
HAL Id: hal-02131167
https://hal.science/hal-02131167

Submitted on 16 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resiliency in Distributed Sensor Networks for
Prognostics and Health Management of the Monitoring

Targets
Jacques Bahi, Wiem Elghazel, Christophe Guyeux, Mohammed Haddad,

Mourad Hakem, Kamal Medjaher, Noureddine Zerhouni

To cite this version:
Jacques Bahi, Wiem Elghazel, Christophe Guyeux, Mohammed Haddad, Mourad Hakem, et al.. Re-
siliency in Distributed Sensor Networks for Prognostics and Health Management of the Monitoring
Targets. The Computer Journal, 2016, 59 (2), pp.275 - 284. �10.1093/comjnl/bxv126�. �hal-02131167�

https://hal.science/hal-02131167
https://hal.archives-ouvertes.fr

Resiliency in Distributed Sensor Networks for

PHM of the Monitoring Targets

J. Bahi1, W. Elghazel2, C. Guyeux1, M. Haddad3, M. Hakem1,
K. Medjaher2, and N. Zerhouni2

August 23, 2016

Abstract

In condition-based maintenance, real-time observations are crucial for
on-line health assessment. When the monitoring system is a wireless sen-
sor network, data loss becomes highly probable and this affects the quality
of the remaining useful life prediction. In this paper, we present a fully
distributed algorithm that ensures fault tolerance and recovers data loss
in wireless sensor networks. We first theoretically analyze the algorithm
and give correctness proofs, then provide simulation results and show that
the algorithm is (i) able to ensure data recovery with a low failure rate
and (ii) preserves the overall energy for dense networks.

1 Introduction

In a monitoring activity, the sensor nodes are placed on/around the monitored
target to collect measurements of relevant parameters, such as temperature.
These measurements will help evaluate the system’s current state of health,
diagnose the degree of its severity, and extrapolate the result in the future to
estimate when the system is more likely to fail. The goal from this activity is to
schedule maintenance in a way that prevents system failure and shutdown. To
guarantee the efficiency of this process, the accuracy of on-line measurements is
a crucial requirement. Consequently, the Wireless Sensor Network (WSN) used
in the monitoring needs to be dependable.

Avizienis [1] defined system dependability as “the ability of a system to avoid
failures that are more frequent or more severe, and outage durations that are
longer, than is acceptable to the users”. A dependable network should be able to
deliver a correct service (forwards measurements to the base station) and makes
sure that failed components will not lead to a network failure. Dependability of
WSNs is a property that integrates the attributes needed for the application to
be justifiably trusted. These attributes include availability and reliability.

A network failure can be caused by a number of triggers such as: packet
loss, node failure, energy exhaustion, packet interference... The network is con-
sidered available if its downtime is very limited, either due to few failures or to

1

ar
X

iv
:1

60
8.

05
84

4v
1

 [
cs

.D
C

]
 2

0
A

ug
 2

01
6

quick restarts when a failure takes place [2, 3]. A reliable network is able to
continuously deliver a correct service. The reliability can be computed as the
probability that a network functions properly during a time interval [3, 4].

Most of the research works solved the problem of network reliability through
retransmission and redundancy mechanisms [4].
The acknowledgment mechanism is employed by the receiver to notify the sender
of the reception status. If the packet fails to arrive to its destination, the
sender keeps on re-sending it until the transmission is successful [5, 6, 7, 8].
Unfortunately, this solution does not respect the energy constraints of WSNs,
since packet transfer consumes the highest amount of energy in the network.
Reliability can also be introduced via data redundancy mechanisms. A packet
is transmitted in multiple copies using different routes as a backup plan in case
one of the routes fails [9, 10, 11]. However, this solution results in unnecessary
transmissions and therefore does not improve energy consumption WSNs.

In the context of of extending the network’s lifetime, a possible solution is
to maintain a minimum number of sensor nodes in an active mode [12, 13, 14].
Although this seems to solve the energy problem, other issues arise:

• How can we ensure a minimum coverage rate?

• How can we reduce the loss of data?

• How can we avoid unnecessary packet forwards?

In this study, the number of awake sensor nodes is kept to a minimum;
enough to ensure coverage rate. The probability of nodes awakening is updated
following two variables: time and failure rate. Data sensed by a sensor is copied
on its neighbors, and will only be retrieved when the active node has failed.
this mechanism avoids unnecessary packet forwards and therefore preserves the
overall energy. The remainder of this paper is organized as follows. Section 2
presents some of the existing work in WSN reliability. In Section 3, we describe
our algorithm. The simulation results are shown and discussed in Section 4.

2 Related work

Reliability is an important attribute for WSNs dependability, and it means
that the network should be able to continuously deliver a correct service. In
order to attain reliability in WSNs, sensing coverage and sensing level need
to be considered. The sensing coverage refers to the integrated sensing area
which is monitored by at least one sensor node. As for the sensing level, it
refers to the number of sensor nodes being able to detect a new event when it
takes place [15]. Choi et al. argue that existing node scheduling schemes focus
on the minimum sensing level for the coverage problem and neglect the fault
tolerance issues [15]. In one hand, the minimum sensing level is an NP-complete
problem. On the other hand, it cannot be preserved when nodes start to fail.
Therefore, the authors propose the Fault-tolerant Adaptive Node Scheduling

2

(FANS) algorithm, which efficiently handles the degradation of the sensing level.
The algorithm designates a set of backup nodes for each active node. If the latter
fails, the predesignated set of backup nodes activate themselves to replace it and
to restore the lowered sensing level. FANS requires a small number of backup
nodes and a small amount of control messages. In [16], Chen et al. study fault
tolerant out-of-band monitoring for WSNs. They aim at placing a minimum
number of monitors in a sensor network in a way that all sensor nodes are
monitored by k distinct monitors, and each monitor serves at most w sensor
nodes. The authors first prove that this problem is NP-hard and then propose
three algorithms providing near optimal solutions.

Battery level, broken links, and communication failures have an impact on
the Quality of Service (QoS) of WSNs. This leads to consequences varying from
disturbing the traffic in the network to completely interrupting it. Geeta et al.
[17] propose an Active node-based Fault Tolerance using Battery power and In-
terference model (AFTBI) to identify the faulty nodes in WSNs. Fault tolerance
against low battery power is assured through a hand-off mechanism where the
faulty node selects the neighbor with highest battery level and transfers all the
services towards it. To reduce interference signal, a dynamic power level mech-
anism is introduced, where the power of a node is adjusted automatically with
regards to its current state (active or asleep). Simultaneous transmissions can
be avoided if the nodes are only allowed to transmit data within a time slot. Lee
and Choi [18] tackle the same problem by identifying and isolating the faulty
sensor nodes in the network. Sensed data is compared among neighbors to deter-
mine its accuracy. Once the predetermined fault threshold is reached, the node
in question is isolated from the diagnosis process; a faulty node can be included
in data transferring but not data sensing. Transient faults in communication
and sensor reading are tolerated by using the time redundancy mechanism. The
drawback of this solution is that faults are assumed to be only related to the
sensing activity, excluding other sources of failure.

Energy in WSNs can also be preserved through lifetime optimization. The
authors in [19] leverage prediction to prolong the network lifetime, by exploiting
temporal-spatial correlations among the data sensed by different sensor nodes.
Based on Gaussian Process, the authors formulate the issue as a minimum
weight sub-modular set cover problem and propose a centralized and a dis-
tributed truncated greedy algorithms (TGA and DTGA). They prove that these
algorithms obtain the same set cover. Lifetime optimization using knowledge
about the dynamics of stochastic events has been studied in [20]. The au-
thors presented the interactions between periodic scheduling and coordinated
sleep for both synchronous and asynchronous dense static sensor network. They
show that the event dynamics can be exploited for significant energy savings,
by putting the sensors on a periodic on/off schedule. In [13], the authors de-
sign a polynomial-time distributed algorithm for maximizing the lifetime of
the network. They proved that the lifetime attained by their algorithm ap-
proximates the maximum possible lifetime within a logarithmic approximation
factor. Zhang et al. [21] presented a stochastic sensing algorithm to reduce
energy consumption through node scheduling. They used data correlation be-

3

tween nodes to reduce error rate by adjusting duty cycle of faulty sensors. Their
algorithm conserves 60 % of energy as compared to other solutions, while con-
fining sensing error within specified error tolerance. In [22], He et al. use actors
to allocate spare sensors to sensor-deficient regions or to relocate sensors from
sensor-abundant regions to sensor-deficient regions. They introduce a baseline
centralized greedy algorithm for sensor allocation, where global sensor informa-
tion is communicated to obtain the optimal solution. The works cited here focus
on a periodic schedule for turning the sensors on and off.

Data collection delay and reliability need to be considered in scheduling al-
gorithms for WSNs. Zhang et al. [23] claim that existing algorithms have not
solved these two problems effectively. The authors propose the Fault-Tolerant
Scheduling (FTS) algorithm, where each sensor node detects the environment
and generates some sensing data at regular intervals. The algorithm helps sur-
viving network malfunction by switching the parent of a sensor node to its
backup parent. The simulation results show that FTS has a short data collec-
tion time and high fault tolerance. Feng et al. [24] considered the problem of
efficient data aggregation in WSNs by putting in place amendment strategies in
case of failures. Their solution needs local information to repair the aggregation
tree and automatically reschedules nodes for interference free aggregation after
the amendment. Cheng et al. [25] present STCDG, an efficient data gathering
scheme based on matrix completion. STCDG takes advantage of the low-rank
feature instead of sparsity, thereby avoiding the problem of having to be cus-
tomized for specific sensor networks. They exploit the presence of the short-term
stability feature in sensor data, which further narrows down the set of feasible
readings and reduces the recovery errors significantly. Furthermore, STCDG
avoids the optimization problem involving empty columns by first removing the
empty columns and only recovering the non-empty columns, then filling the
empty columns using an optimization technique based on temporal stability.

To preserve the overall energy in the network, sensor nodes are on a periodic
schedule where they are switched on only when the sensing level is decreased.
An optimal schedule needs to take nodes failure rate and the elapsed run-time
into consideration. When the failure rate is small, wakening the nodes too often
would only waste energy. As we go further in time, nodes start to exhaust their
energy supply and this is when they start to fail. A combination a node failure
rate and elapsed time would give us a better indication of the optimal nodes
wakening schedule.
Maintaining the sensing level considerably reduces the amount of packet loss, yet
it does not completely prevent its occurrence. A sudden node failure will result
in the permanent loss of the held data packet, unless a redundancy mechanism
is put in place. In the context of reducing energy consumption, the redundancy
solution should be avoided and replaced by other solutions which do not include
unnecessary packet transmission.

In this paper, we present a fault-tolerant data collection algorithm. This
algorithm preserves energy consumption by only maintaining the necessary set
of nodes in the active mode to ensure the minimum coverage level, while con-

4

sidering nodes failure rate. It is also able to recover data loss when a node fails
before forwarding the data towards the base station. This algorithm is described
in the next section.

3 The proposed algorithm

To cope with fault tolerance and data survivability, a fully distributed algorithm
is presented and theoretically analyzed. Our algorithm seeks to cover data loss
by maintaining a necessary set of working nodes and recovering failed ones when
needed. We suppose that we are in the case of high density networks, and not
all nodes participate in the network’s service. Some nodes are in an idle state
because their targets are actually covered by working sensors. We consider that
these idle sensors wake up periodically to check for eventual node failures and
therefore ensure their targets’ coverage. In case of failures, they decide to switch
to active mode and therefore initiate the recovery process to retrieve the data
of the failed nodes. However, during the network’s service, how can we handle
the case where two (or more) sleeping nodes, would realize at the same time
that the working neighbor is down?

Indeed, two neighboring sensor nodes may be elected at the same time step,
and the recovery process of two neighboring nodes may be the same. This paper
aims at filling this gap by proposing an efficient node failure recovery scheme in
order to allow sensor networks to gracefully degrade in performance instead of
failing unpredictably.

In the following, we first focus on the legitimate state formulation and next,
we present the algorithm which consists in only three rules and give the correct-
ness proofs.

3.1 Problem formulization

Let G = (V,E) be the graph modeling the sensor network, with |V | = n and
|E| = m. We assume sensor node identifiers to be unique. We recall that sensor
node identifier is unique if and only if i.Id 6= j.Id holds for each i, j ∈ V (i 6= j).
A sensor node can be in one of these three states: failed, working, or probing.
Every node i in the network has to maintain the following data structure:

- Di: the sensed data by node i. Each time a node updatesDi, it sends/replicates
the newly sensed data to/on its neighbors.

- Pi: the parity information on node i. It is the result of the combination
of the replicated information of its neighbors.

We considered two different scenarios for the parity information. In the
first scenario, there are no memory constraints. Each new data is saved on a
different memory register, and we used the SUM function for data collection. In
the contrary, all information must be saved on the same memory register when

5

it comes to the second scenario. So, we used the XOR function to preserve
memory space.

Let T = t1, t2, ..., tk be the set of monitoring targets to be covered and
S = 1, 2, ..., n the set of sensor nodes. Each target in T has to be covered by
at least one sensor node in S. We call Γu the set of neighbor- sensors of target
tu, 1 ≤ u ≤ k. Each neighbor-sensor j ∈ Γu is capable of monitoring the target
tu, formally:

∀j ∈ Γu : ds(tu, j) ≤ Rs,Γu ⊆ S, tu ∈ T,

where ds(tu, j) denotes the distance between points tu and sensor j.
Let Ni be the initial set of neighbors of node i and di = |Ni \ Γu(i) \ i|,

the number of its working neighbors. As the number of failures goes up with
time, we let d∗i be the dynamic number of alive neighbor nodes. We denote by
Dk the set of di + 1 replicas of data Di. Also, we denote by s (Dk) the sensor
node to which data-replica Dk is assigned, for 1 ≤ k ≤ di + 1 and by ŝ (Dk) the
elected sensor node who recovers Di if node i fails. The data are replicated on
different nodes (space exclusion, see Lemma 1) since the goal is to achieve data
survivability even if some node failures occur in the network.
We say that a sensor node i is independent if

i.state = working ∧ (∀j ∈ Γu(i))(j.state = sleeping ∨ probing ∨ failed)
and that i is dominated if

(i.state = sleeping ∨ probing) ∧ (∃j ∈ Γu(i))(j.state = working)
The legitimate state (let us denote it Σ) of the network is then expressed as
follows:
∀i ∈ V : i.state = failed
⇒ ((∃ŝ, ŝ′ ∈ Γu(i))(ŝ.state = ŝ′.state = working)⇒ (ŝ(Dk

i) = ŝ′(Dk
i)))

In other words, each data loss is recovered by at most one working sensor
node.

3.2 The algorithm

When a sleeping node wakes up, it sends a probe-request message to check if
there exist working nodes in its vicinity. If no working nodes, it recovers the
lost data of the failed node and starts to operate in the active mode; otherwise,
it sleeps again. Nodes are initially in the sleeping mode. Each node sleeps for
an exponentially distributed time generated according to a probability density
function (PDF) f(t) = λe−λt, where λ is the probing rate of the sensor node
and t denotes its sleeping time duration.

Upon detecting an eventual failure, a probing node i updates its actual
probing rate λi by taking into account the dynamic number of alive neighbors
d∗i : λnewi ← λi .

di
d∗i

. Then, a new sleeping period is generated by using the new

computed parameter λnewi according to the PDF function: f(t) = λnewe−λ
newt.

The following notations are also given for the predicates of node i

- W (i): working neighbor: ∃j ∈ Γu(i), i.state = working

6

- W ∗(i): working neighbor with lower Id: ∃j ∈ Γu(i), j.state = probing ∧
i.Id > j.Id

- F (i): failed neighbor: ∃j ∈ Γu(i), j.state = failed

- P ∗(i): probing neighbor with lower Id: ∃j ∈ Γu(i), j.state = probing ∧
i.Id > j.Id

The proposed algorithm uses the following three rules:
r1:

if (i.state = probing ∧ (P ∗(i) ∨W (i))) then

if P ∗(i) then
λnewi ← λi.

di
d∗i

end if
i.state← sleeping

end if

Figure 1: Algorithm rule 1.

r2:

if i.state = probing ∧ (¬W (i) ∧ ¬P ∗(i) ∨ F (i)) then
if F (i) then
if memory constraint then
Di ← Pz ⊕

k∈Nz\Γu(i),k 6=j
Dk (*F (i) = F (z) = j*)

else
Di ← Dk, k ∈ Nz\Γu(i), k 6= j (* k is chosen randomly*)

end if
end if
i.state← working

end if

r3:

if (i.state = working ∧W ∗(i)) then
i.state← sleeping

end if

7

Figure 2: Algorithm rule 2.

Figure 3: Algorithm rule 3.

3.3 Correctness proofs

In this section, we detail properties of our fault tolerant algorithm, and express
its validity/convergence. We assume that links are trustworthy/flawless and
lossless.

Lemma 1. A sensed data Di is guaranteed to survive in the presence of di
permanent faults if and only if s(Dk

i) 6= s(Dk′

i), for 1 ≤ k, k′ ≤ di + 1.

Proof. If di nodes fail, then there is s(Du
i), 1 ≤ u ≤ di + 1 which did not fail,

and therefore Du
i will be recovered successfully from s(Du

i) since there are di+1
copies of Di assigned to di + 1 different nodes. However, if there is a sensor
node s(Dk

i), 1 ≤ k ≤ di + 1, such that s(Dk
i) = s(tui) = s∗ and s∗ fails, then

neither Dk
i nor Du

i can be recovered successfully.

Lemma 2. If at most di neighbors crash down for any sensor node i ∈ V in
the network, then the algorithm is valid and resists to eventual node failures.

Proof. The proposed algorithm is based on replication scheme with space ex-
clusion. Thus, according to Lemma 1, each data is replicated di + 1 times onto
di+ 1 distinct sensor nodes. We have at most di node failures at the same time.
So at least one copy of each data is recovered from a fault free node.

Lemma 3. If a node changes to the working state by r2, then it remains in its
state and will never execute a rule again until an eventual failure takes place.

Proof. Let i be a sensor node that executes r2. According to the preconditions
of all rules, node i can execute only rule r3 in the next round. However, in order
to do so, one of its neighbors would have to switch to working state following
r2. This is impossible as long as node i is in the working state. Thus, node i
will never execute a rule again. If node i is down, it remains in its state (fail-stop
failure).

8

Lemma 4. If a sensor node is enabled by rule r2, then each one of its neighbors
will execute at most one more rule until their next wake-up/probing, and this
rule will be r1.

Proof. Let i be a node that executes r2. When node i changes to working state,
all its neighbors are either in sleeping, probing, or failed state. So, we have
three possible scenarios: i) neighbors in sleeping state: there is no conflict in
this case. ii) neighbors with probing state: these neighbors have a higher Id
than i. iii) failed neighbors will remain in their state until their recovery.

Lemma 5. Every sensor node is either independent, dominant, or failed.

Proof. From the point of view of node i, we have three scenarios:

- if node i is in the working state and is not independent, then i may
execute rule r3.

- if node i is in the sleeping ∨ probing state and is not dominated, then
node i may execute rule r2.

- if node i is in the failed state, then node i will remain in its state until
its recovery.

Lemma 6. When a node is not failed ∨ sleeping, it can make at most two
moves.

Proof. By Lemma 3 and Lemma 4, each rule can be executed at most once by
a node. Hence, the only case a node makes two moves is when it executes r3
then r2 with a working state.

Theorem 1. With respect to the legitimate state Σ of the network, the proposed
algorithm converges within 2n moves.

Proof. This follows from Lemma 1 to Lemma 6.

3.4 Message complexity analysis

In the following, we give an Upper-Bound of the actual number of probe/reply
messages exchange during the network’s lifetime task.

Theorem 2. The number of probe/reply messages involved by the algorithm is
at most:

O

(
n m×max

i

tRi
i

∆i

)
, 1 ≤ i ≤ n

where, n is the number of nodes, m is the number of virtual communication
links, tRi

i is the reliable lifetime of node i and ∆i is the smallest sleeping period
time of node i.
This bound is attainable.

9

Proof. (a)- The reliable lifetime tRi
i , of the node i, 1 ≤ i ≤ n for a specified

reliability Ri, starting the mission at age 0, is computed as follows:

Ri = 1− F (tRi
i) = e−λt

Ri
i ⇒ ln Ri = −λtRi

i ⇒ tRi
i = − 1

λ ln Ri
This is the lifetime during which the sensor node i will be functioning success-
fully with a reliability of Ri.
According to node’s sleeping periods subdivisions of the time, we have:
0 = to < t1 < t2 < ... < tk = t. Let ∆p = [tp−1, tp[, 1 ≤ k denote the pth

sleeping period time. Since the number of failures goes up, the sleeping time
period decreases with time. This implies that the probing process of node i

costs at most O

(
t
Ri
i

∆i

)
, 1 ≤ i ≤ n,∆i = min∆p, 1 ≤ p ≤ k. In addition, for

each probing message issued from node i, we may have the corresponding reply
messages from its working neighbors. This cost is at most O(|Ni|). Therefore,
from the point of view of node i, the number of probe/reply messages is at most

O

(
|Ni| ×

t
Ri
i

∆i

)
.

Finally, summing up for the whole n sensor nodes, the algorithm’s message cost

is at most O

(
Σni=1|Ni| ×

t
Ri
i

∆i

)
≤ O

(
n m×maxi

t
Ri
i

∆i

)
, 1 ≤ i ≤ n

(b)- To see that this bound is really attainable, consider a linear chain graph
of only two sensor nodes s1 and s2(n = 2). We need to orchestrate the involved
communications between these nodes in time. Assume that s1 is working and
s2 is the passive state. If tR1

1 = tR2
2 (s1 and s2 start functioning and fail at

the same time), then the whole number of probe-message issued from s2 is
t
R2
2

∆2
, where ∆2 is the constant sleeping time period of s2. Since both s1 and

s2 have the same life for which nodes will be functioning successfully, node
s1 will reply for each probing message issued from s2. As a result, the whole
number of involved probe-request/reply message before the failure of s1 and s2

is n m× maxit
R
i

miniminj∆ji
= 2× t

R2
2

∆2

4 Simulation results

In this section, we discuss some results through simulations. We consider a flat
grid topology of 10 by 10 i.e. 100 monitoring zones. We vary the number of
sensors between 200 and 1600 nodes. Since sensors are uniformly distributed in
the monitoring area, the density of sensors at each zone varies between 2 and
16.

The performance evaluation considers five aspects: (i) Network lifetime evo-
lution; (ii) Failure rate: that is the ratio of information recovery attempts that
did not succeed; (iii) Effective monitoring time: this measure is related to the
time between the death of the active node in a monitoring zone and its replace-
ment; it is expressed in (%); (iv) Total number of messages; and (v) Number of
awakenings per inactive sensors.

10

Our simulations are performed in two different settings: the first setting
sets a low wake-up rate but enough to keep the monitoring time ratio higher
than 50% in almost all configurations (see Figure 4); while the second setting
considers a wake-up rate four times higher than the rate in the previous setting.
This allowed us to reach monitoring time ratios up to 90% (see Figure 5).

These two settings were put in place in order to test and compare two dif-
ferent solutions for data collection. In the first scenario, we assume that there
is no constraint related to memory capacity of sensor nodes. Therefore, each
sensor is able to save data received from all nodes in its neighborhood on a
different memory register (this method is called SUM). As for the second sce-
nario, we aim for preserving the memory space. Thus, we suppose that each
node has one memory register that is available to save all information received
from all its neighboring nodes; every new data packet is added in the register
using the function XOR. We can notice that the second method for data saving
(XOR) is highly sensitive to any neighboring node failure. In fact, the failure
of a neighbor induces a corruption of the calculation of the data needed for the
recovery process. For this reason, the coverage rate needs to be high enough for
this solution to work. Consequently, the XOR method is only implemented in
the 4x version of our simulation settings.

4.1 Wake-up rate = 1x

In this section, only the SUM method is implemented. The nodes in the network
are designed to fail randomly. This failure rate varies from 0% to 8% by a pitch
of 2%.

In Figure 4(a), we can observe that the network’s lifetime increases in an
almost linear manner. For a small network, the number of times a sensor node
receives a wake-up message is higher comparing to the same number when the
network is larger. Therefore, the more nodes are participating in the coverage
process, the less energy is consumed per node and the overall energy in the
network is preserved. The overall energy level has an impact on the recovery
process. In fact, when the energy level start to go down, the number of nodes
able to cover a given area is reduced. The remaining nodes will receive an
increasing number of wake-up messages, and when they fail the number of re-
placements is continuously decreased. Eventually, some zones will no longer be
covered. Thus, data recovery rate increases when the network is larger. Even
though failures are less impacting for a dense network, the failure rate is low even
for a small network (see Figure 4(b)). The coverage rate (illustrated in Figure
4(c)) is more successful when the density of the network grows. Nevertheless, it
remains between the values of 45% and 55% depending on the settings. Indeed,
as discussed above, the number of wake-up messages in the network is higher
with the growth of nodes number and therefore more energy is dissipated. On
the other hand, when the number of nodes is small, even though the number of
wake-up messages is reduced, nodes fail faster as the number of node replace-
ments is small. Consequently, there is no huge difference in the coverage rate.
Still, a dense network guarantees a better coverage rate. The total number of

11

exchanged messages in the network will only grow with the increased number
of nodes in the network as shown in Figure 4(d). In fact, each node will copy
its sensed data onto each one of its neighbors. So when the number of nodes
increases, the number of messages increases accordingly. The number of wake-
ups per node illustrated in Figure 4(e) follows a logarithmic form. Sensor nodes
periodically wake up to verify if there zone is being covered by an active node.
The wake-up rate follows a probability function that is updated considering
node failure. So, the number of these messages highly depends on the number
of nodes failure. When the probability of node failure increases, the number of
nodes in the network is decreased and thus the total number of wake-ups.

4.2 Wake-up rate = 4x

In this section, both of SUM and XOR methods are tested. Since all the curves
are similar, except for failure of the recovery process, only the figure corre-
sponding to the latter illustrates the comparison between both methods. Nodes
failure rate are fixed to 0% and 8% only (the two extreme cases from the previous
configuration).

Comparing to the previous configuration, the network’s overall lifetime has
decreased. Considering that the wake-up rate here is 4 times more frequent, it
is normal that network consumes more energy in this setting (see Figure 5(a)).
Nevertheless, the different zones coverage rate illustrated in Figure 5(c) was
considerably and understandably improved. The failure of the recovery process
in Figure 5(b) remains very low with the absence of memory constraints, and
even lower comparing to the previous configuration. In the contrary, the XOR
function appears to be highly sensitive to node failure. When the failure rate
reaches 8%, the recovery failure jumps by 30% for a small network and 15% when
the network is dense. The total number of exchanged messages is considerably
higher than the number in the previous configuration, and this is due to the
increased number of wake-up messages. The algorithm also improves the overall
energy consumption by only maintaining a necessary set of nodes in the active
mode. the rest of the node wake up randomly to check their area and ensure
that coverage is performed. This random function is optimized by updating it
accordingly to the nodes failure rate.

5 Conclusion

In this paper, we proposed a fully distributed algorithm that seeks to cover
data loss by maintaining a necessary set of working nodes and recovering failed
ones when needed. Each sensor node copies its data onto neighbors using two
different assumptions: (i) in the first one, we suggest that there is no memory
constraint and each new information is copied on a different register, and (ii) in
the second one we put in place a memory constraint and use the XOR function
to add a new data to the common memory register for all data. We also tested
two different configurations, where the wake-up rate is 4 times more frequent

12

from one configuration to the other. The performed simulations showed that a
more frequent wake-up rate helps improve the quality of the recovery process.
Even though the absence of memory constraints facilitates the recovery process,
this rate was maintained below 35% for a small network and around 15% for
a dense one even in the presence of memory constraints. This algorithm also
helps preserving the energy in the network by only maintaining a necessary set
of sensor nodes in the active mode. The rest of the nodes wake up randomly
to ensure that their area is covered by a sensor node. This random function is
optimized by updating it according to the nodes failure rate.

References

[1] Avizienis, A., Lapire, J.-C., and Randell, B. (2000) Fundamental concepts
of dependability. Technical Report CS-TR-739. University of Newcastle,
England.

[2] Knight, J. (2004) An introduction to computing system dependability.
Proceedings of the 26th International Conference on Software Engineering
(ICSE’04), Edinburgh, United Kingdom, May 23-28, pp. 730–731. IEEE
Computer Society, Washington DC, USA.

[3] Taherkordi, A., Taleghan, M., and Sharifi, M. (2006) Dependability con-
sideration in wireless sensor networks applications. Journal of Networks,
1, 28–35.

[4] Silva, I., Guedes, L., Portugal, P., and Vasques, F. (2012) Reliability and
availability of wireless sensor networks for industrial applications. Sensors,
12, 806–838.

[5] Akan, O. B. and Akyildiz, I. F. (2005) Event-to-sink reliable transport in
wireless sensor networks. IEEE/ACM Transactions on Networking, 13,
1003–1016.

[6] Zhou, Y., Lyu, M. R., Liu, J., and Wang, H. (2005) Port: A price-oriented
reliable transport protocol for wireless sensor networks. Proceedings of the
16th IEEE International Symposium on Software Reliability Engineering
(ISSRE’05), Chicago IL, November 8-11, pp. 117–126. IEEE Computer
Society, Los Alamitos CA, USA.

[7] Gungor, V. C. and Ozgur B. Akan, O. B. (2006) Dst: Delay sensitive
transport in wireless sensor networks. Proceedings of the 7th IEEE Inter-
national Symposium on Computer Networks (ISCN’06), Istanbul, Turkey,
June 16-18, pp. 116–122. IEEE Communications Society, New York, USA.

[8] Iyer, Y. G., Gandham, S., and Venkatesan, S. (2005) Stcp: A generic trans-
port layer protocol for wireless sensor networks. Proceedings of the 14th In-
ternational Conference on Computer Communications and Networks (IC-

13

CCN), San Diego, California, USA, October 17-19, pp. 449–454. IEEE
Computer Society, Washington DC, USA.

[9] Al-Wakeel, S. S. and Al-Swailem, S. A. (2007) Prsa: A path redundancy
based security algorithm for wireless sensor networks. IEEE Wireless
Communications and Networking Conference, WCNC, Hong Kong, China,
March 11-15, pp. 4159–4163. IEEE Communications Society, New York,
USA.

[10] Dijkstra, E. W. (1974) Self-stabilizing systems in spite of distributed con-
trol. Communications of the ACM, 17, 643–644.

[11] Mojoodi, A., Mehrani, M., Forootan, F., and Farshidi, R. (2011) Redun-
dancy effect on fault tolerance in wireless sensor networks. Global Journal
of Computer Science & Technology, 11, 34–39.

[12] He, S., Chen, J., Li, X., Shen, X. S., and Sun, Y. (2012) Leveraging pre-
diction to improve the coverage of wireless sensor networks. IEEE Trans-
actions on Parallel and Distributed Systems, 23, 701–712.

[13] He, S., Chen, J., Yau, D. K. Y., Shao, H., and Sun, Y. (2012) Energy-
efficient capture of stochastic events under periodic network coverage and
coordinated sleep. IEEE Transactions on Parallel and Distributed Systems,
23, 1090–1102.

[14] Kasbekar, G. S., Bejerano, Y., and Sarkar, S. (2011) Lifetime and cov-
erage guarantees through distributed coordinate-free sensor activation.
IEEE/ACM Transactions on Networking, 19, 470–483.

[15] Choi, J., Hahn, J., and Ha, R. (2009) A fault-tolerant adaptive node
scheduling scheme for wireless sensor networks. Journal of Information
Science and Engineering, 25, 237–287.

[16] Chen, X., Kim, Y.-A., Wei, W., Shi, Z. J., and Song, Y. (2009) Fault-
tolerant monitor placement for out-of-band wireless sensor network moni-
toring. Journal of Information Science and Engineering, 25, 237–287.

[17] Geeta, D., Nalini, N., and Biradar, R. (2013) Fault tolerance in wireless
sensor networks using hand-off and dynamic power adjustment approach.
Journal of Network and computer Applications, 36, 1174–1185.

[18] Lee, M.-H. and Choi, Y.-H. (2008) Fault detection of wireless sensor net-
works. Computer communications, 31, 3469–3475.

[19] Kasbekar, G. S., Bejerano, Y., and Sarkar, S. (2011) Lifetime and cov-
erage guarantees through distributed coordinate-free sensor activation.
IEEE/ACM Transactions on Networking, 19, 470–483.

[20] He, S., Chen, J., Li, X., Shen, X. S., and Sun, Y. (2012) Leveraging pre-
diction to improve the coverage of wireless sensor networks. IEEE Trans-
actions on Parallel and Distributed Systems, 23, 701–712.

14

[21] Zhang, Q., Fu, L., Gu, Y., Gu, L., Cao, Q., Chen, J., and He, T. (2014) Col-
laborative scheduling in highly dynamic environments using error inference.
IEEE Transactions on Parallel and Distributed Systems, 25, 591–601.

[22] He, S., Chen, J., Cheng, P., Gu, Y., He, T., and Sun, Y. (2012) Main-
taining quality of sensing with actors in wireless sensor networks. IEEE
Transactions on Parallel and Distributed Systems, 23, 1657–1667.

[23] Zhang, L., Ye, Q., Cheng, J., Jiang, H., Wang, Y., Zhou, R., and Zhao,
P. (2012) Fault-tolerant scheduling for data collection in wireless sensor
networks. Proceedings of IEEE GLOBECOM, Anaheim, CA, December
3-7, pp. 5345–5349. IEEE Communications Society, New York USA.

[24] Feng, Y., Tang, S., and Dai, G. (2011) Fault tolerant data aggregation
scheduling with local information in wireless sensor networks. Science and
Technology, 16, 451–463.

[25] Cheng, J., Ye, Q., Jiang, H., Wang, D., and Wang, C. (2013) Stcdg: An
efficient data gathering algorithm based on matrix completion for wireless
sensor networks. IEEE Transactions on Wireless Communications, 12,
850–861.

[26] Peng, Y., Dong, M., and Zuo, M. (2010) Current status of machinery prog-
nostics in condition-based maintenance:a review. International Journal of
of Advanced Manufacturing Technology, 50, 297–313.

[27] Hu, C., Youn, B., Wang, P., and Yoon, J. (2012) Ensemble of data-driven
prognostic algorithms for robust prediction of remaining useful life. Relia-
bility Engineering and System Safety, 103, 120–135.

[28] Heng, A., Zhang, S., Tan, A., and Mathew, J. (2009) Rotating machinery
prognostic: State of the art, challenges ahead and opportunities. Mechan-
ical Systems and Signal Processing, 23, 724–739.

[29] Elghazel, W., Bahi, J., Guyeux, C., Hakem, M., Medjaher, K., and Zer-
houni, N. (2015) Dependability of wireless sensor networks for industrial
prognostics and health managements. Computers in Industry, 68, 1–15.

15

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 200 400 600 800 1000 1200 1400 1600

T
im

e

Nodes

f=0

f=0.02

f=0.04

f=0.08

(a) Network’s lifetime

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 200 400 600 800 1000 1200 1400 1600

F
a
il
s
 %

Nodes

f=0

f=0.02

f=0.04

f=0.08

(b) Failures of the recovery process

 40

 45

 50

 55

 60

 200 400 600 800 1000 1200 1400 1600

C
o
v
e
ra

g
e
 %

Nodes

f=0
f=0.02
f=0.04
f=0.08

(c) Coverage rate

 0

 50000

 100000

 150000

 200000

 250000

 200 400 600 800 1000 1200 1400 1600

M
e
s
s
a
g
e
s

Nodes

f=0
f=0.02
f=0.04
f=0.08

(d) Number of total messages in the network

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 200 400 600 800 1000 1200 1400 1600

N
b
 W

a
k
e
 U

p
s

Nodes

f=0
f=0.02
f=0.04
f=0.08

(e) Number of total wake-ups in the network

Figure 4: Performance evaluation with average (1x) wake up rate.

16

 10

 20

 30

 40

 50

 60

 70

 200 400 600 800 1000 1200 1400 1600

T
im

e

Nodes

f=0

f=0.08

(a) Network’s lifetime

 0

 5

 10

 15

 20

 25

 30

 35

 200 400 600 800 1000 1200 1400 1600

F
a
ils

 %

Nodes

SUM, f=0
SUM, f=0.08

XOR, f=0
XOR, f=0.08

(b) Failures of the recovery process

 40

 50

 60

 70

 80

 90

 100

 200 400 600 800 1000 1200 1400 1600

C
o
v
e
ra

g
e
 %

Nodes

f=0
f=0.08

(c) Coverage rate

 0

 50000

 100000

 150000

 200000

 250000

 300000

 200 400 600 800 1000 1200 1400 1600

M
e
s
s
a
g
e
s

Nodes

f=0
f=0.08

(d) Number of total messages in the network

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 200 400 600 800 1000 1200 1400 1600

N
b
 W

a
k
e
 U

p
s

Nodes

f=0
f=0.08

(e) Number of total wake-ups in the network

Figure 5: Performance evaluation with high (4x) wake up rate.

17

	1 Introduction
	2 Related work
	3 The proposed algorithm
	3.1 Problem formulization
	3.2 The algorithm
	3.3 Correctness proofs
	3.4 Message complexity analysis

	4 Simulation results
	4.1 Wake-up rate = 1x
	4.2 Wake-up rate = 4x

	5 Conclusion

