence on initial conditions (this property was
formerly an element of the definition of chaos). To sum up, quoting Devaney
in [15], a chaotic dynamical system “is unpredictable because of the sensitive
dependence on initial conditions. It cannot be broken down or simplified into two
subsystems which do not interact because of topological transitivity. And in the
midst of this random behavior, we nevertheless have an element of regularity”.
Fundamentally different behaviors are consequently possible and occur in an
unpredictable way.
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3.2. Chaotic Iterations

Definition 6 Let X be a set, N P N
˚, f : XN ÝÑ XN be a function, and S be a

sequence of subsets of v1;Nw called a “chaotic strategy”. The chaotic iterations

are the sequence pxnqnPN of elements of XN defined by x0 P XN and

@n P N
˚,@i P v1;Nw, xn

i “

#

xn´1

i if i R Sn

`

fpxn´1q
˘

i
if i P Sn.

In other words, at the nth iteration, only the components of Sn are “iterated”.
Note that the term “chaotic” in the name of these iterations, has a priori no
link with the mathematical theory of chaos, which will be recalled in the next
section. However, it has been proven in [9] that, for a large variety of functions,

chaotic iterations are indeed really chaotic.

4. Genomics Mutations as a Discrete Dynamical System

4.1. Presentation of the Problem

We now ask whether the evolution of a DNA sequence under evolution can be
predicted or not. In this section, we will more specifically focus on the following
questions. Firstly, given a genome (or any DNA sequence) G of interest, and a
more or less precise idea of mutations that it will probably face in future (for
instance, some areas in the genomes are known to mutate more frequently than
other ones), is it possible to infer a set of the more probable genomes that can
result, in the future, from this original sequence G after mutations? Second,
given a sequence known at the current generation (say, at time tn), is it possible
to determine what was the most probable aspect of this sequence in the past
(at time tm,m ă n)? Thirdly, given two DNA sequences, the second one being
the result of some mutations on the first one, is it possible to find the mutation
sequence that has changed the first sequence in the second one (taking into
account the fact that a given nucleotide can mutate several times). Obviously,
with no information about the mutation rate and history of the considered DNA
sequence, this prediction is quite impossible. But what happens if we can follow
the DNA sequence over several generations, learning by doing so information
about the possible form of its mutations sequence? For instance, following a
lineage of Escherichia coli during 40000 generations gives us a lot of informations
concerning the behavior of mutations in the genomes of the considered lineage.
Is it possible to use this knowledge to predict the genome of this lineage at
generation number 45000 ? In other words, knowing the initial DNA sequence
G0 at time t0 and the 40000 first terms of the mutations sequence, can we predict
the DNA sequence at time t45000? With the knowledge of G0 and the whole
mutations sequence S “ pS0, . . . , S45000q, the genome G45000 can be obtained
without prediction, but what happens to our ability to make a prediction when
using only the head pS0, . . . , S40000q of this sequence? This head can be seen
as an approximation of the true mutations sequence S, and if the evolution
dynamics of the mutations is quite stable through approximations, in the sense
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where a small perturbation at the origin yields a small perturbation at the end
of the process, then this prediction makes sense. To measure the stability of the
mutation dynamics through small errors or approximations, and the capability
to predict the evolution of genomes under mutations, we must firstly write this
mutation operation as a dynamical system, provide an accurate distance that
corresponds to the “approximation” quoted below, and measure the effects of
our ignorance on the complete mutations sequence on the prediction of genomes
evolution.

4.2. Formalization of DNA Mutation Evolution

A genome having N nucleotides is formalized here as a sequence of N inte-
gers belonging in t1, 2, 3, 4u, where 1 (resp. 2, 3, and 4) refers to the adenine
(resp. cytosine, guanine, and thymine). The benefit of using integers t1, 2, 3, 4u
instead of tA,C,G, T u is justified by the construction of a metric for the muta-
tion process (see Section 4.3). An evolution under nucleotide mutations of this
genome is a sequence of couples of v1,Nw ˆ v1, 4w, where we infer that:

• time has been divided into a sequence t0, t1, . . . , tn, . . . such that at most
one mutation can occur between two time intervals,

• the i´th couple of the mutation sequence is equal to pm,nq if and only if
the m´th nucleotide of the genome is replaced into the nucleotide n. If
the m´th nucleotide was n, then no mutation has occurred at time ti.

Such a sequence will be called “mutations sequence” in the remainder of this
document. SN “

ď

nPN

pv1,Nw ˆ v1, 4wq
n will denote the (infinite) set of all possible

mutations (finite) sequences. We introduce the phase space XN “ v1, 4wN ˆ SN

as the set of mutating genomes. It is constituted by couples of points that store
the information of a genome and its future evolution: the first coordinate of
the couple is the current DNA sequence whereas the second coordinate is the
sequence of mutations that will appear in the future (the problem is that this
sequence can only be, in the best case, approximate concretely).

Example 1 For instance, the point pp1, 1, 2, 1, 3q, pp2, 2q, p2, 3q, p1, 4qqq P X5 cor-
responds to the evolution tAACAG,ACCAG,AGCAG, TGCAGu: the left co-
ordinate p1, 1, 2, 1, 3q means that we start with the sequence AACAG, whereas
the second coordinate pp2, 2q, p2, 3q, p1, 4qq explains that:

1. the first mutation p2, 2q is a substitution of the second nucleotide by C,
2. the second mutation p2, 3q is a substitution of the second nucleotide by G,
3. the third and last mutation p1, 4q refers to the substitution of the first

nucleotide by T , which is designed here by 4.

Let us now introduce the initial and shift operators i and σ defined respectively
by

i : SN ÝÑ v1,Nw ˆ v1, 4w
ps0, s1, . . .q ÞÝÑ s0
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and
σ : SN ÝÑ SN

ps0, s1, . . .q ÞÝÑ ps1, s2, . . .q.

The shift operator corresponds to the so-called symbolic dynamics, a well-
studied mathematical example of chaotic dynamics [17]. With this material,
the mutation operation M can be written as follows:

M : XN ÝÑ XN

pG1, . . . , GNq, Sq ÞÝÑ
`

pG1, . . . , GipSq1´1, ipSq2, GipSq1`1, . . . , GNq, σpSq
˘

.

(1)
In other words, the nucleotide at position ipSq1 in the genome pG1, . . . , GNq is
replaced by the nucleotide ipSq2, and the first substitution ipSq in the mutation
sequence S is removed (as the mutation has already been achieved). Thus the
DNA evolution as the generations pass can finally be written as the following
discrete dynamical system:

"

X0 “ pG0, Sq P XN

Xn`1 “ MpXnq.
(2)

Example 2 Let us consider Example 1 another time. As stated before, X0 “
pp1, 1, 2, 1, 3q, pp2, 2q, p2, 3q, p1, 4qqq P X5. Then X1 “ MpX0q “ pp1, 2, 2, 1, 3q,
pp2, 3q, p1, 4qqq, X2 “ MpX1q “ pp1, 3, 2, 1, 3q, pp1, 4qqq, and X3 “ MpX2q “
pp4, 3, 2, 1, 3q,∅q. The last DNA sequence, obtained after 3 mutations (3 itera-
tions of the dynamical system), is thus equal to G3 “ X3

1 “ p4, 3, 2, 1, 3q, which
is TGCAG.

4.3. A Metric for Mutation based Genomes Evolution

A relevant metric must now be introduced in order to measure the correctness
of the prediction, and to give consistency to the notion of approximation that
has occurred several times in the previous section. This distance must be defined
on the set XN, to measure how close is a predicted DNA evolution to the real
one. It will be constructed as follows: given X “ pX1, X2q, Y “ pY1, Y2q P XN,
the number dpX,Y q:

• has an integer part that computes the differences between the two DNA
sequences X1 (for instance, the predicted or approximated genome) and
Y1 (the real genome), that is, the number of nucleotides that do not cor-
respond in the two genomes.

• has a fractional part that must be as small as the evolution processes
X2, Y2 will coincide for a long enough duration. More precisely, the k´th
digit of dpX,Y q will be equal to 0 if and only if, after k generations, the
same position (nucleotide) will be changed in both X1 and Y1 genomes,
and the same nucleotide is inserted in each case.
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Such requirements lead to the introduction of the following function:

@X,Y P XN, dpX,Y q “ dGpX1, Y1q ` dSpX2, Y2q

where
$

’

’

’

’

&

’

’

’

’

%

dGpX1, Y1q “
N

ÿ

k“1

δpXk
1 , Y

k
1 q,

dSpX2, Y2q “
9

N

8
ÿ

k“0

FpXk
2 ´ Y k

2 q

10k`1
,

where δ is the discrete metric on R, that is, for x, y P R, δpx, yq “

#

1 if x ‰ y,

0 else,

and F : R2 ÝÑ R
` is given by Fpx1, x2q “ |x1| ` δp0, x2q.

Proposition 1 Function d is a metric on XN.

Proof The function dG is clearly a metric on v1, 4wN as being the 1-product
metric of the N metric spaces pv1, 4w, δq. We now prove that dS is a metric.
Firstly, dS is well defined since for pX2, Y2q P SN, one gets FpXk

2 ´Y k
2 q ď N` 2

for every k P N, implying the convergence of the series in the definition of dS .
Coincidence axiom and symmetry being obvious, we only prove the subadditivity
of fS. If x2, y2 P R are such that δp0, x2 ´ y2q “ 1 then x2 ‰ y2 and for every
z2 P R, either x2 ‰ z2 or y2 ‰ z2 and so δp0, x2 ´ z2q ` δp0, z2 ´ y2q ě 1.
Consequently for every x, y, z P R

2, Fpx ´ yq ď Fpx ´ zq ` Fpz ´ yq. The
series being convergent for every X2, Y2 P SN, one deduces that dG satisfies the
subadditivity property on SN and is a metric on this set. As a consequence, d
is a metric on XN.

4.4. The Topological Study of Mutations

4.4.1. Continuity

Let us start by proving that,

Proposition 2 The mutation operation M is a continuous function on pXN, dq.

Proof This result will be established by using the sequential characterization
of the continuity. Let pXnqnPN a sequence of XN that converges to ℓ P XN. We
must prove that MpXnq ÝÑ Mpℓq in pXN, dq. Let ε ą 0. Xn ÝÑ ℓ in pXN, dq,
then Dn1 P N, @n ě n1, dpXn, ℓq ď 0.09. So all Xn for n ě n1 have the same
first coordinate (genome), which is ℓ1. Furthermore, consequently to the defini-
tion of dS , the first term of each Xn

2
for n ě n1 is equal to the first term of ℓ2.

So, @n ě n1, MpXnq1 “ Mpℓq1.
Let k0 “ r´log10pεqs. As dpXn, ℓq ÝÑ 0, Dn2 ě n1 such that, for n ě n2,

dSpXn
2
, ℓ2q ď

1

10k0`1
, meaning that the sequences Xn

2
, n ě n2 and ℓ2 start

all with the same k0 ` 1 terms. As the operation of M on the second co-
ordinate of points of XN is a shift of one term to the left, we conclude that

@n ě n2, dGpMpXnq1,Mpℓq1q “ 0 and dSpMpXnq2,Mpℓq2q ă
1

10k0

ď ε, and

thus MpXnq ÝÑ Mpℓq in pXN, dq, which ends the proof.

10



As M is continuous, we can thus study the chaotic behavior of the discrete
dynamical system of Eq. 2.

4.4.2. Chaotic Behavior of DNA Mutations

We first prove that,

Proposition 3 M is topologically transitive on pXN, dq.

Proof Let X “ pG,Sq and X̌ “ pǦ, Šq two points of XN, and ε ą 0. We will
find n P N and a point X 1 “ pG1, S1q P B pX, εq, the open ball centered on X

with radius ε, such that MnpX 1q “ X̌. Let k0 “ r´log10pεqs. Thus any point of
the form pG, pS0, S1, . . . , Sk0 , sk0`1, sk0`2, . . .qq, with sk0`1, sk0`2, . . . P v1,Nw,
is in B pX, εq. Suppose that G and Ǧ have m different nucleotides, in position
i1, . . . , im P v1,Nw. Thus the point

X 1 “ pG, pS0, S1, . . . , Sk0 , pi1, Ǧi1q, . . . , pim, Ǧimq, Š0, Š1, . . .q P B pX, εq

is such that Mk0`m`1pX 1q “ X̌, leading to the transitivity of M.

Remark 1 A stronger result than the topological transitivity has indeed been
stated in the proof above. It is called strong transitivity and is defined by: for
all X,Y P X and for all neighborhood V of X , it exists n P N and X 1 P V such
that MnpX 1q “ Y . Obviously, the strong transitivity implies the transitivity
property.

We now prove that,

Proposition 4 M is regular on pXN, dq.

Proof Let X P XN and ε ą 0. We have to exhibit a periodic point X 1 P BpX, εq.
Let k0 “ r´log10pεqs. Suppose that X “ pG, pS0, S1, . . .q, and that the genome
Mk0pXq1 differ from m nucleotides of G in position i1, . . . , im P v1,Nw. Then
the point:

X 1 “ pG, pS0, . . . , Sk0 , pi1, Gi1q, . . . pim, Gimq, S0, . . . , Sk0 , pi1, Gi1q, . . . pim, Gimq, . . .q

is a periodic point in BpX, εq.

Let us finally demonstrate that:

Proposition 5 The mutation operator M has sensitive dependence on initial

condition, and its constant of sensitivity is equal to N `
t
N

2
u ` 1

N
.

Proof Let X “ pG,Sq P XN and ε ą 0. Let k0 “ r´log10pεqs. Consider a
finite sequence of nucleotides pn1, . . . , nNq P v1, 4wN such that for each i P v1,Nw,
ni ‰

`

Mk0`NpXq1
˘

i
, and an infinite sequence psjqjPN such that for every j P N,

11



• s
j
1

“

$

&

%

N if
`

Mk0`N`jpXq2
˘

1
ď

N

2
,

1 else.

• s
j
2

“

#

4 if
`

Mk0`N`jpXq2
˘

2
“ 1,

1 else.

Then the point

X 1 “ pG, pS0, . . . , Sk0 , p1, n1q, . . . pN, nNq, s0, s1, . . .q P BpX, εq

and is such that dpMk0`NpXq,Mk0`NpX 1qq ě N `
t
N

2
u ` 1

N
. Due to the defini-

tion of pn1, . . . , nN q and psjqjPN, the infimum in the latter equality is optimal,
and the distance cannot be enlarged systematically for the neighborhood of all
points.

The three previous propositions lead to the following result.

Theorem 1 Genome mutations as modeled by our approach have a chaotic

behavior according to Devaney.

4.5. Further Investigations

4.5.1. Quantitative properties

Genomic mutations possess the instability property:

Definition 7 A dynamical system pX , fq is unstable if for all x P X , the orbit
γx : n P N ÞÝÑ fnpxq is unstable in the following sense,

Dε ą 0, @δ ą 0, Dy P X , Dn P N, s.t. dpx, yq ă δ and d pfnpnq, fnpyqq ě ε.

This property, which is implied by sensitive dependence on initial conditions,
leads to the fact that in all neighborhoods of any genome evolution pG,Sq there
are points that can be separated with distance bigger than ε in the future
through mutations.

Let us now recall another common quantitative measure of disorder.

Definition 8 A function f is said to have the property of expansivity if

Dε ą 0,@x ‰ y, Dn P N, dpfnpxq, fnpyqq ě ε.

Then ε is the constant of expansivity of f : an arbitrarily small error on any
initial condition is always amplified of ε. Let us prove that,

Theorem 2 Mutation operator M is expansive and its constant of expansivity

is at least equal to 1.

Proof If X1 ‰ Y1, then dpX,Y q “ dpM0pXq,M0pY qq ě 1.
Or else necessarily X2 ‰ Y2. Let n “ mintk P N, Xk

2 ‰ Y k
2 u. Then @k ă

n,MkpXq1 “ MkpY q1 and MnpXq1 ‰ MnpY q1, so dpMnpXq,MnpY qq ě 1.

12



4.5.2. Qualitative properties

Firstly, the topological transitivity property implies indecomposability [24].

Definition 9 A dynamical system pX , fq is indecomposable if it is not the
union of two closed sets A,B Ă X such that fpAq Ă A, fpBq Ă B.

Hence, taking into account only a small part of a genome in the modeling
process, in order to simplify the complexity of the studied dynamics, takes away
from us to a global vision of mutations. Moreover, we will prove that genomic
mutations are topologically mixing, which is a strong version of transitivity:

Definition 10 A discrete dynamical system is said to be topologically mixing

if and only if, for any couple of disjoint open sets U, V ‰ ∅, n0 P N can be found
so that @n ě n0, f

npUq X V ‰ ∅.

We have the result,

Theorem 3 pXN,Mq is topologically mixing.

This property is an immediate consequence of the lemma below.

Lemma 1 For all open ball B Ă XN, there exists an integer n P N
˚ such that

Mpnq pBq “ XN, where Mpnq is the n-th composition of operator M defined in

(1).

Proof Let B “ B
``

pG1, . . . , GNq , pS0, . . .q
˘

, ε
˘

, k0 “ ´log10 p|ε|q, and X̌ “
``

Ǧ1, . . . , ǦN

˘

, pŠ0, . . .q
˘

P XN.
We define X 1 “

`

pG1, . . . , GNq , pS0, . . . , Sk0 , p1, Ǧ1q, . . . , pN, ǦNq, Š0, . . .
˘

.
This point is such that X 1 P B and Mpk0`NqpX 1q “ X̌ .

Mutations M satisfy the notion of chaos according to Knudsen too, which
is defined by [22]:

Definition 11 A discrete dynamical system is chaotic according to Knudsen
if:

• it is sensitive to the initial conditions,

• there is a dense orbit.

Let us prove that,

Proposition 6 The mutation operator is chaotic according to Knudsen on pXN, dq.

Proof The sensitivity to the initial condition has yet been stated. Let us define
a point X on XN having a dense orbit under iterations of M. XN “ v1, 4wN ˆSN

being the Cartesian product of two countable sets, it is countably infinite too:
there exists a bijection σ : N ÝÑ XN. Let G : XN ÝÑ v1, 4wN, pG,Sq ÞÝÑ G be
the first projection. Then X can be defined as follows:

X “ pp1, 1, . . . , 1q, p p1,Gpσp0qq1q, p2,Gpσp0qq2q, . . . , pN,Gpσp0qqNq, σp0q2,
p1,Gpσp1qq1q, p2,Gpσp1qq2q, . . . , pN,Gpσp1qqNq, σp1q2,
. . .qq
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This X is such that @Y P XN, DnY P N,MnY pY q “ X , which is stronger than
the required density.

To a certain extent, this notion of chaos is less restrictive than the one of
Devaney. More precisely, Devaney’s chaos implies Knudsen’s chaos in compact
spaces [17].

4.5.3. Discussion

Conclusion of this study of mutations is that they present a chaotic behavior
leading to the impossibility to qualify the long term effect of an error in pre-
dicting the location and frequency of mutations into genomes. In the worst case
scenario, this error will be amplified until having a completely different genome
(all the nucleotides are different, as the constant of sensitivity is greater than
the length of the genome). However this case is rather marginal, mutations do
not occur as frequently as the generations pass, and a mutation implies a change
of only one nucleotide, leading to the opinion that, at least in the short term,
the general aspect of the genome under consideration still remains under control
when only mutations occur.

Inversion and transpositions are another genomics rearrangements that mostly
affects more than one nucleotide. Thus an error in the prediction of these op-
erations can potentially more largely impact the genome evolution. To qualify
such impact, we first give some definitions useful to formalize inversions.

Definition 12 The complementary function c : v1, 4w ÝÑ v1, 4w is defined by
cp1q “ 4, cp4q “ 1, cp2q “ 3, and cp3q “ 2.

Then the complement of adenine A is thymine T, and cp2q “ 3 means, for
instance, that the complement of cytosine is guanine. We can now define the
inversion process on a chromosome:

Definition 13 Let N P N
˚, and pn1, . . . , nNq a chromosome. Inversions have

the form:

pn1, . . . , ni´1, ni, ni`1 . . . , nj´1, nj , nj`1, . . . , nNq ÝÑ

pn1, . . . , ni´1, cpnjq, cpnj´1q . . . , cpni`1q, cpniq, nj`1, . . . , nNq.

Example 3 For instance, ACCTGTAATGTTA is a possible inversion of
ACCTTTACTGTTA.

Obviously, it is impossible to map the DNA sequence AAAAAAAA into
CCCCCCCC using only inversions, as the complement of A is T . This fact is
in contradiction with the property of transitivity, leading to the statement that,

Proposition 7 The inversion rearrangement is not chaotic on the set of all

genomes of size N.
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Let us finally investigate the dynamics of transposition inside genomes.
Transposons are DNA sequences that can move into a given genome following
a cut and paste mechanism of transposition:

pn1, . . . , ni´1, ni, . . . , nj , nj`1, . . . , nk, nk`1, . . . , nNq ÝÑ

pn1, . . . , ni´1, nj`1, . . . , nk, ni, . . . nj , nk`1, . . . , nNq.

Obviously this transposition cannot fit the requirements of transitivity, as the
number of adenines, thymines, guanines, and cytosines are preserved. Then, for
instance, it is impossible to join a genome with an high rate of thymine, starting
transpositions on a genome with a low rate of T . Thus,

Proposition 8 Transposition of transposons is not chaotic according to De-

vaney.

5. Conclusion

In this document, the three operations of genomics rearrangement that can
be modeled by discrete dynamical systems (due to the preservation of the size
of the genomes) have been studied using mathematical topology. It has been
stated that mutations are chaotic, whereas transpositions and inversions are
not. The proposed models lead to the feeling that genome evolution generates
moderate chaos, and that this evolution can probably be predicted to a certain
extent.

This claim will be further investigated in our future work, by making a larger
and complete study of all the possible rearrangements into genomes, measure
and study their frequency using the related literature, and discussing to what
extend this prediction can be realized. In particular, authors will study the set
of mutations, transpositions, and inversion strategies, to take into account for
the presence of recombination hotspots.
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